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A survey of the GIT picture for the
Yang–Mills equation over Riemann surfaces
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Abstract. �e purpose of this paper is to give a self-contained exposition of the Atiyah–Bott
picture [AB83] for the Yang–Mills equation over Riemann surfaces with an emphasis on
the analogy to �nite dimensional geometric invariant theory. �e main motivation is to
provide a careful study of the semistable and unstable orbits: �is includes the analogue
of the Ness uniqueness theorem for Yang–Mills connections, the Kempf–Ness theorem,
the Hilbert–Mumford criterion and a new proof of the moment-weight inequality following
an approach outlined by Donaldson [Don4]. A central ingredient in our discussion is the
Yang–Mills �ow for which we assume longtime existence and convergence (see [Rad]).
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1. Introduction

�e purpose of this paper is threefold: �e �rst goal is to provide a self-
contained and essentially complete exposition of the geometric invariant theory
for the Yang–Mills equation over Riemann surfaces from the di�erential geometric
point of view. We follow closely the line of arguments of �nite dimensional GIT
(e.g., as it is explained in [SGR]) and emphasize this analogy throughout.

�e second goal is to include a careful study of the semistable and unstable
orbits. �is is in contrast to most of the developments after the landmark paper
[AB83] of Atiyah and Bott, which deal with the characterization of stable objects
in more general moduli problems, i.e., the analogue of the Narasimhan–Seshadri
theorem. In the unitary case Daskalopoulos [Das] established the Morse theoretic
picture of Atiyah and Bott. A direct corollary of this strati�cation is the analogue
of the Ness uniqueness theorem and the moment limit theorem (see �eorem A
below). We present an alternative proof of this result following the arguments
discovered by Calabi–Chen [CC] and Chen–Sun [CS] in a di�erent in�nite
dimensional setting. �is argument does not depend on the Harder–Narasimhan
�ltration or on other aspects from the holomorphic point of view and works for
general structure groups. Following an approach outlined by Donaldson [Don4],
we also carry out a new proof of the moment-weight inequality which is essentially
contained in the work of Atiyah and Bott.

�e third goal is to provide a transparent exposition of the central ideas
used in gauge theoretical moduli problems. While several results are known in
greater generality, the key ideas are still immanent in our treatment. We hope
that this enables non experts to explore the beauty of this subject without having
to worry about the technical di�culties which come along with more general
moduli problems.

�e article concentrates on the stability questions in Yang–Mills theory and
does not discuss the topology of the resulting moduli space, which is one of
the main topics in the work of Atiyah and Bott. �ere is no claim of originality
(except to my knowledge �eorem A has only been proven in the case G D U.n/
in the existing literature). However, the various results and underlying ideas are
spread over the literature and the present paper provides a uni�ed exposition.
�e main technical ingredients in our discussion are long time existence and
convergence of the Yang–Mills �ow. �e presented arguments allow for various
generalizations to moduli problems in gauge theory, where the main obstacles are
again long time existence and convergence of the relevant parabolic gradient �ow.
�ese obstructions can be overcome for the Yang–Mills–Higgs �ow under suitable
assumptions and the results of this article can be carried over to the symplectic
vortex equation over Riemann surfaces, see [Tra], [Ven]. For the extension of the
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theory to bundles over higher dimensional Kähler manifolds, the situation is more
delicate and various known results are discussed at the end of the introduction.

�ere are two essentially di�erent perspectives on GIT – the algebraic
geometric and the symplectic point of view. �e recent survey of �omas [�o]
provides some background from both perspectives and explores several �nite and
in�nite dimensional examples. Originally, Mumford [Mum] introduced GIT as
a method to construct quotients and moduli spaces in algebraic geometry. �e
work of Atiyah–Bott [AB83] and the thesis of Kirwan [Kir] have shown that
GIT is closely related to moment maps and symplectic reduction, where the link
between both theories lies in the Morse–Bott strati�cation of the moment map
squared functional. �is leads to an entirely di�erential geometric version of GIT.
Another important ingredient in this approach is the Kempf–Ness function: Let
.X; J; !; �/ be a closed Kähler manifold with Hamiltonian G -action and moment
map � . Here G denotes a (real) compact Lie group with complexi�cation Gc .
For a given point x 2 X there exists a G -invariant function

ˆx W G
c=G ! R

such that the gradient �ow of ˆx intertwines with the gradient �ow of the
moment map squared functional under the map g 7! g�1x . �e global analytic
properties of ˆx are related to the algebraic weights of x and to the solvability
of the equation �.gx/ D 0 by the Kempf–Ness theorem.

We follow throughout this survey the di�erential geometric approach. For a
modern algebraic treatment we refer to [ADK] and the references therein. �e new
edition of [MFK] also contains a discussion of the GIT picture for the Yang–
Mills equations. Nevertheless, it leaves some re�ned question open: What are
the appropriate analogous versions of the Ness uniqueness theorem, the Kempf–
Ness theorem or the Hilbert–Mumford criterion? �e analog of the Kempf–Ness
functional has been used to provide analytic proofs for various generalizations
of the Narasimhan–Seshadri theorem, but it has seen little discussion beyond
these applications in the literature. �e recent work of Calabi, Chen, Donaldson
and Sun [CC, Don4, Che1, Che2, CS] has shown that the underlying geometric
properties of the Kempf–Ness functional can be used to provide analytic proofs
for the Ness uniqueness theorem and the Kempf–Ness theorem. We follow their
ideas and obtain new proofs of the corresponding results in the Yang–Mills case.
�e exposition [SGR] provides a �nite dimensional discussion of these arguments.

Main results. Let G be a compact connected Lie group and let † be a closed
Riemann surface. Fix a volume form on † , compatible with the orientation, and
let P ! † be a principal G bundle. Atiyah and Bott [AB83] observed that the
curvature
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�.A/ WD �FA 2 �
0
�
†; ad.P /

�
de�nes a moment map for the action of the gauge group G.P / on the space of
connections A.P / . For any constant central section � , the symplectic quotient

A.P /==G.P / WD ��1.�/=G.P /

yields the moduli space of projectively �at connections on P with constant central
curvature � .

Let Gc be the complexi�cation of G and P c WD P �G G
c the associated

principal Gc bundle. �e complexi�cation of the gauge group is Gc.P / WD G.P c/ .
�e space A.P / can naturally be identi�ed with the space J .P c/ of holomorphic
structures on P c (see Lemma 2.5) and the complexi�ed gauge group Gc.P / acts
naturally on this space. �e corresponding GIT quotient

Ass.P /==Gc.P /

of A.P / by Gc.P / is obtained in two steps. First, one de�nes a dense and open
subset Ass.P / � A.P / of semistable connections or holomorphic structures on
P and second, one identi�es two semistable orbits in the quotient if they cannot
be separated in Ass.P / . �e restriction to semistable orbits is necessary to obtain
a good quotient in the sense of algebraic geometry. �ere are two approaches
to de�ne semistable objects. In the symplectic approach, one chooses a moment
map for the gauge action on A.P / to de�ne semistable objects. In the algebraic
geometric approach, one de�nes a notion of semistability J ss.P c/ � J .P c/ on
the space of holomorphic structures on P c . A classical result due to Narasimhan
and Seshadri [NS] in the case G D U.n/ and due to Ramanathan [Ram] for
general G shows that both of these notions agree if one restricts to further open
subsets of stable objects.

�e Yang–Mills picture introduced by Atiyah and Bott [AB83] shed new
light on this result and inspired Donaldson [Don1] to an analytic proof of the
Narasimhan–Seshadri theorem. �e Yang–Mills functional is given by the formula

YM W A.P /! R; YM.A/ WD
1

2

Z
†

jjFAjj
2 dvol†:

Standard arguments from Chern–Weil theory show that there exists a unique
central element � 2 Z.g/ such that

YM.A/ D inf
B2A.P /

YM.B/ () �FA D �:(1)

We shall consider in the following connections of Sobolev class W 1;2 and gauge
transformations of Sobolev class W 2;2 . Rade [Rad] showed in this setting that
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for every initial data A0 2 A.P / the negative gradient �ow of the Yang–Mills
functional

@tA.t/ D �rYM
�
A.t/

�
D �d�A.t/FA.t/; A.0/ D A0(2)

has a unique (weak) solution which exists for all time. Moreover, this solution
remains in a single complexi�ed Gc.P / -orbit and converges in the W 1;2 -topology
to a Yang–Mills connection A1 2 Gc.A0/ . �e following is the analogue of the
Ness uniqueness theorem in �nite dimensional GIT.

�eorem A (Uniqueness of Yang–Mills connections). Let A0 2 A.P / and let
A1 be the limit of the Yang–Mills �ow (2) starting at A0 . �en

(1) YM.A1/ D infg2Gc.P / YM.gA/ .

(2) If B 2 Gc.A0/ is contained in the W 1;2 -closure of Gc.A0/ and

YM.B/ D inf
g2Gc.P /

YM.gA/

then G.B/ D G.A1/ .

In the case G D U.n/ one can replace P by a hermitian vector bundle
E ! † . Daskalopoulos [Das] established in this case the convergence of the
Yang–Mills �ow over Riemann surfaces by di�erent methods. He proves a suitable
slice theorem near Yang–Mills connections and shows that the limiting Yang–
Mills connection A1 is determined up to a unitary gauge transformation by the
isomorphism class of the Harder–Narasimhan �ltration of .E; N@A0/ . �is proves
�eorem A in the unitary case and it should be possible to deduce the general
result from this using the methods in [BW]. We present a di�erent proof of
�eorem A in �eorem 4.14 and �eorem 4.15 by following the line of arguments
from �nite dimensional GIT ([SGR], Chapter 6). �ese arguments were originally
given by Calabi–Chen [CC] and Chen–Sun [CS] in the context of extremal Kähler
metrics.

A connection A 2 A.P / is called �� -semistable resp. �� -unstable if

inf
g2Gc.P /

jj � FgA � � jjL2 D 0 resp. inf
g2Gc.P /

jj � FgA � � jjL2 > 0

where � is de�ned by (1). Moreover, A is called �� -polystable if there exists
g 2 Gc.P / with �FgA D � and it is called �� -stable if gA is in addition
irreducible. �en �eorem A implies that the map which sends A0 2 A.P / to
the limit A1 of the Yang–Mills �ow starting at A0 yields the identi�cations

Ass.P /==Gc.P / Š Aps.P /=Gc.P / Š ��1.�/=G.P /:
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Conversely, the �� -unstable orbits converge to higher critical points of the Yang–
Mills functional. More details on this correspondence are given in �eorem 4.18.

�e theory has greatly evolved since the paper [AB83] of Atiyah and Bott. �e
main goal in those developments has been the characterization of stable objects in
more general moduli problems (e.g. [Don2], [Don3], [UY], [Hit], [Simp], [Bra]).
�e characterization of unstable orbits is in general much more di�cult as it
refers to higher critical points of the Yang–Mills functional. Given a connection
A 2 A.P / and � 2 �0.†; ad.P // the weight w� .A; �/ is de�ned by

w� .A; �/ WD lim
t!1
h�Feit�A � �; �i 2 R [ ¹1º:

�e �rst part of the following theorem is the analogue of the moment-weight
inequality and the last two claims are the analogue of the Kempf existence and
uniqueness theorem in �nite dimensional GIT.

�eorem B (Atiyah–Bott). Let A 2 A.P / and let � 2 Z.g/ be de�ned by (1).
�en

(1) For all 0 ¤ � 2 �0.†; ad.P // there holds

�
w� .A; �/

jj�jj
� inf
g2Gc.P /

jj � FA � � jj
2:

(2) If the right-hand-side is positive, then there exists up to scaling a unique
0 ¤ �0 2 �

0.†; ad.P // such that

�
w� .A; �0/

jj�0jj
D inf
g2Gc.P /

jj � FA � � jj
2:

Moreover, �0 is rational in the sense that it generates a closed one parameter
subgroup of G.P / .

(3) Let A1 be the limit of the Yang–Mills �ow starting at A0 . �en there exists
u 2 G.P / such that �0 agrees up to scaling with u.�FA1 � �/u

�1 .

�is is essentially contained in the work of Atiyah and Bott ([AB83], Prop. 8.13
and Prop. 10.13). A connection A 2 A.P / induces a holomorphic structure on the
complexi�ed bundle P c WD P �G Gc and its Lie algebra bundle ad.P c/ . Atiyah
and Bott explicitly determine the in�mum of the Yang–Mills functional over Gc.A/
in terms of the Harder–Narasimhan �ltration of ad.P c/ . �e analogous result has
been shown by Calabi, Chen, Donaldson and Sun [CC, Don4, Che1, Che2, CS] in
the context of extremal Kähler metrics. Donaldson [Don4] compares the Atiyah–
Bott picture in the vector bundle case G D U.n/ with their results on the Calabi
functional and mentions that their methods should lead to a new proof of the
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moment-weight inequality in the Atiyah–Bott case. We carry out this proof in
�eorem 5.12. We reformulate and prove the last two claims in �eorem 7.1. �e
case G D U.n/ follows along the line of arguments of Atiyah and Bott from the
Harder–Narasimhan �ltration and the Narasimhan–Seshadri theorem. �e general
case can be reduced to this by the use of �eorem A. For this, choose a faithful
representation G ,! U.n/ . �en any G -connection A can be considered as
U.n/ -connection and �eorem A implies

inf
g2Gc.E/

YM.gA/ D inf
g2GL.E/

YM.gA/:

It now remains to compare the weights for the gauge action with respect to the
two structure groups G and U.n/ to conclude the proof. We would also like
to mention the work of Bruasse and Teleman [BT, Bru]. �ey prove for more
general gauge theoretical moduli problems that whenever the supremum over the
normalized weights is positive, then it is attained in a unique direction corre-
sponding to the Harder–Narasimhan �ltration.

�ere is a classical algebraic geometric notion of stability for holomorphic
principal bundles (see De�nition 3.2). In the vector bundle case G D U.n/ this
corresponds to the notion of (slope-)stable holomorphic vector bundles, which are
easier to de�ne: A holomorphic vector bundle E is called stable (semistable) if

c1.F /

rk.F /
<
c1.E/

rk.E/

�
c1.F /

rk.F /
�
c1.E/

rk.E/

�
holds for every proper holomorphic subbundle 0 ¤ F � E . Moreover, E is
called polystable if it decomposes as the direct sum of stable vector bundles all
having the same slope and E is called unstable if it is not semistable.

�eorem C (Generalized Narasimhan–Seshadri–Ramanathan theorem). Let A 2
A.P / and de�ne � by (1). �en A induces a holomorphic structure JA on the
complexi�ed bundle P c WD P �G Gc and the following holds true:

(1) .P c ; JA/ is stable if and only if A is �� -polystable and the kernel of the
in�nitesimal action LA W �

0.†; ad.P c//! �1.†; ad.P //

LA.� C i�/ WD �dA� � �dA�

contains only constant central sections.

(2) .P c ; JA/ is polystable if and only if A is �� -polystable.

(3) .P c ; JA/ is semistable if and only if A is �� -semistable.

(4) .P c ; JA/ is unstable if and only if A is �� -unstable.
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Proposition 5.9 characterizes the stability of .P c ; JA/ in terms of the weights
w� .A; �/ and shows that this theorem is the appropriate analog of the Hilbert–
Mumford criterion in �nite dimensional GIT. �e �rst claim is the Narasimhan–
Seshadri–Ramanathan theorem. We present an analytic proof of this classical result
in �eorem 6.5 which was originally given by Bradlow [Bra] and Mundet [iR]
for more general moduli problems. �e main step in their proof is to establish the
analogue of the Kempf–Ness theorem (see �eorem 6.2) in the stable case. �e
polystable case is deduced from the stable case by induction on the dimension
of G . �e unstable and semistable case follow directly from �eorem B by
Proposition 5.9. We reformulate and prove �eorem C in �eorem 3.10.

Outline. In Section 2 we review the necessary preliminaries. �e �rst part deals
with the relevant background on gauge theory. Besides �xing notation, the main
goals are to provide an explicit description of the complexi�ed gauge action in
both the vector bundle and principal bundle case and to describe the moment
map picture of Atiyah and Bott. We show that this picture remains valid if one
considers connections and gauge transformations in suitable Sobolev completions.
�e second part discusses parabolic subgroups of complex reductive Lie groups.
�ese play a crucial role in the algebraic geometric de�nition of stability and the
geometric description of the weights.

In Section 3 we discuss the algebraic and symplectic de�nitions of stability. �e
main result in this section is the generalized Narasimhan–Seshadri–Ramanathan
theorem (�eorem 3.10) which states that these de�nitions are essentially equiva-
lent. �e proof of this theorem is based on the whole remainder of the exposition.

In Section 4 we review the analytical properties of the Yang–Mills �ow which
Rade [Rad] established in his thesis. We prove �eorem A in �eorem 4.14
and �eorem 4.15 and close this section with �eorem 4.18 which characterizes
the �� -stability of a connection A 2 A.P / in terms of the limit A1 of the
Yang–Mills �ow starting at A .

In Section 5 we introduce the weights w� .A; �/ and show that they are closely
related to holomorphic parabolic reductions of the complexi�ed bundle .P c ; JA/ .
Proposition 5.9 shows that the weights provide an alternative description of the
algebraic notion of stability. We close this section with the proof of the moment
weight inequality (�eorem 5.12) following the approach outlined by Donaldson
[Don4].

In Section 6 we describe a general procedure which associates to a given
connection A 2 A.P / a G.P / -invariant functional ˆA W Gc.P / ! R . We call
this the Kempf–Ness functional of A . �e slope of this functional at in�nity agrees
with the weights discussed in Chapter 5 and hence relates to the algebraic notion
of stability by Proposition 5.9. �e analogue of the Kempf–Ness theorem (see
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�eorem 6.2) relates the global behavior of ˆA to the symplectic �� -stability of
A . �is provides a link between the algebraic and symplectic notions of stability
and leads to an analytic proof of the Narasimhan–Seshadri–Ramanathan theorem
in �eorem 6.5. �ese arguments are given by Bradlow [Bra] and Mundet [iR]
in more general settings.

In Section 7 we establish the analogue of the Kempf existence and uniqueness
theorem (see �eorem 7.1). We include a self-contained account on the Harder–
Narasimhan �ltration for the convenience of the reader.

Higher dimensional base manifolds. We restrict our discussion to the case
where † is a Riemann surface, although several results remain valid in greater
generality. �e main reason for this is to simplify the presentation. Let us indicate
in the following to which degree the discussion could be generalized.

Replace † by a closed Kähler manifold .X; J; !/ and denote by

ƒ W �1;1.X/! �0.X/

the adjoint operator of f 7! f! . �e Hermitian Einstein equation is given by

ƒFA D �

for some constant central element � 2 �0.X; ad.P // . Denote by A1;1 the space
of connections on P whose curvature FA is of type .1; 1/ . �is space can be
given a Kähler structure and �.A/ D ƒFA yields a moment map for the gauge
action. In the vector bundle case, the Narasimhan–Seshadri theorem has been
generalized to this setting by Donaldson [Don2, Don3] in the algebraic framework
and by Uhlenbeck and Yau [UY] in the analytic framework over arbitrary Kähler
manifolds. We would like to point out an observation by Anouche and Biswan
[AB]. �ey show that a holomorphic principal bundle P c is polystable (resp.
semistable), if and only if the associated holomorphic vector bundle ad.P c/ is
polystable (resp. semistable). Further generalizations involving more complicated
moduli problems have been studied by Hitchin [Hit], Simpson [Simp] and Bradlow
[Bra]. In his thesis [iR], Mundet generalizes this correspondence to a very general
moduli problem.

Our discussion of the Yang–Mills �ow in Chapter 4 relies heavily on the
fact that † is a Riemann surface. In particular, the group of W 2;2 gauge
transformations no longer acts continuously on the space of W 1;2 connections for
higher dimensional base manifolds. To avoid this issue, one could consider the �ow
directly on the space of smooth connections. Donaldson showed in [Don2] that the
Yang–Mills �ow starting at smooth A1;1 connections admits a smooth solution
which exists for all time. In the stable case, Donaldson used this �ow to prove
his extension of the Narasimhan–Seshadri theorem. See [Siu] for a survey on this
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approach. �e main issue is the complicated limiting behavior of solutions which
yields profound technical di�culties. Bando and Siu ([BS], �eorem 4) showed
that the limit “breaks up” into Hermitian-Einstein sheaves in the unstable case
and conjectured that the limit corresponds essentially to the Harder–Narasimhan
�ltration. �is is very similar to our discussion in Chapter 7. �e Bando–Siu
conjecture has been con�rmed by Daskalopoulos–Wentworth [DW] in the case
of Kähler surfaces and by Sibling [Sib] and Jacob [Jac1, Jac2] for general Kähler
manifolds. �is yields the analogue of �eorem C for vector bundles over Kähler
manifolds.

Our calculation of the weights in Chapter 5 remains valid over an arbitrary
Kähler manifold. However, the weakly holomorphic �ltration yields in this case
only a �ltration by torsion-free subsheaves. �e proof of the moment-weight
inequality generalizes ad verbatim to this case. �e proof which we present for
the Narasimhan–Seshadri–Ramanathan theorem remains valid in this setting as
well (see [iR]).

�e Harder–Narasimhan �ltration is well de�ned for holomorphic vector
bundles over Kähler manifolds, but consists of torsion-free subsheaves instead
of holomorphic subbundles. It corresponds again to the supremum over the
normalized weights. �is is shown by Bruasse [Bru] and we present part of
his argument in Chapter 7. It is a nontrivial result that the in�mum of jjƒFgAjj
over the (smooth) complexi�ed gauge orbit yields the same value and follows
from the Bando-Siu conjecture. Bruasse gives an alternative and direct argument
to prove that the supremum is in fact attained.

General assumptions. Let G be a compact connected (real) Lie group, † a
closed Riemann surface and P ! † a principal G bundle. We �x a volume
form dvol† on † and assume for convenience that the volume form is scaled
such that

vol.†/ D 1:

Note that the volume form also induces a �xed Riemannian metric on † .
Unless stated otherwise, all Lie groups are assumed to be connected. When

G is a compact connected Lie group, then its complexi�cation Gc , its parabolic
subgroups Q.�/ and their Levi subgroups L.�/ are automatically connected (see
Lemma 2.12).

As a general rule, we consider connections of Sobolev class W 1;2 and gauge
transformations of Sobolev class W 2;2 . �e gauge action extends smoothly over
these Sobolev spaces, since the base manifold is a Riemann surface. �ese
regularity assumptions do not a�ect the overall picture and we shall discuss them
in more detail in the preliminaries below.
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2. Preliminaries

First, we review the underlying notions from gauge theory and set up our
notation. �e main goal is to describe the complexi�cation of the gauge action
and the moment map picture of Atiyah and Bott. We also discuss the regularity
assumptions which are crucial for our further analytic discussion. In the second
subsection, we describe parabolic subgroups of complex reductive Lie groups.
We also include a brief discussion of the root space decomposition of semisimple
Lie algebras for the sake of completeness.

2.1. Gauge theory. We consider throughout this section �ber bundles over a
closed connected Riemann surface † .

2.1.1. Basic gauge theory. We start with the general framework of �ber bundles
and specialize our discussion afterwards to the cases of vector bundles and
principal bundles.

Fiber bundles. Let E , F and B be smooth manifolds. �e manifold E together
with a projection map � W E ! B is called a �ber bundle over B with �ber F ,
if for every x 2 B there exists a neighborhood x 2 U � B and a di�eomorphism

 W ��1.U /! U � F

such that pr1 ı  D �jU . Here pr1 W U � F ! U denotes the projection onto
the �rst factor. �e map  is called a local trivialization of the �ber bundle E .
Suppose  ˛ and  ˇ are local trivializations over U˛ and Uˇ . �en there exists
a unique map gˇ˛ W U˛ \ Uˇ ! Di�.F / satisfying

 ˇ˛.x; u/ WD . ˇ ı  
�1
˛ /.x; u/ D .x; gˇ˛.x/u/

for all x 2 U˛ \ Uˇ and u 2 F . A reduction of the structure group of E to a
subgroup G � Di�.F / consists of an open cover ¹U˛º of B together with local
trivializations  ˛ such that all transition maps gˇ˛ take values in G . �e bundle
E together with a �xed choice of such trivialization is called a �ber bundle with
structure group G .

�e tangent bundle TE contains a canonical vertical subbundle V WD ker d� .
A connection on E is a splitting of the exact sequence

0! V ! TE ! TE=V ! 0

and corresponds to a horizontal distribution H � TE satisfying TE D H ˚ V .
Identifying H with the projection of TE onto V , we can describe a connection
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by a V -valued 1 -form A 2 �1.E; V / . �e curvature of a connection is the
2 -Form FA 2 �

2.E; V / de�ned by

FA.xI v;w/ WD Œv � Ax.v/; w � Ax.w/� D Œv
hor ; whor �vert :

It measures the integrability of the horizontal distribution HA � TE .

