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Holding convex polyhedra by circular rings

Hiroshi Maehara and Horst Martini

Abstract. In 1995, T. Zam�rescu proved that most convex bodies can be held by circles, that
is, for most convex bodies B it is possible to attach a hinged circular ring of appropriate
size to B so that it cannot slip out of B . Since then, many results have been obtained
concerning the existence of such circles for various convex polyhedra, and the sizes of such
circles when they exist. It seems, however, that these results were obtained individually
by ad hoc methods. In this paper we develop a uni�ed concept and methods enabling a
systematic presentation of these results, and we also obtain a few new results. A complete
survey on the topic is also presented.
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1. Introduction and a survey of related results

A convex body is a compact convex set with interior points in R3 . How is
it possible to hold a convex body by a hinged circular ring (see Figure 1.1) of
suitable size? �is paper is an attempt at a rather systematic treatise concerning
this problem and variants thereof, especially for convex polyhedra.

In applied disciplines like robotics (and sub�elds thereof, such as motion
planning) one is confronted with many geometric problems, and also their
solutions need a lot of geometric intuition. �is implies that typical questions
from computational, discrete, and convex geometry can also yield basic knowledge
for very applied situations. �e general type of question investigated here can
be described as follows: given some geometric object A (e.g., a compact point
set, called “body”) and some system B of barriers (described as a geometric
con�guration, like a �nite point set, a family of compact sets, or the complement
of it), A should pass B with respect to the group of motions (or its subgroup
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1 Introduction and a survey of related results

A convex body is a compact convex set with interior points in R3. How is it possible
to hold a convex body by a hinged circular ring (see Figure 1.1) of suitable size?
This paper is an attempt of a rather systematic treatise concerning this problem
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Figure 1.1: A hinged circular ring

and variants thereof, especially for convex polyhedra.
In applied disciplines like robotics (and subfields thereof, such as motion plan-

ning) one is confronted with many geometric problems, and also their solutions
need a lot of geometric intuition. This implies that typical questions from com-
putational, discrete, and convex geometry can yield basic knowledge also for very
applied situations. The general type of question investigated here can be described
as follows: given some geometric objectA (e.g., a compact point set, called “body”)
and some system B of barriers (described as a geometric configuration, like a finite
point set, a family of compact sets, or the complement of it), A should pass B
with respect to the group of motions (or its subgroup of translations) remaining
completely in the complement of B, with or without friction. Contrarily, one can
ask for a system B sufficient to block A in some optimal sense (e.g., for B a finite
set having, for instance, smallest cardinality to do so). Choosing A as convex body,
B as family of translates of A or as finite set, and using the translation group, we
enter combinatorial geometry, i.e., we refer then to notions like blocking numbers,
fixing systems and hindering systems (see [40], [9, § 4], and [8]). Extending this
to the group of motions, we are in the little field of immobilizing (convex) shapes
which is mainly investigated in computational geometry (cf., e.g., [10] and [14])
and more related to our investigations here. The piano mover’s problem is even
more general: one has to find a continuous motion that will take a given body or
a family of bodies, presented by A, from a given initial position to a desired final
position, but with strong geometric constraints which forbid the bodies to come
in contact with the fixed barrier system B and with each other (see, e.g., [30] and,
for an even more general concept, [15]). This problem is also nicely presented in
the problem book [13], see G5 there.

The problem that we will discuss here is closely related to these concepts:
given a convex body A, find a non-extensible string forming a net B around A
(which can, in particular, consist only of a circle) such that A cannot slip out.
And describe, somehow contrarily, a related situation where A unexpectedly can
slip out. Looking at the existing references, this little field might be called “circles
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of translations) remaining completely in the complement of B , with or without
friction. Contrarily, one can ask for a system B su�cient to block A in some
optimal sense (e.g., for B a �nite set having, for instance, smallest cardinality to
do so). Choosing A as convex body, B as family of translates of A or as �nite
set, and using the translation group, we enter combinatorial geometry, i.e., we
refer then to notions like blocking numbers, �xing systems and hindering systems
(see [Zon], [BMS, § 4], and [BM]). Extending this to the group of motions, we
are in the small �eld of immobilizing (convex) shapes which is investigated mainly
in computational geometry (cf., e.g., [BFMM] and [CSU]) and more related to
our investigations here. �e piano mover’s problem is even more general: one has
to �nd a continuous motion that will take a given body or a family of bodies,
presented by A , from a given initial position to a desired �nal position, but with
strong geometric constraints which forbid the bodies to come in contact with the
�xed barrier system B and with each other (see, e.g., [SS] and, for an even more
general concept, [Daw]). �is problem is also nicely presented in the problem
book [CFG], see G5 there.

�e problem that we will discuss here is closely related to these concepts:
given a convex body A , �nd a non-extensible string forming a net B around
A (which can, in particular, consist only of a circle) such that A cannot slip
out. And describe, somehow contrarily, a related situation where A unexpectedly
can slip out. Looking at the existing references, this small �eld might be called
“circles (and cages) holding convex bodies against continuous motions”, and is
mainly developed in 3 -space. It is our aim to survey �rst the recent state of
knowledge, to develop then a uni�ed concept which allows a convenient approach
to and a new presentation of existing results, and to derive also various new
results. In a few cases, results described in the following sections in a detailed
way are, for the sake of completeness, already shortly mentioned in the survey
starting now.

In 1920, Zindler [Zin] studied problems on circular cylinders C of smallest
possible radius r1 which cover a convex body A . He observed that if A is for
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example an a�ne cube, then one can move a circle, whose radius r0 is smaller
than r1 , “over A”. Conversely, one can interpret that circle as �xed object B ,
and then A as the body that can be moved “through B ”. Zindler posed the
interesting question for the smallest possible ratio r0

r1
still guaranteeing that this

process is possible. Zindler’s contribution can be seen as the starting point for
the small �eld that we discuss here. More precisely, we ask for the optimal total
length of circles that can hold (certain types of) convex bodies against motions.

