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Abstract. We prove the Cartan–Hadamard �eorem for spaces which are not necessarily
uniquely geodesic but locally possess a suitable selection of geodesics, a so-called convex
geodesic bicombing.

Furthermore, we deduce a local-to-global theorem for injective (or hyperconvex) metric
spaces, saying that under certain conditions a complete, simply-connected, locally injective
metric space is injective. A related result for absolute 1 -Lipschitz retracts follows.
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1. Introduction

Local-to-global principles are spread all-around in mathematics. �e classical
Cartan–Hadamard �eorem from Riemannian geometry was generalized by W.
Ballmann [Bal] for metric spaces with non-positive curvature, and by S. Alexander
and R. Bishop [AB] for locally convex metric spaces, i.e., for spaces that locally
satisfy the Busemann property, meaning that d ı.
1; 
2/ is convex for all constant
speed geodesics 
1; 
2 . As a normed vector space satis�es the Busemann property
if and only if its norm is strictly convex, this property is not preserved under
limit processes. �is motivates to look at an even weaker notion of non-positive
curvature, where we only request convexity for a certain choice of geodesics,
compare [Kle, Section 10].

We use the convention of [ABr, Lan] to call such a collection of paths a
bicombing, a term originally coined by W. �urston in the context of geometric
group theory. �e following de�nition is for instance satis�ed by the linear
segments .1 � t /x C ty in a normed vector space. In a metric space .X; d/ ,
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a geodesic bicombing is a selection of a geodesic between each pair of points.
�is is a map � W X � X � Œ0; 1� ! X such that, for all x; y 2 X , the path
�xy WD �.x; y; �/ is a geodesic from x to y , i.e. �xy.0/ D x , �xy.1/ D y

and d.�xy.s/; �xy.t// D js � t jd.x; y/ for all s; t 2 Œ0; 1� . Moreover, we assume
that this choice is consistent in the sense that �pq.Œ0; 1�/ � �xy.Œ0; 1�/ for all
p; q 2 �xy.Œ0; 1�/ with d.x; p/ � d.x; q/ . A geodesic bicombing � is called
convex if the function t 7! d.�xy.t/; � Nx Ny.t// is convex for all x; y; Nx; Ny 2 X .
Furthermore, we say that � is reversible if �yx.Œ0; 1�/ D �xy.Œ0; 1�/ for all
x; y 2 X . A metric space admits a local geodesic bicombing, if such a selection
exists in a neighborhood U.x; rx/ of each point x 2 X , see Section 2 for the
exact de�nition.

Metric spaces with a geodesic bicombing resemble hyperbolic spaces after
U. Kohlenbach [Koh, KL], which specify W-convex metric spaces considered by
W. Takahashi [Tak] and S. Itoh [Ito]. Geodesic bicombings were recently studied
by D. Descombes and U. Lang in [Des, DL1, DL2] and also by G. Basso in
[Bas], where they show that several results for CAT(0) and Busemann spaces
carry over to spaces with convex geodesic bicombings. Here we will contribute
to these studies by proving the following Cartan–Hadamard �eorem.

�eorem 1.1. Let X be a complete, simply-connected metric space with a convex
local geodesic bicombing � . �en the induced length metric on X admits a unique
convex geodesic bicombing Q� which is consistent with � . As a consequence, X
is contractible. Moreover, if the local geodesic bicombing � is reversible, then
Q� is reversible as well.

As we show in a subsequent paper joint with G. Basso [BM], �eorem 1.1
leads to a uniqueness result for convex geodesic bicombings on convex subsets
of certain Banach spaces.

Important examples of spaces with convex geodesic bicombings are given by
injective metric spaces, which include the real line, R -trees and l1.I / for any
index set I . Recall that every metric space X possesses an injective hull, i.e.,
a smallest injective metric space into which X embeds [Isb]. Injective metric
spaces play a crucial role in the theory of mapping extensions [AP] and �xed
point theory [Sin, Soa], see also [EK] and the references therein.