A�ne connections and vector bundles. A vector bundle is a �ber bundle E
whose �ber F D V is a vector space and whose structure group G � GL.V /
is linear. In this case every �ber Ez WD ��1.z/ has a canonical structure of a
vector space and we have well-de�ned maps

8� 2 C W S� W E ! E; x 7! �x

a W E ˚E ! E; .x; y/ 7! x C y:

A connection on E is a connection A 2 �1.E; V / of the underlying �ber bundle
which is compatible with the linear structure on the �bers: Denote by HA � TE

the horizontal distribution corresponding to A and by QHA � T .E ˚ E/ the
induced horizontal distribution consisting of pairs .v; w/ 2 H ˚ H satisfying
d�.v/ D d�.w/ . �en one requires

dS�.H/ � H 8� 2 C and da. QH/ � H:(3)

Alternatively, one can think of a connection as a covariant derivation

dA W �
0.†;E/

d
�! �1.†; TE/

A
�! �1.†; V / Š �1.†;E/

where the last map comes from the canonical identi�cation of the vertical bundle
with the vector bundle itself. �e linearity condition (3) says precisely that this
de�nes an a�ne connection.

De�nition 2.1. Let E ! † be a complex vector bundle. An a�ne connection
on E is a linear operator D W �0.†;E/! �1.†;E/ which satis�es the Leibniz
rule

D.f s/ D df ˝ s C f ˝Df

for all f W †! C and s 2 �0.†;E/ .

We denote by A.E/ the space of a�ne connections on E . Let  ˛ W EjU˛ !
U˛ � V be a local trivialization and denote for a local section s W U˛ ! E with
respect to this trivialization s˛ WD pr2 ı ˛ . �en an a�ne connection D has the
shape
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.Ds/˛ D ds˛ C A˛s˛

for some A˛ 2 �
1.U˛;End.V // . �ese A˛ are called connection potentials for

the a�ne connection D . If all connection potentials take values in the Lie algebra
g � End.V / of the structure group G � GL.V / , then the a�ne connection D

is called a G -connection. We denote by AG.E/ the space of all G -connections
on E .

An a�ne connection D induces higher covariant derivations by the formula

D W �k.†;E/! �kC1.†;E/; D.� ˝ s/ D d� ˝ s C .�1/k� ^Ds

for � 2 �k.†/ and s 2 �0.†;E/ . �e curvature FD 2 �
2.†;End.E// is the

unique tensor satisfying
.D ıD/s D FD � s

for all s 2 �0.†;E/ . It is the obstruction to D2 D 0 and not directly related to
the curvature of the horizontal distribution de�ned by D . It rather corresponds
to curvature of the induced horizontal distribution in the frame bundle of E as
we shall see below.

Connections on principal bundles. Let G be a Lie group with Lie algebra g .
A principal G bundle over † is a �ber bundle � W P ! † together with a �ber
preserving right action P � G ! P which is free and transitive on the �bers.
In particular, the �bers are isomorphic to G and using the right action we can
always construct equivariant local trivializations of P . For p 2 P and � 2 g the
in�nitesimal action of � is de�ned by

p� WD
d

dt

ˇ̌̌̌
tD0

p exp.t�/ 2 TpP:

�e collection of these tangent vectors de�nes the vertical subbundle

V D ker d� D ¹p� jp 2 P; � 2 gº � TP:

A connection on P is an equivariant connection of the underlying �ber bundle
and corresponds to an equivariant horizontal distribution H � TP satisfying
TP D V ˚ H . Identifying H with the projection … W TP D V ˚ H ! V ,
we can describe such a connection by a g -valued 1 -form A 2 �1.P; g/ via the
relation …p. Op/ D pAp. Op/ for all p 2 P and Op 2 TpP . �e connection 1 -Form
A satis�es the conditions

Ap.p�/ D � and Apg. Opg/ D g
�1Ap. Op/g(4)

for all g 2 G , � 2 g , p 2 P and Op 2 TpP . Conversely, the kernel of any
A 2 �1.P; g/ satisfying (4) gives rise to an equivariant horizontal distribution
H � TP . We de�ne by
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A.P / WD ¹A 2 �1.P; g/ j A satis�es (4)º

the space of connections on P .
�e curvature of a connection A 2 A.P / is de�ned as

FA WD dAC
1

2
ŒA ^ A� 2 �2.P; g/

where ŒA ^ A� is given by the usual formula for the exterior product with
multiplication replaced by the Lie bracket. �is curvature is linked to the curvature
of the corresponding horizontal distribution by the relation

ŒX; Y �vert D ŒXhor ; Y hor �vert D pFA.pIX; Y /

for p 2 P and X; Y 2 TpP .

Associated bundles. Let P ! † be a principal G bundle as above. A smooth
manifold F together with a representation � W G ! Di�.F / gives rise to the
associated �ber bundle P �� F with �ber F which is de�ned by

P �� F WD .P � F /=G

where G acts diagonally by g.p; x/ D .pg; �.g/�1x/ . We denote the orbit of
.p; x/ 2 P � F under this action by Œp; x� . A connection A 2 A.P / induces
a connection on the �ber bundle P �� F , which is given by the image of the
horizontal distribution under TP � TP � TF ! T .P �� F / .

Important examples arise from the action of G on itself by inner automorphism
and from the adjoint action of G on its Lie algebra. We denote the associated
bundles for these actions by

Ad.P / WD P �G G and ad.P / WD P �ad g:

Note that the bundle Ad.P / is a �ber bundle with �ber G but not a principal
bundle. �e �bers of ad.P / inherit from g a well-de�ned Lie algebra structure.

�e di�erence a WD A1 � A2 of two connection 1 -forms A1; A2 2 A.P /
satis�es

ap.p�/ D 0 and apg. Opg/ D g
�1ap. Op/g

for all p 2 P , Op 2 TpP , � 2 g and g 2 G . Hence a corresponds to a ad.P / -
valued 1 -form Na on † by the formula Na.�.p/I d�.p/ Op/ D Œp; a.pI Op/� . �is
describes A.P / as an a�ne space with underlying linear space �1.†; ad.P //
and with respect to any reference connection A0 2 A.P / we have

A.P / D
®
A0 C a j a 2 �

1.†; ad.P /
¯
:
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Similarly, the curvature FA of a connection A is an equivariant and horizontal
2 -form on P and can thus be identi�ed with an element FA 2 �2.†; ad.P // .

Let H be a Lie group and let Q� W G ! H be a homomorphism of Lie groups.
�en left-multiplication �.g/ WD L Q�.g/ 2 Di�.H/ yields a representation of G
and the associated bundle PH WD P ��H is a principal H bundle. If A 2 A.P / ,
then A induces a connection �.A/ 2 A.PH / by the formula

�.A/
�
Œp; h�I Œ Op; Oh�

�
WD h�1 OhC h�1 P�

�
A.pI Op/

�
h

where P� WD d�.1/ W g! h denotes the induced homomorphism of Lie algebras.
�e curvature of the induced connection is given by

F�.A/ D P�.FA/

where P� denotes the induced bundle map ad.P /! ad.PH / .

From principal bundles to vector bundles and back. Let V be a vector
space and let � W G ,! GL.V / be a faithful representation. �e associated bundle
E WD P �� V is then a vector bundle and the trivialization maps of P yield a
natural reduction of the structure group of E to G . For a connection A 2 A.P / ,
the induced connection on E is compatible with the linear structure and de�nes
an a�ne G -connection in AG.E/ . �e bundles Aut.E/ and End.E/ can be
described as associated bundles

Aut.E/ D P �Ad.�/ GL.V / and End.E/ D P �Ad.�/ End.V /

where Ad.�/ W G ! GL.End.V // is de�ned as the composition of � and the
adjoint action of GL.V / on End.V / . �e induced map P� W g! End.V / provides
an inclusion ad.P /! End.E/ and with respect to this map holds

FdA D P�.FA/

for any connection A 2 A.P / .
Conversely, let E ! † be a vector bundle with structure group G � GL.n/ .

�e frame bundle of E is de�ned by

Fr.E/ WD
®
.z; e/ j z 2 † , e W V ! Ez such that pr2 ı  ˛ ı e 2 G

¯
where  ˛ W EjU˛ ! U˛ � V is any trivialization of E with z 2 U˛ . It follows
directly from the de�nition that Fr.E/ is a principal G bundle. An a�ne G -
connection D 2 AG.E/ induces a connection AD 2 A.Fr.E// as follows: Let
 W Œ0; 1�! † be a curve. We call e 2 �0.Œ0; 1�; �Fr.E// a horizontal lift of 
if for every v 2 V the section
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ev 2 �
0.Œ0; 1�; �E/; ev.t/ WD e.t/v 2 E.t/

satis�es Dt .ev/ WD D P.t/.ev.t// D 0 . In a local trivialization this condition is
equivalent to the ODE

Pe˛ C A˛./e˛ D 0:

�is shows that horizontal lifts exist when the connection potentials A˛ take
values in g . �e tangent vector along horizontal lifts trace out an equivariant
horizontal distribution in Fr.E/ and hence determine a connection A 2 A.Fr.E// .

�e frame bundle construction is inverse to the construction of associated
bundles in the sense that

Fr.P �G V / Š V and Fr.E/ �G V Š E

whenever G � GL.V / . �is also provides a one-to-one correspondence between
A.P / and AG.E/ .

�e Gauge group. �e Gauge group of a principal G bundle P is de�ned as

G.P / WD �0
�
†;Ad.P /

�
:

�is group is isomorphic to the group Aut.P / of �ber preserving equivariant
automorphism of P under the map

 W �0
�
†;Ad.P /

�
Š Aut.P /;  g.p/ WD pg.p/:

It is useful think of G.P / as an in�nite dimensional Lie group with Lie algebra

Lie
�
G.P /

�
D �0

�
†; ad.P /

�
where all Lie theoretic operations are performed �berwise. �e Gauge group acts
naturally on the space of connections via pull back

g.A/ WD  �
g�1

A D �.dg/g�1 C gAg�1:

�e Gauge group of a vector bundle E with structure group G is the group

G.E/ WD �0
�
†;G.E/

�
� �0

�
†;GL.E/

�
which consists of all automorphisms of E taking values in G in any trivialization.
We think of G.E/ again as Lie group with Lie algebra �0.†; g.E// . �e Gauge
group acts naturally on the space of a�ne G -connection AG.E/ via pullback

.g�1/�D D g ıD ı g�1:

�is action is more explicitly described in terms of the connection potential by
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.gA/˛ D �dg˛g
�1
˛ C g˛A˛g

�1
˛

where g˛ WD .pr2 ı  ˛/�g W U˛ ! G .
Suppose that � W G ,! GL.V / is a faithful representation and E WD P �� V

is an associated vector bundle. �en � induces an isomorphism Ad.P / Š G.E/
and hence G.P / Š G.E/ . �e derivative P� WD d�.1/ W g ,! End.V / yields an
isomorphism of ad.P / Š g.E/ and hence an identi�cation of the Lie algebras
of G.P / and G.E/ . From the naturality of the gauge action it is clear that the
identi�cation A.P / Š AG.E/ is equivariant with respect to the action of G.P /
and G.E/ .

�e moment map picture. Fix an invariant inner product h�; �i on g . �is
induces an inner product on the �bers of ad.P / and hence an invariant inner
product on Lie.G.P // D �0.†; ad.P // by the formula

h�; �i WD

Z
†

h�; �i dvol†:

�is provides a natural hermitian structure on the space A.P / as follows. Since
A.P / is an a�ne space, it su�ces to de�ne the hermitian structure on the
underlying linear space �1.†; ad.P // . For a; b 2 �1.†; ad.P // we de�ne

!A.a; b/ WD

Z
†

ha ^ bi; ha; bi WD

Z
†

ha ^ �bi; JAa WD �a D �a ı j†:

�e following observation is due to Atiyah and Bott [AB83].

Lemma 2.2. �e action of the Gauge group is Hamiltonian with moment map
�.A/ WD �FA . More explicitly, for every � 2 �0.†; ad.P // the in�nitesimal action
on A 2 A.P / is given by

LA� WD
d

dt

ˇ̌̌̌
tD0

exp.t�/.A/ D �dA�:

�e function A.P /! R , A 7! h�FA; �iL2 , is di�erentiable and its di�erential is
the 1 -form

TAA.P /! R; a 7!

Z
†

hLA� ^ ai D !A.LA�; �/:

Proof. Let � 2 �0.†; ad.P // be given and think of it as an equivariant map
� W P ! g . We then compute

d

dt

ˇ̌̌̌
tD0

exp.t�/.A/ D
d

dt

ˇ̌̌̌
tD0

d exp.t�/�1 exp.t�/C exp.t�/A exp.�t�/

D
d

dt

ˇ̌̌̌
tD0

�
d exp.t�/�1

�
C Œ�; A�

D �d� � ŒA; ��
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�e last expression agrees with �d� along horizontal vectors in P and vanishes
along vertical vectors. Hence it coincides with �dA� for the induced a�ne
connection dA on ad.P / and this proves the formula for the in�nitesimal action.

From the formula

FACa D FA C dAaC
1

2
Œa ^ a�

we see that the variation of FA in the direction a 2 �1.†; ad.P // is given by
dAa . �is yields

hd�.A/Œa�I �i D

Z
†

hdAa; �i D

Z
†

ha ^ dA�i D !A.LA�; a/:

Here we used integration by parts in the penultimate step and the formula

d ha; �i D hdAa; �i � ha ^ dA�i

which follows from the G -invariance of the inner product.

2.1.2. �e complexi�ed gauge action. Let G be a compact connected Lie group
and let P ! † be a principal G bundle. We denote by Gc the complexi�cation
of G and call P c WD P �G G

c the complexi�cation of P . �e complexi�ed
gauge group of P is de�ned as

Gc.P / WD G.P c/:

One can think of elements in Gc.P / as G -equivariant maps from P to Gc .
�e Lie algebra bundle ad.P c/ is the complexi�cation of the bundle ad.P / and
since all Lie theoretic operations on the gauge group are de�ned �berwise, it is
reasonable to think of Gc.P / as the complexi�cation of G.P / . By the Peter-Weyl
theorem, G admits a faithful representation G ,! U.n/ . Identifying G with its
image in U.n/ , we can describe its complexi�cation Gc � GL.n/ explicitly as
the image of G � g under the di�eomorphism

U.n/ � u.n/! GL.n/; .u; �/ 7! u exp.i�/:

In terms of the associated bundle E WD P �G Cn the complexi�cation of the
gauge group is then given by

Gc.E/ D �0
�
†;Gc.E/

�
:

�e goal of this section is to explain how the G.P / -action on A.P / extends
naturally to a holomorphic action of Gc.P / .
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Proposition 2.3. �ere exists a natural action of Gc.P / on A.P / whose
in�nitesimal action satis�es

LA.� C i�/ D LA� C �LA� D �dA� � �dA�(5)

for all �; � 2 �0.†; ad.P // and A 2 A.P / .

Proof. See page 84.

Holomorphic principal bundles. An almost complex structure J on a manifold
M is an endomorphism J 2 End.TM/ satisfying J 2 D �1 . It is called an
integrable or holomorphic structure if it endows M with the structure of a complex
manifold. A holomorphic structure on the principal bundle P c D P �G Gc is an
almost complex structure J 2 End.TP c/ of the total space, which is Gc invariant
and coincides with the canonical complex structure on the vertical subbundle, i.e.
J.p�/ D p.i�/ for any p 2 P c and � 2 gc . We denote by J .P c/ the space of
all holomorphic structures on P c . �e next Lemma justi�es this notation.

Lemma 2.4. Every J 2 J .P c/ is integrable.

Proof. �e Newlander–Nirenberg theorem states that an almost complex structure
J on a manifold M is integrable if and only if the Nijenhuis-tensor NJ W

TM ˝ TM ! TM given by

NJ .v; w/ WD Œv; w�C J ŒJ v;w�C J Œv; Jw� � ŒJ v; Jw�

vanishes. We apply this to M D P c . If v;w 2 T vertp .P c/ are both in the
vertical bundle, we have NJ .v; w/ D 0 as the �ber is a complex manifold. If
v 2 T vertp .P c/ and w 2 T horp .P c/ the Lie bracket Œv; w� D Lv.w/ vanishes,
since the horizontal distribution is equivariant. In particular NJ .v; w/ D 0 as all
four terms vanish separately. Let �nally v;w 2 T horp .P c/ be horizontal vectors.
We may assume that p 2 P and denote by Nv WD d�.p/v and Nw WD d�.p/w

the projections onto T† . By de�nition of the curvature, we obtain the vertical
component of the Nijenhuis tensor by

Ap
�
NJ .v; w/

�
D FA. Nv; Nw/C iFA.j† Nv; Nw/C iFA. Nv; j† Nw/ � FA.j† Nv; j† Nw/
D 4F

0;2
A . Nv; Nw/ D 0:

In the last step we use that † is a complex one-dimensional manifold and thus
�0;2.†/ D 0 . �e horizontal part of NJ .v; w/ gets identi�ed under d�.p/ with
NJ . Nv; Nw/ and vanishes as † is a complex manifold. �is completes the proof of
NJ D 0 .
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As a consequence, every holomorphic principal bundles admits holomorphic
local trivializations with holomorphic transition maps. �e next Lemma is due to
Singer [Sin].

Lemma 2.5. �ere exists a one to one correspondence between connections
A 2 A.P / and holomorphic structures J 2 J .P c/ .

Proof. A connection A 2 A.P / induces a connection on P c and thus determines
for every p 2 P c a splitting Tp.P

c/ D T horp .P c/˚ T vertp .P c/ . �e vertical part
is isomorphic to gc and has a canonical complex structure. �e di�erential of the
projection � W P c ! † restricts to an isomorphism d�.p/ W T horp .P c/! T�.p/†

and induces a complex structure on T horp .P c/ .
Conversely, let J 2 J .P c/ be given and think of P � P c as a subbundle.

For p 2 P we de�ne Hp WD TpP \ Jp.TpP / and claim that TpP C Jp.TpP / D
Tp.P

c/ . Indeed, since T vertp P Š g , the sum clearly contains the vertical �ber
T vertp .P c/ Š gc and d�.p/ maps TpP already onto T�.p/† . It is immediate
from the construction that Hp is invariant under Jp and de�nes a (real) two
dimensional complement of T vertp .P c/ in Tp.P c/ . As p varies over P we obtain
an equivariant distribution along P and hence a connection A 2 A.P / .

Let A 2 A.P / , g 2 G.P / and let JA 2 J .P c/ be the holomorphic structure
induced by A . �en g.A/ induces the holomorphic structure . g�1/

�JA , since
the construction above is clearly functorial. �e action of G.P / on J .P c/ has
a natural extension to the complexi�ed gauge group via

Gc.P / � J .P c/! J .P c/; g.J / WD . g�1/
�J

where  g�1 2 Aut.P c/ is the automorphism corresponding to g�1 . Using the
identi�cation of J .P c/ with A.P / this yields the desired action of Gc.P / on
A.P / and the quotient A.P /=Gc.P / parametrizes the isomorphism classes of
holomorphic structures on P c .

Holomorphic vector bundles. We consider the special case G D U.n/ and
denote by E WD P �U.n/Cn the associated vector bundle. A holomorphic structure
on E is an almost complex structure J 2 End.TE/ of the total space which
restricts to the linear complex structure on the �bers. Similarly as in the case
of principal bundles, one shows that every such structure is indeed integrable
and that every holomorphic vector bundle admits holomorphic trivializations. It
is then easy to see that every holomorphic vector bundle E carries a natural
operator

N@E W �
0.†;E/! �0;1.†;E/
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which in any holomorphic trivialization agrees with the usual N@ operator on Cn .
�is operator is a particular Cauchy–Riemann operator on E .

De�nition 2.6. Let E ! † be a complex vector bundle. A Cauchy Riemann
operator on E is a linear operator

D00 W �0.†;E/! �0;1.†;E/

which satis�es the Leibniz rule

D00.f s/ D N@f ˝ s C f ˝D00s

for all f W †! C and s 2 �0.†;E/ .

�e converse is also true: Every Cauchy–Riemann operator determines a
holomorphic structure on the complex bundle E , whose local holomorphic
sections are solutions of the Cauchy–Riemann equation D00s D 0 . �is is another
instance of the Newlander–Nirenberg theorem. In the case of Riemann surfaces
a simpler proof of this result is given by Atiyah and Bott ([AB83], Section 5).

Note that the associated vector bundle E carries a canonical hermitian metric,
which in any trivialization coincides with the standard hermitian metric on Cn .
We claim that there is a one to one correspondence between unitary connections
on E and Cauchy–Riemann operators. For a unitary connection D we obtain a
Cauchy–Riemann operator by the formula

D00s WD .Ds/0;1 WD
1

2

�
Ds C i.Ds/ ı j†

�
D
1

2

�
Ds � i � .Ds/

�
:

To show that this correspondence is bijective, it su�ces to examine this
correspondence locally. In a unitary trivialization  W EjU ! U � Cn the
connection D can be described in terms of a 1 -form A 2 �1.U; u.n// such
that

Ds WD ds C As; D00s WD N@s C A0;1s

holds for any section s 2 �0.U;Cn/ with A0;1 WD 1
2
.ACiAıj†/ . In particular, we

recover A as twice the skew-hermitian part of A0;1 and therefore it is uniquely
determined by A0;1 . Conversely, any Cauchy Riemann operator D00 is given in
this local trivialization by

D00s WD N@s C Bs

for some B 2 �0;1.U; gl.n// . Since B satis�es B.j†v/ D �iB.v/ for any tangent
vector v 2 T†jU , the skew-hermitian and hermitian part of B interchange if we
compose B with j† . �is shows that B has the form B D 1

2
.AC iA ı j†/ for

some A 2 �1.U; u.n// and this proves the claim.
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On the level of Cauchy–Riemann operators the complexi�ed Gauge group
Gc.E/ D �0.†;GL.E// acts naturally via

g.N@A/ WD g ı N@A ı g
�1
D N@A � N@A.g/g

�1:

�e next Lemma summarizes the discussion above and provides an explicit
formulas for this action on A.E/ .

Lemma 2.7. Let E ! † be a complex vector bundle.
(1) For every holomorphic structure N@E and hermitian metric H there exists a

unique connection

D WD D.N@E ;H/ DW D
0
CD00 2 A1;0.E/˚A0;1.E/

such that D is unitary with respect to H and D00 D N@E .
(2) Let g 2 �0.†;GL.E// and denote h WD g�g (with respect to H ). �en

D.g.N@E /;H/ D g
�
D C h�1D0.h/

�
g�1

F.g.N@E /;H/ D g
�
F CD00.h�1D0.h//

�
g�1:

Proof. For the �rst part, note that there is a one to one correspondence between
hermitian metrics H and reductions of the structure group of E to U.n/ : Using
the Gram–Schmidt process we can always �nd local trivializations which identify
H with the standard hermitian product on Cn and the transition map between
such trivializations are clearly unitary. �e second part follows from the formula

D.g.N@E /;H/ D g.D/ D g ıD
00
ı g�1 C .g�1/� ıD0 ı g�

and F D D ıD .

Remark 2.8. Consider the general case and assume that G � U.n/ is a compact
connected subgroup. �e structure group of E is then contained in G and
the explicit formula in the Lemma above shows that the subspace AG.E/ of
G -connections is preserved by the action of Gc.E/ D �0.†;Gc.E// . Since
holomorphic structures on E and its frame determine one another, it is clear that
this action corresponds to the action described on holomorphic principal bundles
above.

We may now deduce the formula for the in�nitesimal action (5).

Proof of Proposition 2.3. As in Lemma 2.2 one calculates

d

dt

ˇ̌̌̌
tD0

exp.t�/.N@A/ D �N@A�
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for � 2 �0.†; gc.E// . Write � D � C i� with �; � 2 �0.†; g.E// and use the
formula N@A.i�/ D �N@A� to deduce

LA� D �N@A� C .N@A�/
�
D �

�
N@A� � .N@A�/

�
�
� �

�
N@A� � .N@A�/

�
�

D �dA� � �dA� D LA� C �LA�:

2.1.3. Regularity assumptions. Let G be a compact connected Lie group and
let P ! † be a principal G bundle. We shall always consider connections of
Sobolev class W 1;2 and gauge transformations of Sobolev class W 2;2 . More
precisely, the space of W 1;2 connections on P is de�ned with respect to some
smooth reference connection A0 as

A.P / WD
®
A0 C a j a 2 W

1;2
�
†; T �†˝ ad.P /

�¯
and the W 2;2 completion of the gauge group and its complexi�cation are

G.P / WD W 2;2
�
†;Ad.P /

�
; Gc.P / WD W 2;2

�
†;Ad.P c/

�
:

We use the same notation as for the smooth groups, since all the results from
the previous section carry over. In particular, the action of the gauge group
and its complexi�cation extend smoothly over these Sobolev completions, since
W 2;2 ,! C 0 is in the good range of the Sobolev embedding. A connection
still determines a holomorphic structure up to isomorphism due to the following
regularity result.

