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1. Introduction

�is note will present elementary proofs for basic facts about smooth cubic
curves C in the complex projective plane P2.C/ , or the corresponding curves CR

in the real projective plane P2.R/ when the de�ning equation has real coe�cients.
�e presentation will center around two di�erent normal forms, which we refer
to as the Hesse normal form

(1) x3 C y3 C z3 D 3 k x y z

(using homogeneous coordinates), and the standard normal form

(2) y2 D x3 C ax C b

(using a�ne coordinates .x W y W 1/ with z D 1 ). We are particularly concerned
with classi�cation up to projective equivalence (that is up to a linear change of
coordinates in the projective plane). �e set of �ex points (three in the real case
and nine in the complex case) plays a central role in our exposition.

Although much of the material which follows is well known, there are a few
things which we have not been able to �nd in the literature. One of these is the
following concise classi�cation (see �eorem 6.3):
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Every smooth irreducible real cubic curve CR is real projectively
equivalent to one and only one curve C.k/R in the Hesse normal
form. Here any real parameter k ¤ 1 can occur. �e curve C.k/R is
connected if k < 1 , and has two components if k > 1 .

Another is the precise description of the automorphism group, consisting of
projective transformations which map the curve to itself. �is has order 6 in the
real case, and order 18 for a generic complex curve; but has order 36 or 54 in the
special case of a complex curve which has square or hexagonal symmetry. In all
cases it has a maximal abelian subgroup which acts freely on the curve, and acts
transitively on its set of �ex points. (See Corollaries 3.10 and 6.7.) On the other
hand, the group of birational automorphisms, which is canonically isomorphic
to the group of conformal automorphisms, acts transitively on the entire curve
(Corollaries 4.4 and 4.7).

One useful elementary remark is that the projective equivalence class of a
curve in the standard normal form is uniquely determined by the shape of the
“triangle” in the complex x -plane formed by the three roots of the equation
x3 C ax C b D 0 . (See Figure 2, as well as De�nition 3.7 and Proposition 3.8.)

�e paper is organized as follows. Sections 2 through 5 concentrate on the
complex case (although some arguments work just as well over an arbitrary
sub�eld F � C ). Section 2 studies �ex points, reduction to Hesse normal form,
and provides a preliminary description of the automorphism group. Section 3
studies reduction to the standard normal form, as well as the J -invariant

J.C/ D
4a3

4a3 C 27b2
;

and the computation of J as a function of the Hesse parameter k . Section 4
discusses the conformal classi�cation of C as a Riemann surface, and shows that
a conformal di�eomorphism from C to C0 extends to a projective automorphism
of P2 if and only if it maps �ex points to �ex points. Section 5 describes the
chord-tangent map C � C ! C and the related additive group structure on the
curve. Finally, Section 6 describes real cubic curves. In particular, it provides a
canonical a�ne picture, so that the automorphisms are clearly visible, and so that
any two real curves can be directly compared. (See Figure 10.)

Notation. We use the notation .x; y; z/ for a non-zero point of the complex
3-space C3 , and the notation .x W y W z/ for the corresponding point of P2,
representing the equivalence class consisting of all multiples .� x; � y; � z/ with
� 2 CX¹0º . However, it is sometimes convenient to represent a point of P2 by
a single bold letter such as p . Note that any linear automorphism of C3 gives
rise to a projective automorphism of the projective plane P2 .
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Historical Remarks. Hesse’s actually used a constant multiple of our k as
parameter. Our “standard normal form” is a special case of a form used by
Newton, and is a close relative of the form which Weierstrass introduced much
later. Our J.C/ is just Felix Klein’s invariant j.C/ divided by 1728. (For the
original papers, see [New], [Hes1, H2], [Wei1, W2], and [Kl].) �e “tangent” part
of the chord-tangent map was used by Diophantus of Alexandria in the third
century to construct new rational points on a cubic curve from known ones,
although this was done in a purely algebraic way. More than thirteen centuries
later, in the 1670’s Newton used the “chord-tangent construction” to interpret the
solutions of Diophantine equations given by Diophantus and Fermat. (Compare
[Sti, Section 11.6].) Weil says that the chord process was �rst used by Newton,
although Bashmakova claims that it was used already by Diophantus. (See [Weil]
and [Ba].) �e closely related additive structure is due to Poincaré [P], who was
the �rst to study the arithmetic of algebraic curves. (Compare [Kna] and [Ba,
p. 412].) Real cubic curves in the a�ne plane were studied by Newton. (Compare
[New], as well as [BK].) For further historical remarks, see [AD], [Dol], and
[RB]. For an elementary introduction to the �eld see [Gib]; and for real cubic
curves from an older point of view, see [Whi].

2. Hesse Normal Form for Complex Cubic Curves

�is section will be concerned with the work of Otto Hesse and its
consequences. (See [Hes1, H2], both published in 1844.) Hesse introduced1 the
family of cubic curves C.k/ consisting of all points .x W y W z/ in the projective
plane P2 D P2.C/ which satisfy the homogeneous equation ˆk.x; y; z/ D 0

where

(3) ˆk.x; y; z/ D x
3
C y3 C z3 � 3 k x y z:

Given a generic point .x W y W z/ in P2 , we can solve the equation ˆk.x; y; z/ D 0
for

k D
x3 C y3 C z3

3 x y z
2 C [ ¹1º:

(�us for k D1 we de�ne C.1/ to be the locus xyz D 0 .) However, there are
nine exceptional points2 where

both x3 C y3 C z3 D 0 and x y z D 0;

1Gibson refers to the C.k/ as “Steiner curves”, presumably referring to [Ste].
2We will see in Remark 2.11 that these nine “exceptional points” on any smooth C.k/ are precisely

the nine �ex points.
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so that the parameter k is not uniquely de�ned. All of the curves C.k/ pass
through all of these nine points, which have the form

(4) .0 W 1 W �/ or .� W 0 W 1/ or .1 W � W 0/ with 3 D 1:

In the complement of these nine exceptional points, the space P2.C/ is the
disjoint union of the Hesse curves.

De�nition 2.1. A point of the curve ˆ.x; y; z/ D 0 is singular if the partial
derivatives ˆx ; ˆy and ˆz all vanish at the point. �e curve is called smooth
if it has no singular points.

Lemma 2.2. �e Hesse curve C.k/ has singular points if and only if either
k3 D 1 or k D1 .

Proof. For the curve C.k/ with k �nite, a singular point must satisfy the equations

x2 D kyz; y2 D kxz ; z2 D kxy;

which imply that x3 D y3 D z3 D k xyz , and hence x3y3z3 D k3x3y3z3 . For
k3 ¤ 1 with k �nite, it follows easily that there are no singularities. On the other
hand, if k3 D 1 , then it is not hard to check that C.k/ is the union of three
straight lines of the form ˛xCˇyCz D 0 with ˛3 D ˇ3 D 1 and ˛ˇ D k . Hence
it is singular at the three points where two of these lines intersect.3 Similarly
the curve C.1/ is clearly singular at the three points .0 W 0 W 1/ , .1 W 0 W 0/ and
.0 W 1 W 0/ where two of the lines x D 0 , y D 0 , and z D 0 intersect.

�us altogether there are twelve points in P2 which are singular for one
of these curves. If we remove these twelve singular points and also the nine
exceptional points from P2 , then we obtain a smooth foliation by Hesse curves.

De�nition 2.3. Let Aut.P2/ be the group of all projective automorphisms of
P2 ; and for any curve C � P2 let Aut.P2; C/ be the subgroup consisting of
projective automorphisms which map C onto itself.

Curves de�ned by the Hesse equations (3) are clearly highly symmetric.
Following is a precise statement.

Lemma 2.4. �e group Aut
�
P2.C/

�
contains an abelian subgroup

N Š Z=3˚ Z=3

3 For k D 1 , one such intersection point .1 W 1 W 1/ is clearly visible to the upper right in Figure 1,
even though the rest of the two intersecting lines lie outside of the real projective plane.
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Figure 1
“Foliation” of the real projective plane by the Hesse pencil of curves C.k/R D
C.k/ \ P 2.R/ . Here P 2.R/ is represented as a unit sphere with antipodal points
identi�ed. Note the three exceptional points .�1 W 1 W 0/ , .0 W �1 W 1/ , and
.1 W �1 W 0/ where all of the C.k/R intersect. Also note the three singular
points where the components of C.1/R D ¹x D 0º [ ¹y D 0º [ ¹z D 0º intersect,
and note the isolated singular point at .1 W 1 W 1/ 2 C.1/R . �e �gure has
120ı rotational symmetry about this point. (�is �gure has been borrowed from
our paper [BDM], which studies rational maps preserving such cubic curves.)

independent of k , which acts without �xed points on every smooth C.k/ , and
acts simply transitively on the set of nine “exceptional points” of equation .4/ .
�e group Aut.P2/ also contains an element � of order two, which maps each
C.k/ onto itself, and such that conjugation by � maps each element of N to its
inverse.

�us the automorphism group Aut.P2; C.k// contains at least 18 elements. In
fact, we will show in �eorem 2.12 below that any smooth cubic curve C can
be put into the form (3), so that the automorphism group Aut.P2; C/ always
contains a corresponding 18 element subgroup. (In most cases, this is the full
automorphism group, but for some special curves there are extra symmetries, as
described in Corollary 3.10.)
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Proof of Lemma 2.4. A cyclic permutation of the three coordinates x; y; z clearly
acts e�ectively on every curve of the form (3). �is action has just one �xed
point .1 W 1 W 1/ 2 C.1/ � P2 , but has no �xed points in C.k/ for k ¤ 1 . If  is
a primitive cube root of unity, then the transformation

.x W y W z/ 7! .x W  y W 2 z/

is another automorphism of order three which commutes with the cyclic per-
mutation of coordinates. It is not di�cult to check4 that the abelian group N

generated by these two transformations has �xed points only on the singular Hesse
curves with k3 D 1 or k D 1 . Furthermore, it acts simply transitively on the
set of exceptional points (4). Finally, the permutation .x W y W z/ $ .y W x W z/

is an element � of order two which carries each C.k/ to itself, and has the
required action on N . (�is permutation does have four �xed points on each
C.k/ , consisting of just one of the nine exceptional points, namely .1 W �1 W 0/ ,
together with the three points of C.k/ which lie on the line x D y .)