Zam�rescu [Zam1] de�ned that a convex body A in R3 is said to be held by
a circle B if the intersection of B and the interior of A is empty and it is not
possible to continuously and rigidly move B away from A without intersecting
the interior of A (we say then that B holds A ). He proved that the family
of convex bodies which cannot be held by some circle form a nowhere dense
subset of the space of all three-dimensional convex bodies with respect to the
Hausdor� metric (see [Schn, §1.8]). A single, but suggestive result was derived
in [Tan1] (see also [Tan2]): the regular triangular prism with all edges of length
1 can be held by a circle. In [Fru] it was shown that if a circle of diameter d
holds a convex body of minimum width w , then d

w
> 2

3
, which is sharp. �e

author also claims that this can be generalized to Rn; n > 2 , for holding spheres
of dimension n � 2 , and he derives respective inequalities in terms of d and
w . In [Zam3] it is proved that, in the sense of Baire category (cf. [Gru] and
[Schn, §2.6]), for most convex bodies in R3 Zindler’s observation is true: they
can be pushed through a circle whose radius is smaller than that of the smallest
circumscribed circular cylinder. (From now on we use the word “most" in this
sense.) If we imagine this circle as a circular hole in a wall, the natural question
occurs which in�uence then the thickness of this wall has. �is is studied in
[Zam2], and it turns out that in most cases it has in�uence. �is type of results
is clearly related to embeddings of convex bodies A into in�nitely long cylinders
perpendicular to the holes in walls. See [Mae1] for regular tetrahedra in circular
cylinders, and [MT2] for regular tetrahedra in regular triangular cylinders. In the
�rst case all tetrahedra have equivalent positions (i.e., they can be superposed
by a rigid motion within the respective prism), in the second case not, and
the non-equivalent positions are described in [MT2]. �e analogous question for
square prisms seems not to be settled. Coming back to holding circles, Maehara
[Mae4] proved that, for A being the regular icosahedron, the range of the space
of all circles (de�ned via diameter) holding A has two components. �is was
generalized by Bárány and Zam�rescu. �ey showed in [BZ2] and [BZ1] that
for most convex bodies the space of their holding circles has in�nitely many
components, and that various “counterintuitive” relations between extremal radii
of holding circles exist. Another result from [BZ1] refers to the replacement of
holding circles by planar closed convex curves, called holding frames. It says
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that if the holding frame is neither a triangle (no triangle holds any convex
body) nor a circle (any circle �xes some convex bodies, e.g., tetrahedra), then
some tetrahedron in R3 is �xed by this frame without motion. �e latter means
that even the rotation is excluded which is trivially possible for holding circles.
Continuing the study of holding frames, it is proved in [BMT] that a convex body
can pass through a triangular hole i� it can do so by a translation along a line
perpendicular to the hole. As an application, the minimum size of an equilateral
triangular hole through which a regular tetrahedron with unit edge-length can pass
is determined. Again the fact that no triangular frame can hold a convex body is
used, and it is shown that every non-triangular frame can �x some tetrahedron.
�e authors of [ITZ] determine the smallest circular and the smallest square
hole in a plane of R3 through which a regular tetrahedron of �xed size can
pass. Extensions of these problems to higher dimensions are given in [IZ] and
[MT1]. In the �rst paper diameters and minimal widths of convex hyperplanar
holes in dimensions 3, 4, and 5 are determined, through which respective regular
simplices can pass. And [MT1] refers to n -dimensional simplices which can be
pushed through hyperplanar holes whose shapes are given by .n�1/ -dimensional
regular simplices, cubes, and balls.

It is clearly impossible to hold a ball in R3 by a circular ring. So we continue
by recalling some classical results on holding a unit ball by other constraints. We
now do this in greater detail, since this part of the �eld is no longer discussed
in the following sections.

�eorem 1.1 (Besicovitch [Bes1]). �e length of an inextensible string to construct
a net around a unit ball so that the ball cannot slip out of it is greater than 3� ,
and it is possible to bring it as near to 3� as we like.

Figure 1.2 shows that for any " > 0 there is a net of total length smaller than
3� C " that holds a unit ball. Indeed, since the length of the string used in any
“3-cycle" of the net in Figure 1.2 is less than 2� , the ball cannot slip out of the

holding circles by planar closed convex curves, called holding frames. It says that
if the holding frame is neither a triangle (no triangle holds any convex body) nor a
circle (any circle fixes some convex bodies, e.g. tetrahedra), then some tetrahedron
in R3 is fixed by this frame without motion. The latter means that even the
rotation is excluded which is trivially possible for holding circles. Continuing the
study of holding frames, it is proved in [2] that a convex body can pass through
a triangular hole iff it can do so by a translation along a line perpendicular to
the hole. As an application, the minimum size of an equilateral triangular hole
through which a regular tetrahedron with unit edge-length can pass is determined.
Again the fact that no triangular frame can hold a convex body is used, and it
is shown that every non-triangular frame can fix some tetrahedron. The authors
of [19] determine the smallest circular and the smallest square hole in a plane
of R3 through which a regular tetrahedron of fixed size can pass. Extensions of
these problems to higher dimensions are given in [20] and [25]. In the first paper
diameters and minimal widths of convex hyperplanar holes in dimensions 3, 4, and
5 are determined, through which respective regular simplices can pass. And [25]
refers to n-dimensional simplices which can be pushed through hyperplanar holes
whose shapes are given by (n− 1)-dimensional regular simplices, cubes, and balls.

It is clearly impossible to hold a ball in R3 by a circular ring. So we continue
by recalling some classical results on holding a unit ball by other constraints. We
do it more detailed now, since this part of the field is no longer discussed in the
following sections.

Theorem 1.1 (Besicovitch [5]). The length of an inextensible string to construct
a net around a unit ball so that the ball cannot slip out of it is greater than 3π,
and it is possible to bring it as near to 3π as we like.

Figure 1.2 shows that for any ε > 0 there is a net of total length smaller than
3π + ε that holds a unit ball. Indeed, since the length of the string used in any
“3-cycle” of the net in Figure 1.2 is less than 2π, the ball cannot slip out of the
net. Croft [12] proved the same result with a different method, see also [31]. By
allowing that some of the six great circular arcs (see again Figure 1.2) can break,
in [12] also a more general question is studied.
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Figure 1.2: A net that holds a unit ball

The smallest cube that contains a unit ball must have dimensions 2 × 2 × 2.
Hence the sum of its edge-lengths is 24. L. Fejes Tóth [8, p. 143] conjectured that
the total length of the edges of a convex polyhedron that contains a unit ball is
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Figure 1.2
A net that holds a unit ball
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net. Croft [Cro] proved the same result with a di�erent method, see also [Ste].
By allowing that some of the six great circular arcs (see again Figure 1.2) can
break, in [Cro] also a more general question is studied.