Lemma 2.9. For every W 1;2 connection A 2 A.P / there exists a complex W 2;2

gauge transformation g 2 Gc.P / such that g.A/ is smooth.

Proof. �is is Lemma 14.8 in [AB83]. By Proposition 2.3, the in�nitesimal action
of the complex gauge group is given by

LA W W
2;2
�
†; ad.P c/

�
! W 1;2

�
†; T �†˝ ad.P /

�
LA.� C i�/ D �dA� � �dA�

For any smooth reference connection A0 , this is a compact perturbation of LA0
which is a Fredholm operator. Hence LA is also Fredholm and in particular its
cokernel is �nite dimensional.

It follows from the implicit function theorem in Banach spaces that we can
choose a �nite dimensional slice N orthogonal to the Gc -orbit through A . Say
dim.N / D r and �x rC1 connections B0; : : : ; Br 2 N which span an r -simplex
containing A in its interior. A small perturbation of the vertices yields smooth
connections QB0; : : : ; QBr and the simplex spanned by these connections will still
intersect the orbit Gc.A/ . �is intersection point yields a smooth connection in
the Gc orbit of A .
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2.2. Parabolic subgroups. Let G be a compact connected Lie group with Lie
algebra g and denote its complexi�cation by Gc . Fix an invariant inner product
on g . �is induces a (real valued) inner product on gc D g˚ ig where we de�ne
both factors to be orthogonal. We de�ne parabolic subgroups of Gc �rst by
using toral generators of gc . �en we recall brie�y the root space decomposition
of reductive Lie algebras and give an alternative intrinsic de�nition of parabolic
subgroups. �e �rst de�nition occurs naturally in the geometric description of the
weights in Chapter 5. �e intrinsic version turns out to be useful in the proof of
Proposition 5.9 which relates the algebraic notion of stability with the weights.

2.2.1. Toral generators. An element � 2 gc is called a toral generator if

T� WD ¹exp.t�/ jt 2 Rº � Gc

is a compact torus. We denote by T c the set of toral generators. Certainly g � T c .
Since any maximal compact subgroup of Gc is conjugated to G , for every � 2 T c

exists g 2 Gc such that g�1T�g�1 � G . �e relation gT�g
�1 D Tg�g�1 then

yields g�g�1 2 g and hence

T c D Ad.Gc/.g/ D
®
g�g�1 jg 2 Gc ; � 2 g

¯
:

De�nition 2.10. A parabolic subgroup of Gc is a subgroup of the form

Q.�/ WD
®
g 2 Gc j the limit lim

t!1
eit�ge�it� exists in Gc

¯
for some � 2 T c . �e Levi subgroup of Q.�/ is de�ned by

L.�/ WD
®
g 2 Gc j ei�ge�i� D g

¯
:

Remark 2.11. We consider Gc D Q.0/ as parabolic subgroup of itself.

Lemma 2.12. Consider the setting described above and let � 2 T c .

(1) Q.�/ is a closed connected Lie subgroup of Gc with Lie algebra

q.�/ WD
®
� 2 gc j the limit lim

t!1
eit��e�it� exists in gc

¯
:

(2) L.�/ is a closed connected Lie subgroup of Gc with Lie algebra

l.�/ WD
®
� 2 gc j eit��e�it�

D �
¯

(3) L.�/ is a maximal reductive subgroup of Q.�/ .

(4) Q.�/ D Gc if and only if � is contained in the center of gc .
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Proof. Since Q.g�g�1/ D gQ.�/g�1 and L.g�g�1/ D gL.�/g�1 , we may as-
sume � D � 2 g . By the Peter-Weyl theorem, there exists a faithful representation
G ,! U.n/ and we may identify G with a closed subgroup of U.n/ . �en
i� yields a hermitian endomorphism of Cn which is diagonalizable with real
eigenvalues �1 < � � � < �r . Denote the eigenspace corresponding to �j by Vj .
�ey yield an orthogonal decomposition

Cn
D V1 ˚ � � � ˚ Vr :

In this decomposition we can write g 2 Gc � GL.n;C/ as

g D

0BBBB@
g11 g12 � � � g1r

g21 g22 � � � g2r
:::

:::
: : :

:::

gr1 gr2 � � � grr

1CCCCA
with gij 2 Hom.Vj ; Vi / . �en

eit�ge�it� D

0BBBB@
g11 e.�1��2/tg12 � � � e.�1��r /tg1r

e.�2��1/tg21 g22 � � � e.�2��r /tg2r
:::

:::
: : :

:::

e.�r��1/tgr1 e.�r��2/tgr2 � � � grr

1CCCCA :
�us g 2 Q.�/ if and only if g is upper triangular (i.e. gij D 0 for i > j ) and
g 2 L.�/ if and only if g is block diagonal (i.e., gij D 0 for i ¤ j ). �is shows
that L.�/ and Q.�/ are closed subgroups of Gc and the formulas for l.�/ and
q.�/ are immediate.

As the spaces Vj are pairwise orthogonal, the intersection G \Q.�/ consists
of block diagonal matrices and hence agrees with the centralizer of the torus
T� in G . Since the centralizers of tori in compact groups are connected
(see [Kna] Corollary 4.51) we conclude that G \ Q.�/ is connected. Since
L.�/ is the complexi�cation of G \ Q.�/ it is connected and reductive.
Moreover Q.�/=L.�/ can be identi�ed with the unipotent matrices in Q.�/

and hence L.�/ is a maximal reductive subgroup of Q.�/ . We observe
that

Q.�/! L.�/; g 7! lim
t!1

eit�ge�it�

de�nes a continuous retraction of Q.�/ onto L.�/ and hence Q.�/ is con-
nected.

Finally, since Gc is reductive, we have Gc D Q.�/ if and only if Gc D L.�/ .
�e later is clearly equivalent to � 2 Z.g/ .
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2.2.2. �e root-space decomposition. We recall the necessary background on
Lie theory brie�y and refer to [Kna] for the proofs. Note that the discussion
remains valid for any G -invariant inner product on g , which does not need to
be the negative Killing form.

Reductive Lie groups. Using the invariant inner product on g , it is easy to
show that the adjoint action of g on itself is completely reducible. �is yields
an orthogonal decomposition

g D z˚ Œg; g�

where z denotes the center of g and the commutator Œg; g� is a direct sum of
simple ideals and hence a semisimple Lie algebra. �e same decomposition is
valid for the complexi�cation. To see this extend the inner product on g to a
non-degenerated C -bilinear form B W gc � gc ! C by

B.�1 C i�1I �2 C i�2/ D h�1; �2i � h�1; �2i C i
�
h�1; �2i C h�1; �2i

�
:

�is bilinear form is nondegenerate and Gc -invariant. Moreover, the B -orthogonal
complement of a complex subspace W � gc is a Gc -invariant complement and
the same argument as above yields the decomposition

gc D zc ˚ Œgc ; gc �:

Root space decomposition. Fix a maximal torus T � G with Lie algebra t

and decompose it orthogonally as t D z˚ t0 . A nonzero imaginary valued real
linear map

˛ D ia W t0 ! iR; a 2 Hom.t0;R/

is called a root of G with respect to T if there exists e˛ 2 Œgc ; gc � satisfying

Œt; e˛� D ˛.t/e˛ for all t 2 t0 :

�e element e˛ is uniquely determined by ˛ up to scaling. We denote by
g˛ WD C � e˛ the one dimensional root space corresponding to ˛ and denote by
R the set of all roots (relative to T ). �e root space decomposition of gc is the
vector space decomposition

gc D zc ˚ tc0 ˚
M
˛2R

g˛:

For a proof see [Kna] Chapters II.1–4 and IV.5.
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Lemma 2.13. Denote g0 WD tc0 .

(1) For ˛; ˇ 2 R [ ¹0º the Lie bracket satis�es the relation

Œg˛; gˇ � � g˛Cˇ

where the right-hand side is de�ned to be zero when ˛ C ˇ … R [ ¹0º .

(2) For ˛; ˇ 2 R[¹0º with ˛ ¤ �ˇ the subspaces g˛ and gˇ are B -orthogonal.

(3) If ˛ 2 R , then �˛ 2 R . Moreover, if e˛ 2 g˛ then Ne˛ 2 g�˛ and

.g˛ ˚ g�˛/ \ g D R.e˛ C Ne˛/˚R.ie˛ � i Ne˛/

Proof. �e �rst and the last statement follow directly from the de�nitions. For
the second statement consider �rst the case ˇ D 0 and ˛ 2 R . �en follows for
all s; t 2 tc0

B.˛.t/e˛; s/ D B
�
Œt; e˛�; s

�
D �B

�
e˛; Œt; s�

�
D 0

where we used in the second step that B is Gc -invariant. �is shows that tc0
is B -orthogonal to g˛ . Now consider ˛; ˇ 2 R with ˛ C ˇ ¤ 0 . A similar
calculation shows for all s; t 2 tc0

B.˛.t/e˛; ˇ.s/eˇ / D B
�
Œt; e˛�; ˇ.s/eˇ

�
D �B

�
t; Œe˛; ˇ.s/eˇ �

�
D 0

where the last equality follows from the observation Œe˛; ˇ.s/eˇ � 2 g˛Cˇ .

�e Weyl group. Using the inner product on g , we identify the roots ˛ D ia 2 R
with vectors t˛ 2 t0 by the relation

a.t/ WD ht˛; ti for all t 2 t0 :

�is yields a subset ˆR D ¹t˛ j˛ 2 Rº � t0 which satis�es the properties of an
abstract root system:
(1) ˆR is a spanning set for t0 .
(2) For every t˛ 2 ˆR , the orthogonal re�ection along ker˛

s˛ W t0 ! t0; s˛.t/ WD t �
2ht; t˛i

jjt˛jj2

carries ˆR to itself.
(3) 2htˇ ;t˛i

jjt˛ jj2
is an integer for all t˛; tˇ 2 ˆR .

�is is discussed in [Kna] Chapters II.5. �e subgroup W generated by all
the root re�ection s˛ inside the orthogonal group O.t0/ is called the Weyl
group. Since ˆR is a spanning set of t0 , any orthogonal transformation which
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�xes ˆR must be the identity and hence the Weyl group is always �nite. After
removing all hyperplanes ker.˛/ the Weyl group acts transitively and freely on
t0n[¹ker.˛/ j˛ 2 Rº . �e closure of a connected component of this space is called
a Weyl chamber �W � t0 . In particular, �W is the closure of a fundamental
domain for the action of W . �e Weyl group can alternatively be described as

W Š NG.T /=ZG.T /:

Here the normalizer NG.T / acts on the maximal torus T by conjugation. �is
action is trivial on the center Z0.G/ � T and its derivative induces an action on
t0 . Since the inner product on g is G -invariant, this identi�es NG.T /=ZG.T /
with a subgroup of the orthogonal group O.t0/ and it is easy to check that
this group permutes the roots t˛ . �e equivalence of both descriptions of the
Weyl-group is shown in [Kna] Chapters IV.6. Since any two maximal tori in G

are conjugated, this shows that the conjugation classes in G are parametrized by
T=W and in particular any element � 2 g is conjugated to an element in the
Weyl chamber �W � t0 .

Simple roots. Consider a notion of positivity on the set R satisfying the
properties
(1) For every root ˛ 2 R exactly one of ˛ and �˛ is positive.
(2) If ˛ and ˇ are positive, then ˛ C ˇ is positive.
An easy way to de�ne such a notion goes as follows. Choose a real linear
functional � W t0 ! R such that ker� \ˆR D ¿ and de�ne a root ˛ 2 R to be
positive whenever �.t˛/ > 0 . We write ˛ > 0 for a positive root ˛ and denote
by RC the collection of positive roots. �is induces a partial ordering on the
roots according to the rule

˛ > ˇ if and only if ˛ � ˇ > 0:

A root ˛ 2 RC is called simple if it cannot be decomposed as ˛ D ˇ C  with
ˇ;  2 RC . In other words, a simple root is a minimal positive root. We denote
by RC0 D ¹˛1; : : : ; ˛rº the set of simple roots. It is easy to deduce from the
de�nitions that any root ˛ can be written as

˛ D

rX
jD1

xj j̨(6)

with coe�cients x1; : : : ; xr 2 Z having all the same sign (or vanish). In particular
ˆ
R
C

0

is a spanning set of t0 . A less obvious fact is that ˆ
R
C

0

is linear independent
(see [Kna] II.5 Prop 2.49). Hence every root has a unique expression (6) and a
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root is positive if and only if all the coe�cients are nonnegative. �is observation
shows that the collection of simple roots and the partial ordering determine one
another.

Any collection of simple roots RC0 D ¹˛1; : : : ; ˛rº determines a canonical
Weyl chamber by the formula

�W D
®
t 2 t0 j aj .t/ � 0 for all j D 1; : : : ; r

¯
where we denote j̨ D iaj as above. Conversely, given a Weyl chamber �W we
can recover the collection of positive roots by the rule

˛ > 0 if and only if ht; t˛i � 0 for all t 2 �W :

Hence the choice of a Weyl chamber and a partial ordering determine one another
as well. Since any two Weyl chambers are conjugated by an element in G , this
shows that all the choices in this section are canonical up to conjugation.

We denote the simple roots in ˆ
R
C

0

for convenience by tj WD t j̨ . Since they
de�ne a basis of t0 , we can de�ne a dual basis ¹Lt1; : : : ; Ltrº by�

Lti ;
2tj

jjtj jj2

�
D ıij(7)

for i; j D 1; : : : ; r . �ey are clearly contained in the Weyl chamber determined
by the simple roots and yield the characterization

t D

rX
jD1

xj Ltj 2 W� , xj � 0 for j D 1; : : : ; r :

�e dual elements
�j W t0 ! iR; �j .t/ WD ihLtj ; ti

are called the fundamental weights associated to the simple roots.

2.2.3. An intrinsic de�nition of parabolic subgroups. We provide an intrinsic
de�nition of parabolic subgroups following the presentation [Ser] by Serre. Let
� 2 Œg; g� be given and choose a maximal torus T � G such that � 2 t0 .
Moreover, let RC0 WD ¹˛1; : : : ; ˛rº be a choice of simple roots such that � is
contained in the corresponding Weyl chamber. Denote

R.�/ WD
®
˛ 2 R j h�; t˛i � 0

¯
and QR.�/ WD

®
˛ 2 R j h�; t˛i D 0

¯
:(8)

De�ne the Lie subalgebras

q.�/ WD z˚ t0 ˚
M
˛2R.�/

g˛(9)
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and

l.�/ WD z˚ t0 ˚
M
˛2 QR.�/

g˛:(10)

�e next Lemma shows that this notation is consistent with our de�nition in the
section on toral generators.

Lemma 2.14. Consider the setting from above and de�ne q.�/ and l.�/ by (9)
and (10) respectively. �en

q.�/ D
®
� 2 gc j the limit lim

t!1
eit��e�it� exists in gc

¯
and

l.�/ D
®
� 2 gc j eit��e�it�

D �
¯
:

Proof. Decompose � 2 gc with respect to the root space decomposition as

� D �0 C
X
˛2R

�˛

with �0 2 t and �˛ 2 g˛ . By de�nition of the roots we have

Œi�; �a� D �a.�/�.�/ � �˛ D �ht˛; �i�˛

and hence
eit��e�it� D �0 C

X
˛2R

e�ht˛ ;�it�˛:

�is converges for t !1 if and only if �˛ D 0 for all ˛ … R.�/ . Similarly, we
have � D ei��e�i� if and only if �˛ D 0 for all ˛ … QR.�/ .

We could now de�ne the parabolic subgroup Q.�/ and its Levi subgroup
L.�/ as those connected subgroups of Gc whose Lie algebras are given by q.�/

and l.�/ respectively. �ese are closed subgroups, since both agree with their
normalizer in Gc .

Lemma 2.15. Let Lt1; : : : ; Ltr be de�ned by (7) and let

� D x1 Lt1 C � � � C xr Ltr 2 �W

with xj � 0 . �en Qj WD Q.Ltj / are maximal proper parabolic subgroups of Gc
and Q.�/ � Q.Ltj / if and only if xj > 0 . Moreover,

Q.�/ D
\

¹j jxj>0º

Q.Ltj /:

Proof. �e proof is a simple matter of comparing R.Ltj / and R.�/ .
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3. Algebraic and symplectic stability

Let G be a compact connected Lie group and let P ! † be a principal G
bundle over † . Denote by Gc the complexi�cation of G and by P c WD P �GGc
the complexi�ed principal bundle.

�e algebraic geometric construction of the moduli space of holomorphic
structures on P c , in the sense of Mumford’s geometric invariant theory [MFK],
depends on the notion of stable and semistable objects. For vector bundles this
notion is due to Mumford [Mum] and it was later extended by Ramanathan [Ram]
to principal bundles. We discuss these two de�nitions in the �rst subsection and
denote the corresponding moduli space of holomorphic structures on P c by

J ss.P c/==G.P c/:

As mentioned in the introduction, this space is obtained by identifying two orbits
in J ss.P /=G.P c/ when they cannot be separated.

�e G.P / -action on A.P / is Hamiltonian with moment map �.A/ D �FA

by Lemma 2.2. For every central element � 2 Z.g/ one obtains the symplectic
quotient

A.P /==G.P / WD ��1.�/=G.P /:

Note that the moment map is not uniquely determined by the gauge action and
another moment map is given by �� .A/ WD �FA � � . In other words, di�erent
choices of � correspond to di�erent choices for the moment map. �e symplectic
version of GIT (see [SGR]) de�nes stable and semistable objects in A.P / in
terms of the moment map. We show in the second subsection that there exists a
natural choice for � 2 Z.g/ determined by the topological type of P and de�ne
the corresponding symplectic notion of stability. It will follow from �eorem 4.14
and �eorem 4.15 in the next section that this de�nition leads to identi�cations

��1� .0/=G.P / Š Ass.P /==Gc.P /:

�e right hand side is again obtained by identifying orbits in Ass.P /=Gc.P / if
they cannot be separated.

Recall from Lemma 2.5 that J .P c/ can be identi�ed naturally with A.P / .
We prove in �eorem 3.10 that the di�erent notions of stability on A.P / and
J .P c/ are essentially equivalent under this identi�cation. In particular, this yields
isomorphism

J ss.P c/==G.P c/ Š Ass.P /==Gc.P / Š ��1� .0/=G.P /

for a suitable choice of � 2 Z.g/ . �e proof of this theorem will be based on
the whole remainder of the exposition, namely on Proposition 5.9, the moment-
weight inequality (�eorem 5.12), the Harder–Narasimhan-Ramanathan theorem
(�eorem 6.5) and the dominant weight theorem (�eorem 7.1).
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3.1. Algebraic stability. We discuss the algebraic notion of stability on the space
J .P c/ of holomorphic structures on the principal Gc bundle P c . �is de�nition
depends only on the complexi�ed bundle P c itself and not on the reduction
P � P c . Consider as a warmup the case Gc D GL.n/ . �is allows us to identify
P c with a complex vector bundle. �e slope or normalized Chern class of a
vector bundle E ! † is de�ned as

�.E/ WD
c1.E/

rk.E/
:

�e following de�nition is due to Mumford [Mum].

De�nition 3.1. Let E ! † be a holomorphic vector bundle.
(1) E is called stable if for every proper holomorphic subbundle 0 ¤ F � E

we have �.F / < �.E/ .
(2) E is called polystable if E is the direct sum of stable vector bundles all

having the same slope.
(3) E is called semistable if for every proper holomorphic subbundle 0 ¤ F � E

we have �.F / � �.E/ .
(4) E is called unstable if E is not semistable.

�e analogue of this de�nition for general Lie groups was formulated by
Ramanathan [Ram]. Lemma 3.4 below shows that De�nition 3.1 corresponds to
the special case Gc D GL.n/ in De�nition 3.2.

De�nition 3.2. Let Gc be a connected reductive Lie group and P c ! † be a
holomorphic principal Gc bundle.
(1) P c is called stable if for every holomorphic reduction PQ � P c to a maximal

proper parabolic subgroup Q � Gc the subbundle ad.PQ/ � ad.P c/ satis�es
c1.ad.PQ// < 0 .

(2) P c is called polystable if there exists a parabolic subgroup Q � Gc and
a holomorphic reduction PL � P

c to a Levi subgroup of Q satisfying the
following

(a) PL is a stable principal L bundle.
(b) For every character � W L! C� , which is trivial on the center of Gc ,

the associated line bundle �.PL/ WD PL �� C satis�es c1.�.PL// D 0 .

(3) P c is called semistable if for every holomorphic reduction PQ � P
c to a

maximal proper parabolic subgroup Q � Gc the subbundle ad.PQ/ � ad.P c/
satis�es c1.ad.Q// � 0 .

(4) P c is called unstable if ad.P c/ is not semistable.
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Remark 3.3. Let L1; � � � ; Lr and Gc be complex connected reductive Lie groups
such that the product L1 � � � � � Lr � Gc embeds as a subgroup. Let Pj

be stable principal Lj bundles for j D 1; : : : ; r . �en it is easy to see that
PL WD PL1 � � � � � PLr is a stable principal L bundle. However, the extension
P c WD PL �LG

c is in general not a semistable Gc -bundle. �e second condition
in the de�nition of polystability is needed to guarantee the semistability of P c .
To see this let PQ0 � P c be the reduction to a maximal parabolic subgroup and
consider the determinant of the adjoint action of Q0 � Gc on its Lie algebra.
�is character is clearly trivial on the center of Gc and either restricts to L

or to a maximal parabolic subgroup Q00 D Q0 \ L � L . In the �rst case, it
follows from the de�nition of polystability that c1.ad.PQ0// D 0 . In the other
case observe that PQ0 determines a maximal parabolic reduction PQ00 � PL and
c1.ad.PQ0// D c1.ad.PQ00// < 0 , since PL is stable.

Lemma 3.4. A holomorphic vector bundle E is stable, polystable, semistable or
unstable if and only its GL.n/ -frame bundle P c WD Fr.E/ is stable, polystable,
semistable or unstable respectively.

Proof. We discuss the stable (resp. semistable) case �rst. A maximal parabolic
subgroup of GL.n/ is the stabilizer a subspace 0 ¤ V � Cn and the holomorphic
reduction PQ of the GL.n/ -frame bundle to a maximal parabolic subgroup is
thus the stabilizer of a holomorphic subbundle F � E . Consider the orthogonal
splitting E D F ˚ G with respect to some �xed hermitian metric on E . �en
ad.PQ/ � End.E/ is given by the space of upper block diagonal matrices. We
choose unitary connections A1 on E and A2 of G and denote by A the induced
connection of E D F ˚ G . �is induces also a connection on ad.PQ/ and the
curvature of this connection is given by the endomorphism

� 7! FA� � �FA

for � 2 ad.PQ/ . Since FA D diag.FA1 ; FA2/ is block-diagonal, a short calculation
shows that the trace of this map is given by rk.G/tr.FA1/ � rk.F /tr.FA2/ and
Chern–Weyl theory yields

c1
�
ad.PQ/

�
D rk.G/c1.F / � rk.F /c1.G/

D rk.E=F /rk.F /
�
c1.F /

rk.F /
�
c1.E=F /

rk.E=F /

�
:

�is expression is nonpositive if and only if c1.F /=rk.F / � c1.E/=rk.E/ and
negative whenever strict inequality holds. �is proves the equivalence of both
de�nitions in the stable and semistable case.

�e unstable case is equivalent to the semistable case and it remains to discuss
the polystable case. A general parabolic subgroup of GL.V / is the stabilizer of
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a �ltration V1 � � � � � Vr D V and a Levi subgroup in given as the stabilizer of
a splitting V D W1 ˚ � � � ˚Wr with Vj D W1 ˚ � � � ˚Wj . Hence, a holomorphic
reduction PL � P c to the Levi factor of a parabolic subgroup corresponds to
the L D GL.n1/ � � � � �GL.nr / frame bundle of a holomorphic splitting

E D E1 ˚ � � � ˚Er :

We claim that PL is a stable principal L bundle if and only if all factors Ej
are stable holomorphic vector bundles. Indeed, a maximal parabolic subgroup of
L has the shape

Q D GL.n1/˚ � � � ˚GL.nj�1/˚Qj ˚GL.njC1/ � � � ˚GL.nr /

where Qj � GL.nj / is a maximal parabolic subgroup. �en

ad.PQ/ D End.E1/˚ � � � ˚ ad.PQj /˚ � � � ˚ End.Er /

and hence c1.ad.PQ// D c1.ad.PQj // . �e claim follows now from our discussion
of the stable case.