Although we are primarily interested in cubic curves, we will often use results
which apply to curves of any degree n � 2 . �e most fundamental property of
complex projective curves of speci�ed degree is the following:

For any smooth curve C � P2.C/ of degree n � 2 and any line L � P2 ,
the intersection C \L consists of n points, counted with multiplicity.5

Here:
� A transverse intersection has multiplicity one.
� �e intersection between C and its tangent line at a generic point has
multiplicity two.
� At certain special “�ex points” this tangential intersection will have multi-
plicity three or more.

For a cubic curve, note that the intersection multiplicity is three if and only if
there are no other points of intersection between C and L .

De�nition 2.5. For a curve C of any degree, a non-singular point is called an
in�ection point, or brie�y a �ex point, if the intersection multiplicity between C
and its tangent line is three or more. (Of course in the cubic case, this intersection
multiplicity is always precisely three, unless C contains an entire straight line,
which implies that C contains singular points.)

4Here is a typical case. If .x W y W z/ D .y W z W 2x/ then, using the fact that
.x W y/ D .u W v/ if and only if xv D yu , we can check that x2 D yz; y2 D xz and z2 D xy .
�erefore x3 D y3 D z3 D xyz , hence k D  and the curve is singular.

5�is is an special case of Bézout’s theorem; but can also be proved just by restricting the de�ning
equation ˆ.x; y; z/ D 0 to the line L , and then using the Fundamental �eorem of Algebra.
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We will prove in �eorem 2.10 that every smooth complex cubic curve has
precisely nine �ex points. However, the proof will be based on a more general
discussion which applies to smooth curves of any degree.

De�nition 2.6. Let ˆ.x; y; z/ be a homogeneous polynomial of degree n . �e
associated Hessian determinant is the homogeneous polynomial function

(5) Hˆ.x; y; z/ D det

0B@ˆxx ˆxy ˆxz

ˆyx ˆyy ˆyz

ˆzx ˆzy ˆzz

1CA ;
of degree 3.n � 2/ , where the subscripts on the right indicate partial
derivatives.

�eorem 2.7. Let C be any smooth curve of degree three or more with de�ning
equation ˆ.x; y; z/ D 0 . �en the set Flex.C/ consisting of all �ex points in C
is equal to the set of all points in C which satisfy the homogeneous equation
Hˆ.x; y; z/ D 0 :

As the �rst step in the proof, we must show that this locus Hˆ D 0 behaves
properly under projective transformations. Let

(6) .x; y; z/ 7! A.x; y; z/ D .u; v; w/

be a non-singular linear transformation, and let A� W P2.C/ ! P2.C/ be the
induced projective transformation. Note that A� maps the curve C de�ned by
the equation ˆ.x; y; z/ D 0 to the curve C0 D A�.C/ de�ned by the equation
‰.u; v;w/ D 0 , where ‰ D ˆ ı A�1 (or equivalently ˆ D ‰ ı A ), as one sees
from the diagram

C3 A //

ˆ

  

C3

‰

��
C:

Lemma 2.8. With these notations, A� maps the curve de�ned by the equation
Hˆ.x; y; z/ D 0 to the curve de�ned by H‰.u; v; w/ D 0 . In particular, it maps
the locus of points on C with Hˆ.x; y; z/ D 0 to the locus of points on A�.C/
satisfying H‰.u; v; w/ D 0 .

Proof. For this proof only, it will be convenient to switch to matrix
notation, representing a point in C3 by a column vector X , and writing a
linear change of coordinates A W C3 ! C3 as
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X 7! AX D U where X D

264xy
z

375 and U D

264uv
w

375 ;
and where A can be any non-singular 3 � 3 matrix. Let Mˆ.X/ be the matrix
of second partial derivatives of ˆ , with determinant Hˆ.X/ , and de�ne M‰.U/
with determinant H‰.U/ similarly. �en we will prove that

(7) Mˆ.X/ D At M‰.AX/A;

where At is the transpose matrix.
To prove (7), note that the Taylor series for ˆ at a point X0 has the form

ˆ.X0CX/ D ˆ.X0/ C .linear terms/ C .quadratic terms/ C .higher order terms/;

where the quadratic terms can be written as 1
2
Xt Mˆ.X0/X . If we ignore all

terms of degree other than two, then this can be written brie�y as

(8) ˆ.X0 CX/ D � � � C 1
2
Xt Mˆ.X0/X C � � � :

Similarly
‰.U0 CU/ D � � � C 1

2
Ut M‰.U0/U C � � � :

Now substituting AX for U and AX0 for U0 , and recalling that
ˆ D ‰ ıA , this last equation takes the form

ˆ.X0 CX/ D ‰.U0 CU/ D � � � C 1
2
XtAt M‰.AX0/AX C � � � :

Comparing this expression with (8), and noting that the two equations must agree
for all X , the required equation (7) follows.

Now taking the determinant of both sides of (7) and switching back to non-
matrix notation, we obtain the identity

(9) Hˆ.x; y; z/ D det.A/2H .u; v; w/; where .u; v; w/ D A.x; y; x/ :

Lemma 2.8 now follows easily, since the constant factor det.A/2 does not a�ect
the induced transformation of projective space.

Proof of �eorem 2.7. We must show that a point .x0 W y0 W z0/ 2 C is
a �ex point if and only if Hˆ.x0; y0; z0/ D 0 . Choose a linear change
of coordinates which maps the given point .x0; y0; z0/ to .0; 0; 1/ . Af-
ter a rotation of the x; y coordinates, we may assume that the image
curve is tangent to the line y D 0 . Now, working with a�ne coordinates
.x W y W 1/ , we can solve locally for y as a smooth function y D f .x/ , where
the derivative dy=dx D f 0.x/ vanishes for x D 0 . Di�erentiating the equation
ˆ.x; f .x/; 1/ D 0 twice, we obtain
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ˆx Cˆyf
0.x/ D 0 and ˆxx C 2ˆxyf

0.x/Cˆyy.f
0.x//2Cˆyf

00.x/ D 0

along the curve, where ˆx.0; 0; 1/ D 0 but ˆy.0; 0; 1/ ¤ 0 . In particular, at the
speci�ed point with x D f 0.x/ D 0 , we see that

ˆxx D 0 () f 00.x/ D 0 () x is a �ex point :

To �nish the proof of �eorem 2.7, we must show, with a choice of coordinates as
above, that ˆxx.0; 0; 1/ D 0 if and only if Hˆ.0; 0; 1/ D 0 . Note that ˆ.x; y; z/
can be written uniquely as a sum of monomials cijkxiyj zk with i C j C k D n .
Since ˆ.0; 0; 1/ D 0 , we know that the coe�cient of zn is zero, and it follows
easily that ˆzz.0; 0; 1/ D 0 . Similarly, since ˆx.0; 0; 1/ D 0 , it follows easily
that ˆxz.0; 0; 1/ D 0 ; but ˆy.0; 0; 1/ ¤ 0 hence ˆyz.0; 0; 1/ ¤ 0 . It is now
straightforward to check that Hessian determinant reduces to Hˆ D �ˆxxˆ

2
yz at

the point .0; 0; 1/ , and the conclusion follows.

Remark 2.9. More explicitly, whenever ˆy.0; 0; 1/ ¤ 0 so that y can be expressed
locally as a smooth function y D f .x/ , we have the identity

Hˆ.0; 0; 1/ D 4ˆ
3
y.0; 0; 1/ f

00.0/:

In the case where f 0.0/ D 0 , this follows from the proof above, together with the
observation that ˆyz.0; 0; 1/ D 2ˆy.0; 0; 1/ . (�is last equality can be checked
by comparing the �rst derivative of the monomial yz2 with respect to y , and
the second derivative with respect to y and z .)

�e more general case where f 0.x/ ¤ 0 can be dealt with by noting that the
change of coordinates

.x; y; z/ 7! .x; ax C y; z/

clearly does not a�ect d2y=dx2 , and by noting that the locus Hˆ D 0 transforms
by equation (9).

Even more generally we can write

(10) Hˆ.x; f .x/; 1/ D 4ˆ
3
y.x; f .x/; 1/f

00.x/

at any point of the curve where ˆy ¤ 0 , since both sides of this equation are
invariant under translation.

�eorem 2.10. Every smooth cubic curve in P2.C/ has nine �ex points.

Proof. If a curve C1 of degree n1 and a curve C2 of degree n2 have only smooth
transverse intersections, then it follows from Bézout’s �eorem that the number
of intersection points is precisely equal to the product n1n2 . (See for example
[BK, Section 6.1] or [Ha, pp. 36, 54].) We are intersecting two curves ¹ˆ D 0º
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and ¹Hˆ D 0º which both have degree three. �us to prove �eorem 2.10, we
need only show that these two curves have only smooth transverse intersections.6

Since equation (10) holds at all points of C with ˆy ¤ 0 , we can di�erentiate
with respect to x to obtain

@Hˆ

@x
.0; 0; 1/ D ˆ3y.0; 0; 1/ f

000.x/

whenever f 0.0/ D 0 . But at a �ex point of a smooth cubic curve, where
f 00.0/ D 0 , the third derivative f 000.0/ can never vanish, for this would imply
that the entire tangent line at that point would have to be contained in C . �us
@Hˆ=@x ¤ 0 at a �ex point; and it follows easily that the two curves ¹H� D 0º

and ¹ˆ D 0º have a transverse intersection at every �ex point. �us every smooth
cubic curve has exactly nine �ex points; which completes the proof of �eorem
2.10.

Remark 2.11. In the special case of a smooth Hesse curve C.k/ , the nine �ex
points coincide with the nine “exceptional points” of equation (4). To see this,
taking ˆ.x; y; z/ D x3Cy3Cz3�3 k x y z , note for example that ˆxx D 6 x and
ˆxy D �3 k z . A straightforward computation shows that the Hessian determinant
is given by

Hˆ.x; y; z/ D 3
3
�
.8 � 2 k3/x y z � 2k2.x3 C y3 C z3/

�
:

If ˆ.x; y; z/ D 0 , then we can substitute 3kxyz for x3 C y3 C z3 on the right
side of this equation. �is yields Hˆ.x; y; z/ D 6

3.1 � k3/xyz . If we are in the
non-singular case, with k3 ¤ 1 , then it follows that ˆ and Hˆ D 0 are both
zero only at the nine points with

x3 C y3 C z3 D x y z D 0;

as in (4). (On the other hand, if k3 D 1 then the Hessian is identically zero on
C.k/ , which means that C.k/ is a union of straight lines.)

�e set of nine �ex points together with the twelve lines joining them form
a fascinating con�guration. (Compare Figure 7 and Remark 5.7.)