�e smallest cube that contains a unit ball must have dimensions 2 � 2 � 2 .
Hence the sum of its edge-lengths is 24 . L. Fejes Tóth [8, p. 143] conjectured
that the total length of the edges of a convex polyhedron that contains a unit ball
is greater than or equal to 24, with equality only when the polyhedron is a cube.
�is conjecture was proved by Besicovitch and Eggleston.

�eorem 1.2 (Besicovitch and Eggleston [BE]). �e total length of the edges of
a convex polyhedron that contains a unit ball is at least 24 , and 24 is attained
only by a cube.

By a cage we mean the one-skeleton of a convex polyhedron; this notion
creates several interesting problems in combinatorial geometry (see, e.g., [Schr]).
Coxeter asked for the minimum of the total edge-length of a cage that can hold
a unit ball. For a right triangular prism, all whose edges are of length

p
3 , the

distance from the center of the prism to the midpoint of each edge is equal to 1 .
Hence the 1-skeleton of this triangular prism is a cage that can hold a unit ball,
and the total length of edges of this cage is 9

p
3 � 15:5884 . Coxeter conjectured

in his review of the paper [BE] (see MR0095448 and also [Cox]) that this is the
smallest value of the total length of edges of a cage that can hold a unit ball.
His conjecture was refuted by Besicovitch.

�eorem 1.3 (Besicovitch [Bes2], Aberth [Abe]). �e total length of the edges
of a cage that can hold a unit ball is greater than 
 D 8

3
� C 2

p
3 � 11:84 , and


 is the greatest lower bound.

Besicovitch constructed a cage of total length 
 C " that holds a unit ball,
and Aberth proved that 
 is the greatest lower bound of the total length of edges
of such a cage. Figure 1.3 shows Besicovitch’s cage. In the review of [Bes2]
(see MR0155236) Coxeter repeats his conjecture restricted to polyhedra with the
property that all their edges have to touch the enclosed sphere.

In [Zam4] Zam�rescu extends the representations of usual segments with two
endpoints to “segments” between two convex bodies in their space with respect to
the Hausdor� metric. A path in this space consisting of k consecutive segments
is then called a k -move. He shows that if a convex body A is held by a cage
B , it can migrate through a 2 -move to a translate A0 of A outside B , keeping
its diameter constant on the way. Also further results of this type are veri�ed in
[Zam4], and two interesting research problems on cages are formulated in [MZ].

http://www.ams.org/mathscinet-getitem?mr=0095448
http://www.ams.org/mathscinet-getitem?mr=0155236
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greater than or equal to 24, with equality only when the polyhedron is a cube.
This conjecture was proved by Besicovitch and Eggleston.

Theorem 1.2 (Besicovitch and Eggleston [7]). The total length of the edges of a
convex polyhedron that contains a unit ball is at least 24, and 24 is attained only
by a cube.

By a cage we mean the one-skeleton of a convex polyhedron; this notion creates
several interesting problems in combinatorial geometry (see, e.g., [29]). Coxeter
asked for the minimum of the total edge-length of a cage that can hold a unit
ball. For a right triangular prism, all whose edges are of length

√
3, the distance

from the center of the prism to the midpoint of each edge is equal to 1. Hence the
1-skeleton of this triangular prism is a cage that can hold a unit ball, and the total
length of edges of this cage is 9

√
3 ≈ 15.5884. Coxeter conjectured in his review

of the paper [7] (see MR0095448 and also [11]) that this is the smallest value of
the total length of edges of a cage that can hold a unit ball. His conjecture was
refuted by Besicovitch.

Theorem 1.3 (Besicovitch [6], Aberth [1]). The total length of the edges of a
cage that can hold a unit ball is greater than γ = 8

3π + 2
√
3 ≈ 11.84, and γ is the

greatest lower bound.

Besicovitch constructed a cage of total length γ + ε that holds a unit ball, and
Aberth proved that γ is the greatest lower bound of the total length of edges of such
a cage. Figure 1.3 shows Besicovitch’s cage. In the review of [6] (see MR0155236)
Coxeter repeats his conjecture restricted to polyhedra with the property that all
their edges have to touch the enclosed sphere.

In [38] Zamfirescu extends the representations of usual segments with two end-
points to “segments” between two convex bodies in their space with respect to
the Hausdorff metric. A path in this space consisting of k consecutive segments is
then called a k-move. He shows that if a convex body A is held by a cage B, it can
migrate through a 2-move to a translate A′ of A outside B, keeping its diameter
constant on the way. Also further results of this type are verified in [38], and two
interesting research problems on cages are formulated in [27].
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Figure 1.3: Construction of Besicovitch’s cage
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Figure 1.3
Construction of Besicovitch’s cage

Let us return here to convex bodies and circles. To make our arguments clear,
we de�ne some notions as follows. For a given closed domain D � R3 , two
circles in R3 n int.D/ are said to be isotopic to each other over D if one of
these circles can be continuously and congruently moved in R3 n int.D/ so that
it coincides with the other one, where int.�/ denotes the interior of � . �us,
circles isotopic in that sense are congruent. A circle � is said to be attached to
D � R3 if � \ int.D/ D ¿ and conv.� / \ D ¤ ¿ , where conv.�/ denotes the
convex hull of � . If a circle � attached to a convex body B in R3 is isotopic
over B to a circle � 0 satisfying conv.� 0/\B D ¿ , then we say that � can slip
out of B . If � cannot slip out of B , then we say that � holds B . A convex
body B is called circle-free if no circle can hold B .

Balls and ellipsoids in R3 are clearly circle-free. It is also not di�cult to see
that every right circular cylinder is circle-free. Every right circular cone is also
circle-free. For two nonempty subsets U; V � R3 , the Minkowski sum U C V is
de�ned as

U C V D ¹uC v W u 2 U; v 2 V º:

It is known (Maehara [Mae3]) that for every compact convex set X contained
in a plane in R3 , the Minkowski sum X C B is circle free, where B is a ball
of arbitrary radius centered at the origin. �us, a sausage (i.e., the Minkowski
sum of a line-segment and a ball) is also circle-free.