It remains to verify that the slopes of all subbundles satisfy �.Ej / D �.E/

if and only if for every character � W L ! C� which is trivial on the center
of GL.n/ the associated line bundle �.PL/ has degree zero. Every character
� W L! C� factors as � D �1 � � ��r with �j W GL.ni /! C� and induces on the
Lie algebra the representation

P� D P�1 C � � � C P�r

with P�j WD d�j .1/ W gl.nj / ! C . Since every traceless matrix in gl.nj / is a
commutator, there exist �j 2 C such that

P�j .�j / D �j tr.�j /

for all �j 2 gl.nj / . We choose unitary connections Aj 2 A.Ej / and denote by
A D A1 ˚ � � � ˚ Ar the induced unitary connection on E . �en follows from
Chern–Weil theory

c1
�
�.PL/

�
D

i
2�

Z
†

F�.A/ dvol† D
i
2�

Z
†

P�.FA/ dvol†

D �1c1.E1/C � � � C �rc1.Er /:

Note that � vanishes on the center of GL.n/ if and only if n1�1C� � �Cnr�r D 0
is satis�ed. If in addition �.Ej / D �.E/ holds for all j , then

c1
�
�.PL/

�
D

rX
jD1

nj�j�.Ej / D 0:
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For the converse consider the character � W GL.n1/ � � � � �GL.nr /! C�

�.B1; : : : ; Br / WD det.Bj /n det.B/�nj :

�is vanishes on the center of GL.n/ and satis�es P�.�/ D ntr.�j /�ni tr.�/ . Hence

c1
�
�.PL/

�
D nc1.Ej / � nj c1.E/

and this vanishes precisely when �.Ej / D �.E/ is satis�ed.

�e next lemma shows that we can always reduce to the case where Gc has
discrete center.

Lemma 3.5. Let Gc be a complex connected reductive Lie group and P c ! †

be a principal Gc bundle. Denote by Z0.G
c/ the connected component of the

center of Gc containing the identity. Let H c WD Gc=Z0.G
c/ and denote by

PHc WD P
c=Z0.G

c/

the associated H c bundle. �is carries a natural induced holomorphic structure
and P c is stable, polystable, semistable or unstable if and only if PHc is stable,
polystable, semistable or unstable respectively.

Proof. �e Lie algebra of Gc splits as gc D Z.gc/˚ Œgc ; gc � and Œgc ; gc � can be
identi�ed with the semisimple Lie algebra of H c . �is splitting is preserved by the
adjoint action of Gc and produces a splitting ad.P c/ D V ˚ad.PHc / where V D
†�Z.gc/ is a trivial bundle. Parabolic subgroups Q � Gc correspond bijectively
to parabolic subgroups NQ WD Q=Z0.Gc/ � H and parabolic reductions PQ � P c
correspond bijectively to parabolic reductions P NQ WD PQ=Z0.G

c/ � PHc . Since
ad.PQ/ D V ˚ ad.P NQ/ , we have c1.ad.PQ// D c1.ad.P NQ// and this shows that
P c is stable (resp. semistable) if and only if PHc is stable (resp. semistable).

If L is a Levi subgroup of the parabolic subgroup Q � Gc , then NL WD L=Z0
is a Levi-subgroup of NQ D Q=Z0 � H

c . Moreover, reductions PL � P c to L

correspond bijectively to reductions P NL D PL=Z0.Gc/ � PHc . We have already
shown that PL is stable if and only if P NL is stable. �e characters � W Q! C�

which are trivial on the center Z.Gc/ of Gc correspond bijectively to the
characters N� W NQ! C� which are trivial on Z.Gc/=Z0.G

c/ and

�.PQ/ Š N�.P NQ/:

�us P c is polystable if and only if PHc is polystable.
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3.2. Symplectic stability. Let G be a compact connected Lie group and P ! †

a principal G bundle. Let � W G ! S1 be a character and denote by P� D d�.1/ W
g ! iR the induced character on the Lie algebra. Since g D Z.g/ ˚ Œg; g� , we
may identify �2�i P� with an element in Z.g/� D Hom.Z.g/;R/ . Denote by
�.P / WD P �� C the line bundle associated to P via � . �en

c1
�
�.P /

�
D

i
2�

Z
†

P�.FA/(11)

for any connection A 2 A.P / . �e assignment P� 7! �2�ic1.�.P // extends to a
unique element in Z.g/�� , since the lattice of all in�nitesimal characters spans
Z.g/� as a vector space. �is corresponds under the canonical isomorphism
Z.g/�� Š Z.g/ to an element � 2 Z.g/ which satis�es

˛.�/ D

Z
†

˛.FA/ for all ˛ 2 Z.g/� and A 2 A.P /.(12)

Here we identify Z.g/� � g� with the subspace of linear functionals vanishing
on Œg; g� . We call � the central type of P .

Remark 3.6. Recall our standing assumption vol.†/ D 1 and suppose that
A 2 A.P / satis�es �FA D � for some � 2 Z.g/ . �en (12) yields

˛.�/ D

Z
†

˛.FA/ D

Z
†

˛.�/ dvol† D ˛.�/

for all ˛ 2 Z.g/� and hence � D � .

Let � 2 Z.g/ be de�ned by (12). It follows from Lemma 2.7 that

�� W A.P /! L2
�
†; ad.P /

�
; �� .A/ WD �FA � �(13)

is a moment map for the G.A/ -action on A.P / . �e following de�nition is the
precise analogue of De�nition 7.1 in [SGR] with respect to this moment map.

De�nition 3.7. Let G be a compact connected Lie group, let P ! † be a
principal G bundle with central type � 2 Z.g/ de�ned by (12), and de�ne ��

by (13). For A 2 A.P / denote by Gc.A/ the W 1;2 -closure of the complex gauge
orbit Gc.A/ .
(1) A is called �� -stable if and only if Gc.A/ \ ��1� .0/ \ A�.P / ¤ ¿ where

A�.P / denotes the irreducible connections on P .
(2) A is called �� -polystable if and only if Gc.A/ \ ��1� .0/ ¤ ¿ .
(3) A is called �� -semistable if and only if Gc.A/ \ ��1� .0/ ¤ ¿ .
(4) A is called �� -unstable if and only if Gc.A/ \ ��1� .0/ D ¿ .
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Remark 3.8. We call A 2 A.P / an irreducible connection if the map

dA W W
2;2.†; ad.P //! W 1;2

�
†; T �†˝ ad.P /

�
is injective. In particular, �� -stable connections can only exist when the center
of G is discrete and � D 0 . Since the in�nitesimal action of the gauge group is
given by LA� WD �dA� , a connection A is irreducible if and only if the isotropy
group of the orbit G.A/ is discrete. Suppose that A is an irreducible connection
satisfying �0.A/ D �FA D 0 . �e in�nitesimal action of the complexi�ed gauge
group

LA.� C i�/ D �dA� � �dA�

is readily seen to be injective in this case: Assume LA.� C i�/ D 0 and apply
dA to the equation. �ere follows d�AdA� D 0 and hence dA� D 0 . Since A

is irreducible, we conclude � D 0 and then � D 0 . �is argument shows that
the �� -stable orbits are precisely the �� -polystable orbits with discrete Gc.P /
isotropy.

�e next Lemma relates the di�erent notions of stability on P and on the
quotient bundle PH WD P=Z0.G/ with �ber H WD G=Z0.G/ . Note that PH has
central type 0 since its center is discrete.

Lemma 3.9. Let G be a compact connected Lie group, let P ! † be a principal
G bundle of central type � 2 g de�ned by (12) and let PH WD P=Z0.G/ be the
associated H WD G=Z0.G/ bundle. Let A 2 A.P / and denote by AH 2 A.PH /
the induced connection.

(1) AH is �0 -stable if and only if A is �� -polystable and the kernel of the
in�nitesimal action

LA W W
2;2
�
†; ad.P c/

�
! W 1;2

�
†; T �†˝ ad.P /

�
LA.� C i�/ D �dA� � �dA�

consists of constant central sections.

(2) AH is �0 -polystable if and only if A is �� -polystable.

(3) AH is �0 -semistable if and only if A is �� -semistable.

(4) AH is �0 -unstable if and only if A is �� -unstable.

Proof. We begin with the polystable case. Every constant central curvature
connections on P clearly induces a �at connection on PH . Conversely, assume
that A1 is a �at connection on PH . As a general property of compact Lie groups,
there exists an exact sequence
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1! F ! Z0.G/ � ŒG;G�! G ! 1(14)

where F D Z0.G/\ ŒG;G� is a �nite group. From this follows the exact sequence

1! F ! G !
�
G=Z0.G/

�
� .Z0.G/=F /! 1:(15)

Consider the associated .G=Z0.G// � .Z0.G/=F / bundle

QP D P �G

��
G=Z0.G/

�
�
�
Z0.G/=F

��
D PH �† P2(16)

where P2 is a principal Z0.G/=F -bundle over † . Since Z0.G/=F is connected
and abelian, it is a torus and P2 is isomorphic to the direct sum of S1 bundles.
It follows from Hodge theory that every line bundle admits a connection with
constant central curvature and these yield a connection A2 on P2 with constant
central curvature. Together with A1 we obtain an induces a connection on QP

which lifts to a connection on P with constant central curvature. It follows from
Remark 3.6 that the curvature of this connection is given by � .

For the proof of the stable case observe that ad.P / Š V ˚ ad.PH / where
V D † �Z.g/ denotes the trivial Z.g/ bundle. �e in�nitesimal action

LA W W
2;2
�
†; ad.P /

�
! W 1;2

�
†; T �†˝ ad.P /

�
agrees with LAH on ad.PH / . Since dA restricts to a �at connection on V , it
follows that ker.LA/ Š Z.g/˚ ker.LAH / and this shows the claim.

It remains to discuss the semistable case. Assume �rst that A is �� -semistable.
�en exist connections Ak 2 Gc.A/ such that Ak ! AC for k ! 1 and
�� .A

C/ D 0 . �e induced connections AkH 2 A.PH / are clearly contained in
Gc.AH / and converge to the induced connection ACH . Since �� .A

C/ D 0 , it
follows that �0.ACH / D 0 and hence AH is �0 -semistable.

For the converse, we consider the exact sequences (14) and (15) from above.
�en (16) yields a �nite covering

P ! QP D PH �† P2

with covering group F D Z0.G/ \ ŒG;G� . We have seen above that P2 is
a polystable Z0.G/=F -bundle. Note that the natural identi�cation A. QP / D
A.PH / �A.P2/ yields an inclusion

Gc.PH / � Gc.P2/ � Gc. QP /:(17)

Moreover, since Ad.P c/ ! Ad. QP c/ is a �nite covering with covering group
F � Z0.G

c/ , it is easy to see that every gauge transformation in Gc. QP / lifts
to an element in Gc.P / and this lift commutes with the natural identi�cation
A.P / D A. QP / .
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Now assume that A 2 A.P / induces a �0 -semistable connection AH 2

A.PH / . Since P2 is polystable, it follows from (17) that there exists g0 2 Gc.P /
such that g0.A/ induces AH 2 A.PH / and a connection A2 2 A.P2/ with
constant central curvature. Since AH is �0 -semistable, using (16) again, there
exists gauge transformations gk 2 Gc.P / such that gk.g0.A// induce the same
connection A2 on P2 and induce a sequence of connections AkH on PH which
converges to a �at connection ACH . Clearly, gk.g0A/ converges to the connection
AC which is induced by A2 and ACH . Hence AC has constant central curvature
and it follows from Remark 3.6 that �FAC D � . �is completes the proof of the
semistable case.

3.3. Equivalence of algebraic and symplectic stability. �e following theo-
rem shows that the algebraic notion of stability from De�nition 3.2 and the
symplectic notion of �� -stability from De�nition 3.2 are essentially equiva-
lent.

�eorem 3.10 (Generalized Narasimhan–Seshadri–Ramanathan theorem). Let G
be a compact connected Lie group and P ! † a principal G bundle with central
type � 2 Z.g/ de�ned by (12). Let A 2 A.P / and consider the complexi�ed bundle
P c WD P �G G

c with the induced holomorphic structure JA .

(1) .P c ; JA/ is stable if and only if A is �� -polystable and the kernel of

LA W W
2;2
�
†; ad.P c/

�
! W 1;2

�
†; T �†˝ ad.P /

�
LA.� C i�/ D �dA� � �dA�

contains only constant central sections.

(2) .P c ; JA/ is polystable if and only if A is �� -polystable.

(3) .P c ; JA/ is semistable if and only if A is �� -semistable.

(4) .P c ; JA/ is unstable if and only if A is �� -unstable.

�e stable case was �rst proven by Narasimhan and Seshadri [NS] for
G D U.n/ and later extended by Ramanathan [Ram] to arbitrary compact Lie
groups. �ey establish these results using algebraic geometric methods.�e �rst
analytic proof was given by Donaldson [Don1] for the case G D U.n/ . We present
a di�erent approach given by Bradlow [Bra] and Mundet [iR] in �eorem 6.5.
�e equivalence of both de�nitions for semistability is essentially contained in
the work of Atiyah and Bott [AB83].
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Proof of �eorem 3.10. We assume the following results for the proof:
� �e characterization of algebraic stability in Proposition 5.9,
� the moment-weight inequality (�eorem 5.12),
� the Narasimhan–Seshadri–Ramanathan theorem (�eorem 6.5),
� the dominant weight theorem (�eorem 7.1).

We establish these results independently in the remainder of the exposition.
�e stable case is equivalent to �eorem 6.5. By Lemma 3.5 and Lemma 3.9

we may assume in the sequel that Z.G/ is discrete and � D 0 . We then deduce
the polystable case from the stable case by an inductive argument: Assume �rst
that P c is polystable. �en there exists a reductive subgroup L � Gc and a
holomorphic reduction PL � P

c which is stable. We may assume that L D Kc
is the complexi�cation of a compact subgroup K � G . Since Gc=L Š G=K , we
have an induced reduction PK � P and PL agrees with the complexi�cation of
PK . It follows from the construction in Lemma 2.5 that A restricts to a connection
on PK . Assuming the stable case (i.e., �eorem 6.5) we conclude that there exists
a gauge transformation g 2 Gc.PK/ � Gc.P / such that �FgA D �K 2 Z.k/ . It
remains to show that �K 2 Z.g/ D 0 vanishes. If �K ¤ 0 then there exists a
character � W L! C� with P�.�K/ ¤ 0 . Since Z.G/ is �nite, we may replace �
by a suitable power and assume that it is trivial on Z.Gc/ . Using the de�nition
of polystability then yields the contradiction

0 D c1
�
�.PL/

�
D

i
2�

Z
†

P�.FA/ dvol† D
i
2�
P�.�K/ ¤ 0:

For the converse, assume that A 2 A.P / is a �at connection. Let H � G

be the holonomy subgroup and PH � P be a reduction to the holonomy. Let
K WD CG.Z.H// be the centralizer of the center of the holonomy and denote
the induced connection on PK D PH �H K again by A . It is well-known that
the isotropy subgroup of A consists of constant gauge transformations and is
naturally isomorphic to the centralizer of its holonomy, i.e.,

GA WD
®
g 2 G.PK/ jg.A/ D A

¯
Š CK.H/:

Comparing the Lie algebras of both sides, one checks that CK.H/ D Z0.K/ is
satis�ed and A 2 A.PK/ has only trivial isotropy. It follows now from the stable
case (i.e. �eorem 6.5) that P cK is a stable principal L D Kc bundle. Note that
L is a Levi-subgroup of a parabolic subgroup of Gc , since K is the centralizer
of a torus in G . Since FA D 0 , we have for any character � W L! C�

c1
�
�.PL/

�
D

i
2�

Z
†

P�.FA/ dvol† D 0

and hence P c is polystable.
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Assume that P c is unstable. By Proposition 5.9 there exists � 2 �0.†; ad.P //
with w0.A; �/ < 0 . �e moment-weight inequality (�eorem 5.12) yields �0.gA/ �
�w0.A; �/=jj�jj > 0 for all g 2 Gc.P / and hence A is �0 -unstable. Assume
conversely that A is �0 -unstable. �e dominant-weight theorem (�eorem 7.1)
shows that there exists � 2 �0.†; ad.P // such that w0.A; �/ < 0 and hence P c
is unstable by Proposition 5.9. �is completes the proof of the unstable case and
the semistable case is equivalent to this case.

4. �e Yang–Mills �ow and symplectic stability

Let G be a compact connected Lie group and let P ! † be a principal G
bundle of central type � 2 Z.g/ de�ned by (12). In the di�erential geometric
approach towards GIT the moment map squared functional plays a crucial role.
�is is de�ned by

F� W A.P /! R; F� .A/ WD
1

2

Z
†

jj � FA � � jj
2 dvol†:(18)

Note that (12) implies
R
†
hFA; �i D jj� jj

2 for every connection A 2 A.P / and
hence

F� .A/ D
1

2

Z
†

jj � FA � � jj
2dvol† D

1

2

�Z
†

jjFAjj
2dvol† � jj� jj

2

�
:(19)

�us F� agrees up to a constant shift with the Yang–Mills functional

YM W A.P /! R; YM.A/ WD
1

2

Z
†

jjFAjj
2 dvol†:(20)

Rade showed in his thesis [Rad] that the negative gradient �ow of the Yang–Mills
functional is well-de�ned and converges if the base manifold has dimension 2

or 3 . We summarize his results in the �rst subsection. Recall that we always
consider the W 1;2 -topology on A.P / when nothing else is speci�ed.

A crucial observation is the following: Any solution of the Yang–Mills �ow
remains in a single complexi�ed orbit and there exists a canonical lift of a solution
A.t/ of the Yang–Mills �ow under the projection Gc ! Gc.A/ to a curve in
Gc.P / . Since the Yang–Mills �ow is G.P / -invariant, the geometric importance
lies within the projection of such curves in Gc.P /=G.P / . �e �bers of this quotient
coincide with the homogeneous space Gc=G which is a complete, connected,
simply connected Riemannian manifold of nonpositive sectional curvature (see
[SGR] Appendix A and B). �is underlying geometry is crucial for the following
application.

As a �rst application, we establish the moment limit theorem (�eorem 4.14)
and the analogue of the Ness uniqueness theorem in �eorem 4.15 following the
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line of arguments in [SGR]. �e �rst result says that the limit A1 WD limt!1A.t/

of the Yang–Mills �ow starting at A0 2 A.P / minimizes the Yang–Mills
functional over the complexi�ed orbit Gc.A0/ . �e second result asserts that
any connection in the W 1;2 -closure of G.A0/ which minimizes the Yang–Mills
functional over this orbit must be contained in G.A1/ . In particular, every �� -
semistable orbit contains a unique �� -polystable orbit in its closure. �is yields
the identi�cation

Ass.P /==Gc.P / Š Aps=Gc.P / Š ��1� .0/=G.P /

where two semistable orbits on the left hand side are identi�ed if and only if
they contain the same polystable orbit in their closure.

In the last section we extend this observation and characterize in �eorem 4.18
the �� -stability of A 2 A.P / in terms of the limit of the Yang–Mills �ow starting
at A . We observe in particular that Ass.P / and As.P / are both open subsets
of A.P / in the W 1;2 -topology.

4.1. Analytical foundations.

4.1.1. �e Yang Mills �ow on low dimensional manifolds. Recall for A 2 A.P /
and a 2 W 1;2.†; T �†˝ ad.P // the formula

FACa D FA C dAaC
1

2
Œa ^ a�:

From this follows directly that the L2 -gradient of the Yang–Mills functional (20)
is given by

rYM W A.P /! W �1;2
�
†; ad.P /

�
; rYM.A/ WD d�AFA:

�e critical points of the Yang–Mills functional (20) are called Yang–Mills
connections and satisfy the equation

d�AFA D 0:

It follows from the strong Uhlenbeck compactness result (see e.g. [Weh] �eorem
E) and elliptic regularity that every Yang–Mills connection is gauge equivalent
to a smooth Yang–Mills connection and the set ƒ WD ¹YM.A/ j d�AFA D 0º of
critical values is discrete. �e negative gradient �ow of the Yang–Mills functional
is given by the degenerated parabolic equation

@tA.t/C d
�
A.t/FA.t/ D 0:(21)
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De�nition 4.1 (Weak solutions). Let A0 2 A.P / be a connection of Sobolev
class W 1;2 . We call A 2 C 0.Œ0;1/;A.P // a weak solution of the initial value
problem

@tA.t/C d
�
A.t/FA.t/ D 0; A.0/ D A0(22)

if A.0/ D A0 and there exists a sequence Ak W Œ0;1/ ! A.P / of smooth
solutions of (21) which converges in C 0

loc
.Œ0;1/;A.P // to A , where A.P / is

endowed with the W 1;2 -topology.

�e next two theorems state that the initial value problem (22) has a unique
(weak) solution for every initial data A0 2 A.P / existing for all time and that
this solution converges to a Yang–Mills connection.

�eorem 4.2 (Long time existence). Let G be a compact connected Lie group,
P ! † a principal G bundle and A0 2 A.P / .
(1) �ere exists a unique weak solution A.t/ 2 C 0

loc
.Œ0;1/;A.P // for the initial

value problem (22). �e curvature has the additional regularity properties
FA.t/ 2 C

0
loc
.Œ0;1/; L2/ and FA.t/ 2 L

2
loc
.Œ0;1/;W 1;2/ .

(2) �e solution A.t/ and its curvature FA.t/ depend smoothly on the initial
data A0 in these topologies.

(3) If A0 is smooth, then the solution A.t/ is smooth and satis�es (21).

Proof. �is is �eorem 1 in [Rad].

�eorem 4.3 (Convergence). Assume the setting of �eorem 4.2 and let A.t/ 2
C 0
loc
.Œ0;1/;A.P // be a weak solution of (22). �en there exist a Yang–Mills

connection A1 2 A.P / and constants c; ˇ > 0 such that

jjA.t/ � A1jjW 1;2 � ct�ˇ

holds for all times t > 0 .

Proof. �is is �eorem 2 in [Rad].

�e key ingredient in the proof of the convergence result is the appropriate
analogue of the Lojasiewicz gradient inequality. �is approach was introduced by
Simon [Sim] for a general class of evolution equations.

Proposition 4.4 (Lojasiewicz gradient inequality). Let A1 2 A.P / be a Yang–
Mills connection. �ere exist constants � > 0 ,  2 Œ1

2
; 1/ and c > 0 such that

for every A 2 A.P / with jjA � A1jjW 1;2 < � the estimate

jjd�AFAjjW�1;2 � cjYM.A/ � YM.A1/j


is satis�ed.
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Proof. �is is Proposition 7.2 and (9.1) in [Rad].

In �nite dimensions the Lojasiewicz inequality always guarantees convergence
by some standard arguments. We recall these arguments in the sequel and discuss
additional technical di�culties arising in the in�nite dimensional setting. Suppose
that A.t/ satis�es (22). It follows from the weak Uhlenbeck compactness (see
[Rad], Proposition 7.1) that there exists a G.P / -orbit G.A1/ of Yang–Mills
connections such that

inf
t>0

YM
�
A.t/

�
D YM.A1/

and for every ı > 0 there exist T > 0 and g 2 G.P / such that

jjA.T / � g.A1/jjW 1;2 < ı:

Since the Yang–Mills functional and the Lojasiewicz inequality are invariant
under the action of G.P / , the constant � D �.g.A1// > 0 from the Lojasiewicz
inequality does not depend on g . Now choose ı < � and de�ne

T WD inf
®
t > T j jjA.t/ � g.A1/jjW 1;2 � �

¯
:

For any s1; s2 2 .T; T / with s1 < s2 we obtain

jjA.s1/ � A.s2/jjL2 �

Z s2

s1

jjd�AFAjjL2 dt

�

Z s2

s1

jjd�AFAjj
2
L2

cjYM.A/ � YM.A1/j
dt

�
1

c

�
YM

�
A.s1/

�
� YM

�
A.s2/

��1�
:

To conclude the convergence result, one needs to show T D 1 and extend the
estimate above to the W 1;2 -norm. Both can be achieved by using the following
Lemma.