A metric space X is injective if for all metric spaces A;B with A � B and
every 1-Lipschitz map f W A ! X , there is a 1-Lipschitz extension Nf W B ! X ,
i.e. Nf jA D f . In fact, D. Descombes and U. Lang show in their work that every
proper, injective metric space of �nite combinatorial dimension admits a (unique)
convex geodesic bicombing [DL1, �eorem 1.2]. Such spaces occur, for instance,
as injective hulls of hyperbolic groups [Lan, �eorem 1.4] and therefore, every
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hyperbolic group acts properly and cocompactly by isometries on a space with a
convex geodesic bicombing [DL1, �eorem 1.3].

Recall that injective metric spaces are complete, geodesic and contractible.
Now, knowing that under the above conditions injective metric spaces possess a
convex geodesic bicombing, we deduce the following local-to-global theorem for
injective metric spaces.

�eorem 1.2. Let X be a complete, locally compact, simply-connected, locally
injective length space with locally �nite combinatorial dimension. �en X is an
injective metric space.

It is well known that injective metric spaces are the same as absolute
1 -Lipschitz retracts. For Lipschitz retracts, the weaker notion of absolute Lipschitz
uniform neighborhood retracts is common, see Section 4 for more details. Absolute
1 -Lipschitz uniform neighborhood retracts are locally injective but the converse
is not true as we will see in Example 4.2. In fact, it turns out that the following
holds.

�eorem 1.3. Let X be a locally compact absolute 1 -Lipschitz uniform neighbor-
hood retract with locally �nite combinatorial dimension. �en X is an absolute
1 -Lipschitz retract.

�is paper is organized as follows. We start Section 2 by studying spaces with
local geodesic bicombings, establish an appropriate exponential map and �nally
prove �eorem 1.1. In Section 3, we �rst show that every uniformly locally injective
metric space with a reversible, convex geodesic bicombing is injective. Afterwards,
we describe how to construct a reversible, convex local geodesic bicombing on
locally injective metric spaces, which extends to a convex geodesic bicombing
by �eorem 1.1. �ereby we establish �eorem 1.2. Finally in Section 4, we then
investigate absolute 1 -Lipschitz neighborhood retracts and prove �eorem 1.3.

2. Local geodesic bicombings

Let us �rst �x some notation. In a metric space X , we denote by

U.x; r/ WD ¹y 2 X W d.x; y/ < rº

the open ball of radius r around x 2 X and by

B.x; r/ WD ¹y 2 X W d.x; y/ � rº

the closed one.
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Let X be a metric space and 
 W Œ0; 1�! X a continuous curve. �e length
of 
 is given by

L.
/ WD sup
° nX
kD1

d.
.tk�1/; 
.tk// W 0 D t0 < : : : < tn D 1
±
:

�en
Nd.x; y/ WD inf

®
L.
/ W 
 W Œ0; 1�! X; 
.0/ D x; 
.1/ D y

¯
de�nes a metric on X , called the induced length metric. If we have d D Nd , we
say that .X; d/ is a length space.

For a metric space X , let G.X/ WD ¹c W Œ0; 1�! Xº be the set of all geodesics
in X , i.e. continuous maps c W Œ0; 1�! X with d.c.s/; c.t// D js� t j �d.c.0/; c.1//
for all s; t 2 Œ0; 1� . Note that geodesics need not be parametrised by arc-length.
We equip G.X/ with the metric

D.c; c0/ WD sup
t2Œ0;1�

d
�
c.t/; c0.t/

�
:

Let c 2 G.X/ and 0 � a � b � 1 , then we denote by cŒa;b� the reparametrized
geodesic given by cŒa;b� W Œ0; 1�! X with cŒa;b�.t/ WD c..1 � t /aC tb/:

De�nition 2.1. A local geodesic bicombing on a metric space X is a local
selection of geodesics, i.e., a map � W U � Œ0; 1� ! X , .y; z; t/ 7! �yz.t/ , with
U � X �X open and the following properties:
(i) For all x 2 X , there is some rx > 0 such that, for all y; z 2 U.x; rx/ , there

is a geodesic �yz W Œ0; 1�! U.x; rx/ from y to z , and

U D
®
.y; z/ 2 X �X W y; z 2 U.x; rx/ for some x

¯
:

(ii) �e selection is consistent with taking subsegments of geodesics, i.e.,

��yz.s1/�yz.s2/.t/ D �yz
�
.1 � t /s1 C ts2

�
for .y; z/ 2 U , 0 � s1 � s2 � 1 and t 2 Œ0; 1� .