Reduction to Hesse normal form. Recall that, two algebraic varieties in a
projective space Pn are projectively equivalent if there exists a projective
automorphism of Pn which carries one variety onto the other.

�e following result is taken from a textbook published by Heinrich Weber
in 1898. (See [Web, v.3, p.22]. We don’t know whether this result was known
earlier.)

6�e curve ¹Hˆ D 0º may have singular points, but is always non-singular near the intersection.
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�eorem 2.12. Every smooth cubic curve in P2.C/ is projectively equivalent to
a curve C.k/ in the Hesse normal form

x3 C y3 C z3 D 3 k x y z;

with k 2 C , k3 ¤ 1 .

Proof. Choose two distinct �ex points for the given curve C , and choose
homogeneous coordinates x; y; z so that:

� the line x D 0 is tangent to C at the �rst �ex point,

� the line y D 0 is tangent at the second �ex point, and

� the line z D 0 passes through both �ex points.

Working in a�ne coordinates with z D 1 , these conditions mean that C
has no �nite point on the lines x D 0 or y D 0 . In other words the
polynomial function ˆ.x; y; 1/ must take a non-zero constant value on these
two lines; say ˆ.x; y; 1/ D 1 whenever xy D 0 . Hence it must have the form
ˆ.x; y; 1/ D 1C xy.ax C by C c/ . In homogeneous coordinates, this means that

ˆ.x; y; z/ D z3 C xy.ax C by/C cxyz:

Furthermore a ¤ 0 since otherwise .1 W 0 W 0/ would be a singular point, and
b ¤ 0 since otherwise .0 W 1 W 0/ would be singular. Now to put this polynomial
in the required form, we must express xy.ax C by/ as a sum of two cubes.7 In
fact, consider the identity

. p x C q y/3 C .�p x �  q y/3 D 3i
p
3 xy

�
� p2q x C pq2 y

�
;

where  D .�1C i
p
3/=2 . It is not di�cult to choose p and q so as to satisfy

the required equalities

�3i
p
3p2q D a and 3i

p
3pq2 D b;

since we can �rst solve for p=q D �a=b , and then solve for p .

Remark 2.13. According to Lemma 2.2, a curve in Hesse form, with k �nite,
is smooth if and only if k3 ¤ 1 . �is Hesse form is not unique, since there are
several di�erent ways of choosing the two �ex points. We will see in �eorem
3.12 that, for a generic choice of the smooth curve C , there are twelve di�erent
possible choices of the parameter k .

7More generally, any smooth cubic locus ‰.x; y/ D 0 in P 1.C/ is just a union of three distinct
points, and it is not hard to choose a projective equivalence (= fractional linear transformation) from
the Riemann sphere P 1.C/ to itself which carries one such triple to any other.
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Corollary 2.14. Every smooth complex cubic curve possesses an automorphism
group of order at least 18 which acts transitively on its set of nine �ex points.

Proof. �is follows immediately by combining Lemma 2.4 and Remark 2.11 with
�eorem 2.12.

(For a more precise description of the automorphism group, see Corollary
3.10.)

3. �e standard normal form

Recall that a curve in standard normal form is de�ned by the equation

y2 D x3 C ax C b

in a�ne coordinates .x W y W 1/ . Equivalently, using homogeneous coordinates
.x W y W z/ , it is de�ned by the equation ˆ D 0 where

(11) ˆ.x; y; z/ D �y2z C x3 C axz2 C bz3:

One virtue of this normal form is that is useful over many di�erent �elds.8 For
our purposes, the following level of generality will be convenient.

Let F � C be any sub�eld of the complex numbers. A curve C � P2.C/ is
said to be de�ned over F if it is de�ned by a homogeneous polynomial equation
ˆ.x; y; z/ D 0 with coe�cients in F . Similarly, an F -projective transformation
will mean a projective transformation with coe�cients in F , or equivalently one
which maps the projective space P2.F/ onto itself.

�e notation CF � P2.F/ will be used for the intersection C\P2.F/ , consisting
of all points of C with coordinates in F .

Caution. In this generality, there is no guarantee that CF will have any points
at all. For example, the equation 3x3 C 4y3 C 5z3 D 0 has no non-zero solution
with x; y; z in the �eld of rational numbers Q . In other words, the corresponding
locus CQ � P2.Q/ is vacuous. (See [Cas, p. 85].)

�eorem 3.1. Let F � C be any sub�eld of the complex numbers, and let
C � P2.C/ be an irreducible cubic curve, de�ned by a homogeneous equation
ˆ D 0 with coe�cients in F . �en C is F -projectively equivalent to a curve in
the standard normal form .11/ if and only if the set of non-singular points in CF

contains a �ex point.
8More precisely, one can reduce to this normal form over any �eld of characteristic other than two

or three.
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Remark 3.2. �is is a much easier variant of Trygve Nagell’s �eorem, which
can be stated as follows:

Given a smooth complex cubic C which is de�ned over F , and given
an arbitrary point p 2 CF , there is an F -birational equivalence between
C and some curve in standard normal form which takes p to the �ex
point at in�nity.

See [Nag], as well as [Cas, p. 34] which implicitly includes a brief proof of the
above �eorem 3.1. For further discussion, see Remark 4.6 below.

Proof of �eorem 3.1. Let C be a curve in the normal form (11). Along the “line
at in�nity” with equation z D 0 , the equation ˆ D 0 reduces to x3 D 0 , yielding
the single point .0 W 1 W 0/ , counted with multiplicity three. �us .0 W 1 W 0/ is a
�ex point (non-singular since @ˆ=@z ¤ 0 ), and the line z D 0 is the tangent line
at this �ex point.

Conversely, given any irreducible C which is de�ned over F and any �ex
point p 2 CF , we can put the curve into normal form in four steps, as follows.

Step 1. Choose an F -linear change of coordinates which maps p to the point
.0 W 1 W 0/ and maps the tangent line at p to the line z D 0 . It is then easy to
check that the image of CF will have de�ning equation of the form

ˆ.x; y; z/ D x3 C z‰.x; y; z/;

where ‰ is homogeneous quadratic with coe�cients in F . Note that the coe�cient
of y2z in ˆ must be non-zero. In fact it is easy to check that

ˆx.0 W 1 W 0/ D ˆy.0 W 1 W 0/ D 0

and that ˆz.0; 1; 0/ is equal to the coe�cient of y2z . Since our �ex point is
assumed to be non-singular, this coe�cient must be non-zero.

Step 2. If we make a linear change of coordinates, replacing x by ˛x and y by
ˇy , and also replace ˆ by ˆ=˛3 , then the equation will take the form b̂ D 0
where b̂ .x; y; z/ D x3 C z‰.˛x; ˇy; z/=˛3:
�us the coe�cient of y2z is now multiplied by ˇ2=˛3 . Now choose ˛ and ˇ

so that the coe�cient of y2z will be �1 . (As one example, there is a unique
choice with ˛ D ˇ .) Working in a�ne coordinates with z D 1 , this means that
our b̂ will take the form

�y2 C x3 C px2 C qx C r C y.sx C t /;

with coe�cients p; q; r; s; t 2 F .
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Step 3. To get rid of the y terms on the right, simply replace y by yC.sxCt /=2 .
�is will yield a function of the form

�y2 C x3 C p0x2 C q0x C r 0:

Step 4. To eliminate the x2 term, replace x by x � p0=3 . Our function will
then be in the required form �y2 C x3 C ax C b .

Lemma 3.3. Using the normal form .11/ with a; b 2 F � C , the curve C is
singular if and only if the equation x3C axC b D 0 has a double root, which is
necessarily in the sub�eld F , or if and only if the discriminant �.4a3 C 27b2/
is zero.

Proof. Over the complex numbers, there is always an essentially unique factor-
ization

x3 C ax C b D .x � r1/.x � r2/.x � r3/:

Suppose that .x W y W z/ is a singular point of C . Since ˆz.0 W 1 W 0/ D �1 , the
unique point of C on the line z D 0 is certainly non-singular, so it will su�ce to
work in a�ne coordinates with z D 1 . Every point with y ¤ 0 is non-singular
since ˆy.x; y; 1/ D �2y ¤ 0 . �us it only remains to consider the three points
.rj W 0 W 1/ on the line y D 0 . For example ˆx.r1; 0; 1/ D .r1 � r2/.r1 � r3/ , so
that the point .r1 W 0 W 1/ 2 C is singular if and only if r1 is a double root.

Next we need to check that a double root necessarily belongs to the sub�eld
F � C . But the sum of the roots is zero, so if r is a double root, then the
third root is �2r . It follows easily that a D �3r2 and b D 2r3 , so that either
a D b D r D 0 2 F or else r D �3b=2a 2 F .

Finally, we apply the classical discriminant identityY
i<j

.ri � rj /
2
D �.4a3 C 27b2/:

(See for example [BM].) �is proves Lemma 3.3.

Lemma 3.4. A projective change of coordinates

.x W y W z/ 7! .X W Y W Z/

which �xes the �ex point .0 W 1 W 0/ will transform a curve in the standard normal
form y2 D x3 C ax C b to a curve Y 2 D X3 C AX C B in the same normal
form if and only if this change of coordinates has the form

(12) X D t2x; Y D t3y; and hence A D t4a and B D t6b

for some non-zero t 2 F .
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Proof. If we make the substitutions (12) in the equation

Y 2 D X3 C AX C B ;

then we obtain the original equation y2 D x3CaxCb multiplied by t6 . To show
that this is the only permissible change of coordinates, we proceed as follows.

Since the line z D 0 is tangent to our curve at the marked �ex point, it must
certainly map onto itself under any projective transformation which preserves this
point and its tangent direction. �us it will su�ce to work in a�ne coordinates,
with z D 1 . �e most general linear transformation then has the form

X D .˛x C ˇy/C �; Y D .x C ıy/C �;

with ˛; ˇ; ; ı; �; � 2 F , and with ˛ı � ˇ ¤ 0 . Substituting these values into
X and Y , the equation Y 2 D X3CAXCB should reduce to a constant multiple
of y2 D x3CaxCb for suitably chosen A and B . Here the coe�cient ˇ must
be zero so that there is no x2y term in the expansion, and  D 0 so that there
is no xy term. Similarly � D 0 so that there is no x2 term, and � D 0 so that
there is no y term. �us X D ˛x and Y D ıy . Finally, we must have ı2 D ˛3
so that the coe�cients of y2 and x3 will be equal. �us, setting t D ı=˛ , we
have t2 D ı2=˛2 D ˛ and t3 D ı3=˛3 D ı . �us we obtain

t6y2 D t6x3 C t2Ax C B:

Dividing by t6 , the required equations A D t4a and B D t6b now follow.