Is there a convex body that can be held by a circle? Surprisingly, most convex
bodies (in the sense of Baire categories, see again [Gru] and [Schn, §1.8]) can
be held by circles, as was proved by Zam�rescu.

�eorem 1.4 (Zam�rescu [Zam1]). �e set of circle-free convex bodies forms a
subset in the space of all convex bodies in R3 which is nowhere dense with
respect to Hausdor� metric.
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In the sequel, we mainly concentrate on holding circles of convex polyhedra.
In §2, we introduce “trunks of convex polyhedra" and “transversal disks of trunks"
as basic notions, give several examples, and present a so-called “Symmetrization
Lemma" and an “Isotopy Lemma" as key lemmas. In §3, various results on circles
holding convex polyhedra are shown by using these notions and lemmas, and in
§4 the key lemmas are proved.

2. Holding a convex polyhedron by a circle

2.1. Trunks of a convex polyhedron. In the sequel, a set of points A;B;C; : : :
in R3 and its convex hull are both denoted by the juxtaposition ABC : : : .

A trunk E of a convex polyhedron ˘ in R3 is a nonempty set of those edges
of ˘ that are cut by a single plane passing through no vertex of ˘ . Since such
a plane divides the endpoints of the edges into two nonempty sets, a trunk can be
represented as E D .U; V / , where U is the set of endpoints on one side of the
plane, and V is the set of endpoints on the other side of the plane. �e convex
hull of E (i.e., the convex hull of U [ V ) is denoted by hEi . (Note that hEi is
a convex polyhedron, and E can be regarded as a trunk of hEi .) For example,
in a tetrahedron ABCD in R3 , the pair .AB;CD/ represents a trunk of the
tetrahedron. A circle is said to be attached to a trunk of a convex polyhedron if
the disk bounded by the circle intersects all edges of the trunk.

Let us recall here two types of quadratic surfaces that we use in the following.
Let g; l be a pair of lines in R3 , and suppose that g ¬ l (non-parallel) and
that g does not lie in a plane perpendicular to l . By rotating g around l , we
obtain a surface. If g and l intersect, then we have a (double) circular cone with
axis l ; otherwise, we have one-sheet hyperboloids of revolution with axis l , see
Figure 2.1. �ese surfaces are ruled surfaces, represented by the equation

x2

a2
C
y2

a2
�
z2

b2
D c2 :

Figure 2.1
A one-sheet hyperboloid of revolution
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(If c D 0 , then this equation represents the surface of a (double) circular cone,
and otherwise a one-sheet hyperboloid of revolution is represented.) Note that the
latter surface is also “constricted" at z D 0 . A one-sheet hyperboloid of revolution
divides R3 into two parts, and the one that contains the axis of the surface is
called the inside of the surface.

�e next lemma is obvious, but useful.

Lemma 2.1. Let H be a circular cone or a one-sheet hyperboloid of revolution.

(1) A section of H by a plane is a circle if and only if the plane is perpendicular
to the axis of H .

(2) If a section of H is an ellipse, then its minor axis lies on a plane
perpendicular to the axis of H .

�e length of a line segment XY in R3 is denoted by jXY j . For a point
X and a line g in R3 , the distance d.X; g/ from X to g is de�ned by
d.X; g/ D min¹jXY j W Y 2 gº . �e distance d.l; g/ between two lines l; g

is de�ned by d.l; g/ D min¹jXY j W X 2 l; Y 2 gº . For a family of lines
g1; g2; : : : ; gn .n > 2/ , a line l that satis�es

X 2 l ) d.X; g1/ D � � � D d.X; gn/

is called an equidistant line of the family ¹g1; : : : ; gnº . For example, for a family
of lines g1; : : : ; gn lying on a one-sheet hyperboloid of revolution H , it can be
proved by using Lemma 2.1 (1) that the axis l of H is an equidistant line of
¹g1; : : : ; gnº .

�eorem 2.1. If a family of lines ¹g1; : : : ; gnº has an equidistant line l such
that l does not lie on a plane perpendicular to g1 and l ¬ g1 , d.l; g1/ > 0 ,
then g1; : : : ; gn lie on a one-sheet hyperboloid of revolution with axis l .

Proof. We use the following fact, without proof.
? For two disjoint lines l; g , let P;X 2 l; Q; Y 2 g be points that
satisfy jPQj D d.g; l/ and XY ? l . �en, (i) l ? PQ ? g and (ii)
jXY j is uniquely determined by jPQj; jPX j and d.X; g/ .

Let H be the hyperboloid obtained by rotating g1 around l . Since l is the
equidistant line of g1; : : : ; gn , there exist P 2 l and Qi 2 gi such that
jPQ1j D � � � D jPQnj D d.l; g1/ . �en PQi ? l , and hence each Qi lies
on H . For a point X 2 l , let Yi 2 gi satisfy that XYi ? l . By (ii) of the above
fact ? , we have jXY1j D � � � D jXYnj . Hence each Yi lies on H . �erefore each
gi lies on H .
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A trunk E D .U; V / is called hyperboloidal (resp. conic) if all edges of the
trunk lie on a one-sheet hyperboloid of revolution (resp. on a circular cone). In
a right pyramid with apex P whose base is a regular polygon, the set of edges
emanating from P is clearly a conic trunk.

Example 2.1. In the regular icosahedron I shown in Figure 2.2 left, the trunk
E D .ABCDE;A�B�C �D�E�/ is hyperboloidal. (Indeed, the line FF � is an
equidistant line of the lines determined by the edges in E .) �us, by rotating I
around the line FF � , we have a non-convex �gure as shown in Figure 2.2 right.
Note that E contains pairs mutually symmetric to the center of the icosahedron,
say .AD�; A�D/ , .BE�; B�E/ , etc. Let � be the minimal circle attached to E
at its most “constricted" part, and let � 0 .¤ � / be any other circle attached to
E . If the plane determined by � 0 is perpendicular to FF � , then clearly � 0 has
larger diameter than � . If the plane of � 0 is not perpendicular to FF � , then
the plane cuts a pair of edges of E that are symmetric to each other with respect
to the center of the icosahedron, at a pair of points with distance greater than the
diameter of � . Hence the diameter of � 0 is larger than that of � . �erefore I
can be held by a circle.

Theorem 2.1. If a family of lines {g1, . . . , gn} has an equidistant line l such that
l does not lie on a plane perpendicular to g1 and l ∦ g1, d(l, g1) > 0, then g1, . . . , gn
lie on a one-sheet hyperboloid of revolution with axis l.