We call a local geodesic bicombing � convex if it is locally convex, i.e. for
y; z; y0; z0 2 U.x; rx/ , it holds that

t 7! d
�
�yz.t/; �y0z0.t/

�
is a convex function. Furthermore, � is reversible if

�zy.t/ D �yz.1 � t /

for all .y; z/ 2 U and t 2 Œ0; 1� .
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Remark. Observe that, by property (ii), a local geodesic bicombing is convex if
and only if

d
�
�yz.t/; �y0z0.t/

�
� .1 � t /d.y; y0/C td.z; z0/

for all y; z; y0; z0 2 U.x; rx/ and t 2 Œ0; 1� .

A (local) geodesic c W Œ0; 1� ! X is consistent with the local geodesic
bicombing � if

cŒa;b�.t/ D �c.a/c.b/.t/

for all 0 � a � b � 1 with .c.a/; c.b// 2 U .
To prove �eorem 1.1, we roughly follow the structure of Chapter II.4 in [BH].

Adapting the methods of S. Alexander and R. Bishop [AB], we can prove the
following key lemma.

Lemma 2.2. Let X be a complete metric space with a convex local geodesic
bicombing � and let c be a local geodesic from x to y which is consistent with � .
�en, there is some � > 0 such that, for all Nx; Ny 2 X with d.x; Nx/; d.y; Ny/ < � ,
there is a unique local geodesic Nc from Nx to Ny with D.c; Nc/ < � which is
consistent with � . Moreover, we have

L. Nc/ � L.c/C d.x; Nx/C d.y; Ny/

and if Qc is another consistent geodesic from Qx to Qy with D.c; Qc/ < � , then

t 7! d
�
Qc.t/; Nc.t/

�
is convex.

Proof. Let � > 0 be such that �
ˇ̌
U.c.t/;2�/�U.c.t/;2�/�Œ0;1�

is a convex geodesic
bicombing for all t 2 Œ0; 1� . Now, let P.A/ be the following statement:

P.A/ : For all a; b 2 Œ0; 1� with 0 � b � a � A and for all p; q 2 X with
d.c.a/; p/; d.c.b/; q/ < �; there is a unique local geodesic Ncpq W Œ0; 1� ! X

from p to q with D.cŒa;b�; Ncpq/ < � which is consistent with � . Moreover,
for all such local geodesics the map t 7! d. Ncpq.t/; Ncp0q0.t// is convex.

By our assumption, P. �
l.c/
/ holds. �erefore, let us show P.A/) P.3A

2
/ .

Given a; b 2 Œ0; 1� with 0 � b � a � 3A
2
, de�ne p0 WD c.2

3
a C 1

3
b/ and

q0 WD c.
1
3
aC 2

3
b/ . �en, by P.A/ , there are consistent local geodesics c1 from p

to q0 and c01 from p0 to q . Inductively, we set pn WD cn.12 / and qn WD c
0
n.
1
2
/ ,

where cn is a consistent local geodesic from p to qn�1 and c0n from pn�1 to q .
Observe that, by convexity of the cn; c0n , we have d.pn�1; pn/; d.qn�1; qn/ < �

2n

and hence the sequences .pn/n and .qn/n converge to some p1 and q1 ,
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respectively, and we have d.p1; p0/; d.q1; q0/ < � . Furthermore, by convexity,
the cn; c0n converge to the consistent local geodesics c1 from p to q1 and c01
from p1 to q , which coincide between p1 D c1.12 / and q1 D c01.12 / . Hence,
they de�ne a new local geodesic cpq from p to q which is consistent with �

and p1 D cpq.
1
3
/ , q1 D cpq.23 / .