Corollary 3.5. Every smooth complex cubic curve C can be reduced to the
standard form .11/ by a projective transformation; and two such curves are
projectively equivalent if and only if they share the same value for the invariant

(13) J.C/ D
4a3

4a3 C 27b2
2 C:

Here any value J.C/ 2 C can occur.

Proof. �is follows directly from �eorem 3.1 and Lemma 3.4. �ere are three
places where the restriction to the complex case is necessary. First, according to
�eorem 2.10 every smooth cubic curve has a �ex point. Second, according to
Corollary 2.14, there is an automorphism which carries any �ex point to any other
�ex point, so that it doesn’t matter which �ex point we choose for the reduction
to normal form. �ird, since every complex number has a complex square root, it
follows easily that we can use the transformation a 7! A D t4a; b 7! B D t6b

for suitably chosen t to convert the pair of coe�cients a; b to A; B , whenever
the ratio .a3 W b2/ 2 P1.C/ is equal to .A3 W B2/ .
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However, this ratio .a3 W b2/ is a bit awkward to work with, since either a
or b may be zero, and since the ratio .�32 W 22/ occurs only for singular curves.
�e equivalent invariant (13) is much more convenient since it takes all possible
�nite values for smooth curves, and is in�nite only for singular curves by Lemma
3.3. Further details of the proof of Corollary 3.5 are straightforward.

Remark 3.6. If the curve C is de�ned over a sub�eld F � C , then the invariant
J.C/ must belong to F . In fact, since the �ex points are de�ned by algebraic
equations with coe�cients in F , they are contained in9 P2.F 0/ for some �nite
Galois extension F 0 � F ; hence J.C/ 2 F 0 . But J.C/ is invariant under all
automorphisms of F 0 over F , so it must belong to F .

We can give this invariant J 2 C a more geometric interpretation as follows.
Recall that a curve in standard normal form is uniquely determined by the three
roots rj , which are distinct if and only if the curve is non-singular. We will use
the word “triangle” as a convenient term for an unordered set consisting of three
distinct points in the complex plane.

(Caution: �e three points are allowed to lie in a straight line.)

De�nition 3.7. We will say that two subsets of the complex plane have the same
shape if there is a complex a�ne automorphism x 7! px C q which takes one
to the other.

Proposition 3.8. For cubic curves of the form y2 D f .x/ , where f .x/ is a cubic
polynomial with distinct roots ¹rj º , the shape of the triangle formed by the three
roots is a complete invariant for projective equivalence.

In particular, this is true for curves in the normal form y2 D x3 C ax C b .
Since J.C/ is also a complete invariant for projective equivalence, it follows that
this “shape” is uniquely determined by the complex number J .

Proof of Proposition 3.8. It is not di�cult to put a curve of the form y2 D f .x/

into the standard form by an a�ne change of the x variable. �e conclusion
then follows easily from Lemma 3.4.

Remark 3.9. (See Figure 2 for some typical examples.) Note that:

J D 0 , a D 0 , the triangle is equilateral, and
J D 1 , b D 0 , one vertex is the midpoint of the other two.

9 Suppose for example that .x W y W 1/ 2 P 2.C/ is a �ex point. �en the �eld F 00 obtained from F
by adjoining x and y must be a �nite extension of F . For otherwise the inclusion map F ! C would
extend to in�nitely many di�erent embeddings of F 00 into C , leading to in�nitely many �ex points.
�e required F 0 is now just the splitting �eld of F 00 over F .
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J in upper half-plane

J < 0 J D 0 0 < J < 1 J D 1 J > 1

J in lower half-plane

Figure 2
�e J -invariant describes the shape of the .possibly
degenerate/ triangle in C with vertices r1; r2; r3 .

For real values of J , the triangle is isosceles if J < 1 , but the three vertices
lie on a straight line if J � 1 . If we label the three edge lengths jrj � rkj as
e1 � e2 � e3 , then J 62 R if and only if e1 < e2 < e3 and e3 ¤ e1 C e2 . In
fact the corresponding edges lie in positive (or negative) cyclic order around the
triangle according as J lies in the upper (or lower) half-plane. For a sequence
of curves, jJ j tends to in�nity if and only if the ratio e3=e1 tends to in�nity.

We can now give a precise description of the automorphism group (Compare
De�nition 2.3).

Corollary 3.10. �e automorphism group of any smooth complex cubic curve
can be described by a split exact sequence

1 ! N.P2; C/ ! Aut.P2; C/ ! Aut.P2; C; p0/ ! 1 :

Here:

p0 can be any one of the nine �ex points,
Aut.P2; C; p0/ is the subgroup of Aut.P2; C/ consisting of all auto-

morphisms which �x the point p0 , and
N.P2; C/ Š Z=3˚ Z=3 is the normal subgroup consisting of all au-

tomorphisms which have no �xed point on C , together with the
identity automorphism.

Furthermore, N is a maximal abelian subgroup, and acts simply transitively on
the set of nine �ex points. �e subgroup Aut.P2; C; p0/ is cyclic of order:

six if J.C/ D 0 ,
four if J.C/ D 1 , but
two in all other cases.
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�us the full automorphism group has order either 54, 36, or 18. Note that the
exceptional cases J D 0 and J D 1 are precisely the cases where the “triangle”
of Figure 2 has rotational symmetry of order three or two.

Proof of Corollary 3.10. �e subgroup N is normal since the property of acting
without �xed points is invariant under inner automorphism. Since we know by
Lemma 2.4 and �eorem 2.12 that N acts simply transitively on the �ex points,
it follows that any automorphism can be expressed uniquely as the composition
of an element of N with an element of Aut.P2; C; p0/ . To compute the latter
group, using the standard normal form, take p0 to be the point .0 W 1 W 0/ .
According to Lemma 3.4, an automorphism �xing this point must have the form

.x W y W z/ 7! .t2x W t3y W z/; with a 7! t4a and b 7! t6b :

�us when a D 0 the coe�cient t can be any sixth root of unity, and when b D 0
it can be any fourth root of unity, but otherwise it can only be ˙1 . (Expressed
invariantly, the cyclic subgroup Aut.P ; C; p0/ acts on the tangent space to C at p0
by multiplication by a corresponding root of unity.) �e conclusion follows.

From Hesse to standard normal form. Since every cubic equation in Hesse
normal form can be converted to one in the standard normal form (see the proof
of �eorem 3.1), it follows that the invariant J

�
C.k/

�
2 C can be computed as

a function of the Hesse parameter k . In fact, since we can always multiply the
parameter k by a cube root of unity without changing the projective equivalence
class, simply by dividing one of the coordinates by this root of unity, it follows
that J.C/ can be computed as a function of k3 2 CX¹1º . �e computation
is straightforward (if somewhat tedious), and yields the following result in our
notation:

(14) J
�
C.k/

�
D

�
k.k3 C 8/

4.k3 � 1/

�3
:

(Compare [Fr], as well as [PP, Prop. 2.3].) It follows from this expression that
the invariant J

�
C.k/

�
tends to in�nity whenever k3 tend to either in�nity or

C1 . It also follows from this expression (or from Remark 3.6) that every rational
value of k corresponds to a rational value of J , or to J D 1 . (However, an
irrational value of k may correspond to a rational J . For example k D 1˙

p
3

yields J D 1 .)
One noteworthy property is the following. Let � W bC Š

�! bC be the Möbius
involution

(15) �.k/ D
k C 2

k � 1
; with � ı �.k/ D k :

It will be convenient to use the abbreviated expression J.k/ for J
�
C.k/

�
.
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k

J

Figure 3
Graph of the map k 7! J.C.k// of equation (14) for real values of k , with
k 2 Œ�3; 4� and J 2 Œ�1; 2� . Note that every line J D constant intersects the graph
in exactly two points. As examples, for J D 0 we have k D 0 or k D �2 , while for
J D 1 we have k D 1˙

p
3 . �e graph is divided into two connected components:

�e component with k < 1 represents curves C.k/R which are connected, while
the component with k > 1 represents curves with two connected components.

Lemma 3.11. �is function J.k/ D J
�
C.k/

�
satis�es the identity

J
�
�.k/

�
D J.k/ for all k 2 bC D C [ ¹1º:

In particular, it follows that the graph, shown in Figure 3, is invariant under
the involution

.k; J /  !
�
�.k/; J

�
;

which maps the region k < 1 to itself with �xed point .1 �
p
3; 1/ , and the

region k > 1 to itself with �xed point .1C
p
3; 1/ . (Note that both �xed points

lie along the line J D 1 .)

First proof. �e equation J
�
�.k/

�
D J.k/ is an identity between two rational

functions of degree twelve, which can be veri�ed by direct computation.

However, this argument gives no clue as to how to construct an actual projective
equivalence between C.k/ and C

�
�.k/

�
. �at can be remedied as follows.
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Second proof. Let
X D x C y C z

Y D x C y C z

Z D x C y C z

where  D e2�i=3 . �en it is not hard to check that

X3 C Y 3 CZ3 D 3
�
x3 C y3 C z3 C 6 x y z

�
;

and that
X Y Z D x3 C y3 C z3 � 3 x y z:

Setting k D .x3 C y3 C z3/=.3 x y z/ , it follows easily that
X3 C Y 3 CZ3

3X Y Z
D
k C 2

k � 1
;

and the conclusion follows.

�eorem 3.12. Let � denote the group of Möbius transformations generated by
the involution � and the rotation

�.k/ D  k:

�en � is equal to the twelve element tetrahedral group, consisting of all Möbius
transformations from the Riemann sphere to itself which map the four point set
¹1; ; ; 1º to itself. Furthermore:

(1) Two Hesse curves C.k/ and C.k0/ are projectively equivalent if
and only if k0 D �.k/ for some � 2 � .

(2) �e function k 7! J.k/ can be computed as

J.k/ D
1

64

Y
�2�

�.k/:

Proof. (Compare [AD].) Clearly � W 1 $ 1 under the involution � , and it is
not hard to check that � W  $  . It then follows easily that � can be identi�ed
with the group consisting of all even permutations of these four symbols.