Proof. We use the following fact, without proof.

⋆ For two disjoint lines l, g, let P,X ∈ l, Q, Y ∈ g be points that satisfy
|PQ| = d(g, l) and XY ⊥ l. Then, (i) l ⊥ PQ ⊥ g and (ii) |XY | is
uniquely determined by |PQ|, |PX| and d(X, g).

Let H be the hyperboloid obtained by rotating g1 around l. Since l is the equidis-
tant line of g1, . . . , gn, there exist P ∈ l and Qi ∈ gi such that |PQ1| = · · · =
|PQn| = d(l, g1). Then PQi ⊥ l, and hence each Qi lies on H. For a point
X ∈ l, let Yi ∈ gi satisfy that XYi ⊥ l. By (ii) of the above fact ⋆, we have
|XY1| = · · · = |XYn|. Hence each Yi lies on H. Therefore each gi lies on H.

A trunk E = (U, V ) is called hyperboloidal (resp. conic) if all edges of the trunk
lie on a one-sheet hyperboloid of revolution (resp. on a circular cone). In a right
pyramid with apex P whose base is a regular polygon, the set of edges emanating
from P is clearly a conic trunk.

Example 2.1. In the regular icosahedron I shown in Figure 2.2 left, the trunk
E = (ABCDE,A∗B∗C∗D∗E∗) is hyperboloidal. (Indeed, the line FF ∗ is an
equidistant line of the lines determined by the edges in E .) Thus, by rotating I
around the line FF ∗, we have a non-convex figure as shown in Figure 2.2 right.
Note that E contains pairs mutually symmetric to the center of the icosahedron,
say (AD∗, A∗D), (BE∗, B∗E), etc. Let Γ be the minimal circle attached to E
at its most “constricted” part, and let Γ ′ ( ̸= Γ ) be any other circle attached to
E . If the plane determined by Γ ′ is perpendicular to FF ∗, then clearly Γ ′ has
larger diameter than Γ . If the plane of Γ ′ is not perpendicular to FF ∗, then the
plane cuts a pair of edges of E that are symmetric to each other with respect to
the center of the icosahedron, at a pair of points with distance greater than the
diameter of Γ . Hence the diameter of Γ ′ is larger than that of Γ . Therefore I can
be held by a circle.
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Figure 2.2: A hyperboloidal trunk of a regular icosahedron
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Figure 2.2
A hyperboloidal trunk of a regular icosahedron

Example 2.2. Similarly, a regular tetrahedron T , a cube C , and a regular
octahedron O have hyperboloidal trunks, and they can be held by circles as shown
in Figure 2.3. A regular dodecahedron has two di�erent types of hyperboloidal
trunks as indicated by attached circles in Figure 2.4, and it is also not circle-free.

Remark 2.1. Even if a convex polyhedron has a hyperboloidal trunk, the smallest
circle attached to the hyperboloidal trunk does not necessarily hold the convex
polyhedron. For example, in a right triangular pyramid P -ABC with equilateral
triangular base ABC , its trunk .PA;BC/ is hyperboloidal by Lemma 3.2 in §3,
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Example 2.2. Similarly, a regular tetrahedron T , a cube C, and a regular oc-
tahedron O have hyperboloidal trunks, and they can be held by circles as shown
in Figure 2.3. A regular dodecahedron has two different types of hyperboloidal
trunks as indicated by attached circles in Figure 2.4, and it is also not circle-free.

...............
..............
..............
..............
..............
..............
..............
......

...............................................................................................................................................................................

...........................................................................................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.....

...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....

.........................................................................................................................

..........................................................................................
...........
.........
..........

......................
........................................................................................................................................................................................................

...............
......

.......................................................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.

.......................................................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.

..........
.........
.........
.........
.........
.........
.........
.....

..........
.........
.........
.........
.........
.........
.........
............................................................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.

..........
.........
.........
.........
.........
.........
.........
.....

.........
........
........
........
........
........
........
........
........
........
........
....................................................................................................................

........
........
........
........
........
...

.........
........
........
........
........
........
...

.................................................................................................................................
.................

............................................................................................................................................................................................................................................................................................................................................
.......................

...............................................................................................................................................
.........................

.........................
................

.....................................................................................................................................
............
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..........

.....................................................................................................................

.........
........
........
........
........
........
........
........
........
.

............
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...............................................................................................................................................

...... ..... ....
. ..... .....

..... ..... ....
. .............................................................

......
.....
.....
.....
.....
.....
.....

...... ..... ..... ..... ..... ..... ..... ..... ..... ..... .....

......
.....
.....
.....
.....
.....
.....

.........
......

......
..............

......................
......................... ........... ..... ..... ..... ..... ..... ..... .....

...........................................................................................................................................................................................
.

Figure 2.3: Holding circles
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Figure 2.4: Circles attached to hyperboloidal trunks of a dodecahedron

Remark 2.1. Even if a convex polyhedron has a hyperboloidal trunk, the smallest
circle attached to the hyperboloidal trunk does not necessarily hold the convex
polyhedron. For example, in a right triangular pyramid P -ABC with equilateral
triangular base ABC, its trunk (PA,BC) is hyperboloidal by Lemma 3.2 in §3,
but if the height of the pyramid is very small, then the pyramid is circle-free, as
proved in Theorem 3.3 in §3.

Lemma 2.2. If a hyperboloidal trunk E has at least five edges, then it determines
a unique one-sheet hyperboloid of revolution.