Now, given two local geodesics cpq and cp0q0 with D.cŒa;b�; cpq/ < � and
D.cŒa;b�; cp0q0/ < � , set s WD d.p; p0/ , t WD d.q; q0/ , s0 WD d.cpq.

1
3
/; cp0q0.

1
3
//

and t 0 WD d.cpq.
2
3
/; cp0q0.

2
3
// . �en we have s0 � sCt 0

2
, t 0 � s0Ct

2
and therefore

s0 � s
2
C

s0

4
C

t
4
, i.e. s0 � 2sCt

3
and similarly t 0 � sC2t

3
follows. Hence, we get

convexity of t 7! d.cpq.t/; cp0q0.t// and therefore also uniqueness follows.
It remains to prove that L. Nc/ � L.c/Cd.x; Nx/Cd.y; Ny/ . Let Qc be the unique

consistent local geodesic from x to Ny with D.c; Qc/ < � . For t small enough we
have

tL. Qc/ D d
�
Qc.0/; Qc.t/

�
D d

�
c.0/; Qc.t/

�
� d

�
c.0/; c.t/

�
C d

�
c.t/; Qc.t/

�
� tL.c/C td

�
c.1/; Qc.1/

�
;

i.e., L. Qc/ � L.c/C d.y; Ny/ and similarly L. Nc/ � L. Qc/C d.x; Nx/ .

De�nition 2.3. Let X be a metric space with a local geodesic bicombing � .
For some �xed x0 2 X , we de�ne

QXx0
WD
®
c W Œ0; 1�! X local geodesic with c.0/ D x0; consistent with �

¯
:

We equip QXx0
with the metric D.c; c0/ D supt2Œ0;1� d.c.t/; c0.t// and de�ne the

map
exp W QXx0

! X; c 7! c.1/:

If X is complete, this map has the following properties.

Lemma 2.4. Let X be a complete metric space with a convex local geodesic
bicombing � . �en the following holds:
(i) �e map exp W QXx0

! X is locally an isometry. Hence � naturally induces
a convex local geodesic bicombing Q� on QXx0

.
(ii) QXx0

is contractible.
(iii) For each Qx 2 QXx0

, there is a unique local geodesic from Qx0 to Qx which is
consistent with Q� , where Qx0 is the constant path Qx0.t/ D x0 .

(iv) QXx0
is complete.

Proof. By Lemma 2.2, for every c 2 QXx0
, there is some � > 0 such that the

map exp
ˇ̌
U.c;�/

W U.c; �/! U.c.1/; �/ is an isometry. Hence, � naturally induces
a convex local geodesic bicombing Q� on QXx0

.
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Consider the map r W QXx0
� Œ0; 1� ! QXx0

; .c; s/ 7! .rs.c/ W t 7! c.st// . �is
de�nes a retraction of QXx0

to Qx0 .
A continuous path Qc W Œ0; 1� ! QXx0

is a local geodesic in QXx0
which is

consistent with Q� if and only if exp ı Qc is a local geodesic in X which is
consistent with � . �erefore, for any c 2 QXx0

, the map s 7! rs.c/ is the unique
local geodesic from Qx0 to c .

Finally, if .cn/n is a Cauchy sequence in QX , by completeness of X , for every
t 2 Œ0; 1� , the sequences .cn.t//n converge in X , to c.t/ say. Locally, i.e., inside
U.c.t/; rc.t// , the subsegment cjŒt��;tC�� is the limit of the consistent geodesics
.cnjŒt��;tC��/n and hence c is consistent with � by the convexity of the local
geodesic bicombing.

�e following criterion will ensure that exp is a covering map.

Lemma 2.5. Let p W QX ! X be a map of length spaces such that

(i) X is connected,

(ii) p is a local homeomorphism,

(iii) for all recti�able curves Qc W Œ0; 1�! QX , we have L. Qc/ � L.p ı Qc/ ,

(iv) X has a convex local geodesic bicombing � , and

(v) QX is complete.

�en p is a covering map.