Lemma 4.5. Let A1 2 A.P / be a Yang–Mills connection and � D �.A1/ > 0

as in Proposition 4.4. �ere exists a constant c > 0 with the following
signi�cance: For every solution A.t/ of the Yang–Mills �ow (22) and real numbers
0 � s1 � s2 � 1 such that jjA.t/ � A1jjW 1;2 � � for all t 2 Œs1; s2� we haveZ s2

s1C1

jjd�AFAjjW 1;2 dt � c

Z s2

s1

jjd�AFAjjL2 dt:

Proof. �is is Lemma 7.3 in [Rad].
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Now the calculation above yields

jjA.s1 C 1/ � A.s2/jjW 1;2 � C
�
YM

�
A.s1/

�
� YM.A1/

�1�(23)

for any T � s1 < s1C 1 < NT . Since the solutions of the Yang–Mills �ow depend
continuously on the initial condition in the C 0

loc
.Œ0;1/;W 1;2/ topology, there

exists a constant c1 > 0 such that

jjA.T C t / � g.A1/jjW 1;2 � c1jjA.T / � g.A1/jjW 1;2

holds for all t 2 Œ0; 1� . �is follows as we may view g.A1/ as constant �ow line
and the constant c1 depends only on the orbit G.A1/ . For su�ciently small ı ,
we have ıc1 < � and hence NT > 1 . �en (23) yields

jjA.T C 1/ � A.t/jjW 1;2 � C
�
YM

�
A.T /

�
� YM.A1/

�1�
� Cı1�

for any T C1 � t � NT . For su�ciently small ı > 0 the right hand side is smaller
than � and this yields NT D 1 . �e calculation above then shows then that the
integral

R1
0
jj@tA.t/jjW 1;2 dt < 1 is �nite and A.t/ converges uniformly to a

Yang–Mills connection QA1 .
Replacing A1 in the argument above by the limiting connection QA1 yields

jjA.t/ � QA1jjW 1;2 � C
�
YM

�
A.t/

�
� YM. QA1/

�1�
:

Let T > 0 be such that for every t > T the Lojasiewicz inequality in Lemma 4.5
for A.t/ with respect to the Yang–Mills connection QA1 . �en

@t

�
YM

�
A.t/

�
� YM. QA1/

�
D �jjrYM.A.t//jjL2

�

�
YM

�
A.t/

�
� YM. QA1/

�2
and hence

�
YM.A.t// � YM. QA1/

�1�
� C.t � T /

1
1�2 . �is shows

jjA.t/ � QA1jjW 1;2 � C.t � T /
1�
1�2

for all t > T and completes the proof of the convergence result. �is argument
also proves the following result:

Corollary 4.6. Let B 2 A.P / be a Yang–Mills connection and let � > 0 . �en
there exists ı > 0 such that for every solution A.t/ of the Yang–Mills �ow (22)
with jjA.0/ � BjjW 1;2 < ı we have either

sup
t�0

jjA.0/ � A.t/jjW 1;2 < �

for all t � 0 or there exists T > 0 with YM.A.T // < YM.B/ .
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4.1.2. �e Kempf–Ness �ow. By Proposition 2.3 the in�nitesimal action of the
complexi�ed Gauge action is given by

LA.� C i�/ WD d

dt

ˇ̌̌̌
tD0

exp.t� C it�/A D �dA� � �dA�

for �; � 2 W 2;2.†; ad.P // and A 2 A.P / . With this formula we can express the
gradient of the Yang–Mills functional as

rYM.A/ D d�AFA D � � dA � FA D LA.i � FA/:

�is implies that any solution of the Yang–Mills �ow (20) remains in a single
complexi�ed orbit.

Proposition 4.7. Let A0 2 A.P / and let A.t/ be the (weak) solution of the
Yang–Mills �ow (22) starting at A0 . Let g W Œ0;1/! Gc.P / be the solution of
the ODE

g.t/�1 Pg.t/ D i.�FA.t//; g.0/ D 1:(24)

�en g 2 C 0
loc
.Œ0;1/;Gc.P // and

A.t/ D g.t/�1A0

for all t 2 Œ0;1/ . Moreover, g depends continuously on A0 .

Proof. Recall from Lemma 2.7 the formula

B.t/ WD g�1t .A0/ D A0 C g
�1
t dA0gt � g

�1
t .h

�1
t @A0ht /gt

with ht WD .g�1t /�g�1t . By �eorem 4.2 holds F 2 L2
loc
.Œ0;1/;W 1;2/ and hence

g 2 W
1;2
loc
.Œ0;1/;W 1;2/ and B 2 W

1;2
loc
.Œ0;1/; L1/ . �e same calculation as in

the smooth case shows

PB.t/ D LB.t/.g
�1
t Pgt / D �d

�
B.t/FA.t/:

Approximation of A0 with smooth connections shows A 2 W 1;2
loc
.Œ0;1/; L1/ and

PA.t/ D �d�A.t/FA.t/:

De�ne C.t/ WD A.t/�B.t/ and ‰.t/ WD �FA.t/ 2 L2loc.Œ0;1/; L
1/ . �e calculation

above shows that C solves the linear ODE

PC.t/ D �ŒC.t/; ‰.t/�; C.0/ D 0:

and hence C D 0 . �e Sobolev embedding W 1;2.Œ0; t0�; L
1/ ,! C 0.Œ0; t0�; L

1/

then yields A.t/ D B.t/ D g�1t A0 for all t .
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Since A maps continuously in W 1;2 , it follows from the expression

A.t/ D g�1t A0 D A0 C g
�1
t dA0gt � g

�1
t .h

�1
t @A0ht /gt

that A.t/0;1 D A
0;1
0 C g

�1
t
N@A0gt and g�1t

N@A0gt maps continuously into W 1;2 .
Let QA be a smooth reference metric and write A0 D QAC a0 . �en g�1t

N@ QAg
�1
t

maps continuously into Lp for any p < 1 and by elliptic regularity, g maps
continuously in W 1;p . Since W 1;p ,! C 0 , we can rerun the argument where
g�1t
N@ QAgt now maps continuously in W 1;2 and conclude g 2 C 0

loc
.Œ0;1/;W 2;2/ .

Since A and FA depend continuously on A0 , the solution g depends con-
tinuously on A0 in W

1;2
loc
.Œ0;1/;W 1;2/ and then by elliptic regularity also in

C 0
loc
.Œ0;1/;W 2;2/ .

Remark 4.8. Let A0 2 A.P / and let A.t/ be as in Proposition 4.7. For
g0 2 Gc.P / consider the more general equation

g.t/�1 Pg.t/ D i � FA.t/; g.0/ D g0:(25)

�en Qg.t/ D g�10 g.t/ solves equation (24) with respect to QA0 D g�10 .A0/ . Hence
(25) has a unique solution in C 0

loc
.Œ0;1/;Gc.P // , which depends continuously

on g0 and A0 .

We shall consider the following variant of this equation.

De�nition 4.9 (Kempf–Ness �ow). Let A0 2 A.P / and g0 2 Gc.P / . We say
that g.t/ 2 C 0

loc
.Œ0;1/;Gc.P // is a weak solution of the equation

g�1.t/ Pg.t/ D i � Fg�1.t/A0 ; g.0/ D g0(26)

if there exist a sequence of smooth initial data .Ak ; gk0 / 2 A.P /�Gc.P / converging
to .A0; g0/ and smooth solutions gk.t/ of the equation

g�1k .t/ Pgk.t/ D i � Fg�1
k
.t/Ak

; gk.0/ D g
k
0

such that gk.t/ converges to g.t/ in C 0
loc
.Œ0;1/;W 2;2/ .

Remark 4.10. We call a solution g 2 C 0
loc
.Œ0;1/;Gc.P // of (25) a solution of

the Kempf–Ness �ow starting at g0 (with respect to A0 ). We show in Section
6 that there exists a G.P / -invariant functional

ˆA0 W G
c.P /! R

whose negative gradient �ow lines correspond to solution of (26).

Lemma 4.11. For every initial data .A0; g0/ 2 A.P / � Gc.P / there exists a
unique (weak) solution of (26) which depends continuously on the initial data.
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Proof. We use the notation introduced in De�nition 4.9 and de�ne Ak.t/ WD

gk.t/
�1Ak . �en

@tAk.t/ D LAk.t/
�
g�1k .t/ Pgk.t/

�
D �LAk.t/

�
i � FAk.t/

�
D �d�Ak.t/FAk.t/

and thus Ak.t/ yields a smooth solution of the Yang–Mills �ow. Conversely, the
solution Ak.t/ is uniquely determined by the initial condition .gk0 /

�1Ak and we
may recover gk.t/ from this solution via Proposition 4.7 and Remark 4.8. Since
solutions of the Yang–Mills �ow and solutions of (25) depend continuously on the
initial data, it follows that the weak solution g.t/ of (26) is uniquely determined
by the weak solution A.t/ of the Yang–Mills �ow starting at g�10 A0 .

�e next proposition shows that solutions of the Kempf–Ness �ow (26) remain
at bounded distance in the homogeneous space Gc=G .

Proposition 4.12. Let A0 2 A.P / and let g; Qg 2 C 0
loc
.Œ0;1/;Gc.P // be (weak)

solutions of (26) starting at g0; Qg0 2 Gc.P / . De�ne �.t/ 2 W 2;2.†; ad.P // and
u.t/ 2 G.P / by the equation

g.t/ exp
�
i�.t/

�
u.t/ D Qg.t/:

�en the following holds:

(i) �.t/ WD jj�.t/jjL2 is non-increasing in t . More precisely, if �.t/ ¤ 0 then

P�.t/ D �
1

�.t/

Z 1

0

jjdAs;t�.t/jj
2
L2
ds

with As;t WD e
�is�.t/g�1t A0 .

(ii) �e di�erential inequality

.@t C�/jj�jj
2
� 0

is satis�ed. In particular, jj�.t/jjL1 is non-increasing by the maximum
principle for the heat equation

(iii) � is uniformly bounded in W 2;2 .

(iv) u is uniformly bounded in W 2;2 .

Proof. We prove (i) and (ii): By approximation, we can assume that A0 , g
and Qg are all smooth. Let � W Gc ! Gc=G denote the projection and de�ne
.s; t/ WD �.g.t/eis�.t// . Pointwise .�; t / is the unique geodesic of length j�.t/j
connecting �.g/ and �. Qg/ . �e following calculation is pointwise valid:
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@t jj�jj
2
D @t

Z 1

0

h@s; @si ds D 2

Z 1

0

hrt@s; @si ds

D 2

Z 1

0

hrs@t; @si ds D 2

Z 1

0

@sh@t; @si ds

D 2
�˝
@t.1; t/; @s.1; t/

˛
�
˝
@t.0; t/; @s.0; t/

˛�
D 2

˝
Qg�1.t/ PQg.t/ � g�1.t/ Pg.t/; i�.t/

˛
D 2

˝
� F Qg.t/�1A0 � �Fg.t/�1A0 ; �.t/

˛
With As;t WD e

�is�.t/g�1A0 this yields

@t jj�jj
2
D 2

Z 1

0

˝
�.t/;�dAs;t � dAs;t�.t/

˛
D ��jj�jj2 � 2

Z 1

0

jjdAs;t�.t/jj
2 ds:

�is proves the second claim and the �rst one is obtained by integrating this
inequality over † .

We prove (iii) and (iv): Recall that QA.t/ WD Qg�1t .A0/ and A.t/ WD g�1t .A0/ are
solutions of the Yang–Mills �ow. Since they converge in W 1;2 , they are both
uniformly bounded in W 1;2 . With a.t/ WD ei�tut we have QA D a�1.A/ and hence

QA0;1 D A0;1 C a�1 N@Aa :

�is shows that N@Aa is uniformly bounded in W 1;2 and hence a is uniformly
bounded in W 2;2 . From the formula aa� D e2i� we conclude that � is uniformly
bounded in W 2;2 and then u is also uniformly bounded in W 2;2 .

4.2. Uniqueness of Yang–Mills connections. We follow the arguments from
([SGR], Chapter 6) to prove the analog of the Ness uniqueness theorem and
the moment limit theorem. �ese are originally due to Calabi–Chen [CC] and
Chen–Sun [CS] in the context of extremal Kähler metrics.

Proposition 4.13. Let A0; A1 2 A.P / be Yang–Mills connections with Gc.A0/ D
Gc.A1/ . �en G.A0/ D G.A1/ holds.

Proof. Choose Qg 2 Gc.P / such that

A1 D Qg
�1A0 :

Since A0 and A1 are Yang–Mills connections, they generate constant �ow lines
A0.t/ � A0 and A1.t/ � A1 . Let g0; g1 2 C 0loc.Œ0;1/;G

c/ be the solutions of
the equation

g�10 Pg0 D �FA0 ; g0.0/ D 1 and g�11 Pg1 D �FA1 ; g1.0/ D Qg
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from Proposition 4.7 and the following Remark. �ey satisfy

A0 D g
�1
0 .t/A0 and A1 D g

�1
1 .t/A0

and g0 and g1 are solutions of the Kempf–Ness �ow (26) with respect to A0 .
De�ne �.t/ 2 W 2;2.†; ad.P // and u.t/ 2 G by the equation

g0.t/ exp
�
i�.t/

�
u.t/ D g1.t/

as in Proposition 4.12. �en there exist �1 2 W 2;2.†; ad.P // , u1 2 G.P / and
a sequence ti !1 such that

lim
i!1

P�.ti / D 0; �.ti /
H2

* �1; u.ti /
H2

* u1:

By taking a further subsequence if necessary, we may assume that

lim
i!1
jjdAs;ti �.ti /jjL2 D 0

holds for almost every s 2 Œ0; 1� , where we de�ned

As;t D e
�is�.t/.g�10 .t/A0/ D e

�is�.t/A0:

Moreover, by Rellich’s theorem, �.ti / and u.ti / converge for every p < 1

strongly in W 1;p to �1 and u1 . By continuity of the Gauge action G1;p�Ap !
Ap for p > 2 , we conclude

As;ti
Lp

! As;1 WD e
�is�1A0; and dAs;ti �.ti /

Lp

! dAs;1�1:

�is implies that for almost every s 2 Œ0; 1� , we must have dAs;1�1 D 0 . For
s ! 0 we conclude dA0;1�1 D dA0�1 D 0 and hence e�i�1A0 D A0 . It follows
now

A1 D g1.ti /
�1A0 D u.ti /

�1e�i�.ti /A0
Lp

�! u�11 e
�i�1A0 D u

�1
1 A0:

�is shows A1 D u�11 A0 and thus A0 and A1 lie in the same G -orbit.

�eorem 4.14 (Moment Limit �eorem). Let A0 2 A.P / and A W Œ0;1/! A.P /
be the solution of the Yang–Mills �ow starting at A0 . �e limit A1 WD

limt!1A.t/ satis�es

YM.A1/ D inf
g2Gc.P /

YM.gA0/:

Moreover, the G.P / -orbit of A1 depends only on the complexi�ed orbit Gc.A0/ .
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Proof. Let g0 2 Gc.P / be given and de�ne g; Qg 2 C 0
loc
.Œ0;1/;Gc/ by

g�1 Pg D �FA; g.0/ D 1 and Qg�1 PQg D �FA; g.0/ D g0

as in Proposition 4.7 and the following Remark. Let A.t/ and QA.t/ be the
solutions of the Yang–Mills �ow starting at A0 and QA0 WD g

�1
0 A0 . �en

A0.t/ D g
�1
t .A0/;

QA.t/ D Qg�1t .A0/

and g; Qg are solutions of the Kempf–Ness �ow (26) with respect to A0 . De�ne
�.t/ 2 W 2;2.†; ad.P // and u.t/ 2 G.P / by the equation

g0.t/ exp
�
i�.t/

�
u.t/ D g1.t/

as in Proposition 4.12. It follows that there exist �1 2 W 2;2.†; ad.P // and
u1 2 G.P / and a sequence ti !1 such that

�.ti /
W 2;2

* �1; u.ti /
W 2;2

* u1:

By Rellich’s theorem we obtain strong convergence in W 1;p and using the Sobolev
embedding W 1;2 ,! Lp for every p <1 we obtain:

QA1
W 1;2

 � QA.ti / D u.ti /
�1ei�.ti /A.ti /

Lp

�! u�11 �
�1
1 A1:

Hence QA1 D u�11 �
�1
1 A1 . �us QA1 and A1 are Yang–Mills connections

lying in a common complexi�ed orbit and Proposition 4.13 shows that in fact
G.A1/ D G. QA1/ . �is shows YM.A1/ D YM. QA1/ � YM.g�10 A0/ and
completes the proof.

�e following theorem is the analog of the Ness uniqueness theorem in �nite
dimensional GIT.

�eorem 4.15 (Uniqueness of Yang–Mills connections). Let A0 2 A.P / and
A0; A00 2 Gc.A0/ be in the W 1;2 -closure of a single complexi�ed orbit satisfying

YM.A0/ D YM.A00/ D inf
g2Gc

YM.gA0/:

�en follows G.A0/ D G.A00/ .

Corollary 4.16. Let P ! † be a principal G bundle of constant central type
� 2 Z.g/ de�ned by .12/ . Suppose A 2 A.P / is �� -semistable. �en the W 1;2 -
closure Gc.A/ contains a unique �� -polystable orbit.

Proof. It follows from (19) that solutions of the equation �FA D � correspond to
global minima of the Yang–Mills functional on A.P / .
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Proof of �eorem 4.15. Let A.t/ be the solution of the Yang–Mills �ow starting
at A0 and let A1 WD limt!1A.t/ . �en �eorem 4.14 implies

YM.A1/ D inf
g2Gc

YM.gA0/ DW m:

Since A1 2 Gc.A0/ , it su�ces to show that any connection B 2 Gc.A0/ with
YM.B/ D m is contained in G.A1/ . For this let Ai 2 Gc.A0/ be a sequence
which converges to B . Denote by Ai .t/ the corresponding solutions of the Yang–
Mills �ow and set Bi WD limt!1Ai .t/ . Note that B is necessarily a Yang–Mills
connection, since

YM
�
B.t/

�
D lim
i!1

YM
�
Ai .t/

�
� m D YM

�
B.0/

�
where B.t/ denotes the solution of the Yang–Mills �ow starting at B . �us, we
may apply Corollary 4.6 with respect to B and conclude that jjAi � Bi jjW 1;2

converges to zero and hence
lim
i!1

Bi D B:

By �eorem 4.14 holds G.Bi / D G.A1/ and hence there exists ui 2 G.P / such
that u�1i .A1/ D Bi . Since the connections Bi are uniformly bounded in W 1;2 ,
the gauge transformations ui are uniformly bounded in W 2;2 . �us there exists
u1 2 G.P / such that after passing to a subsequence ui converges weakly in
W 2;2 to u1 and strongly in W 1;p for any p <1 . Using the continuity of the
gauge action G1;p �Ap ! Ap we conclude

Bi D u
�1
i .A1/

Lp

�! u�11 A1

and in particular B D u�11 A1 2 G.A1/ .

4.3. Yang–Mills characterization of �� -stability. We characterize the �� -
stability of a connection A 2 A.P / in terms of the the limit A1 of the
Yang–Mills �ow starting at A . �is is �eorem 4.18 below. �e proof relies
on the following proposition.

Proposition 4.17. Let P ! † be a principal G bundle of central type � 2 Z.g/
de�ned by (12). �e subsets of �� -semistable connections

Ass.P / WD
®
A 2 A.P / j A is �� -semistable

¯
and �� -stable connections

As.P / WD
®
A 2 A.P / j A is �� -stable

¯
are open subsets of A.P / with respect to the W 1;2 -topology.
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Proof. It follows from (19) that

inf
A2A.P /

YM.A/ �
1

2
jj� jj2 DW m:

Moreover

Ass.P / WD
²
A 2 A.P /

ˇ̌̌̌
inf

g2Gc.P /
YM.gA/ D m

³
(27)

and YM.A/ D m is equivalent to �FA D � .

Step 1. Ass.P / is open.
Let A0 2 Ass.P / be given. Let A.t/ be the solution of the Yang–Mills

�ow starting at A0 and A1 WD limt!1A.t/ . It follows from �eorem 4.14 and
(27) that A1 is a Yang–Mills connection satisfying YM.A1/ D m . By the
Lojasiewicz inequality (Proposition 4.4) there exist � > 0 , c > 0 and  2 Œ1

2
; 1/

such that for all B 2 A.P / with jjB � A1jjW 1;2 < � the inequality

jjd�BFB jjL2 � cjYM.B/ �mj(28)

is satis�ed. By Corollary 4.6 there exists ı > 0 such that for every B 2 A.P /
with jjB�A1jjW 1;2 < ı we have jjB1�A1jjW 1;2 < � . In particular, (28) applies
to B1 and yields YM.B1/ D m . �is shows

U WD
®
B 2 A.P / j jjB � A1jjW 1;2 < ı

¯
� Ass.P /:

Now choose T > 0 such that A.T / 2 U and choose g 2 Gc.P / with
A.T / D g�1A0 . By continuity of the gauge action there exists an open
neighborhood V of A0 with g�1V � U and hence V � Ass.P / .

Step 2. Denote by A�.P / � A.P / the space of irreducible connections. �is is
an open subset and

Z WD
®
A 2 A� jYM.A/ D m

¯
=G

is a �nite dimensional smooth submanifold of A�=G .
We may assume that Z.G/ is discrete, � D 0 and m D 0 , since otherwise

A�.P / D ¿ . Let A0 2 A�.P / be a smooth irreducible connection. �e Laplacian
d�A0dA0 is then injective and by elliptic regularity there exists c0 > 0 such that

jjd�A0dA0�jjL2 � c0jj�jjW 2;2

for all � 2 W 2;2.†; ad.P // . For a 2 W 1;2.†; T �†˝ ad.P // expand

d�A0CadA0Ca� D d
�
A0
dA0� C d

�
A0
Œa; �� � �Œa;�dA0�� � �Œa;�Œa; ���:
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Since dimR.†/ D 2 , we have the Sobolev estimate jjfgjjL2 � cjjf jjW 1;2 jjgjjW 1;2

and jjfgjjW 1;2 � jjf jjW 1;2 jjgjjW 2;2 . �is yields

jjd�A0CadA0Ca�jjL2 � c0jj�jjW 2;2 � cjjajjW 1;2 jj�jjW 2;2

and A0Ca is irreducible if jjajjW 1;2 is su�ciently small. Hence A�.P / is open.
Now �x an irreducible connection A0 with �FA0 D 0 . We may assume without

loss of generality that A0 is smooth and work in a Coulomb gauge relative to
A0 . �is allows us to identify a neighborhood of ŒA0� in A�.P /=G.P / with
a 2 W 1;2.†; T �†˝ad.P // satisfying jjajjW 1;2 < � and d�A0a D 0 under the map
a 7! ŒA0 C a� . Consider

� W
®
a 2 W 1;2

�
†; T �†˝ ad.P /

�
j d�A0a D 0; jjajjW 1;2 < �

¯
! L2

�
†; ad.P /

�
�.a/ WD �FA0Ca

and de�ne ZA0 WD ��1.0/ . We claim that 0 is a regular value for � (after possibly
shrinking � ). Once this is established, the claim follows from the implicit function
theorem. �e derivative of � at a point a is given by

d�.a/ W ¹ Oa 2 W 1;2
�
†; T �†˝ ad.P /

�
j d�A0 Oa D 0º ! L2

�
†; ad.P /

�
d�.a/ Oa D �dA0 OaC �Œa ^ Oa�:

Since d�.a/ is the restriction of a compact perturbation of the Fredholm operator
�.dA0 ˚ d

�
A0
/ , its kernel is �nite dimensional. We denote by

K WD ¹ Oa 2 W 1;2
�
†; T �†˝ ad.P /

�
j dA0 Oa D 0; d

�
A0
Oa D 0º

the space of A0 -harmonic 1 -forms with values in ad.P / and de�ne V by the
L2 -orthogonal decomposition

W 1;2
�
†; T �†˝ ad.P /

�
D V ˚K:

�en the restriction of the Fredholm-operator dA0 ˚ d�A0 to V de�nes an
isomorphism

dA0 ˚ d
�
A0
W V ! L2

�
†; ad.P /

�
˚ L2

�
†;ƒ2T �†˝ ad.P /

�
It is injective by de�nition of V and to prove surjectivity let f 2 L2.†; ad.P //
and ! 2 L2.†;ƒ2T �†˝ ad.P // be given. �en by Hodge theory we can solve
the equation

�A0 Oa D d
�
A0
! C dA0f:

From this follows
d�A0.dA0 Oa � !/ D dA0.f � d

�
A0
Oa/:
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Since �FA0 D 0 , both sides of the equation are orthogonal and hence must vanish.
Since A0 is irreducible, it follows dA0 Oa D ! and d�A0 Oa D f . In particular, for
any s 2 L2.†; ad.P // exists a solution Oa 2 V of the equations

dA0 OaC Œa ^ Oa� D �s; d�A0 Oa D 0(29)

for a D 0 . Since the equation is linear in a , another application of the inverse
function theorem shows that after possibly shrinking � the equation (29) has a
solution Oa.a/ 2 V for all a with jjajjW 1;2 < � .

Step 3. As is open.
We may assume that Z.G/ is discrete, � D 0 and m D 0 , since otherwise

As.P / D ¿ . Let A 2 As.P / be given. By de�nition there exists g 2 Gc.P / such
that A0 D g�1A is smooth and satis�es YM.A0/ D 0 . Let ZA0 be as in Step 2
and consider the map

 W ZA0 �W
2;2
�
†; ad.P /

�
�W 2;2

�
†; ad.P /

�
! A

 .A; �; �/ WD ei�e�A:

We have seen that ZA0 is a smooth manifold with tangent space

TA0ZA0 D
®
Oa 2 W 1;2

�
†; ad.P /

�
j d�A0 Oa D 0; dA0 Oa D 0

¯
:

�e di�erential of  at the point .A0; 0; 0/ is given by

d .A0; 0; 0/Œ Oa; O�; O�� WD Oa � dA0
O� � �dA0 O�:

Since FA0 D 0 , it follows as in Step 2 from Hodge theory that d .A0; 0; 0/ is
an isomorphism. �e implicit function theorem yields thus an open neighborhood
U of A0 with

A0 2 U � Im. / � As :

Finally, by continuity of the gauge action, there exists an open neighborhood V

of A with g�1V � U and hence As.P / is open.