To prove statement (1), note that the quotient bC =� is a Riemann surface,
necessarily isomorphic to bC . Since the map J W bC ! bC clearly has the
property that J ı� D J for every � 2 � , it follows that J can be expressed as
a composition bC //

J

  

bC=�
h

��bC:
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Since both J and the projection bC ! bC =� have degree twelve, it follows that
the holomorphic map h has degree one, and hence is a conformal di�eomorphism.
Since two curves C.k/ and C.k0/ are projectively equivalent if and only if
J.k/ D J.k0/ , it follows that they are projectively equivalent if and only if k and
k0 have the same orbit under � .

To prove (2), note that the function k 7!
Q

� �.k/ is also a rational map
of degree twelve which is invariant under precomposition with any � 2 � .
Furthermore, this function maps zero to zero and in�nity to in�nity, so it must
be some constant multiple of J . To compute the precise constant, it is enough
to understand one more example.

It is not hard to check10 that the orbit of 1C
p
3 consists of the following

six points, each counted twice since 1C
p
3 is a �xed point of � .

1C
p
3; .1C

p
3/; .1C

p
3/; 1 �

p
3; .1 �

p
3/; .1 �

p
3/:

Since .1C
p
3/.1�

p
3/ D �2 and  D 1 , the product

Q
� �.1C

p
3/ is equal

to .�2/6 D 64 . Comparing this with J.1C
p
3/ D 1 , the conclusion follows.

4. Cubic curves as Riemann surfaces

�eorem 4.1. Every smooth cubic curve is conformally di�eomorphic to a �at
torus of the form C=� where � is a lattice . that is, an additive subgroup
generated by two complex numbers which are linearly independent over R :/

Here � is uniquely determined up to multiplication by a complex constant.
Hence the shape of � .De�nition 3.7/ is a complete invariant for the conformal
di�eomorphism class of C .

�is will be an immediate consequence of two lemmas. �e �rst lemma is
based on methods introduced by Abel. (However Abel himself did not work
in projective space or discuss algebraic curves. He simply studied integrals, for
example of the form

R
dx=

p
p.x/ where p.x/ is a polynomial.)

Lemma 4.2. Every smooth cubic curve in P2.C/ possesses a holomorphic 1-form
.D Abelian di�erential/ which is well de�ned and nowhere zero. �is 1-form is
unique up to multiplication by a non-zero complex constant.

Proof. We will use a�ne coordinates .x W y W 1/ , and take the curve in the
standard normal form y2 D x3 C ax C b , so that

10 In particular, note that ��1ı � ı �.1C
p
3/ D 1�

p
3 . It is noteworthy that to pass between the

two real points 1˙
p
3 on the locus J D 1 we need to make use of a Möbius transformation with

complex coe�cients.
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(16) 2 y dy D .3 x2 C a/dx:

Consider the holomorphic 1-form11 dw which is de�ned by

dw D
dx

y
whenever y ¤ 0;

and by

dw D
2 dy

3 x2 C a
whenever 3 x2 C a ¤ 0:

(It follows from Equation (16) that these two forms are equal when both are
de�ned.) �e two denominators cannot both be zero since the equations

ˆx D ˆy D 0

would imply that C is singular.) �is form dw is clearly well de�ned and non-
zero at all points of C which lie within the a�ne plane. Since the intersection
of C with the line at in�nity is the single �ex point .0 W 1 W 0/ , it only remains
to check what happens near this point. To do this, we will work with alternative
a�ne plane in which y D 1 , setting

x D X=Z and y D 1=Z so that .x W y W 1/ D .X W 1 W Z/:

Using the equation

(17) ˆ.X; 1;Z/ D �Z CX3 C aXZ2 C bZ3 D 0;

we see that ˆX .0 W 1 W 0/ D 0 and ˆZ.0 W 1 W 0/ D �1 , so that X can be used
as a local uniformizing parameter on C . In fact, we can express Z locally as a
function of X of the form Z D cXn C O.XnC1/ , with n � 2 since Z D 0 is
the tangent line. Substituting this expression for Z in the right hand side of the
equation Z D X3C aXZ2C bZ3 it follows easily that c D 1 and n D 3 , so that

Z D X3 CO.X5/; and dZ D
�
3X2 CO.X4/

�
dX:

Now using the equation

dw D
dx

y
D
d.X=Z/

1=Z
D
Z dX � X dZ

Z

it follows that
dw D

�
� 2 C O.X2/

�
dX:

�us the holomorphic 1-form dw is smooth and non-zero, even at the �ex point
.0 W 1 W 0/ . Since any other holomorphic 1-form can be obtained by multiplying
dw by a holomorphic function from C to C , which is necessarily constant since
C is compact, this proves Lemma 4.2.

11Caution: �is notation is not intended to suggest that dw is the total di�erential of a globally
de�ned function. Of course we can integrate to �nd a function which is locally well de�ned up to an
additive constant; but the integral is not well de�ned globally.
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Lemma 4.3. Let C be any compact Riemann surface which admits a nowhere
zero holomorphic 1-form � . �en the set of integrals

H
ƒ
� 2 C , where ƒ varies

over all smooth closed loops in C , forms a lattice � � C , and C is conformally
di�eomorphic to the quotient Riemann surface C=� .

Proof. (Compare [Don, p. 84].) Choose a base point p0 2 C . �en the universal
covering space eC can be described as the set of all pairs

�
p; ¹P º

�
where p can

be any point of C and ¹P º is any homotopy class of smooth paths from p0 to
p . Given any such pair, we can integrate along any P 2 ¹P º to obtain a complex
number w D

R
P
� 2 C which does not depend on the choice of P within its

homotopy class. In other words, we have a well de�ned mapping

(18)
�
p ; ¹P º

�
7! w D

Z
P

� from eC to C :

Further, the total di�erential dw of this function w is just the 1-form � , lifted
to the universal covering.

Using the �at Riemannian metric jdwj2 , we see that this function (18) is a
conformal isometry from eC onto the complex numbers. In fact the inverse map
from C to eC sends each straight line from the origin in C to a corresponding
geodesic in eC .

Now suppose that we have two di�erent paths P1 and P2 from p0 to p ,
yielding two complex numbers w1 and w2 . �en the di�erence can be expressed
as

w1 � w2 D

Z
ƒ

�;

where ƒ is the closed loop obtained by following P1 from p0 to p , and then
following P2 back to p0 . Conversely, given any closed loop ƒ from p0 to itself,
we can �rst follow P1 and then follow ƒ to obtain a new path P2 from p0 to
p . �is proves that two points in eC map to the same point of C if and only
if the di�erence between their images in C di�er by an element of the additive
group � � C .

Since the map from eC to C is a local di�eomorphism, it follows that �
must be a discrete additive subgroup: that is, it cannot contain non-zero elements
arbitrarily close to zero. Furthermore, since the quotient C=� Š C is compact,
� must contain two linearly independent elements. �is proves Lemma 4.3; and
�eorem 4.1 then follows easily.

�e converse assertion, that every �at torus T D C=� is conformally
di�eomorphic to a smooth cubic curve, is due to Weierstrass ([Wei1], [Wei2]),
and arose from his study of doubly periodic functions. Since this result is widely
known (see for example [La, Sec.2]), we will give only a brief summary.
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For any lattice � � C the Weierstrass } -function is the unique holomorphic
� -periodic map from CX� to C which has a pole of the form

}.w/ D 1=w2 C o.1/ as w ! 0:

�is satis�es a di�erential equation of the form�
}0.w/

�2
D 4}.w/3 � g2}.w/ � g3;

where the complex constants g2 and g3 can be computed from the lattice � .
In fact,

g2 D 60
X
!¤0

1

!4
and g3 D 140

X
!¤0

1

!6
;

where ! ranges over all non-zero lattice elements. (Compare [Ser, p.83-84].)
Setting

.X W Y W Z/ D .}.w/ W }0.w/ W 1/;

this yields a conformal di�eomorphism12 from the torus T D C=� onto the
cubic curve

Y 2 D 4X3 � g2X � g3:

�is can easily be transformed into our standard normal form by setting

Y D 2y and X D x; with g2 D �4a and g3 D �4b:

Felix Klein showed that the J -invariant can be computed as a holomorphic
function of the lattice parameter � , where � D Z˚ �Z with Im.�/ > 0 . See for
example [Ser, p.90].

Corollary 4.4. �e group Aut.C/ Š Aut.T / of conformal automorphisms of the
curve C Š T can be described by a split exact sequence

1 ! N.T / ! Aut.T / ! Aut.T ; 0/ ! 1;

where the normal subgroup N.T / Š T of automorphisms without �xed point can
be identi�ed with the group of translations of T Š C=� , and where the �nite
cyclic subgroup Aut.T ; 0/ Š Aut.C; p0/ is naturally isomorphic to the group
Aut.P2; C; p0/ of Corollary 3.10 .

12 To check di�erentiability near w D 0 , we can set }.w/ D w�2C�.w/ where �.w/ is holomorphic.
�en w maps to�

} W }0 W 1
�
D

�
w�2 C �.w/ W �2w�3 C �0.w/ W 1

�
D

�
w Cw3�.w/ W �2Cw3�0.w/ W w3

�
;

clearly yielding a local conformal di�eomorphism.
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Proof. Note �rst that the derivative of any conformal automorphism of T is a
holomorphic function from the compact surface T to C , and hence must be
constant. Hence any automorphism must be linear. But the only linear maps
without �xed points are translations. Further details are easily supplied.

Corollary 4.5. Two smooth cubic curves are projectively equivalent if and only
if they are conformally di�eomorphic. A given conformal di�eomorphism extends
to an automorphism of P2.C/ if and only if it maps �ex points to �ex points.

Proof. If the two curves are projectively equivalent, then they are certainly
conformally di�eomorphic. Conversely, if they are conformally di�eomorphic,
then it follows from the discussion above that they have a common J -invariant,
hence by Corollary 3.5 they are projectively equivalent. Any projective equivalence
between two curves certainly sends �ex points to �ex points. Conversely, given
any conformal equivalence from C1 to C2 which sends �ex points to �ex points,
we can choose a projective equivalence from C2 to C1 . �e composition will
then be a conformal automorphism of C1 which sends �ex points to �ex points.
Using Corollary 4.4, it is then not di�cult to check that this composition is a
projective equivalence from C1 to itself, and the conclusion follows.

Remark 4.6 (Birational Maps). In place of conformal di�eomorphisms, we could
equally well work with the purely algebraic concept of birational maps. Let
f D .f1 W f2 W f3/ be a non-zero triple of homogeneous polynomial maps
C3 ! C of the same degree, well de�ned up to simultaneous multiplication by
a non-zero complex constant. Let I.f/ � P2.C/ be the locus of common zeros:
f1 D f2 D f3 D 0 . �en the function f W P2.C/XI.f/ ! P2.C/ de�ned by the
formula

.x W y W z/ 7!
�
f1.x; y; z/ W f2.x; y; z/ W f3.x; y; z/

�
is called a rational map of P2.C/ .