Proof. �e proof of Proposition I.3.28 in [BH] also works in our setting. In
the second step, take U D U.x; rx/ and de�ne the maps s Qx W U.x; rx/ ! QX by
s Qx.y/ D Q�xy.1/ , where Q�xy is the unique lift of �xy with Q�xy.0/ D Qx .

Remark. For a local isometry p , conditions (ii) and (iii) are satis�ed.

Corollary 2.6. Let .X; d/ be a complete, connected metric space with a convex
local geodesic bicombing � . �en exp W QXx0

! X is a universal covering map.

Proof. Consider the induced length metrics Nd and ND on X and QXx0
. Since

.X; d/ locally is a length space, the metrics d and D locally coincide with
Nd and ND , respectively. Hence p still is a local isometry with respect to the
length metrics and � is a convex local geodesic bicombing. �us Lemma 2.5
applies.

Proof of �eorem 1.1. First, we show that, for all x; y 2 X , there is a unique
consistent local geodesic from x to y . Since X is simply-connected, the covering
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map exp W QXx ! X is a homeomorphism which is a local isometry and by Lem-
ma 2.4, there is a unique consistent local geodesic Q�xy from x to y .

Next, we prove that Q�xy is a geodesic. To do so, it is enough to show that, for
every curve 
 W Œ0; 1�! X and every t 2 Œ0; 1� , we have L. Q�
.0/
.t// � L.
 jŒ0;t�/ .
Let

A WD
®
s 2 Œ0; 1� W 8t 2 Œ0; s� we have L. Q�
.0/
.t// � L.
 jŒ0;t�/

¯
:

Clearly, A is non-empty and closed. To prove that A is open, consider s 2 A .
For ı > 0 small enough, by Lemma 2.2, we have

L. Q�
.0/
.sCı// � L. Q�
.0/
.s//C d.
.s/; 
.s C ı//

� L.
 jŒ0;s�/C L.
 jŒs;sCı�/ D L.
 jŒ0;sCı�/:

Hence, A D Œ0; 1� as desired.
Finally, we show that t 7! d. Q�xy.t/; Q� Nx Ny.t// is convex. By Lemma 2.2, there

is a sequence 0 D t1 < : : : < tn D 1 and �k > 0 such that

� the balls U. Q�x Nx.t1/; �1/; : : : ; U. Q�x Nx.tn/; �n/ cover Q�x Nx ,

� the balls U. Q�y Ny.t1/; �1/; : : : ; U. Q�y Ny.tn/; �n/ cover Q�y Ny , and

� for all p; Np 2 U. Q�x Nx.tk/; �k/ and q; Nq 2 U. Q�y Ny.tk/; �k/ , the map t 7!

d. Q�pq.t/; Q� Np Nq.t// is convex.

Consider now a sequence 0 D s0 < s1 < : : : < sn D 1 with

Q�x Nx.sk/ 2 U. Q�x Nx.tk/; �k/ \ U. Q�x Nx.tkC1/; �kC1/;

Q�y Ny.sk/ 2 U. Q�y Ny.tk/; �k/ \ U. Q�y Ny.tkC1/; �kC1/;

for k D 1; : : : ; n � 1 . �en we get

d
�
Q�xy.t/; Q� Nx Ny.t/

�
�

nX
kD1

d
�
Q�Q�x Nx.sk�1/Q�y Ny.sk�1/.t/; Q�Q�x Nx.sk/Q�y Ny.sk/.t/

�
� .1 � t /

� nX
kD1

d
�
Q�x Nx.sk�1/; Q�x Nx.sk/

��
C t

� nX
kD1

d
�
Q�y Ny.sk�1/; Q�y Ny.sk/

��
D .1 � t /d.x; Nx/C td.y; Ny/:

Hence, Q� is a convex geodesic bicombing on X .
If � is reversible, then Q��xy.t/ WD Q�yx.1 � t / also de�nes a convex geodesic

bicombing on X which is consistent with � . �erefore, by uniqueness, Q�� and
Q� coincide, i.e. Q� is reversible.
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3. Locally injective metric spaces

N. Aronszajn and P. Panitchpakdi [AP] proved that injective metric spaces are
exactly the hyperconvex metric spaces, namely metric spaces with the property
that for every family of closed balls ¹B.xi ; ri /ºi2I with d.xi ; xj / � ri C rj , for
all i; j 2 I , we have

T
i2I B.xi ; ri / ¤ ¿ . Note that in hyperconvex metric spaces

closed balls are hyperconvex.