�eorem 4.18. Let P ! † be a principal G bundle of central type � 2 Z.g/

de�ned by (12) and denote m WD 1
2
jj� jj2 . Let A0 2 A.P / and denote by A1 the

limit of the the Yang–Mills �ow A.t/ starting at A0 .

(1) A0 is �� -stable if and only if A1 is irreducible.

(2) A0 is �� -polystable if and only if YM.A1/ D m and A1 2 Gc.A0/ .

(3) A0 is �� -semistable if and only if YM.A1/ D m .

(4) A0 is �� -unstable if and only if YM.A1/ > m .
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Proof. It follows from (19) that m is a lower bound for the Yang–Mills functional
on A.P / and A 2 A.P / satis�es YM.A/ D m if and only if �FA D � .
�us the characterization for �� -unstable and � -semistable orbits follows from
�eorem 4.14.

Suppose next that A0 is �� -polystable. �en exists g0 2 Gc.P / such that
QA0 WD g�10 .A0/ satis�es YM. QA0/ D m . �e Yang–Mills �ow line QA.t/ starting
at QA0 is constant and it follows from �eorem 4.14 and �eorem 4.15 that
A1 2 G. QA0/ � Gc.A0/ . �e converse is immediate and this proves the criterion
for �� -polystable orbits.

Suppose now that A0 is �� -stable. �en the orbit Gc.A0/ has only discrete
Gc.P / isotropy. Since A0 is in particular �� -polystable, we have A1 2 Gc.A0/ .
Hence the in�nitesimal action LA1 W � 7! �dA1� is injective and A1 is
irreducible. Suppose conversely that A1 is irreducible. Since A1 is a Yang–
Mills connection, it satis�es dA1 �FA1 D 0 and hence FA1 D 0 . �is shows that
Gc.A1/ is stable. By Proposition 4.17, the subset As.P / of �� -stable connections
is open and hence A.t/ 2 As.P / for all su�ciently large t . Since the notion of
�� -stability is Gc.P / -invariant, and since A.t/ 2 Gc.A0/ , we conclude that A0
is �� -stable.

5. Maximal weights

Let G be a compact connected Lie group, let P ! † be a principal G
bundle and let � 2 Z.g/ denote the central type of P de�ned by (12). It follows
from Lemma 2.2 that �� .A/ D �FA � � de�nes a moment map for the action of
G.P / on A.P / . �e weights associated to the gauge action with respect to this
moment map are de�ned by

w� .A; �/ WD lim
t!1
h�Feit�A � �; �i(30)

for every � 2 W 2;2.†; ad.P // and A 2 A.P / . Di�erentiating the right hand side
in time yields

d

dt
h�Feit�A � �; �i D h� � deit�A � deit�A�; �i D jjdeit�A�jj

2
L2
� 0(31)

and therefore w� .A; �/ 2 R [ ¹C1º is well-de�ned.

Remark 5.1. �e weights can be de�ned when � is only of Sobolev class W 1;2 .
�e calculation above shows

w� .A; �/ D h�FA � �; �i C

Z 1
0

jjdeit�A�jj
2
L2
dt(32)

and the right hand side is well-de�ned for � 2 W 1;2.†; ad.P // .
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We show in Proposition 5.2 and Lemma 5.7 that there exists a one to one
correspondence between �nite weights w� .A; �/ <1 and8̂<̂

:.PQ; �0/
ˇ̌̌̌
ˇ̌̌ �0 2 g, Q D Q.�0/

PQ is a principal Q bundle
PQ � .P

c ; JA/ is a holomorphic reduction

9>=>; :
For the de�nition of the parabolic subgroup Q.�0/ � Gc see De�nition 2.10.
Using a deep regularity result of Uhlenbeck and Yau [UY], we note that for every
�nite weight the section � 2 �0.†; ad.P // is smooth provided A is a smooth
connection.

Using this geometric description, we show in Proposition 5.9 that the algebraic
stability of .P c ; JA/ is equivalent to the conditions on the weights w� .A; �/

required in the Hilbert–Mumford criterion. In the last subsection we prove the
moment weight inequality

�
w� .A; �/

jj�jjL2
� inf
g2Gc.P /

jj�� .gA/jjL2 :

�is shows that A is �� -unstable whenever there exists a negative weight. By
Proposition 5.9 the later is true if and only if .P c ; JA/ is unstable.

5.1. Finite weights. It is more convenient to describe the weights in the language
of vector bundles: We �x a faithfull representation G ,! U.n/ , identify G with
a subgroup of U.n/ and denote by E WD P �G Cn the associated vector bundle
with structure group G . Consider the bundles

G.E/; g.E/; Gc.E/; gc.E/ � End.E/

which consist of endomorphisms that in any trivialization are contained in G , g ,
Gc and gc respectively. �ere are canonical identi�cations

G.P / Š G.E/ D �0
�
†;G.E/

�
; ad.P / Š g.E/ � End.E/

and

G.P c/ Š Gc.E/ D �0
�
†;Gc.E/

�
; ad.P c/ Š gc.E/ � End.E/:

We denote by AG.E/ the space of G -connections on E which is canonically
isomorphic to A.P / . Assume for convenience that the invariant inner product on
g is obtained by restriction of the standard inner product

h�; �i WD tr.���/

on u.n/ .
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Proposition 5.2. Consider the setting described above. Let A 2 AG.E/ be a
smooth connection and let � 2 W 1;2.†; g.E//n¹0º . If w� .A; �/ < 1 , then the
following holds:
(1) �e endomorphism i� has constant eigenvalues �1 < � � � < �r . �e

corresponding eigenspaces are unitary subbundles Dj and decompose E as
orthogonal direct sum E D D1 ˚ � � � ˚Dr .

(2) Each partial sum Ej WD D1 ˚ � � � ˚Dj is a holomorphic subbundle of E .
�is yields a holomorphic �ltration

0 < E1 < E2 < � � � < Er D E:

(3) �e weight of � is given by the formula

w� .A; �/ D 2�

rX
jD1

�j c1.Dj / � h�; �i

�is is Lemma 4.2 in [iR]. Before giving the proof, we need to discuss the
regularity of weakly holomorphic subbundles.

De�nition 5.3. Let E be a holomorphic hermitian vector bundle. A weakly
holomorphic subbundle of E is a section � 2 W 1;2.†;End.E// satisfying
� D �2 D �� and .1 � �/N@.�/ D 0 .

�e following theorem is a special case of a more general result of Uhlenbeck
and Yau [UY]. �ey prove that weakly holomorphic subbundles of holomorphic
hermitian vector bundles over arbitrary Kähler manifolds correspond to torsion-
free coherent subsheaves. Since any torsion-free coherent sheaf over a Riemann
surface is locally free, this reduces to the following:

�eorem 5.4 (Uhlenbeck and Yau [UY]). If � 2 W 1;2.†;End.E// is a weakly
holomorphic subbundle, then � is the projection on a smooth holomorphic
subbundle E 0 � E .

Proof of Proposition 5.2. Let 0 ¤ � 2 W 1;2.†; g.E// be given and assume
w� .A; �/ <1 . Since gc D g˚ig is per de�nitionem an orthogonal decomposition
we have

jjdeit�A�jj
2
D
1

2
jjN@eit�A�jj

2
D
1

2
jjAd

�
eit�

�
ı N@A ıAd

�
e�it�

�
.�/jj2

D
1

2
jjeit� N@A.�/e

�it�
jj
2

and from (32) follows
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w� .A; �/ D

Z
†

h�FA � �; �i dvol† C
1

2

Z 1
0

jjeit� N@A.�/e
�it�
jj
2 dt:(33)

Denote At WD eit�.A/ and let k � 1 be an integer. �en follows

N@tr.�k/ D tr
�
N@At .�

k/
�
D ktr

�
�k�1 N@At .�/

�
and the Cauchy-Schwarz inequality jtr.AB/j � jjAjj � jjBjj yieldsZ

†

jjN@ tr.�k/jj dvol† � k
Z
†

jj�k�1jj � jj N@At �jj dvol†

D kjj�k�1jjL2 � jje
i�t N@A.�/e

�i�t
jjL2 :

Since w� .A; �/ is �nite, it follows from (32) that there exists a sequence tj !1
such that

lim
j!1

jjei�tj N@A.�/e
�i�tj jjL2 D 0:(34)

Hence N@tr.�k/ D 0 and it follows from the maximum principle that tr.�k/
is constant. Denote the eigenvalues of i� with repetition according to their
multiplicity by �01 � � � � � �

0
n . �en

tr.�k/ D .�01/k C : : :C .�0n/k

is constant for every k � 1 . �is is only possible if all the functions �0j are
constant and hence i� has constant eigenvalues.

Let �1 < � � � < �r be the distinct eigenvalues of i� . Since i� is a normal
(hermitian) operator, the eigenspaces are pairwise orthogonal. Moreover, if �j
is a small loop around the eigenvalue �j in the complex plane, the orthogonal
projection � 0j W E ! Dj onto the eigenspace of �j is given by

� 0j WD
1

2�i

Z
�j

.z1 � i�/�1 dz:

�ese projections have regularity � 0j 2 W 1;2.†;End.E// and satisfy � 0j D .� 0j /2 D
.� 0j /

� .
We show next that the projections �j WD � 01C� � �C� 0j W E ! Ej de�ne weakly

holomorphic subbundles. By construction

i� D m1�1 C � � � Cmr�r(35)

for some m1; : : : ; mr 2 R . Write N@A.�/ D Œ O�ij � with respect to the splitting
E D D1 ˚ � � � ˚Dr . �en there holdsh

eit� O�e�it�
i
ij
D e.�j��i /t O�ij
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and (34) implies O�ij D 0 for i > j . �us N@A.i�/ is upper triangular and (35)
yields

0 D .1 � �j /.N@A�/�j D

rX
kD1

mk.1 � �j /N@A.�k/�j :(36)

�e Leibniz rule provides the formula

.1 � �j /N@A.�k/�j D

8̂̂<̂
:̂
.1 � �k/.1 � �j /N@A.�j / for k > j
.1 � �j /N@A.�j / for k D j
.1 � �j /.N@A.�k/ � �k N@A.�j // for k < j

:

�is implies together with (36) the formula .1 � �j /N@A.�j / D 0 by induction
on j . Hence �j de�nes a weakly holomorphic subbundle and Ej is smooth by
�eorem 5.4. �is proves the �rst two parts of the theorem.

Write N@A with respect to the splitting E D D1 ˚ � � � ˚Dr as

N@A D

0BBBB@
N@A1 A12 : : : A1r

0 N@A2 : : : A2r
:::

:::
: : :

:::

0 0 : : : N@Ar

1CCCCA
where Aij 2 �0;1.Di˝D�j / and N@Aj is the Cauchy–Riemann operator correspond-
ing to the induced unitary connection Aj 2 A.Dj / Š A.Ej =Ej�1/ . Decompose
N@A D N@AC C A0 with

N@AC D

0BBBB@
N@A1 0 : : : 0

0 N@A2 : : : 0
:::

:::
: : :

:::

0 0 : : : N@Ar

1CCCCA ; A0 D

0BBBB@
0 A12 : : : A1r

0 0 : : : A2r
:::

:::
: : :

:::

0 0 : : : 0

1CCCCA
We claim that eit�.A/ converges uniformly to AC WD A1 ˚ � � � ˚ Ar as t !1 .
In fact

N@At �
N@AC D e

it�A0e
�it�

and
Œeit�A0e

�it� �ij D �iet.�i��j /.�j � �i /Aij

decays exponentially to zero, since A0 is strictly upper triangular. �is in turn
implies that eit�A converges to AC and hence
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w� .A; �/ D lim
t!1
h�Feit�A; �i D h�FAC � �; �i D

rX
jD1

h�FAj ; �i � h�; �i

D

rX
jD1

i�j
Z
†

tr.FAj / dvol† � h�; �i

D 2�

rX
jD1

�j c1.Dj / � h�; �i:

Corollary 5.5. Suppose � 2 �0.†; g.E// yields a �nite weight w� .A; �/ . �en
the limit

AC WD lim
t!1

eit�A

exists in AG.E/ . Moreover, the splitting E D D1˚� � �˚Dr is holomorphic with
respect to AC and on each factor the holomorphic structure agrees with the one
induced by the isomorphism Dj Š Ej =Ej�1 .

Proof. �is follows directly from the proof of Proposition 5.2.

Remark 5.6. �e Corollary shows that AC 2 Gc.A/ if and only if the holomorphic
�ltration determined by � splits holomorphically.

We reformulate the characterization of the �nite weights in intrinsic terms. Let
A 2 A.P / Š AG.E/ and suppose that � is a smooth section of ad.P / Š g.E/

which yields a �nite weight w� .A; �/ . By Proposition 5.2 this de�nes a
holomorphic �ltration

0 < E1 < E2 < � � � < Er D E

and there exist unitary trivializations of this �ltration such that � D �0 where
�0 D �idiag.�1; : : : ; �r / is a block diagonal matrix with �1 < �2 < � � � < �r .
�is trivialization yields a reduction PK.�/ � P to K.�0/ WD CG.�0/ . Note that
�0 gives rise to a constant central section of ad.PK.�// � ad.P / and agrees with
� in ad.P / . We can rewrite the formula for the weight as

w� .A; �/ WD

Z
†

h�FAC ; �i dvol† � h�; �i

where AC 2 A.PK.�// is a K.�/ -connection. It follows from Chern–Weyl theory
that the right hand side does not change when we replace AC by another K.�/ -
connection. �e weight depends therefore only on the reduction PK.�/ � P and � .
�e complexi�cation yields a reduction P c

K.�/
D PL.�/ � P

c to the Levi subgroup
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L.�0/ � G
c (see De�nition 2.10). �e reduction PL.�/ � P

c is holomorphic if
and only if N@A takes values in l.�0/ and this is the case if and only if the �ltration
determined by � splits holomorphically. In contrast, the extension L.�0/ � Q.�0/
yields a reduction PQ.�0/ � P

c to the stabilizer of the �ltration determined by
�0 within Gc . �is reduction is always holomorphic, since N@A is upper block
triangular.

Conversely, let PQ � P c be a holomorphic reduction to a parabolic subgroup
Q D Q.�0/ � G

c . �is yields a canonical reduction PK � P to K D CG.�0/ ,
since Gc=Q.�0/ Š G=CG.�0/ . Since �0 is contained in the center of K , it
gives rise to a constant section in ad.PK/ and its image under the embedding
ad.PK/ � ad.P / yields a section � 2 �0.†; ad.P / which gives rise to a �nite
weight w� .A; �/ . We summarize our discussion in the following Lemma.

Lemma 5.7. Let P ! † be a principal G bundle, let A 2 A.P / be a smooth
connection and let P c WD P �G G

c denote the complexi�cation of P endowed
with the holomorphic structure determined by A . �ere exists a one-to-one
correspondence between®

� 2 �0.†; ad.P // jw� .A; �/ <1
¯

and 8̂<̂
:.PQ; �0/

ˇ̌̌̌
ˇ̌̌ �0 2 g, Q D Q.�0/

PQ is a principal Q bundle
PQ � P

c is a holomorphic reduction

9>=>;
Every reduction PQ � P c yields a canonical reduction PK � P to K D CG.�0/ .
�e toral generator �0 yields a constant section of ad.PK/ and its image in ad.P /
yields � . Moreover, the weight is given by the formula

w� .A; �/ D

Z
†

h�FB � �; �i dvol†

for any connection B 2 A.PK/ .

Proof. �is follows directly from the preceding discussion.

�e next lemma describes how the weights behave under an extension G ,! H

of the structure group.

Lemma 5.8. Let H be a compact connected Lie group and �x an invariant
inner product on its Lie algebra h . Suppose that there exists a monomorphism
G ,! H which identi�es G with a subgroup of H and assume that the invariant
inner product on g is obtained by restriction of the one on h . Let P ! † be
a principal G bundle of central type � 2 Z.g/ de�ned by (12) and denote by
PH WD P �G H the associated H bundle.
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(1) �e central type �H 2 Z.h/ of PH is the image of � under the orthogonal
projection

Z.g/ ,! h Š Z.h/˚ Œh; h�! Z.h/:

(2) Let A 2 A.P / , let � 2 �0.†; ad.P // and denote by �H 2 �
0.†; ad.PH //

the image of � under the embedding ad.P / � ad.PH / . �en

w� .A; �/ D w�H .A; �H /C

Z
†

h�H � �; �0i dvol†:

(3) Let A 2 A.P / , let �H 2 �0.†; ad.PH // be a section with w�H .A; �/ < 1

and denote by � 2 �0.†; ad.P // the image of �H under the orthogonal
projection ad.PH /! ad.P / . �en

w� .A; �/ D w�H .A; �H /C

Z
†

h�H � �; �i dvol†:

Proof. For the �rst part, note that h D Z.h/ ˚ Œh; h� yields an orthogonal
decomposition with respect to any invariant inner product of h . �e orthogonal
projection of � onto Z.h/ does therefore depend only on the embedding of G
into H and it is easy to verify that it satis�es (12) for PH .

By Lemma 5.7 there exists �0 2 g and a reduction PK � P to a principal
K D CG.�0/ bundle such that � is the image of the constant section �0 under
the embedding ad.PK/ � ad.P / . Moreover,

w� .A; �/ D

Z
†

h�FB � �; �i dvol†

for any connection B 2 A.PK/ . De�ne QK D CH .�0/ and P QK WD PK�K QK � PH .
�en �H agrees with the image of �0 under the embedding ad.P QK/ � ad.PH /
and Lemma 5.7 yields

w�H .A; �/ D

Z
†

h�FB � �H ; �0i

for any connection B 2 A.P QK/ . In particular, for B 2 A.PK/ � A.P QK/ , we get

w� .A; �/ � w�H .A; �/ D

Z
†

h�H � �; �0i dvol†

and this proves the second part.
�e third part follows by a similar argument. Note that the proof of Proposition

5.2 implies that there exists a connection B D AC 2 A.P / \ A.P QK/ for the
reduction P QK � PH associated to �H . For such a connectionh�H ; FBi D h�; FBi
holds and the claim follows as in the second part.
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5.2. Weights and algebraic stability. �e following proposition characterizes
the (algebraic) stability of the holomorphic principal bundle .P c ; JA/ in terms
of the associated weights w� .A; �/ .

Proposition 5.9 (Characterization of Stability). Let P be a principal G bundle
of central type � 2 Z.g/ de�ned by (12). Let A 2 A.P / be a smooth connection
and let P c WD P �G Gc be the complexi�ed principal bundle endowed with the
induced holomorphic structure JA .

(1) .P c ; JA/ is stable if and only if w� .A; �/ > 0 for all � 2 W 1;2.†; ad.P //
which are not constant central sections.

(2) .P c ; JA/ is polystable if and only if w� .A; �/ � 0 for all � 2 W 1;2.†; ad.P //
and whenever w� .A; �/ D 0 the associated (smooth) reduction PL.�/ �

PQ.�/ � P
c is holomorphic.

(3) .P c ; JA/ is semistable if and only if w� .A; �/ � 0 for all � 2 W 1;2.†; ad.P // .

(4) .P c ; JA/ is unstable if and only if there exists � 2 W 1;2.†; ad.P // with
w� .A; �/ < 0 .

Proof. Using the geometric interpretation of the �nite weights in Lemma 5.7 we
can reduce the proof to a lemma of Ramanathan [Ram]. �e proof will be given
on page 129 below.

Reduction argument. We reduce the theorem to the case where Z.G/ is discrete
and � D 0 . Recall that the invariant inner product on g yields the decomposition
g D Z.g/˚Œg; g� of the Lie algebra into its center and a semisimple subalgebra. �e
center yields a trivial Z.g/ subbundle V � ad.P / and its orthogonal complement
can be identi�ed with ad.P=Z0.G// .

Lemma 5.10. Assume the setting of Proposition 5.9. Let � 2 �0.†; ad.P //
with w� .A; �/ < 1 and decompose � D �z C �ss with respect to the splitting
ad.P / D V ˚ ad.P=Z0.G// . �en

w� .A; �/ D w0. NA; �
ss/

where NA 2 A.P=Z0.G// denotes the induced connection on P=Z0.G/ .

Proof. By Lemma 5.7 exists reduction PK � P and an element �0 2 g which
gives rise to a constant central section in ad.PK/ and such that � is the image
of �0 under the embedding ad.PK/ � ad.P / . Decompose �0 D �z0 C �

ss
0 with

respect to g D Z.g/ ˚ Œg; g� . �en �z0 yields �z and �ss0 yields �ss under the
embedding ad.PK/ � ad.P / . By Lemma 5.7 the weight is given by
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w� .A; �/ D

Z
†

h�FB � �; �
ss
i dvol† C

Z
†

h�FB � �; �
z
i dvol†:

for any connection B 2 A.PK/ . �e second integral vanishes by (12) and in the
�rst integral yieldsZ

†

h�FB � �; �
ss
i dvol† D

Z
†

h�FB ; �
ss
i dvol† D w0. NA; �

ss/:

since � 2 Z.g/ is orthogonal to Œg; g� . �is completes the proof.

�e main argument. �e following result is a reformulation of Lemma 2.1 in
[Ram].

Lemma 5.11. Assume the setting of Proposition 5.9 and suppose in addition
that Z0.G/ is discrete and � D 0 . .P c ; JA/ is stable (resp. semistable) with
respect to De�nition 3.2 if and only if w0.A; �/ > 0 (resp. w0.A; �/ � 0 ) for all
� 2 W 1;2.†; ad.P // .

Proof. Let � 2 �0.†; ad.P // with w0.A; �/ <1 be given. By Lemma 5.7 exists
a reduction PK � P and an element �0 2 g such that K D CG.�0/ and � is the
image of �0 under the embedding ad.PK/ � ad.P / .

Let T � G be a maximal torus whose Lie algebra contains �0 and let
RC0 D ¹˛1; : : : ; ˛rº be a system of simple roots with respect to T whose Weyl-
chamber contains �0 . Recall that j̨ D iaj with aj 2 Hom.t;R/ and de�ne tj 2 t

by aj D htj ; �i . �e elements Lt1; : : : ; Ltr 2 t de�ned by (7) yield a basis of t and
�0 has the shape

�0 D

rX
jD1

xj Ltj

with xj � 0 . Note that Ltj lies in the center of the Lie algebra of K D CG.�0/

when xj > 0 . �en Ltj gives rise to a constant central section of ad.PK/ and

w0.A; �/ D

rX
jD1

xjw0.A; Ltj /:(37)

Fix 1 � j � r with xj > 0 and denote Qj WD Q.Ltj / . �is is a maximal parabolic
subgroup of Gc which contains Q.�0/ and the extension PQj WD PQ.�/�Q.�/Qj �
P c yields a maximal parabolic reduction. Let � W Qj ! C� be the determinant
of the action of Qj on its Lie algebra and denote by P� W qj ! C the induced
map on the Lie algebra. Chern–Weyl theory yields the relation

c1
�
ad.PQj /

�
D

i
2�

Z
†

P�.FB/
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for a connection B 2 A.PK/ . For � 2 qj the value of P�.�/ is given as the trace
of ad.�/ WD Œ�; �� acting on

qj D t˚
M

˛2R.Ltj /

g˛:(38)

where R.Ltj / is de�ned by (8). �is decomposition is unitary and by de�nition
of the roots we have ad.t/e˛ D ˛.t/e˛ for t 2 t . �is shows

P�.�/ D
X

˛2R.Ltj /

˛.�/(39)

for all � 2 t . Since P� vanishes on Œqj ; qj � it vanishes on all root space g˛ with
¹˛;�˛º � R.Ltj / . �ese are the roots in QR.Ltj / which produce the Levi subgroup
L.Ltj / . �e remaining root spaces g˛ with ˛ 2 R.Ltj /n QR.Ltj / form a nilpotent
subalgebra. �is shows that (39) remains valid for all � 2 qj if one extends the
roots by complex linearity over tc and by zero over the root spaces.