Proof. Let Hi, i = 1, 2, be one-sheet hyperboloids of revolution, each containing
the trunk E , and let li, i = 1, 2, be their axes. Let Ē denote the set of lines
determined by the edges of E . Since a quadratic surface and a line that does not
lie on the surface intersect in at most two points, each Hi must contain Ē . Let H
be a plane that is perpendicular to l1. Then H ∩ H1 is a circle by (1) of Lemma
2.1. Since Ē contains at least five lines, it is possible to choose H so that H ∩ Ē
contains at least five points. Then H ∩H2 is a quadratic curve on H that has five
points in common with the circle H ∩ H1, and hence H ∩ H2 = H ∩ H1. In this
case, H is also perpendicular to l2 by (1) of Lemma 2.1, and l2 passes through the
center of the circle H ∩H1. Therefore l1 = l2, and hence H1 = H2.
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Figure 2.3
Holding circles

Example 2.2. Similarly, a regular tetrahedron T , a cube C, and a regular oc-
tahedron O have hyperboloidal trunks, and they can be held by circles as shown
in Figure 2.3. A regular dodecahedron has two different types of hyperboloidal
trunks as indicated by attached circles in Figure 2.4, and it is also not circle-free.
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Figure 2.4: Circles attached to hyperboloidal trunks of a dodecahedron

Remark 2.1. Even if a convex polyhedron has a hyperboloidal trunk, the smallest
circle attached to the hyperboloidal trunk does not necessarily hold the convex
polyhedron. For example, in a right triangular pyramid P -ABC with equilateral
triangular base ABC, its trunk (PA,BC) is hyperboloidal by Lemma 3.2 in §3,
but if the height of the pyramid is very small, then the pyramid is circle-free, as
proved in Theorem 3.3 in §3.

Lemma 2.2. If a hyperboloidal trunk E has at least five edges, then it determines
a unique one-sheet hyperboloid of revolution.

Proof. Let Hi, i = 1, 2, be one-sheet hyperboloids of revolution, each containing
the trunk E , and let li, i = 1, 2, be their axes. Let Ē denote the set of lines
determined by the edges of E . Since a quadratic surface and a line that does not
lie on the surface intersect in at most two points, each Hi must contain Ē . Let H
be a plane that is perpendicular to l1. Then H ∩ H1 is a circle by (1) of Lemma
2.1. Since Ē contains at least five lines, it is possible to choose H so that H ∩ Ē
contains at least five points. Then H ∩H2 is a quadratic curve on H that has five
points in common with the circle H ∩ H1, and hence H ∩ H2 = H ∩ H1. In this
case, H is also perpendicular to l2 by (1) of Lemma 2.1, and l2 passes through the
center of the circle H ∩H1. Therefore l1 = l2, and hence H1 = H2.

9

Figure 2.4
Circles attached to hyperboloidal trunks of a dodecahedron

but if the height of the pyramid is very small, then the pyramid is circle-free, as
proved in �eorem 3.3 in §3.

Lemma 2.2. If a hyperboloidal trunk E has at least �ve edges, then it determines
a unique one-sheet hyperboloid of revolution.

Proof. Let Hi ; i D 1; 2 , be one-sheet hyperboloids of revolution, each containing
the trunk E , and let li ; i D 1; 2 , be their axes. Let NE denote the set of lines
determined by the edges of E . Since a quadratic surface and a line that does not
lie on the surface intersect in at most two points, each Hi must contain NE . Let H
be a plane that is perpendicular to l1 . �en H \H1 is a circle by (1) of Lemma
2.1. Since NE contains at least �ve lines, it is possible to choose H so that H \ NE
contains at least �ve points. �en H \H2 is a quadratic curve on H that has �ve
points in common with the circle H \H1 , and hence H \H2 D H \H1 . In this
case, H is also perpendicular to l2 by (1) of Lemma 2.1, and l2 passes through
the center of the circle H \H1 . �erefore l1 D l2 , and hence H1 D H2 .

Remark 2.2. If a hyperboloidal trunk E of a convex polyhedron has at most
four edges, then a one-sheet hyperboloid of revolution that contains E is not
necessarily unique. For example, consider the rectangular pyramid B -AB�C �D
inscribed in the cube ABCD -A�B�C �D� , see Figure 2.5. It has a hyperboloidal
trunk E D .AB�; BC �D/ consisting of four edges DA;AB;BB�; B�C � , which
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is a subset of a hyperboloidal trunk .AB�D�; BC �D/ of the cube ABCD -
A�B�C �D� . Hence the line A�C is an equidistant line of the family NE of
lines determined by the edges of E . Since the lines in NE are also determined
by D1A;AB;BB

�; B�C �1 , the line C1A� is also an equidistant line of NE , where
C1;D1; C

�
1 are the mirror images of C;D;C � with respect to the plane AA�B�B .

Hence there is another one-sheet hyperboloid of revolution that contains E by
�eorem 2.1.

Remark 2.2. If a hyperboloidal trunk E of a convex polyhedron has at most four
edges, then a one-sheet hyperboloid of revolution that contains E is not necessarily
unique. For example, consider the rectangular pyramid B-AB∗C∗D inscribed
in the cube ABCD-A∗B∗C∗D∗, see Figure 2.5. It has a hyperboloidal trunk
E = (AB∗, BC∗D) consisting of four edges DA,AB,BB∗, B∗C∗, which is a subset
of a hyperboloidal trunk (AB∗D∗, BC∗D) of the cube ABCD-A∗B∗C∗D∗. Hence
the line A∗C is an equidistant line of the family Ē of lines determined by the edges
of E . Since the lines in Ē are also determined by D1A,AB,BB∗, B∗C∗

1 , the line
C1A

∗ is also an equidistant line of Ē , where C1, D1, C
∗
1 are the mirror images of

C,D,C∗ with respect to the plane AA∗B∗B. Hence there is another one-sheet
hyperboloid of revolution that contains E by Theorem 2.1.
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Figure 2.5: A rectangular pyramid inscribed in a cube

2.2 Transversal disks of a trunk

Let E be a trunk of a convex polyhedron in R3. A disk Ω is called a transversal
disk of E if Ω intersects all edges in the trunk E . (Note that Ω may intersect
an edge in E at its endpoint.) More generally, for a set of lines L, a plane (or
a disk) is called a transversal plane (or a transversal disk) of L if the plane (or
the disk) intersects all lines in L. The boundary circle of a transversal disk of a
trunk E is a circle attached to the trunk E . If a transversal disk of E contains a
prescribed vertex P of E , then the disk is called a transversal disk of the trunk
E on P . Note that a transversal disk of E on P is also a transversal disk of E .
Among the transversal disks of E (on P ), one that has the minimum diameter is
called a minimal transversal disk of E (on P ). Since disks are compact and convex,
it follows, by employing Blaschke’s selection theorem (cf. [28, §1.8]), that for any
trunk (and a prescribed vertex P ), there always exists a minimal transversal disk
of the trunk (on P ). Note that the boundary circle of a minimal transversal disk
of a trunk E intersects ⟨E⟩ in at least two points. The diameter of a disk Ω is
denoted by d(Ω).