De�nition 3.1. A metric space X is locally injective if, for every x 2 X , there
is some rx > 0 such that B.x; rx/ is injective. If we can take rx D r for all x ,
we call X uniformly locally injective.

Lemma 3.2. Let X be a metric space with the property that every closed ball
B.x; r/ is injective, then X is itself injective.

Proof. Let ¹B.xi ; ri /ºi2I be a family of closed balls with d.xi ; xj / � ri C rj .
Fix some i0 2 I and set Ai WD B.xi ; ri / \ B.xi0 ; ri0/ . Since, for r big enough,
we have xi ; xj 2 B.xi0 ; r/ , we get that the Ai ’s are externally hyperconvex in
Ai0 and Ai \ Aj ¤ ¿ for all i; j 2 I . Hence, it follows\

i2I

B.xi ; ri / D
\
i2I

Ai ¤ ¿

by [Mie, Proposition 1.2].

Proposition 3.3. Let X be a uniformly locally injective metric space with a
reversible, convex geodesic bicombing � . �en X is injective.

Proof. Consider the following property:
P.R/ : For every family ¹B.xi ; ri /ºi2I with d.xi ; xj / � ri C rj and ri � R , there

is some x 2
T
i2I B.xi ; ri / .

Since X is uniformly locally injective, this clearly holds for some R0 > 0 . Next,
we show P.R/) P.2R/ and therefore P.R/ holds for any R � 0 .

Let ¹B.xi ; ri /ºi2I be a family of closed balls with d.xi ; xj / � ri C rj and
ri � 2R . For i; j 2 I , de�ne yij WD �xixj

.1
2
/ . By convexity of � , we have

d.yij ; yik/ D d
�
�xixj

.1
2
/; �xixk

.1
2
/
�
�

1
2
d.xj ; xk/ �

rj
2
C

rk
2
:

Hence, for every i 2 I , there is some zi 2
T
j2I B.yij ;

rj
2
/ . Now, observe that

d.zi ; zj / � d.zi ; yij /C d.yij ; zj / �
ri
2
C

rj
2

and therefore, we �nd

x 2
\
i2I

B.zi ;
ri
2
/ �

\
i2I

B.xi ; ri /:
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Since all balls with center in B.x; r/ and radius larger than 2r contain B.x; r/ ,
P.R/ for R D 2r implies that B.x; r/ is injective. Hence, by Lemma 3.2, X is
injective.

Since compact, locally injective metric spaces are always uniformly locally
injective we conclude the following.

Corollary 3.4. Let X be a compact, locally injective metric space with a
reversible, convex geodesic bicombing � . �en X is injective.

Corollary 3.5. Let X be a proper, locally injective metric space with a reversible,
convex geodesic bicombing � . �en X is injective.

Proof. Let ¹B.xi ; ri /ºi2I be a family of balls with d.xi ; xj / � ri C rj . Fix
some i0 2 I and de�ne In D ¹i 2 I W d.xi ; xi0/ � nº , for n 2 N . Since
B.xi0 ; n/ is compact, by the previous corollary, there is some yn 2

T
i2In

B.xi ; ri / .
Especially, .yn/n � B.xi0 ; ri0/ and hence, there is some converging subsequence
ynk
! y 2

T
i2I B.xi ; ri / .

Remark. In [Lan], U. Lang proves that every injective metric space admits a
reversible, conical geodesic bicombing (Proposition 3.8). Observe also that this is
the only property of the geodesic bicombing used in the proof of Proposition 3.3.
�erefore, we get the following equivalence statement (in the terminology of
[Lan]): A metric space is injective if and only if it is uniformly locally injective
and admits a reversible, conical geodesic bicombing.