It will be convenient to use the phrase almost everywhere to mean “except on a
�nite subset”. If C is a curve in projective space such that the intersection C\I.f/
is �nite, and if the image f

�
CXI.f/

�
is contained in a curve C0 , then we obtain

an almost everywhere de�ned map from C to C0 . Two such almost everywhere
de�ned maps will be called equivalent if they agree almost everywhere. An
equivalence class of such maps will be called a rational map from C to C0 . If a
rational map has an inverse, so that the composition is the identity map almost
everywhere, then it is called a birational map from C to C0 . Given a birational
map, there are �nite subsets S � C and S 0 � C0 so that CXS maps to C0XS 0

by a conformal di�eomorphism. Since the “singularities” (as the word is used
in complex function theory) at the points of S are clearly removable, it follows
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that every birational map between smooth curves extends to a uniquely de�ned
conformal di�eomorphism. In particular, the birational map can be assigned a
unique well de�ned value at every point.

If we combine this discussion with Nagell’s �eorem, as described in
Remark 3.2, then we obtain the following.

Corollary 4.7. Every conformal di�eomorphism between smooth cubic curves is
birational. Hence the group of all birational maps from a smooth cubic C to
itself can be identi�ed with the Lie group Aut.C/ consisting of all conformal
automorphisms of C .

Proof. First note that every projective equivalence is birational. From the discus-
sion above, we see that every birational map is a conformal di�eomorphism.

Let f W C ! C0 be a conformal di�eomorphism between smooth cubic curves,
and let p 2 C be a �ex point. By Nagell’s �eorem there is a smooth curve
C00 and a birational map g W C0 ! C00 taking f .p/ to a �ex point p00 2 C00 . By
Corollary 4.5 there exists a projective equivalence h W C00 ! C , and by Corollary
3.10 we may choose h so that it maps p00 to p . Since the composition h ı g ı f
maps p to itself, it follows by Corollary 3.10 that this composition is a projective
equivalence. Since g , h , and h ı g ı f are all birational equivalences, it follows
that f is also.

Remark 4.8. One curious invariant of the lattice � is the tiling of the complex
plane by Voronoi cells V! D ! C V0 , where ! varies over � , and where
V0 D V0.�/ is the compact convex polygon consisting of all z 2 C such that

jzj D min
!2�
jz � !j:

�is polygon V0 is a canonically de�ned fundamental domain for the additive
action of � on C ; and is a complete invariant for � , since � is the additive
group generated by the re�ections of zero in the edges of V0 . �e shape of V0 is
evidently a complete invariant for the conformal di�eomorphism class of C Š T

(where two polygons centered at the origin have the same “shape” if a complex
linear automorphism maps one to the other). In particular, the group Aut.T ; 0/
can be identi�ed with the group of rotational symmetries of V0 . �is has order 6
if V0 is a regular hexagon (with J D 0 ), order 4 if V0 is a square (with J D 1 ),
and order 2 otherwise. In most cases V0 is a non-regular hexagon (as in Figure
4). However, it is a rectangle if J is real with J > 1 .
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Figure 4
Voronoi hexagon for the lattice Z ˚ �Z with � D .3 C 4 i/=5 . �e
Voronoi polygon for any lattice has 180ı rotational symmetry. In this
example, since the lattice has two generators of equal length, it also has an
orientation reversing symmetry, which implies that the J -invariant is real.

5. �e chord-tangent map and additive group structure

We �rst discuss the chord-tangent map. Let C � P2.C/ be a smooth cubic
curve. Recall that an arbitrary line L � P2 intersects C in exactly three points,
counted with multiplicity. It will be convenient to call an unordered list .p; q; r/
of three (not necessarily distinct) points of C a collinear triple if it can be
obtained in this way, indicating multiplicity by duplication.

De�nition 5.1. �e correspondence .p; q/ 7! r , where .p;q; r/ is any collinear
triple, will be called the chord-tangent map from C�C to C , and will be denoted
by

(19) .p; q/ 7! p � q :

Note that the equation p � q D r is invariant under any permutation of p; q; r ,
and simply means that .p; q; r/ is a collinear triple.

For example, if p D q ¤ r , then the equation p � p D r means that .p; p; r/
is a collinear triple, and hence that the tangent line to C at p also intersects the
curve C at the point r .

Lemma 5.2. For any smooth complex cubic C , this chord-tangent map

.p; q/! p � q

is holomorphic as a map from C � C to C .
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Proof. It is �rst necessary to show that the line L determined by two points p
and q in C depends holomorphically on the pair .p; q/ . �is is clear if p ¤ q ,
but we must also consider the limiting case as p and q tend to a common limit.
Using a�ne coordinates .x; y; 1/ , and assuming that the slope s is �nite, so
that L is de�ned by an equation y D sx C c , it clearly su�ces to prove that
s depends holomorphically on p and q as p and q tend to a common point.
Describing the curve locally by a holomorphic function y D f .x/ , the slope of
the line between

�
x1; f .x1/

�
and

�
x2; f .x2/

�
is de�ned by

s.x1; x2/ D

8̂<̂
:
f .x1/ � f .x2/

x1 � x2
if x1 ¤ x2 ; but

f 0.x/ if x1 D x2 D x:

A standard power series argument shows that s is holomorphic as a function of
two variables.

Let ˆ.x; y; 1/ D 0 be the de�ning equation for the a�ne curve. Assuming
that we have chosen coordinates so that the point r D p � q also belongs to the
a�ne plane, the function ˆ.x; y; 1/ restricted to the line y D sxC c determined
by p and q can be expressed as a cubic polynomial

ˆjL D c0x
3
C c1x

2
C c2x C c3 with c0 ¤ 0;

where the coe�cients cj depend holomorphically on p and q . Factoring this
polynomial as c0.x � p/.x � q/.x � r/ , we have p C q C r D �c1=c0 . �erefore
r D �p � q � c1=c0 also depends holomorphically on p and q . �us the x -
coordinate of the required point r D p�q 2 L varies holomorphically, so r does
also.

Remark 5.3. As in §3, it is interesting to see what happens over an arbitrary
sub�eld F � C Assuming that C is de�ned by equations with coe�cients in
F , recall that CF is de�ned to be the intersection C \ P2.F/ . If .p; q; r/ is a
collinear triple for C , with p and q in CF , then it is not hard to check that
r 2 CF also13. �us the chord-tangent map .p; q/ 7! p � q is well de�ned as a
map from CF � CF to CF .

In the case that F is the �eld Q of rational numbers, the map p 7! p�p was
used by Diophantus of Alexandria in the third century to construct new points
of CQ out of known ones. (For examples, see [Cas, pp. 24–25].)

Next we will use the chord-tangent map to describe the additive group structure
of a smooth cubic curve.

13 If a polynomial equation has coe�cients in F , note that then sum of its roots is also in F .
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p q p*q = r
o

s

Figure 5
Constructing the sum pC q D s

Lemma 5.4. Let o be an arbitrarily chosen base point14 in the smooth cubic
curve C � P2.C/ . �en C admits one and only one additive group structure with
the following two properties:

(1) �e base point o is the zero element, so that oC p D p for any p 2 C .

(2) �e triple .p; q; r/ is collinear .as de�ned above/ if and only if the sum
pC qC r takes a constant value which depends only on the choice of o .

Proof of uniqueness. Assume that such a group structure exists. For any p and
q , let r D p � q and let s D r � o as in Figure 5, using the notation (19). �en
by Property (2) we have the identity

pC qC r D rC oC s:

Canceling the r ’s and using Property (1), it follows that pC q D s , or in other
words

(20) pC q D .p � q/ � o:

�is proves uniqueness.

Remark 5.5. �e constant p C q C r in Property (2) is necessarily equal to
o � o , as we see by considering the collinear triple o; o; o � o . Similarly, since
p; o � o; .o � o/ � p forms a collinear triple, we see that the additive inverse
�p is equal to .o � o/ � p .

14�e term elliptic curve is often reserved for a smooth cubic curve together with a speci�ed base
point.
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Proof of existence. De�ne the sum operation by the formula (20), setting r D p�q
and pC q D r � o as illustrated by Figure 5. Note the identity .p � q/ � q D p
for all p and q . In particular, taking q D o , we have

pC o D .p � o/ � o D p

for all p . �us o is indeed a zero element for the sum operation.
For any collinear triple.p; q; r/ , as in the diagram, we can compute the sum

.pC q/C r D sC r D .s � r/ � o D o � o;

which is constant, as required.
�is sum operation is clearly commutative. Over a general �eld, the proof of

associativity is somewhat tricky. (Compare [Cas].) However, in the complex case
it is quite easy: First note that for �xed q ¤ o the mapping p 7! pC q from C
to itself has no �xed points. In fact, with r � p D q and r � .pC q/ D o as in
Figure 5, the equation p D pC q would imply that q D o .

Now choose a conformal di�eomorphism  W C
Š
�! T to the appropriate

torus T D C=� , normalized by the requirement that  .o/ D 0 . �en translation
by q ¤ o on C corresponds to a �xed point free conformal di�eomorphism
from T to itself which maps zero to  .q/ . But the only such isomorphism is
the translation by  .q/ . It follows easily that the transformation  is not only
a conformal di�eomorphism but also preserves the sum operation. �erefore the
sum is associative; and  is an isomorphism of additive groups.

Remark 5.6. If o 2 CF for some sub�eld F � C , then it follows that CF is a
subgroup of C . �is construction is particularly convenient when CF has a �ex
point. In this case, we can choose a �ex point as base point o , so that o�o D o ,
and so that p C q C r D o for any collinear triple. As an example, with this
choice the classical “tangent process” p 7! p � p is given by the formula

p 7! � 2p:

One important consequence is that: the line joining any two distinct �ex points
must contain a third �ex point. (Compare Figure 6.) With this choice of base point,
the �ex points are precisely the elements of order three, satisfying pCpCp D o
within the additive group. In the complex case, this additive group of �ex points
has order nine, and hence, is isomorphic to Z=3˚ Z=3 .
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Figure 6
�e line between two distinct �ex points always intersects C in a third �ex point.

b

a

b

a

c d

c d

Figure 7
A schematic picture of the Hesse con�guration consisting of nine �ex points
together with the twelve lines joining them, placed on a square with opposite
sides identi�ed. .Compare [Hes2, Lehrsatz 12], as well as [AD]:/ �is con-
�guration has the nice property that any two points determine a line and any
two lines determine a point. �is con�guration cannot be realized by straight
lines in R3 , but can be more or less realized on a �at torus, as illustrated.