Let us prove here the following theorem obtained by Tanoue [34].

Theorem 2.2. Every triangular right prism with equal edges is not circle-free.

Proof. Let ABCA∗B∗C∗ be a triangular prism as shown in Figure 2.6 left, and
let E = (ABB∗, A∗C∗C). Let Ω be a minimal transversal disk of E , and ΩA be a
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Figure 2.5
A rectangular pyramid inscribed in a cube

2.2. Transversal disks of a trunk. Let E be a trunk of a convex polyhedron
in R3 . A disk ˝ is called a transversal disk of E if ˝ intersects all edges in
the trunk E . (Note that ˝ may intersect an edge in E at its endpoint.) More
generally, for a set of lines L , a plane (or a disk) is called a transversal plane
(or a transversal disk) of L if the plane (or the disk) intersects all lines in L .
�e boundary circle of a transversal disk of a trunk E is a circle attached to the
trunk E . If a transversal disk of E contains a prescribed vertex P of E , then the
disk is called a transversal disk of the trunk E on P . Note that a transversal disk
of E on P is also a transversal disk of E . Among the transversal disks of E (on
P ), one that has the minimum diameter is called a minimal transversal disk of E
(on P ). Since disks are compact and convex, it follows, by employing Blaschke’s
selection theorem (cf. [Schn, §1.8]), that for any trunk (and a prescribed vertex
P ), there always exists a minimal transversal disk of the trunk (on P ). Note that
the boundary circle of a minimal transversal disk of a trunk E intersects hEi in
at least two points unless the disk degenerated into a point. �e diameter of a
disk ˝ is denoted by d.˝/ .

Let us prove here the following theorem obtained by Tanoue [Tan3].

�eorem 2.2. Every triangular right prism with equal edges is not circle-free.

Proof. Let ABCA�B�C � be a triangular prism as shown in Figure 2.6 left, and
let E D .ABB�; A�C �C/ . Let ˝ be a minimal transversal disk of E , and ˝A
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be a minimal transversal disk of E on A . It is enough to show that the boundary
circle of ˝ cannot slip out of the triangular prism. To show this, we use the
inequality

.�/ d.˝/ < a
p
7=2 D d.˝A/;

where a is the edge-length of the prism. �is is proved later. Tentatively, we
assume this. Suppose that the boundary circle @˝ of ˝ can slip out of the
triangular prism. During the slipping out process, the circle @˝ and the disk ˝

move, and ˝ must meet vertices of the triangular prism. Let Z denote the �rst
vertex that ˝ meets during a slipping out process, and denote by ˝Z the disk
when ˝ comes to Z . �e point Z must be one of A;A�; C; B� . If Z D A�

then, ˝A� is a transversal disk of E on A� . However, the diameter of a minimal
transversal disk of E on A� (which is equal to d.˝A/ ) is larger than d.˝/ by
.�/ , a contradiction. Suppose Z D B� . Let X be the intersection of AC and
˝B� . Since jB�X j � jA�M j D a

p
7=2 , we have d.˝B�/ > d.˝/ by .�/ , a

contradiction. Similarly, in the cases Z D A;C , there arise contradictions. Hence
the circle @˝ cannot slip out of the prism.

Now, to prove .�/ , we show that (1) d.˝A/ D a
p
7=2 and (2) d.˝/ < a

p
7=2 ,

where a is the edge-length of the prism.
(1) Every transversal disk of E on A intersects the edge B�C � at a point

Y . �en the diameter of the transversal disk is greater than or equal
to jAY j . While Y moves on the line segment B�C � , the minimum
value of jAY j is attained when Y is at the midpoint N of B�C � , and
jAN j D

q
a2 C a2.

p
3=2/2 D a

p
7=2 . �us d.˝A/ � a

p
7=2 . On the other

hand, denoting the midpoint of BC by M , the smallest disk that contains
the rectangle AA�NM is a transversal disk of E on A and has diameter
a
p
7=2 . Hence d.˝A/ D a

p
7=2 .

minimal transversal disk of E on A. It is enough to show that the boundary circle
of Ω cannot slip out of the triangular prism. To show this, we use the inequality

(∗) d(Ω) < a
√
7/2 = d(ΩA),

where a is the edge-length of the prism. This is proved later. Tentatively, we
assume this. Suppose that the boundary circle ∂Ω of Ω can slip out of the trian-
gular prism. During the slipping out process, the circle ∂Ω and the disk Ω move,
and Ω must meet vertices of the triangular prism. Let Z denote the first vertex
that Ω meets during a slipping out process, and denote by ΩZ the disk when Ω
comes to Z. The point Z must be one of A,A∗, C,B∗. If Z = A∗ then, ΩA∗ is
a transversal disk of E on A∗. However, the diameter of a minimal transversal
disk of E on A∗ (which is equal to d(ΩA)) is larger than d(Ω) by (∗), a contra-
diction. Suppose Z = B∗. Let X be the intersection of AC and ΩB∗ . Since
|B∗X| ≥ |A∗M | = a

√
7/2, we have d(ΩB∗) > d(Ω) by (∗), a contradiction. Simi-

larly, in the cases Z = A,C, there arise contradictions. Hence the circle ∂Ω cannot
slip out of the prism.

Now, to prove (∗), we show that (1) d(ΩA) = a
√
7/2 and (2) d(Ω) < a

√
7/2,

where a is the edge-length of the prism.
(1) Every transversal disk of E on A intersects the edge B∗C∗ at a point Y .

Then the diameter of the transversal disk is greater than or equal to |AY |. While
Y moves on the line segment B∗C∗, the minimum value of |AY | is attained when

Y is at the midpoint N of B∗C∗, and |AN | =
√
a2 + a2(

√
3/2)2 = a

√
7/2. Thus

d(ΩA) ≥ a
√
7/2. On the other hand, denoting the midpoint of BC by M , the

smallest disk that contains the rectangle AA∗NM is a transversal disk of E on A
and has diameter a

√
7/2. Hence d(ΩA) = a

√
7/2.
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Figure 2.6: A triangular prism

(2) Let P and P ∗ be the points on the segments MC and NB∗, respectively,
such that |MP | = |NP ∗| = ε/2, where ε is a small positive number. Let L be
the midpoint of AA∗, and let Q,Q∗ be the points where the plane PLP ∗ cuts the
segments AC and A∗B∗, respectively, see Figure 2.6 right. Then PQ ∥ P ∗Q∗ ∥
MA, and PP ∗Q∗Q is a rectangle. Since |AQ| = ε (because |PM | = ε/2), we have
|QP | = (a− ε)

√
3/2. Hence

|QP ∗|2 = 3
4 (a− ε)2 + a2 + ε2 = 7

4a
2 − 3

2εa+ 2ε2.