If an injective metric space X is proper, it also admits a (possibly non-
consistent) convex geodesic bicombing [DL1, �eorem 1.1] and if X has �nite
combinatorial dimension in the sense of A. Dress [Dre], this convex geodesic
bicombing is consistent, reversible and unique [DL1, �eorem 1.2]. In our terms,
this is:

Proposition 3.6. Every proper, injective metric space with �nite combinatorial
dimension admits a unique reversible, convex geodesic bicombing.

Recall that, by the Hopf–Rinow �eorem, any complete, locally compact length
space is proper.

Corollary 3.7. Let X be a locally compact, locally injective metric space with
locally �nite combinatorial dimension. �en X admits a reversible, convex local
geodesic bicombing.
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Proof. For every x 2 X , there is some rx > 0 such that B.x; 3rx/ is compact,
injective and has �nite combinatorial dimension. �is also holds for B.x; rx/ and
therefore, there is a reversible, convex geodesic bicombing �x on B.x; rx/ .

We will check that for B.x; rx/ and B.y; ry/ with B.x; rx/\B.y; ry/ ¤ ¿ the
two geodesic bicombings �x ; �y coincide on the intersection. Assume without
loss of generality that rx � ry and hence B.x; rx/; B.y; ry/ � B.x; 3rx/ . �en the
convex geodesic bicombing � on B.x; 3rx/ restricts to both B.x; rx/ and B.y; ry/
since, for p; q 2 B.z; rz/ , we have d.z; �pq.t// � .1 � t /d.z; p/C td.z; q/ � rz :

Hence, by uniqueness, the geodesic bicombings �x ; �y are both restrictions of �
and thus coincide on B.x; rx/ \ B.y; ry/ .

�erefore � , de�ned by � jB.x;rx/�B.x;rx/ WD �xjB.x;rx/�B.x;rx/ , is a reversible,
convex local geodesic bicombing on X .

Proof of �eorem 1.2. Let X be a complete, locally compact, simply-connected,
locally injective length space with locally �nite combinatorial dimension. By
Corollary 3.7, X has a reversible, convex local geodesic bicombing, which induces
a reversible, convex geodesic bicombing by �eorem 1.1. Hence, we can apply
Corollary 3.5 and deduce that X is injective.

4. Absolute 1-Lipschitz Neighborhood Retracts

Absolute Lipschitz uniform neighborhood retracts appear for instance in the
study of approximations of Lipschitz maps, see [HJ, Section 7]. �e question
arises, how much absolute Lipschitz uniform neighborhood retracts di�er from
being an absolute Lipschitz retract. �eorem 1.3 will give a �rst answer in the
case of absolute 1 -Lipschitz retracts.

A metric space X is an absolute 1 -Lipschitz neighborhood retract if, for every
metric space Y with X � Y , there is some neighborhood U of X in Y and a
1 -Lipschitz retraction � W U ! X . Furthermore, if we can take U D U.X; �/ for
some � > 0 , we call X an absolute 1 -Lipschitz uniform neighborhood retract. In
this case, � can be chosen independent of Y ; see [HJ, Proposition 7.78]. Finally,
if there is always a 1 -Lipschitz retraction r W Y ! X , then X is an absolute
1 -Lipschitz retract. �is is equivalent to X being an injective metric space [AP,
�eorem 8].

Lemma 4.1. Let X be an absolute 1 -Lipschitz (uniform) neighborhood retract.
�en X is (uniformly) locally injective.
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Proof. Consider X � l1.X/ . Since X is an absolute 1 -Lipschitz neighborhood
retract, there is some neighborhood U of X and a 1-Lipschitz retraction
� W U ! X . For x 2 X , there is some rx > 0 such that B.x; rx/ � U .
Let now ¹B.xi ; ri /ºi2I be a family of closed balls with xi 2 B.x; rx/ \ X

and d.xi ; xj / � ri C rj . �en, since l1.X/ is injective, there is some y 2

B.x; rx/\
T
i2I B.xi ; ri / � U . Hence, we have �.y/ 2 B.x; rx/\

T
i2I B.xi ; ri /\X

and therefore B.x; rx/ \X is injective.
If X is an absolute 1 -Lipschitz uniform neighborhood retract, we have

U D U.X; �/ for some � > 0 and therefore, we can choose rx D
�
2

for all
x 2 X .