52 A. Bonifant and J. Milnor

Remark 5.7. It follows easily that every smooth complex cubic contains a
con�guration of nine �ex points which joined by twelve lines, where every
two points determine a line and every two lines determine a point. �is “Hesse
con�guration” can never be realized by real15 straight lines, even in a high
dimensional real space. However, it can almost be realized on a �at torus, as
illustrated schematically in Figure 7.

6. Real cubic curves

�is section is concerned with cubic curves CR � P2.R/ de�ned by equations
ˆ.x; y; z/ D 0 with real coe�cients. We will describe the curve CR as smooth
and irreducible if the locus CR itself contains no singular points and contains
no line.16 �is is equivalent to the requirement that the associated full complex
locus C � P2.C/ must have no singular points. In fact, if C has just one
singular point, then it must be invariant under the complex conjugation map
.x W y W z/ $ .x W y W z/ , and hence must belong to CR . If there are two
complex conjugate singular points, then the complex line joining them must have
intersection multiplicity at least two with each point, hence this entire line must
be contained in the curve C . Since this line is self-conjugate, its intersection with
P2.R/ will be a line in CR .

�e problem of classifying real cubic curves was studied already by Isaac
Newton (but in the a�ne plane; see [New] and compare [BK, p. 284]). In
general, the projective classi�cation of real curves is parallel to the complex
classi�cation, however there are important di�erences. In looking at pictures of
real cubic curves, it is important to remember that the real projective plane is
a non-orientable manifold, and that every real cubic curve has a non-orientable
neighborhood, which can never be completely pictured within an a�ne plane
(Remark 6.6).

Lemma 6.1. Every smooth irreducible real cubic curve contains a �ex point.

Proof of Lemma 6.1. Since the full complex curve C is smooth, it has nine �ex
points. �e complex conjugation map from C to itself, with �xed point set CR ,
must permute these nine points. Since it is an involution, it must �x at least one
of them.

15Remember that three generic points on a complex line lie on a real circle, not on a real line.
16�us we do not allow examples such as ˆ.x; y; z/ D x.x2 C y2 C z2/ . In this example, the real

locus is just a non-singular line x D 0 ; but the complex locus has singular points at .0 W ˙i W 1/ where
the two irreducible components intersect.
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�us it follows from �eorem 3.1 that we can put CR into the standard form

y2 D x3 C ax C b

by a real projective transformation. In particular, it follows that the invariant
J.CR/ D 4a

3=
�
4a3 C 27b2

�
is a real number.

Lemma 6.2. For each J 2 R there are two essentially di�erent smooth irreducible
real cubic curves. A complete invariant for smooth real curves in this normal
form, up to real projective equivalence, is provided by:

� this invariant J.CR/ together with

� the sign of b if b ¤ 0 , or

� the sign of a if b D 0 .

(Note that a and b cannot both be zero since CR is smooth.)

Proof. According to Lemma 3.4, the only allowable transformations replace the
pair of coe�cients .a; b/ by .t4a; t6b/ for some non-zero real number t . Since
t4 > 0 and t6 > 0 , the signs of a and b are both invariants. However, if we are
given both b and J then we can solve uniquely for a3 , provided that b ¤ 0 , so
the sign of a is uniquely determined. �e conclusion then follows easily.

More geometrically, if the transformation

x 7! t2x ; y 7! t3; a 7! t4a ; b 7! t6b

is to change the sign of b without changing a , then we must have t2 D �1 .
�us we must also change the sign of x . In particular, the associated triangle in
the complex x -plane will be rotated by 180ı . But we we must also multiply y

by
p
�1 , which makes a drastic change in the real curve. Compare Figures 2

and 8. Similarly, a change in the sign of a corresponds to a 90ı rotation of
the complex x -plane.

Now compare Figure 3. �is graph shows that each real J corresponds to two
possible values of the Hesse parameter k (although the case J D 1, b D 0

seems quite di�erent from the other cases). For J ¤ 1 the two distinct real values
of k are related by the involution k $ �.k/ of equation (15). In fact, we have
the following statement.

�eorem 6.3. Every smooth real cubic curve CR is real projectively equivalent
to the real Hesse curve C.k/R for one and only one real k ¤ 1 . �is curve
C.k/R is connected if k < 1 , and has two components if k > 1 .
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k � �3:91; b > 0; k � �0:58; b < 0;

k � 1:63; b < 0; k � 5:75; b > 0:

Figure 8
Examples of pairs of distinct real curves in standard normal form which
have the same J invariant, giving the corresponding value of the Hesse
k invariant. .See �eorem 6.3:/ �e curve in the real .x; y/-plane
is shown in solid curves, and the corresponding triangle in the com-
plex x -plane is shown below in dotted lines. For the two top �g-
ures we have J D �:583 , and for the bottom �gures, J D 3:43 .

To begin the proof, note that CR.k/ is smooth if and only if k ¤ 1 . (Compare
Lemma 2.2.)

Lemma 6.4. For k ¤ 1 , putting this curve into the standard normal form
y2 D x3 C ax C b , we have b < 0 if and only if

1 �
p
3 < k < 1C

p
3;

and b D 0 if and only if k D 1˙
p
3 , with b > 0 otherwise.
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Proof. Note �rst that J D 1 , or equivalently b D 0 , if and only if k D 1˙
p
3 .

(Compare Figure 3, together with the accompanying discussion.) �e two extremal
points k D 1˙

p
3 , together with the separating value k D 1 , cut the real line

into four subintervals such that J ¤ 1 , b ¤ 0 on each subinterval. �us it
is enough to check one example on each subinterval, as shown for example in
Figure 8.

Note. In the case k < 1 with C connected, a pair of test examples which is even
easier to work with is the following: �e Hesse curve C.�2/R is projectively
equivalent to the curve y2 D x3Cx in standard form, while C.0/R is projectively
equivalent to y2 D x3 � x . (�ese two examples, with k 2 .�1; 1 �

p
3/ and

k 2 .1 �
p
3; 1/ respectively, both correspond to the case J D 0 .) For k > 1 , a

more geometric discussion will be given in Remark 6.10 below.

Proof of �eorem 6.3. It follows easily from Lemma 6.4 that, for each J 2 R ,
the two distinct values of k correspond to two real curves which are not real
projectively equivalent since they are distinguished by the sign of b (if J ¤ 1 ),
or the sign of a if J D 1 . �us there is a one-to-one correspondence between
real projective equivalence classes and real parameters k ¤ 1 .

Finally, since the number of connected components cannot change as k varies
over either of the connected intervals .�1; 1/ and .1; C1/ , it is enough to
count the number of components for one example in each interval.

Corollary 6.5 (Flex Points). Every smooth real cubic curve CR has exactly three
�ex points.

Proof. In Hesse normal form, the �ex points are just the “exceptional points”
listed in Equation (4). Evidently exactly three of these points are real, namely
the three points .x W y W z/ with

x C y C z D xyz D 0:

�e conclusion follows.

Remark 6.6 (Topology). By de�nition, a simple closed curve in the real projective
plane is essential if it generates the homology group

H1
�
P2.R/I Z

�
Š Z=2:

Every essential simple closed curve has a neighborhood which is a Möbius band;
while every inessential one bounds a topological disk. As an example, every line
in P2.R/ is essential. Two simple closed curves with transverse intersections
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have an odd number of intersections if and only if both curves are essential.
If we think of P2.R/ as a unit sphere with antipodal points identi�ed, then an
essential curve is covered by a simple closed curve which cuts the sphere into
two antipodal pieces; while an inessential curve is covered by a pair of simple
closed curves which cut the sphere into three pieces.

It is not hard to see that every smooth irreducible real cubic CR has a unique
essential connected component, which contains the three �ex points. If there is a
second component, then it must be inessential.

Corollary 6.7 (Automorphisms). �e projective automorphism group
Aut

�
P2.R/; CR

�
is non-abelian of order six and can be identi�ed with the group

of permutations of the three �ex points. �at is, every permutation of the �ex
points extends uniquely to a projective automorphism of the pair

�
P2.R/; CR

�
.

Proof. Using the Hesse normal form, it follows easily that the permutations of
the three coordinates yield a group of six automorphisms, which can be identi�ed
with the group of six permutations of the three �ex points. To �nish the proof, we
must show that any automorphism which �xes all three �ex points is the identity.
However, any real automorphism clearly extends to a complex automorphism, so
we can apply Corollary 2.14. Any automorphism which �xes one �ex point p0
acts on the curve by a rotation by a root of unity around p0 ; but the only real
roots of unity are C1 , which corresponds to the identity automorphism, and �1
which interchanges the other two �ex points. �e conclusion follows.

Remark 6.8 (Visualizing Automorphisms). If we use the standard normal form,
or indeed almost any projectively equivalent form, then the six automorphisms are
very hard to visualize. �e picture becomes much clearer if we choose a spherical
metric for the projective plane which is invariant under these automorphisms, as
in Figure 9. However, it can still be confusing. For example, each of the three
involutions can be described either as a 180ı rotation about one of the �ex points
(which lifts to an orientation preserving rotation of the covering 2-sphere), or
as a re�ection about the line of symmetry (= great circle) which passes through
the north-south pole, and crosses the equator halfway between the other two �ex
points. With the second description, it evidently lifts to an orientation reversing
re�ection of the 2-sphere.

Remark 6.9 (Canonical Position). Every real cubic curve can also be represented
by a canonical picture in the a�ne plane which makes its six symmetries evident.
Simply put the three �ex points line at in�nity, and put the center of symmetry at
the origin. �e tangent lines at the three �ex points will then appear as asymptotic
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Figure 9
Showing a typical real Hesse curve C.�2:4/R , with the projective plane P 2.R/
represented as a sphere with opposite points identi�ed. �e tangent lines at the
three �ex points of this curve are also shown, as well as the center of symmetry
(the north-south pole), and the line through the three �ex points (the equator).

lines. If we choose a Euclidean metric so that the automorphisms are Euclidean
isometries, then the picture will be unique up to rotation and scale. Finally, we
can choose a rotation so that the re�ection .x; y/ $ .�x; y/ about the y axis
is one of the automorphisms, and choose the scale so that .0; 1/ is the unique
point on the y -axis which belongs to the essential component of CR . �en we
will have a uniquely determined picture for each C.k/R . Some typical examples
are shown in Figure 10.