Denote by RC the positive roots and by R�.Ltj / D R.Ltj /nR
C the negative

roots whose root spaces are contained in qj . �en P� D 1 C 2 with

1 D
X
˛2RC

˛; 2 WD
X

˛2R�.Ltj /

˛

and
h˛i ; 1i D

X
˛2RC

hti ; t˛i D jti j
2
C

X
˛2RCn¹ j̨ º

hti ; t˛i

holds for every simple root ˛i . �e root re�ection

sj W t! t; sj .t/ WD t �
2ht; tj i

jtj j2
tj

restricts to a permutation of RCn¹ j̨ º . Indeed, any root has a unique representation
t˛ D

Pr
kD1 cktk and all coe�cients happen to have the same sign. Applying the

re�ection sj changes only the coe�cient cj and thus sj .˛/ remains positive if
ck > 0 for some coe�cient k ¤ j . Using this symmetry we conclude

h˛i ; 1i D jti j
2:(40)

A similar argument shows for i ¤ j

h˛i ; 2i D
X

˛2R�.Ltj /

hti ; t˛i D �jti j
2
C

X
˛2R�.Ltj /n¹ j̨ º

hti ; t˛i D �jti j
2:(41)

�is shows P�.ti / D 0 for i ¤ j . As a general property of root systems (see
[Kna] Lemma 2.51) there holds htj ; ti i � 0 for distinct simple roots ˛i ; j̨ and
thus
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P�.tj / D jtj j
2
C

X
˛2R�.Ltj /

htj ; t˛i > 0(42)

Combining (40), (41) and (42) we conclude

P�.t/ D imhLtj ; ti

for some m > 0 . Hence

c1.ad.PQj // D
�m

2�

Z
†

hFB ; Ltj i D
�m

2�
w0.A; Ltj /:(43)

Suppose now that P c is stable (resp. semistable). �en the left hand side
in (43) is negative (resp. nonpositive) and (37) implies w0.A; �/ > 0 (resp.
w0.A; �/ � 0 ). Conversely, Lemma 5.7 show that every holomorphic reduction
PQ � P c to a proper maximal parabolic subgroup Q.�0/ � Q is induced by
some � 2 �0.†; ad.P // with w0.A; �/ < 1 . Lemma 2.15 shows that in (38)
exactly one coe�cient xj does not vanishes. Hence (43) implies that c1.ad.PQ//
is negative or vanishes if and only if w0.A; �/ is positive or vanishes respectively.
�is establishes the converse direction and completes the proof of the lemma.

Completion of the proof.

Proof of Proposition 5.9. We may assume by Lemma 3.5 and Lemma 5.10 that
Z0.G/ is discrete and � D 0 . �e stable and semistable case follow then from
Lemma 5.11 and the unstable case is equivalent to the semistable case.

Assume that P c is polystable. �en there exists a holomorphic reduction
PL � P c to a Levi subgroup L � Gc and PL is a stable L bundle. Let
� 2 �0.†; ad.P // with w0.A; �/ D 0 be given. By Lemma 5.7 exists �0 2 g and
a reduction PK � P to a principal K D CG.�0/ bundle such that � agrees with
the image of �0 under the embedding ad.PK/ � ad.P / . Using the notation from
the proof of Lemma 5.11 above, write �0 with respect to a system of simple roots
as

�0 D

rX
jD1

xj Ltj

with xj � 0 . Since P c is in particular semistable, the proof of Lemma 5.11 shows
that w0.A; �/ D 0 if and only if

xj > 0 ) c1
�
ad.PQj /

�
D 0

where Qj WD Q.Ltj / . We may assume (after conjugation) that L D L.�0/ for
some �0 2 g and �0 is contained in the Weyl-chamber determined by our choice
of simple roots. If L is not contained in Qj , then Q0j WD L\Qj is a maximal
parabolic subgroup of L and we have an induced reduction PQ0

j
� PL . Since L
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and Gc are reductive, the Lie algebra bundles ad.PL/ and ad.P c/ carry a non
degenerated symmetric C -bilinear form. Hence they are both self-dual and have
vanishing �rst Chern-class. �is shows

c1
�
ad.PQj /

�
D �c1

�
ad.P c/=ad.Qj /

�
D �c1

�
ad.PL/=ad.Q0j /

�
D c1

�
ad.PQ0

j
/
�
< 0

where the last step follows from the stability of PL . We have thus proven that
L � Qj whenever xj > 0 and this yields L � L.�0/ . Since the reduction to L

is holomorphic, so is the reduction to L.�0/ .
Assume conversely, that all weights are nonnegative and if � 2 �0.†; P c/ is

a section with w0.A; �/ D 0 then PL.�/ � P c is a holomorphic reduction (where
PL.�/ D P

c
K.�/

and PK.�/ is determined by Lemma 5.7). It follows from Lemma
5.11 that P c is semistable. If P c is in fact stable, then we are done. Otherwise
there exists a vanishing weight w0.A; �/ D 0 and by assumption this yields a
holomorphic reduction PL.�/ � P

c . In particular A restricts to a connection on
PK.�/ � P and PK.�/ is again of central type 0 . For the later claim let � 2 g be
contained in the center of the Lie algebra of K and consider its image �0 under
the embedding ad.PK/ � ad.P / . �en followsZ

†

h�FB ; �i dvol† D w0.A; �
0/ � 0

for any connection B 2 A.PK/ . Replacing � by �� shows that this expression
must vanish and hence PK.�/ is of central type 0 . Now Lemma 5.11 shows
that PL.�/ is again semistable. If PL.�/ is not stable, then there exists Q� 2
�0.†; ad.PK.�// with w0.A; Q�/ D 0 . We can consider Q� as section � 0 of ad.P /
which then satis�es w0.A; � 0/ D 0 and thus yields a strictly smaller holomorphic
reduction PL.�0/ � PL.�/ . If we replace � by � 0 and rerun the argument from above
we obtain after �nitely many iterations a section � which satis�es w0.A; �/ D 0
and yields a stable holomorphic reduction PL.�/ � P

c .
Let � W L ! C� be a character. We need to show c1.�.PL.�/// D 0 .

Decompose �0 D
Pr
jD1 xj Ltj as above and denote

S WD ¹j j xj > 0º:

Since P� W l.�/! C vanishes on Œl.�/; l.�/� , it vanishes on all the root spaces g˛
belonging to l.�/ and the dual vectors t˛ 2 t . In particular, P� vanishes on the
simple roots tj with j … S and has the shape

P�.�/ D
X
j2S

irj h�; Ltj i

for some rj 2 R . Chern–Weyl theory yields
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c1
�
�.PL.�//

�
D

i
2�

Z
†

P�.FB/ D
i
2�

X
j2S

irj
Z
†

h�FB ; Ltj i

for some connection B 2 A.PK.�// . We claim that each summand vanishes
separately in the last expression. �is follows from the assumption

0 D w0.A; �/ D

rX
jD1

xj

Z
†

h�FB ; Ltj i dvol† D
X
j2S

xj

Z
†

h�FB ; Ltj i dvol†

and
w0.A; Ltj / D

Z
†

h�FB ; Ltj i dvol† � 0

since P c is semistable.

5.3. �e moment weight inequality. �e moment-weight inequality provides
a lower bound for the norm of the moment-map �� .A/ D �FA � � on the
complexi�ed orbit Gc.A/ .

�eorem 5.12 (�e moment-weight inequality). Let P ! † be a principal G
bundle of central type � 2 Z.g/ de�ned by (12). Let A 2 A.P / be a smooth
connection and � 2 W 1;2.†; ad.P // . �en

�
w� .A; �/

jj�jjL2
� inf
g2Gc
jj � Fg.A/ � � jjL2 :(44)

�e moment weight-inequality is essentially proven by Atiyah and Bott
([AB83], Prop. 8.13 and Prop. 10.13). �ey explicitly determine the in�mum
of the Yang–Mills functional over Gc.A/ in terms of the Harder–Narasimhan
�ltration of the holomorphic vector bundle ad.P c/ . It follows from the proof
of the dominant weight theorem (�eorem 7.1) in the next section that the same
description yields the supremum over the left-hand side whenever it is positive.
We provide a di�erent approach following the arguments in [SGR] for the �nite
dimensional case which are essentially due to Chen [Che2, Che1] and Donaldson
[Don4].

Proof. We reduce the proof to the case where Z.G/ is discrete and � D 0 .
Denote by NA 2 A.P=Z0.G// the induced connection on the quotient bundle
and decompose � D �ss C �z as in Lemma 5.7. Let g 2 Gc.P / be given and
decompose FgA D F ss C F z in the same way. Note that Fg NA D F ss . Suppose
that the moment-weight inequality is satis�ed on P=Z0.G/ , i.e.

�
w0. NA; �

ss/

jj�ssjjL2
� jj � Fg NAjjL2 :
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We may assume w� .A; �/ � 0 . �en Lemma 5.7 implies

�
w� .A; �/

jj�jjL2
� �

w0. NA; �
ss/

jj�ssjjL2
� jj � Fg NAjjL2 � jjFgA � � jjL2

and this completes the reduction argument.
Now assume that Z.G/ is discrete and � D 0 . Let � 2 W 1;2.†; ad.P // with

w0.A; �/ <1 . �en � is smooth by Proposition 5.2 and the limit

lim
t!1

eit�A DW AC(45)

exists by Corollary 5.5.
Let g0 D u0e

i�0 2 Gc.P / be given and de�ne �.t/ 2 W 2;2.†; ad.P // and
u.t/ 2 G by the equation

ei�t D ei�.t/u.t/g0:

From this follows pointwise the estimate

jj�.t/ � t�jj � jj�0jj:(46)

To see this, denote by � W Gc ! Gc=G the canonical projection and recall that
Gc=G is a complete simply-connected Riemannian manifold with nonpositive
sectional curvature. For a �xed time t and z 2 † de�ne p WD �.eit�.z// and
q WD �.ei�.t;z// . �en

 W Œ0; 1�! Gc=G; .s/ WD �.eit�.z/e�is�0.z//

is the unique geodesic from p to q in Gc=G of length jj�0.z/jj . Since the
exponential map on a Riemannian manifold with nonpositive curvature is distance
increasing, this yields

jj�.t; z/ � t�.z/jj � distGc=G.p; q/ D jj�0.z/jj

and hence (46). With this estimate we getˇ̌̌̌ˇ̌̌̌
�

jj�jjL2
�

�.t/

jj�.t/jjL2

ˇ̌̌̌ˇ̌̌̌
L2
�

ˇ̌̌̌ˇ̌̌̌
t� � �.t/

t jj�jjL2
C

�.t/

t jj�jjL2
�

�.t/

jj�.t/jjL2

ˇ̌̌̌ˇ̌̌̌
L2

�
jjt� � �.t/jjL2

t jj�jjL2
C

ˇ̌̌̌
jj�.t/jjL2 � t jj�jjL2

t jj�jjL2

ˇ̌̌̌
� 2
jj�0jjL2

t jj�jjL2

and hence

lim
t!1

ˇ̌̌̌ˇ̌̌̌
�.t/

jj�.t/jjL2
�

�

jj�jjL2

ˇ̌̌̌ˇ̌̌̌
L2
D 0:(47)
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By (31) the map

s 7! h�F
eisu�1�ug0A

; u�1�ui

is nondecreasing in s . With the relation eiu
�1�ug0 D u

�1eit� follows

�jj � Fg0AjjL2 �
1

jj�jjL2

˝
�Fg0A; u

�1�u
˛
�

1

jj�jjL2

D
�F

eiu�1�ug0A
; u�1�u

E
�

1

jj�jjL2

˝
�Fu�1eit�A; u

�1�u
˛
D

1

jj�jjL2
h�Feit�A; �i

�
h�Feit�A; �i

jj�jjL2
C

�
�Feit�A;

�

jj�jjL2
�

�

jj�jjL2

�
It follows from (45) and (46) that the right and side converges to w0.A;�/

jj�jj
for

t !1 and this proves the theorem.

6. �e Kempf–Ness functional

Let G be a compact connected Lie group and let P ! † be a principal G
bundle of central type � 2 Z.g/ de�ned by (12). Let A 2 A.P / be a smooth
connection. �e Kempf–Ness functional associated to A is the G.P / -invariant
functional

ˆA W Gc.P /! R; ˆA.e
i�u/ D

Z 1

0

h�Fe�it�A � �;��i dt:(48)

We show in Lemma 6.1 below that the derivative of ˆA is given by

˛A.gI Og/ D �h�Fg�1A � �; Im.g�1 Og/i:(49)

�e asymptotic slope of ˆA along the geodesic ray t 7! e�it� yields the weight
w� .A; �/ . �is is related to the stability of the associated holomorphic principal
bundle .P c ; JA/ by Proposition 5.9. On the other hand, it follows directly from
(49) that g 2 Gc.P / is a critical point of ˆA if and only if �Fg�1A D � . �e
analog of the Kempf–Ness theorem in classical GIT is �eorem 6.2 below. It
characterizes the di�erent notions of �� -stability in terms of the global behaviour
of ˆA and thus provides a link between the algebraic and the symplectic notions of
stability. We can deduce from this the Narasimhan–Seshadri–Ramanathan theorem
in the second subsection.
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6.1. �e generalized Kempf–Ness theorem.

Lemma 6.1. Let P ! † be a principal G bundle and de�ne ˆA W Gc.P /! R

by (48).

(1) �e derivative of ˆA is given by

˛A.gI Og/ D �
˝
� Fg�1A � �; Im.g�1 Og/

˛
:

(2) Let g; h 2 Gc.P / , then

ˆh�1A.h
�1g/ D ˆA.g/ �ˆA.h/:

Proof. Let g 2 Gc.P / , Og 2 TgGc.P / and let u 2 G.P / be given. �en

˛A.gu
�1; Ogu�1/ D

˝
� Fug�1A; Im.ug�1 Ogu�1/

˛
D
˝
u � Fg�1Au

�1; uIm.g�1 Og/u�1
˛

D ˛A.g; Og/

shows that ˛A is invariant under the right-action of G.P / and hence descends
to a 1 -form on Gc.P /=G.P / .

We claim that ˛A is closed. Denote by � W Gc ! Gc=G the canonical
projection and let Og1 D d�.g/gi� and Og2 WD d�.g/gi� be two tangent vectors
in T�.g/Gc.P /=G.P / . �en

d˛A.gI Og1; Og2/ D d˛A.gI Og2/Œ Og1� � d˛A.gI Og1/Œ Og2� � ˛A.gI Œ Og1; Og2�/

D d hFg�1A � �; �iŒgi�� � d hFg�1A � �; �iŒgi��

D hd�
g�1A

dg�1A�; �i � hd
�

g�1A
dg�1A�; �i D 0:

We used in the second step that Œ Og1; Og2� 2 TgG.P / is tangent to the real gauge
orbit and thus lies in the kernel of ˛A.gI �/ .

Denote for p; q 2 Gc.P /=G.P / by Œp; q� the geodesic segment connecting p

to q . �en (48) can be reformulated as

ˆA.g/ D

Z
Œ�.1/;�.g/�

˛A:(50)

For h 2 Gc.P / we have ˛h�1A.h�1g; h�1 Og/ D ˛A.g; Og/ and hence

ˆh�1A.h
�1g/ D

Z
Œ�.1/;�.h�1g/�

˛h�1A D

Z
Œ�.h/;�.g/�

˛A:

Since ˛A is closed we have
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Œ�.h/;�.g/�

˛A D

Z
Œ�.1/;�.g/�

˛A �

Z
Œ�.1/;�.h/�

˛A D ˆA.g/ �ˆA.h/

and this establishes the second part of the lemma.
Using the second part, we can can reduce the proof of the �rst part to the

case g D 1 and in this case the claim follows directly from (48).

�e di�cult part of the following theorem is the stable case. �e proof of this
case is due to Bradlow [Bra] and Mundet [iR] in the context of more general
moduli problems.

�eorem 6.2 (Generalized Kempf–Ness theorem). Let G be a compact connected
Lie group, let P ! † be a principal G bundle with central type � 2 Z.g/ de�ned
by (12) and let A 2 A.P / .

(1) A is �� -stable if and only if Gc.A/ has discrete Gc.P / isotropy and for
every R > 0 such that

MR WD
®
� 2 W 2;2.†; ad.P / j jj � Fe�i�A � � jjL2 � R

¯
is nonempty, there exist constants c1; c2 > 0 such that

ˆA.e
i�/ � c1jj�jjL1 C c2 for all � 2MR.(51)

(2) A is �� -polystable if and only if ˆA has a critical point.

(3) A is �� -semistable if and only if ˆA is bounded below.

(4) A is �� -unstable if and only if ˆA is unbounded below.

Proof. We consider both implications of the stable case in the following lemmas
�rst. �e proof will then be given on page 139 below.

Lemma 6.3. Assume the setting of �eorem 6.2. Suppose that the orbit Gc.A/ �
A�.P / contains only irreducible connections and that there exist c1; c2; R > 0

such that MR is nonempty and (51) holds. �en exists �0 2MR such that

ˆA
�
ei�0� � ˆA�ei�� for all � 2MR(52)

and B WD e�i�0A satis�es FB D 0 .
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Proof. Suppose �rst that �0 2 MR satis�es (52). Let B WD e�i�0A and let
� 2 W 2;2.†; ad.P // be a solution of the equation

�B� D d
�
BdB� D �FB

which exists since B is irreducible. �en there follows
d

dt

ˇ̌̌̌
tD0

ˆA.e
i�0ei�t / D ˛A.e

i�0 ; ei�0 i�/ D �h�FB ; �i D �jjdB�jj2L2

and
d

dt

ˇ̌̌̌
tD0

ˇ̌ˇ̌
�Fe�i�te�i�0A

ˇ̌ˇ̌2
D 2

�
�FB ;�

d

dt

ˇ̌̌̌
tD0

Fe�i�tB

�
D 2h�FB ;�dB � dB�i D �2h�FB ; �B�i D �2jj � FB jj

2
L2

Now decompose ei�0ei�t D ei�1u . �en the calculation shows that for su�ciently
small t we have �1 2 MB and ˆA.e

i�1/ � ˆA.ei�0/ with equality if and only if
FB D 0 . Since (52) yields the converse inequality, we have indeed equality and
hence FB D 0 .

It remains to prove the existence of a minimizer �0 2 MR . Let ¹�kº � MR

be a minimizing sequence satisfying

lim
k!1

ˆA.e
i�k / D inf

�2MR

ˆA.e
i�/:(53)

By de�nition of MR , the curvature F
ei�kA is uniformly bounded in L2 . Hence

the Uhlenbeck compactness theorem asserts that there exists uk 2 G.P / such that
Ak WD uke

i�kA converges weakly in W 1;2 . For gk WD ukei�k the expression

N@Ak �
N@A D g

�1
k
N@Agk

is thus uniformly bounded in W 1;2 . Since �k is uniformly bounded in L1 by
(51) and (53), we conclude that gk and �k are uniformly bounded in W 2;2 .
Hence, after taking a subsequence, there exists �0 2MR such that �k converges
to �0 weakly in W 2;2 and strongly in W 1;p for 2 < p <1 . From this follows

lim
k!1
h�F

e�it�kA;��ki D h�Fe�it�0A;��0i:

Hence limk!1ˆA.ei�k / D ˆA.ei�0/ and �0 satis�es (52).

Lemma 6.4. Assume the setting of �eorem 6.2. Suppose that Z0.G/ is discrete,
� D 0 and w0.A; �/ > 0 for all nonzero � 2 W 1;2.†; ad.P // . Let R > 0 be
given such that MR is nonempty. �en exist constants c1; c2 > 0 such that (51)
is satis�ed.
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Proof. �e proof consists of several steps.

Step 1. �ere exists C > 0 such that

jj�jjC0 � C
�
jj�jjL1 C 1

�
for all � 2MR .

We observe that

2h�Fei�A � �FA; �i D 2

Z 1

0

h�eit�A�; �i dt D �jj�jj
2
C 2

Z 1

0

jjdeit�A�jj
2 dt

� �jj�jj2 � 2jj�jj�jj�jj

and hence

�jj�jj � jj � Fei�A � �FAjj:(54)

An argument due to Simpson ([Simp], Prop 2.1) shows that this implies the claim.
For this denote

f W †! R; f .z/ WD jj�.z/jj:

For z0 2 † choose a local coordinate which identi�es z0 with the origin in
C . Let Br0.0/ be a ball contained in the image of this local coordinate and let
r 2 .0; r0/ . Let w; h be solutions of

�w D jj � Fei�A � �FAjj; wj@Br .0/ D 0 �h D 0; hj@Br .0/ D f jBr .0/:

Here we consider the Laplacian of † which agrees with the Laplacian on C up to
a positive factor. Hence (54) and the maximum principle show that f �w�h � 0
and the mean value theorem yields

f .0/ � w.0/ � h.0/ D
1

2�r

Z
@Br .0/

f:

Moreover, by de�nition of MR and elliptic regularity there follows

jw.0/j � C jjwjjW 2;2 � C jj�wjjL2 � C.jj � FAjjL2 CR/:

Hence
f .z0/ � C

�
r C

1

r

Z
@Br .0/

f

�
:

Now choose r 2 .r0=2; r0/ such that r0
2

R
@Br .0/

f � jjf jjL1 holds. �en follows

f .z0/ � C

�
r0 C

1

r20
jjf jjL1

�
:

Since † is compact, we can perform this argument within �nitely many charts
and choose the �nal constant C to be independent of z0 .
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Step 2. �ere exist c1; c2 > 0 such that

jj�jjL1 � c1ˆA.e
i�/C c2 for all � 2MR .

Suppose the claim is false. �en exists Ck > 0 and �k 2MR such that

lim
k!1

Ck D1; lim
k!1

jj�kjjL1 D1 and jj�kjjL1 � CkˆA.e
i�k / .

It follows from Step 2 that �k WD ��k=jj�kjjL1 is uniformly bounded in L1 .
Denote `k WD jj�kjjL2 . �en

1

Ck
�
ˆA.e

i�k /

jj�kjjL1
D

Z 1

0

h�F
eit�kA; �ki dt D

1

`k

Z `k

0

h�F
eit�kA; �ki dt

�e integrand is increasing by (31). Hence, for any �xed t > 0 follows

1

Ck
�
lk � t

lk
h�F

eit�k ; �ki C
t

lk
hFA; �ki:(55)

It follows from (33) that

h�F
eit�kA; �ki D h�FA; �ki C

1

2

Z t

0

jjei�ks.N@A�k/e
�i�ksjj2

L2
ds

and, since �k is uniformly bounded in C 0 , we conclude that N@A�k is uniformly
bounded in L2 . Since A is irreducible and jjN@A�kjj2 D 1

2
jjdA�kjj

2 this shows
that �k is uniformly bounded in W 1;2 . Hence, after taking a subsequence, there
exists � 2 W 1;2 \L1 such that �k ! � converges weakly in W 1;2 and strongly
in Lp for every 1 � p < 1 . In particular jj�jjL1 D 1 shows that � ¤ 0

and
lim
k!1
h�F

eit�kA; �ki D h�Feit�A; �i:

Now (55) implies h�Feit�A; �i � 0 and as t !1 we obtain w0.A; �/ � 0 . �is
contradicts our assumptions and proves Step 2.

Step 3. �ere exist c1; c2 > 0 such that

jj�jjL1 � c1ˆA.e
i�/C c2 for all � 2MR .

�is follows directly from Step 1 and Step 2.
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Proof of �eorem 6.2. Suppose A is �� -stable. �en Z0.G/ is discrete, � D 0
and Gc.A/ has discrete Gc.P / isotropy. We claim that w0.A; �/ > 0 for all
� 2 W 1;2.†; ad.P // . By Proposition 5.9 this condition is equivalent to the stability
of the induced holomorphic structure JA on P c WD P �G G

c . In particular, this
condition is invariant under the action of Gc.P / and we may assume that FA D 0 .
�en (32) shows

w0.A; �/ D

Z 1
0

jjdeit�A�jj
2
L2
dt > 0

since A is irreducible. �us Lemma 6.4 applies and shows that the estimate (51)
is satis�ed. �e converse direction follows from Lemma 6.3.

�e characterization of the �� -polystable case follows directly from (49).
In the following let A.t/ denote the solution of the Yang–Mills �ow

(22) starting at A and let A1 WD limt!1A.t/ . Suppose A is �� -unstable.
�eorem 4.14 and (19) show that

jjFgA � � jjL2 � jjFA1 � � jjL2 D c > 0

for all g 2 Gc.P / . Now de�ne g.t/ by (24). �en A.t/ D g.t/�1.A/ and
d

dt
ˆA
�
g.t/

�
D ˛A

�
g.t/; Pg.t/

�
D �h�FA.t/ � �;�FA.t/i

D �jj � FA.t/ � � jj
2
L2
� �c

where the penultimate step follows from (12). �is shows that ˆA is unbounded
below.