�e converse is not true, as the following example shows.

Example 4.2. Consider the unit sphere S1 endowed with the inner metric. Since,
for every x 2 S1 and � 2 .0; �

2
� , the ball B.x; �/ is isometric to the interval

Œ��; �� , the unit sphere S1 is uniformly locally injective.
But S1 is not an absolute 1 -Lipschitz neighborhood retract. Fix some inclusion

S1 � l1.S
1/ . We choose three points x; y; z 2 S1 with r WD d.x; y/ D d.x; z/ D

d.y; z/ D 2�
3
. Let U be a neighborhood of S1 in l1.S

1/ . As U is open, there
is some � 2 .0; r

2
/ such that B.x; �/ � U . By hyperconvexity of l1.S1/ , there

is some
p 2 B.x; �/ \ B.y; r � �/ \ B.z; r � �/ � U:

But since
B.x; �/ \ B.y; r � �/ \ B.z; r � �/ \ S1 D ¿;

there is no 1 -Lipschitz retraction � W S1 [ ¹pº ! S1 .

In fact, the notion of an absolute 1 -Lipschitz uniform neighborhood retract is
quite restrictive.

Lemma 4.3. Let X be an absolute 1 -Lipschitz uniform neighborhood retract.
�en X is

(i) complete,

(ii) geodesic, and

(iii) simply-connected.

Proof. Fix some inclusion X � l1.X/ and r WD �
2
> 0 such that there is a

1-Lipschitz retraction � W U.X; �/! X:

First, if .xn/n2N is a Cauchy sequence in X , it converges to some x 2 U.X; �/ .
It follows that x D �.x/ 2 X .
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Next, assume that there is a geodesic in X between points at distance less than
d . By Lemma 4.1, this is clearly true for d D r . Consider two points x; y 2 X
with d.x; y/ � d C r . Now, since l1.X/ is geodesic, there is some z 2 l1.X/
with d.x; y/ D d.x; z/Cd.z; y/ , d.x; z/ � r and d.z; y/ � d . But then, we have
�.z/ 2 X with d.x; y/ D d.x; �.z// C d.�.z/; y/ and, by our hypothesis, there
are geodesics from x to �.z/ and from �.z/ to y which combine to a geodesic
from x to y .

Finally, since X is locally simply-connected, every curve is homotopic to a
curve of �nite length and hence it is enough to consider loops of �nite length.
We show that every such loop in X is contractible.

Let 
 be a loop in X of length L.
/ D 2�R with R > r . Denote by
S2R WD ¹x 2 R3 W jxj D Rº the sphere of radius R endowed with the inner
metric and let A WD ¹x 2 S2R W 0 � x3 � R sin. r

R
/º be the region bounded by the

two circles c WD ¹x 2 S2R W x3 D 0º and c0 WD ¹x 2 S2R W x3 D R sin. r
R
/º . Let

f W c ! X be a parametrization of 
 by arclength and let Nf W A! l1.X/ be a 1 -
Lipschitz extension. �en 
 0 WD �ı Nf .c0/ is a loop of length L.
 0/ � L.c0/ D 2�R0
with R0 WD R cos. r

R
/ , which is homotopic to 
 . Since cos. r

R0
/ � cos. r

R
/ , we

�nd inductively a loop 
n with L.
n/ � 2�R cos. r
R
/n , which is homotopic to 
 .

If L.
/ D 2�R with R � r , we can use the same argument with A replaced
by the upper halfsphere of radius R to show that 
 is contractible.

We conclude that an absolute 1 -Lipschitz uniform neighborhood retract
is a complete, simply-connected, locally injective length space and therefore
�eorem 1.3 follows directly from �eorem 1.2.
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