As an extra bonus, this picture tends to a well de�ned limit as we approach
any one of the singular cases, at k D 1 or k D ˙1 . �e limit as k ! 1 is a
smooth curve plus an isolated point at the origin, while the limit as k ! ˙1
is a union of three lines.

Remark 6.10. In the case k > 1 when C.k/R has two components, there is a
direct geometric relationship between this canonical picture and the shape invariant
of Proposition 3.8. Choose an axis of symmetry, for example the y -axis, in any
of the pictures in Figure 10. �en the curve intersects this axis in three distinct
points. As a fourth distinct point, choose the intersection point of this axis of
symmetry with the horizontal asymptotic line. Labeling the coordinates of these
points along the line in order as y1; y2; y3; y4 , we can form a variant of the
cross-ratio:

� D
.y1 � y4/.y2 � y3/

.y1 � y2/.y3 � y4/
> 0:
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k � �1

k D �2 k D 1

k � C1

Figure 10
Nine pictures of real cubic curves in canonical form, with Hesse invariant k increasing
from near �1 in the �rst picture, to near C1 in the last. Note that the curve tends
to a union of three straight lines as k tends to ˙1 . �e case k D 1 is also singular,
with an isolated point at the origin. �e case k D �2 (with J D 0 ) is noteworthy,
since this is the only case where the three asymptotic lines meet at a common point.

Now choose a projective equivalence between C.k/R and a corresponding curve
in standard normal form, with the axis of symmetry corresponding to the x -
axis in standard coordinates. �en the points yj will correspond to the points
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r1; r2; r3; 1 , where the rj are the roots of x3 C ax C b . Hence � is equal to
the cross-ratio

� D
r2 � r3

r1 � r2
:

Now if we change the sign of the coe�cient b , then we must rotate the complex
x -plane by 180ı . �is will interchange r1 and r3 , and hence replace � by 1=� .
Inspecting Figure 10, we see that � tends to zero as k ! 1 , and that � tends to
in�nity as k !C1 .

References

[AD] M. Artebani and I. Dolgachev, �e Hesse pencil of plane cubic curves.
Enseign. Math. (2) 55 (2009) 235–273. Zbl 1192.14024 MR2583779

[Ba] I. G. Bashmakova, Arithmetic of algebraic curves from Diophantus to Poincaré.
Historia Mathematica 8 (1981) 393–416. Zbl 0471.01003 MR0635360

[BM] G. Birkhoff and S. Maclane, A Survey of Modern Algebra. Macmillan 1953.
[BDM] A. Bonifant, M. Dabija and J. Milnor, Elliptic curves as attractors in P 2 , Part

1: Dynamics, Experiment. Math. (4) 16 (2007), 385–420. (Also available
in: Collected Papers of John Milnor VII: Dynamical Systems (1984–2012)
(2014), 329–385.) Zbl 1136.37026

[BK] E. Brieskorn and H. Knörrer, Plane Algebraic Curves. Birkhäuser, 1986.
Zbl 0588.14019

[Cas] J.W. S. Cassels, Lectures on Elliptic Curves. London Mathematical Society
Student Texts No. 24, Cambridge University Press, 1995. Zbl 0752.14033
MR 1144763

[Dol] I. V. Dolgachev, Classical Algebraic Geometry: A Modern View. Cambridge
University Press, 2012. Zbl 1252.14001

[Don] S. Donaldson, Riemann Surfaces. Oxford University Press, 2011. Zbl 1235.30001
MR2856237

[Fr] H. R. Frium, �e group law on elliptic curves in Hesse form, Finite �elds with
applications to coding theory, cryptography and related areas (Oaxaca,
2001), 123–151, Springer, Berlin, 2002. Zbl 1057.14038 MR 1995332

[Gib] C. G. Gibson, Elementary Geometry of Algebraic Curves: An Undergraduate
Introduction. 1st edition, Cambridge University Press, 1998. Zbl 0997.14500
MR 1663524

[Ha] R. Hartshorne, Algebraic Geometry. Springer, 1977. Zbl 0367.14001
[Hes1] O. Hesse, Über die Elimination der Variabeln aus drei algebraischen Gleichun-

gen vom zweiten Grade mit zwei Variabeln. Journal für die reine und
angewandte Mathematik 28 (1844), 68–96. ERAM028.0817cj MR 1578418

[Hes2] Über die Wendepunkte der Curven dritter Ordnung. Journal für die reine
und angewandte Mathematik 28 (1844), 97–107.

http://zbmath.org/?q=an:1192.14024
http://www.ams.org/mathscinet-getitem?mr=2583779
http://zbmath.org/?q=an:0471.01003
http://www.ams.org/mathscinet-getitem?mr=0635360
http://zbmath.org/?q=an:1136.37026
http://zbmath.org/?q=an:0588.14019
http://zbmath.org/?q=an:0752.14033
http://www.ams.org/mathscinet-getitem?mr=1144763
http://zbmath.org/?q=an:1252.14001
http://zbmath.org/?q=an:1235.30001
http://www.ams.org/mathscinet-getitem?mr=2856237
http://zbmath.org/?q=an:1057.14038
http://www.ams.org/mathscinet-getitem?mr=1995332
http://zbmath.org/?q=an:0997.14500
http://www.ams.org/mathscinet-getitem?mr=1663524
http://zbmath.org/?q=an:0367.14001
http://zbmath.org/?q=an:028.0817cj
http://www.ams.org/mathscinet-getitem?mr=1578418


60 A. Bonifant and J. Milnor

[Kl] F. Klein, Über die Transformation der elliptischen Funktionen und die Au�ösung
der Gleichungen fünten Grades. Math. Annalen 14 (1878–79), 111–172.
JFM 10.0069.01

[Kna] A. Knapp, Elliptic Curves. Princeton University Press, 1992. Zbl 0804.14013
MR 1193029

[La] S. Lang, Elliptic Functions. Springer, 1987. Zbl 0615.14018 MR0890960
[Nag] T. Nagell, Sur les propriétés arithmétiques des cubiques planes du premier

genre. Acta Math. 52 (1928), 93–126. JFM54.0403.03 MR 1555271
[New] I. Newton, Enumeratio Linearum Terti Ordinis, Appendix to Optics. London,

1704.
[P] H. Poincaré, Sur les propriété arithmétiques des courbes algébriques. Journal

de mathèmatiques 7 (1901), 161–233 (Œvres 5). JFM32.0564.06
[PP] P. Popescu-Pampu, Iterating the Hessian. A dynamical system on the moduli

space of elliptic curves and dessins d’enfants. Noncommutativity and
singularities. Proceedings of French-Japanese symposia held at IHÉS,
Bures-sur-Yvette, France, November 20–23 and November 15–18, 2006, ed.
by J.-P. Bourguignon. Mathematical Society of Japan, 83–98, Tokyo, 2009.
Zbl 1180.14022 MR2463492

[RB] A. Rice and E. Brown, Why ellipses are not elliptic curves. Mathematics
Magazine 85 (2012), 163–176. Zbl 1260.14038 MR2924153

[Ser] J.-P. Serre, A Course in Arithmetic. Springer, 1973. Zbl 0256.12001 MR0344216
[Ste] J. Steiner, Allgemeine Eigenschaften der algebraischen Curven. Journal für

die reine und angewandte Mathematik 47 (1854), 1–6. ERAM047.1255cj
MR 1578853

[Sti] J. Stillwell, Mathematics and its History. 3rd. edition, Springer, 2010.
Zbl 1207.01003 MR2667826

[Web] H. Weber, Lehrbuch der Algebra. Braunschweig, 1898. �ird edition 1908
republished by Chelsea, New York. JFM39.0508.06

[Wei1] K. Weierstrass, Zur �eorie der elliptischen Functionen. Sitzungsber. Königl.
Akad. Wiss. Berlin (1882), 443–451. Zbl 14.0387.03

[Wei2] Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen. Nach
Vorlesungen und Aufzeichnungen des Herrn K. Weierstrass bearbeitet und
herausgegeben von H. A. Sch. Zweite Ausgabe. Erste Abteilung. Springer,
1893. JFM25.0757.01

[Weil] A. Weil, Number �eory. An Approach �rough History from Hammurapi to
Legendre. Birkhäuser, 1984. Zbl 0531.10001

[Whi] H. S. White, Plane Curves of the �ird Order. Harvard University Press, 1925.
JFM51.0509.01

(Reçu le 30 mars 2016)

Araceli Bonifant, Mathematics Department, University of Rhode Island,
5 Lippitt Hall, Kingston, RI 02881, USA

e-mail: bonifant@uri.edu

http://zbmath.org/?q=an:10.0069.01
http://zbmath.org/?q=an:0804.14013
http://www.ams.org/mathscinet-getitem?mr=1193029
http://zbmath.org/?q=an:0615.14018
http://www.ams.org/mathscinet-getitem?mr=0890960
http://zbmath.org/?q=an:54.0403.03
http://www.ams.org/mathscinet-getitem?mr=1555271
http://zbmath.org/?q=an:32.0564.06
http://zbmath.org/?q=an:1180.14022
http://www.ams.org/mathscinet-getitem?mr=2463492
http://zbmath.org/?q=an:1260.14038
http://www.ams.org/mathscinet-getitem?mr=2924153
http://zbmath.org/?q=an:0256.12001
http://www.ams.org/mathscinet-getitem?mr=0344216
http://zbmath.org/?q=an:047.1255cj
http://www.ams.org/mathscinet-getitem?mr=1578853
http://zbmath.org/?q=an:1207.01003
http://www.ams.org/mathscinet-getitem?mr=2667826
http://zbmath.org/?q=an:39.0508.06
http://zbmath.org/?q=an:14.0387.03
http://zbmath.org/?q=an:25.0757.01
http://zbmath.org/?q=an:0531.10001
http://zbmath.org/?q=an:51.0509.01
mailto:bonifant@uri.edu


On real and complex cubic curves 61

John Milnor, Institute for Mathematical Sciences, Stony Brook University,
Stony Brook, NY 11794-3660, USA

e-mail: jack@math.stonybrook.edu

© Fondation L’Enseignement Mathématique

mailto:jack@math.stonybrook.edu

	Introduction
	Hesse Normal Form for Complex Cubic Curves
	The standard normal form
	Cubic curves as Riemann surfaces
	The chord-tangent map and additive group structure
	Real cubic curves
	References