Suppose conversely that A is �� -semistable. It follows from �eorem 4.14
and (19) that A1 is a global minimum for the Yang–Mills functional on A.P /
and �FA1 D � . It follows from the Lojasiewicz inequality (Lemma 4.5) that
there exists  2 Œ1

2
; 1/ and C; T > 0 such that

jj � FA.t/ � � jj
2
L2
D 2jYM

�
A.t/

�
� YM.A1/j

� C jjd�A.t/FA.t/jj
1


L2

� C jjd�A.t/FA.t/jj
2
L2

�
YM.A.t/

�
� YM.A1//

1�2

D
d

dt
C
�
YM

�
A.t/

�
� YM.A1/

�2�2
for all t > T . Since the right hand side is integrable, the solution g.t/ of (24)
satis�es

lim
t!1

ˆA
�
g.t/

�
D �

Z 1
0

jj � FA.t/ � � jj
2
L2
dt DW a > �1:

We claim that a is a global minimum for ˆA . For this let Qg0 2 Gc.P / and let
Qg.t/ be the solution of (26) starting at Qg0 . �is is a negative gradient �ow line
of ˆA and satis�es
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d

dt
ˆA
�
Qg.t/

�
D �˛A

�
Qg.t/; PQg.t/

�
D �jj � F Qg.t/�1A � � jj

2
L2
� 0:

De�ne �.t/ 2 W 2;2.†; ad.P // and u.t/ 2 G.P / by the equation

g.t/ exp
�
i�.t/

�
u.t/ D Qg.t/

and
ˇt W Œ0; 1�! Gc.P /; ˇt .s/ D g.t/e

is�.t/:

�en .ˆA ı ˇt / satis�es

d

ds

ˇ̌̌̌
sD0

.ˆA ı ˇt /.s/ D ˛A
�
g.t/; @sˇt .s/

�
D �h�Fg.t/�1A � �; �i

� �jj � Fg.t/�1A � � jjL2 � jj�.t/jjL2

and

d2

ds2
.ˆA ı ˇt /.s/ D �

d

ds

˝
� Fe�i�.t/sg.t/�1A � �; �.t/

˛
D
˝
d�As;tdAs;t�.t/; �.t/

˛
D jjdAs;t�.t/jj

2
L2
� 0

where we abbreviated As;t WD e�i�.t/sg.t/�1A . In particular, ˆA ı ˇt is convex
and since �.t/ is uniformly bounded in L1 by Proposition 4.12 there exists a
constant C > 0 such that

ˆA
�
Qg.t/

�
� ˆA

�
g.t/

�
� C jjFg.t/�1A � � jjL2 :

Since ˆA. Qg0/ � ˆA. Qg.t// for all t and the right hand side converges to a as
t ! 1 we conclude ˆA. Qg0/ � a . �is establishes the claim and completes the
proof of the theorem.

6.2. �e Narasimhan–Seshadri–Ramanathan theorem. �e Narasimhan–Se-
shadri–Ramanathan theorem relates the notion of stable objects in De�nition 3.2
and De�nition 3.7. �is was �rst proven by Narasimhan–Seshadri [NS] in the
case G D U.n/ and later extended by Ramanathan [Ram] to general compact
connected Lie groups. Both of these proofs are entirely of algebraic geometric
nature.

In the case G D U.n/ Donaldson [Don1] gave an analytic proof of this result.
His argument uses the moment weight inequality and an induction argument
which is based on the Harder–Narasimhan �ltration. We present a di�erent proof
which is due to Bradlow [Bra] and Mundet [iR]. �e main step in their proof
consists of establishing the stable case in �eorem 6.2.
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�eorem 6.5 (Narasimhan–Seshadri–Ramanathan). Let G be a compact con-
nected Lie group and P ! † a principal G bundle with central type � 2 Z.g/ de-
�ned by (12). Let A 2 A.P / and consider the complexi�ed bundle P c WD P �GGc
with the holomorphic structure induced by A . �en .P c ; JA/ is stable if and only
if there exists a complex gauge transformation g 2 Gc.P / such that �FgA D �

and the kernel of

LA W W
2;2
�
†; ad.P c/

�
! W 1;2

�
†; T �†˝ ad.P /

�
LA.� C i�/ D �dA� C �dA�

contains only constant central sections.

Proof. We may assume by Lemma 3.5 and Lemma 3.9 that Z0.G/ is discrete
and � D 0 .

Suppose there exists g 2 Gc.P / such that �FgA D 0 and gA is irreducible.
�en (32) shows

w0.gA; �/ D

Z 1
0

jjdeit�gA�jj
2
L2
dt > 0

for all 0 ¤ � 2 W 1;2.†; ad.P // and by Proposition 5.9 .P c ; JgA/ is stable. Since
the notion of stability is Gc.P / invariant, .P c ; JA/ is stable.

Assume conversely that .P c ; JA/ is stable. For every g 2 Gc.P / then
.P c ; JgA/ is stable as well and Proposition 5.9 implies w0.gA; �/ > 0 for every
nonzero � 2 W 1;2.†; ad.P // . In particular, gA is irreducible and Lemma 6.4 is
applicable and shows that A is �0 -stable.

7. �e dominant weight theorem

�e dominant weight theorem strengthens the moment weight inequality
(�eorem 5.12). It shows that there exists (up to scaling) a unique section
� 2 �0.†; ad.P // which yields equality in the moment weight inequality,
whenever the right hand side is positive. In particular, it relates the notion
of unstable objects in De�nition 3.2 and De�nition 3.7.

�eorem 7.1 (�e dominant weight theorem). Let G be a compact connected
Lie group, let P ! † be a principal G bundle of central type � 2 Z.g/ de�ned
by (12) and let A 2 A.P / be a smooth �� -unstable connection.

(1) �ere exists an element O� 2 �0.†; ad.P // such that

sup
0¤�2�0.†;ad.P //

�
w� .A; �/

jj�jjL2
D �

w� .A; O�/

jj O�jjL2
D inf
g2Gc.P /

jj � FgA � � jjL2 :(56)



142 S. Trautwein

(2) �e normalized section O�=jj O�jjL2 is uniquely determined. Moreover, it is
rational in the sense that it generates a closed C� subgroup of Gc.P / .

(3) If A1 is the limit of the Yang–Mills �ow (22) starting at A , then there
exists u 2 G.P / such that O� D u.�FA1 � �/u�1 satis�es (56).

Proof. �is result is essentially contained in the work of Atiyah and Bott. �ey
determine in ([AB83], Prop. 8.13 and Prop. 10.13) the in�mum of the Yang–Mills
functional on the complexi�ed orbit Gc.A/ in terms of the Harder–Narasimhan
�ltration of ad.P c/ .

Bruasse and Teleman [BT, Bru] show in a more general gauge theoretical
setting that the supremum over the normalized weights is attained in a unique
direction whenever it is positive. �is corresponds to the case where .P; JA/ is
unstable and they identify again the dominant weight with the Harder–Narasimhan
�ltration.

We follow these ideas in our proof below, but simplify the arguments
considerably by using the moment weight inequality and the analytic properties
of the Yang–Mills �ow. �e proof will be given on page 147.

A key ingredient in the proof is the Harder–Narasimhan �ltration associated to
a holomorphic holomorphic vector bundle. We review this �rst before we proceed
to the proof of the dominant weight theorem.

7.1. �e Harder–Narasimhan �ltration. Let F and G be holomorphic vector
bundles over a Riemann surface † and let ˛ W F ! G be a holomorphic bundle
map. �e kernel and cokernel of ˛ are in general not well-de�ned as holomorphic
vector bundles and one may think of them as vector bundles with singularities.
�ese considerations lead naturally to the larger category of coherent analytic
sheaves on † which is closed under taking kernels and cokernels. �e next
Lemma, however, allows us to get away without considering sheaves.

Lemma 7.2. Let F and G be holomorphic vector bundles over a Riemann
surface † and let ˛ W F ! G be a nonzero holomorphic bundle map. �en there
exists a commutative diagram of holomorphic vector bundles and holomorphic
bundle maps

0 ����! F 0 ����! F ����! F 00 ����! 0??y˛ ??yˇ
0  ���� G00  ���� G  ���� G0  ���� 0

with exact rows and rk.F 00/ D rk.G0/ , det.ˇ/ ¤ 0 and c1.F
00/ � c1.G

0/ .
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Proof. �is Lemma is most easily understood in the language of analytic sheaves.
Denote by O the sheaf of germs of holomorphic functions on † . �ere exists a
one to one correspondence between holomorphic vector bundles and locally free
O -sheafs on † , which associates to a vector bundle its sheaf of holomorphic
sections. �e homomorphism ˛ induces a homomorphism between the associated
sheaves and the sheaf kernel and sheaf image are clearly torsion free subsheaves.
Since the stalks of O are isomorphic to the principal ideal domain CŒŒz�� , these
sheaves are locally free and correspond to the the vector bundles F 0 and G0 .

Recall that we denote for a complex vector bundle E ! † by

�.E/ WD
c1.E/

rk.E/
its slope or normalized Chern-class.

Corollary 7.3. Let F and G be holomorphic vector bundles over † .
(1) Suppose F is semistable, G is stable and �.F / D �.G/ . �en any nonzero

holomorphic bundle map ˛ W F ! G is surjective.
(2) Suppose F and G are stable and �.F / D �.G/ . �en any nonzero

holomorphic bundle map ˛ W F ! G is an isomorphism.
(3) Suppose F and G are semistable and �.F / > �.G/ . �en every holomor-

phic bundle map ˛ W F ! G vanishes.

Proof. We prove the �rst part. Suppose ˛ W F ! G is neither zero nor surjective.
Using the notation of Lemma 7.2 we see that G0 is a proper subbundle and thus

�.G/ > �.G0/ � �.F 00/ � �.F /

contradicting the assumption �.G/ D �.F / . �e other two parts follow from a
similar argument.

Lemma 7.4. Let E be a holomorphic semistable vector bundle. �en there exists
a �ltration

0 < E1 < E2 < � � � < Er D E

such that each quotient Ej =Ej�1 is stable and �.Ej =Ej�1/ D �.E/ .

Proof. Let F � E be a stable subbundle with �.F / D �.E/ . Since E Š

F ˚ .E=F / as C1 -bundles, it follows �.E=F / D �.E/ . Moreover, any
holomorphic subbundle G � E=F with �.G/ > �.E/ would lift under
the projection map E ! E=F to a holomorphic subbundle QG � E with
�. QG/ > �.E/ and this contradicts the semistability of E . Hence E=F is
semistable and the lemma follows by induction.
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�e Harder–Narasimhan �ltration generalizes Lemma 7.4 to general holomor-
phic vector bundles.

Proposition 7.5 (Harder–Narasimhan �ltration). Let E be an holomorphic
vector bundle. �en there exists a unique holomorphic �ltration

0 D E0 < E1 < � � � < Er D E

such that all quotients Ei=Ei�1 are semistable and the slopes

�j WD
c1.Ej =Ej�1/

rk.Ej =Ej�1/

satisfy �1 > �2 > � � � > �r .

Proof. �e degree of any holomorphic subbundles of E is uniformly bounded by
Lemma 7.6 below. Let E1 � E be a semistable subbundle for which �.E1/ DW �1
is maximal and such that E1 has maximal rank among all such subbundles. We
claim that every proper holomorphic subbundle G0 � E=E1 satis�es �.G0/ < �1 .
Otherwise, the preimage of G0 under the projection E ! E=E1 would be a
subbundle QG � E with �. QG/ � �1 and of strictly greater rank then E1 . �is
proves the claim and the existence of the Harder–Narasimhan �ltration follows
by induction.

Let 0 D QE0 < QE1 < � � � < QE` D E be another �ltration of E such that all
quotients QEj = QEj�1 are semistable and the slopes Q�j WD �. QEj = QEj�1/ are strictly
decreasing. In particular, QE1 is semistable and the construction above shows

�.E1/ � �. QE1/ D Q�1 > Q�2 > � � � > Q�`:

�e last part of Corollary 7.3 shows that the projection E1 ! E= QE`�1 must
be zero, since �.E1/ > Q�` and hence E1 � QE`�1 . Repeating the argument, it
follows by induction that E1 � QEj for all j � 1 . If �.E1/ > �. QE1/ , we could go
one step further and obtain the contradiction E1 � QE0 D 0 . �is shows �1 D Q�1 .
Finally, consider the projection

˛ W E1 ! E ! E= QE1:

If it is nonzero, we can apply Lemma 7.2 with F D E1 and G D E= QE1 to
obtain the contradiction

�1 D �.E1/ � �.F
00/ � �.G0/ � Q�2 < Q�1 D �1:

�is shows E1 � QE1 and by maximality of rk.E1/ equality must hold. �e
uniqueness of the Harder–Narasimhan �ltration follows now by induction.
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Lemma 7.6. Let .E; h/ be a hermitian holomorphic vector bundle over † and
denote by A 2 A.E/ the associated unitary connection from Lemma 2.7. For a
holomorphic subbundle F � E the following holds:

(1) Let E D F ˚G be an orthogonal decomposition and identify G with E=F .
Denote by AF and AG the induced connections on F and G . �en A has
the shape

A D

 
AF �

��� AG

!
with � 2 �0;1.†;End.G; F // . Moreover, the curvature has the shape

FA D

 
FAF � � ^ �

� dA�

�dA�
� FAG � �

� ^ �

!
:

(2) �ere exists a constant C > 0 , which does not depend on F , such that

c1.F / � C.1 � jj�jj
2
L2
/:

Proof. We leave the �rst part as an exercise to the reader, see, e.g., [GH]
Chapter 0.5. For the second part, we calculate

c1.F / D
i
2�

Z
†

tr.FAF / D
i
2�

Z
†

tr .FAjF /C tr
�
� ^ ��

�
:

In local coordinates write � D Q�d Nz and hence �^�� D 2i Q� Q��dx^dy . �is yields
precisely the L2 -norm of � . Since FA is uniformly bounded in L1 , the estimate
follows.

We show next that the Harder–Narasimhan �ltration is maximal among all
holomorphic �ltrations in a certain sense. For this we need to introduce some
notation. Let

E W 0 D E0 < E1 < � � � < Er D E

be a holomorphic �ltration of E . Denote nj WD rk.Ej =Ej�1/ , kj WD c1.Ej =Ej�1/
and de�ne the characteristic vector of the �ltration E to be

E�.E/ D
�
k1

n1
; : : : ;

k1

n1
; : : : ;

kr

nr
; : : : ;

kr

nr

�
2 Rn(57)

where we repeat each entry kj =nj exactly nj -times. Moreover de�ne

`E W ¹0; : : : ; nº ! R; `E.m/ D

mX
jD1

�
E�.E/

�
j
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where
�
E�.E/

�
j

denotes the j -th entry of the vector E�.E/ . �e graph of `E
interpolates linearly between the points .0; 0/ , .n1; k1/ , .n1 C n2; k1 C k2/ , : : : ,
.n; k/ . We consider the following ordering on the space of holomorphic �ltrations:

E � F if and only if `E � `F :

We call a �ltration E concave if the function `E is concave, or equivalently, if
the entries of E�.E/ are decreasing.

Proposition 7.7. Let E be a holomorphic vector bundle over † . �e Harder–
Narasimhan �ltration of E is the unique maximal concave �ltration on E .

Proof. Let
EHN W 0 < E1 < E2 < � � � < Er D E

be the Harder–Narasimhan �ltration of E and let F < E be a holomorphic
subbundle. It su�ces to prove that the point pF WD .rk.F /; c1.F // lies on or
below the graph of `E . We prove this by induction on r .

Suppose r D 1 . �en E is semistable and �.E/ � �.F / . In particular, `E is
a straight line of slope �.E/ and pF clearly lies below that line.

Suppose now r > 1 . �e Harder–Narasimhan �ltration of E=E1 is given by

E 0HN W 0 < E2=E1 < E3=E1 < � � � < Er=E1 D E=E1

and the induction hypothesis applies to E 0HN . Consider the commutative diagram
from Lemma 7.2

0 ����! F 0 ����! F ����! F 00 ����! 0??y˛ ??yˇ
0  ���� G00  ���� E=E1  ���� G0  ���� 0

with ˛ W F ! E ! E=E1 . By the induction hypothesis, the point of
.rk.G0/; c1.G0// lies below `E0 . Since rk.F 00/ D rk.G0/ and c1.F

00/ � c1.G
0/

the same holds with G0 replaced by F 00 . �is shows

c1.E1/C c1.F
00/ � `E

�
rk.E1/C rk.F 00/

�
:(58)

Since F 0 gets mapped to zero under ˛ , we have F 0 � E1 and �.F 0/ � �.E1/

by semistability of E1 . �is shows c1.F 0/ � `E.rk.F 0// and with (58) follows

c1.F / D c1.F
0/C c1.F

00/ � `E
�
rk.E1/C rk.F 00/

�
C `E

�
rk.F 0/

�
� `E

�
rk.E1/

�
:

Since `E is concave and rk.F 0/ � rk.E1/ we have

`E
�
rk.E1/C rk.F 00/

�
� `E

�
rk.E1/

�
� `E

�
rk.F 0/C rk.F 00/

�
� `E

�
rk.F 0/

�
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and thus
c1.F / � `E

�
rk.F 0/C rk.F 00/

�
D `E

�
rk.F /

�
:

�is completes the proof.

Corollary 7.8. Let E be a holomorphic vector bundle over † . Let E be a
concave �ltration of E and EHN the Harder–Narasimhan �ltration of E . �en
follows

jj E�.E/jj2 � jj E�.EHN /jj2
where jj � jj2 denotes the standard euclidean norm on Rn . Moreover, equality
holds if and only if E D EHN .

Proof. An easy calculation shows that for two concave �ltrations with E1 � E2
the estimate jj E�.E1/jj2 � jj E�.E2/jj2 is satis�ed. Moreover, equality holds if and
only if E1 D E2 .

7.2. Proof of the dominant weight theorem. We proceed now to the proof of
�eorem 7.1. We consider �rst the case G D U.n/ and deduce the general case
afterwards by choosing a faithful representation G ,! U.n/ .

�� -unstable orbits in the unitary case. Assume G D U.n/ and denote by
E WD P �G Cn the associated hermitian vector bundle. Note that the constant
central type � of P is related to the slope of E by the formula

� D �2�i�.E/ � 1:(59)

If .E; N@A/ is unstable, then Proposition 5.9 implies that there exists a negative
weight w� .A; �/ < 0 and the moment weight inequality (�eorem 5.12) shows
that A is �� -unstable. �e following Lemma proves the converse direction.

Lemma 7.9. Let A 2 A.E/ be a unitary connection and suppose .E; N@A/ is a
semistable holomorphic vector bundle. �en the limit A1 of the Yang–Mills �ow
A.t/ starting at A satis�es

�FA1 D �2�i�.E/ � 1:

Proof. We show �rst that the W 1;2 -closure Gc.A/ contains a connection NA with
F NA D �2�i�.E/ � 1 . For this, consider the re�ned Harder–Narasimhan �ltration
from Lemma 7.4

0 < E1 < E2 < � � � < Er D E

with stable quotients Ej =Ej�1 all having the same slope as E . Choose an
orthogonal splitting E D D1 ˚ � � � ˚ Dr such that Ej D D1 ˚ � � � ˚ Dj . With
respect to this splitting N@A has the shape
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N@A D

0BBBB@
N@A1 A12 : : : A1r

0 N@A2 : : : A2r
:::

:::
: : :

:::

0 0 : : : N@Ar

1CCCCA :
De�ne gt WD diag.t�1; t�2; : : : ; t�r / . �en

N@gt .A/ D

0BBBB@
N@A1 tA12 : : : t r�1A1r

0 N@A2 : : : t r�2A2r
:::

:::
: : :

:::

0 0 : : : N@Ar

1CCCCA!
0BBBB@
N@A1 0 : : : 0

0 N@A2 : : : 0
:::

:::
: : :

:::

0 0 : : : N@Ar

1CCCCA
as t ! 0 . Since Ej =Ej�1 Š .Dj ; N@Aj / are stable holomorphic vector bundles,
�eorem 6.5 shows that there exist complex gauge transformations gj 2 Gc.Dj /
such that NAj D gj .Aj / satis�es �F NAj D �2�i�.Dj / . Since �.Dj / D �.E/ ,
we conclude that the induced connection NA D NA1 ˚ � � � ˚ NAr has curvature
F NA D �2�i�.E/ � 1 .

It follows from (19) that NA minimizes the Yang–Mills functional over
AU.n/.E/ . �e lemma follows thus from �eorem 4.14 and �eorem 4.15.

Proof of �eorem 7.1 for G D U.n/ . Let � be a section of skew-hermitian
endomorphism in u.E/ � End.E/ satisfying jj�jj D 1 and

�w� .A; �/ D sup
0¤�2�0.†;u.E//

�
w� .A; �/

jj�jj
:(60)

Proposition 5.2 shows that � determines a holomorphic �ltration and orthogonal
splitting

E W E1 < E2 < � � � < E; Ej D D1 ˚ � � � ˚Dj

of .E; N@A/ . With respect to this orthogonal splitting � has the shape

i� D diag.�1; �2; : : : ; �r /

with �1 < �2 < � � � < �r and the weight is given by

w� .A; �/ D 2�

rX
jD1

�j
�
c1.Dj / � rk.Dj /�.E/

�
:

By maximality of the weight �w� .A; �/ we conclude that � D .�1; : : : ; �r / is a
global minimum of the function

f .x1; : : : ; xr / D

rX
jD1

xj
�
c1.Dj / � rk.Dj /�.E/

�
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on the ellipsoid ¹
Pr
jD1 x

2
j rk.Dj / D 1º under the open condition

x1 < x2 < � � � < xr :

Since .E; N@A/ is unstable, Proposition 5.9 implies that this minimum is negative
and f does not vanish identically. �us rf vanishes nowhere and � must lie
on the ellipsoid. It satis�es there the Lagrange condition�

c1.Dj / � rk.Dj /
�
�.E/ D c�j rk.Dj /

for j D 1; : : : ; r and some constant c ¤ 0 . Since f .�/ < 0 we must have c < 0 .
Since the �j are increasing this yields

�.D1/ > �.D2/ > � � � > �.Dr /

and E is a concave �ltration of E . Solving the Lagrange problem we get

�j D
�.E/ � �.Dj /qPr

jD1 rk.Dj /
�
�.Dj / � �.E/

�2 D �.E/ � �.Dj /q
jj E�.E/jj22 � rk.E/�.E/2

and

�w� .A; �/ D 2�

q
jj E�.E/jj22 � rk.E/�.E/2:(61)

Now Corollary 7.8 shows that E D EHN must agree with the Harder–Narasimhan
�ltration of E and � is uniquely determined.

Conversely, we can use the Harder–Narasimhan �ltration to de�ne � and the
argument from above shows that it satis�es (60). It remains to show it also yields
equality in the moment-weight inequality. It follows from the proof of Proposition
5.2 that the limit

AC WD lim
t!1

eit�A

exists and splits as AC D A1 ˚ � � � ˚ Ar with Aj 2 A.Dj / Š A.Ej =Ej�1/ . �e
Yang–Mills �ow AC.t/ starting at AC is the product of the Yang–Mills �ow on
each factor and clearly remains in the closure Gc.A/ . It follows from Lemma 7.9
that the limit A1 WD limt!1AC.t/ of this �ow satis�es

FA1 D �2�i

0BBBB@
�.D1/

�.D2/

: : :

�.Dr /

1CCCCA :
Now (59) and (61) yield

inf
g2Gc
jjFgA � � jj � jjFA1 � � jj D 2�

vuut rX
jD1

rk.Dj /.�.E/ � �.Dj //2 D �w.A; �/:

�e converse inequality follows from the moment-weight inequality (�eorem 5.12)
and this completes the proof in the unitary case.
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Proof of �eorem 7.1 for general compact connected Lie groups G . Let G
be a compact connected Lie group. We show �rst that one restrict the argument to
the case where Z0.G/ is discrete. Recall that the Lie algebra of G decomposes
as g D Z.g/ ˚ Œg; g� . �e center yields a trivial Z.g/ subbundle V � ad.P /
and its orthogonal complement has �ber Œg; g� and is canonically isomorphic to
ad.P=Z0.G// . �is yields the orthogonal decomposition

ad.P / Š V ˚ ad
�
P=Z0.G/

�
:(62)

Let A 2 A.P / and denote by NA 2 A.P=Z0.G// the induced connection.
Decompose � 2 �0.†; ad.P // as � D �zC �ss with respect to the decomposition
(62). �en (12) and Lemma 5.10 yields

w� .A; �/ D w� .A; �
ss/ D w0. NA; �

ss/:

Decompose similarly FgA D F
z C F ss and note that F ss D Fg NA . �is yields

jj � FgA � � jj
2
D jj � F ssjj2 C jj � F z � � jj2 � jj � Fg NAjj

2:

As in Lemma 3.9 one shows that g can be modi�ed to a gauge transformation
Qg such that g NA D Qg NA and �F z D � . Hence

inf
g2Gc.P /

jj � FgA � � jj D inf
g2Gc.P=Z0.G//

jj � Fg NAjj:

�is completes the reduction argument.
Now assume that Z0.G/ is discrete and � D 0 . Choose a faithful representation

G ,! U.n/ and identify G with its image in U.n/ . It follows from Lemma 5.8
and (59) that the associated vector bundle E D P �G Cn satis�es �.E/ D 0 .
For A 2 A.P / �eorem 4.14 yields

inf
g2Gc.P /

jj � FgAjj D jj � FA1 jj D inf
g2GL.n/

jj � FgAjj

where we consider A as G -connection for the left equality and as U.n/ -connection
for the right equality. It follows from the unitary case that there exists (up to
scaling) a unique section � 2 �0.†; u.E// satisfying

�
w0.A; �/

jj�jj
D inf
g2Gc
jjFgAjj:

Let Q� be the orthogonal projection of � onto g.E/ � u.E/ . �en Lemma 5.8
shows w0.A; �/ D w0.A; Q�/ and hence

inf
g2Gc
jjFgAjj D �

w0.A; �/

jj�jj
� �

w0.A; Q�/

jj Q�jj

with equality if and only if � D Q� . �e moment weight inequality (�eorem 5.12)
yields the converse inequality and this completes the proof.
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