11

Figure 2.6
A triangular prism

(2) Let P and P � be the points on the segments MC and NB� , respectively,
such that jMP j D jNP �j D "=2 , where " is a small positive number. Let
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L be the midpoint of AA� , and let Q;Q� be the points where the plane
PLP � cuts the segments AC and A�B� , respectively, see Figure 2.6 right.
�en PQ k P �Q� k MA , and PP �Q�Q is a rectangle. Since jAQj D "

(because jPM j D "=2 ), we have jQP j D .a � "/
p
3=2 . Hence

jQP �j2 D 3
4
.a � "/2 C a2 C "2 D 7

4
a2 � 3

2
"aC 2"2:

If " is very small, then �3
2
"aC 2"2 < 0 , and jQP �j < a

p
7=2 . Hence the

diameter of the circumscribed circle of the rectangle PQQ�P � is smaller
than a

p
7=2 . Moreover, if " is very small, then the midpoint L of AA�

is contained in the smallest disk that contains PP �Q�Q , and hence the
smallest disk containing PP �Q�Q is a transversal disk of E . �erefore
d.˝/ < a

p
7=2 .

�is completes the proof of the theorem.

2.3. �e Symmetrization Lemma and the Isotopy Lemma. A plane H is
called a symmetry plane of a trunk E D .U; V / if both U; V are plane-symmetric
to themselves and have a common symmetry plane H . For example, in the regular
icosahedron in Figure 2.2 left, the plane determined by F;A; F � is a symmetry
plane of the trunk .ABCDE;A�B�C �D�E�/ .

�e following lemma is sketchily proved by Maehara [Mae3]. We present a
complete proof in §4.

Lemma 2.3 (Symmetrization Lemma). Suppose that a trunk E of a convex
polyhedron has a symmetry plane H , and let ˝ be a transversal disk of E .
(1) �e boundary circle of ˝ is isotopic over hEi to the boundary circle of a

transversal disk of E that is symmetric to itself with respect to the plane H .
(2) If ˝ is not symmetric to itself with respect to H , and ˝ \H 6� hEi , then

˝ is not a minimal transversal disk of E .

�is lemma is also true if we replace “transversal disk of E " by “transversal
disk of E on P ", for a vertex P of E lying on H .

�e following conjecture was stated by Maehara [Mae4].

Conjecture 2.1. If the diameters of two circles attached to the same trunk of a
convex polyhedron are equal, then the two circles are isotopic over the convex
polyhedron.

�ough we could not prove this conjecture, the following special case is useful.
�e proof of this special case is also given in §4. By a directed line, we mean
a line, like the z -axis in R3 , in which the .C/ -direction is speci�ed. �en, for
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any plane that cuts the directed line, its upper side (.C/ -side) and its lower side
are de�ned naturally. For a trunk E , the set of lines determined by the edges in
E is denoted by NE .

Lemma 2.4 (Isotopy Lemma). Let E D .U; V / be a hyperboloidal trunk of a
convex polyhedron ˘ that lies on a one-sheet hyperboloid of revolution H with
“directed" axis l . Suppose that (i) there is a transversal plane of E that is
perpendicular to l and U lies in its upper side, and that (ii) E has a symmetric
plane.

(1) If a circle � D @˝0 attached to E satis�es that
.�/ the plane of the circle cuts the axis l and U lies in its upper side,
then the disk ˝0 can be continuously and congruently moved, through
transversal disks of NE , to a transversal disk ˝1 of NE that lies on a plane
perpendicular to the axis l of H . Hence � is isotopic over ˘ to @˝1 .

(2) Two congruent circles attached to E , both satisfying .�/ , are isotopic over ˘ .

Remark 2.3. For every hyperboloidal trunk of regular polyhedra shown in
Figures 2.2, 2.3, 2.4, the Isotopy Lemma can be applied and any two congruent
circles attached to the trunk are isotopic over the regular polyhedron.

Example 2.3. Let E D .ABCDE;A�B�C �D�E�/ be a trunk of a regular
icosahedron I as shown in Figure 2.7 left, and E 0 D .AA�; CD/ be a trunk of
the tetrahedron ACDA� . �en the minimal transversal disk of E on A coincides
with the minimal transversal disk of E 0 on A .

(2) Two congruent circles attached to E, both satisfying (†), are isotopic over Π.

Remark 2.3. For every hyperboloidal trunk of regular polyhedra shown in Figures
2.2, 2.3, 2.4, the Isotopy Lemma can be applied and any two congruent circles
attached to the trunk are isotopic over the regular polyhedron.

Example 2.3. Let E = (ABCDE,A∗B∗C∗D∗E∗) be a trunk of a regular icosa-
hedron I as shown in Figure 2.7 left, and E ′ = (AA∗, CD) be a trunk of the
tetrahedron ACDA∗. Then the minimal transversal disk of E on A coincides with
the minimal transversal disk of E ′ on A.

..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............................................................................................................................

....................................................................................................................................................................................................................................................

.......................................................
..........
..........
..........
..........
..........
..........
..........
..........
........

..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........

.........

........

........

........

........

...
..............................................................................................................................................................

........................................

.................
................
...........

...................................................................................................

...................................................................................................

.................
................
................
................
................
................
................
...................................................................................................................

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

.

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

.

...................................................................................................................................
................
................
................
................
................
................
.

A DB C

F

F ∗

D∗ A∗

E∗

•

•
•

X

Y........
.........
................

........................
.....................................

.......................................................................................................................................................................................................
. ........

........
.........
.........
..........
...........

.............
.................

..............................
.....................................................................................................................................................................................................................................................................................................................................

..................
..............
............
..........
.........
.........
........
........
........
........
........
.........
.........
.........
..........
...........
............

...............
.....................

.....................................................................................................................................................................................................................................................................................................................................................................
................
.............
...........
..........
..........
.........
.........
.........
........
........
....•

•

•

A

Y

X

Figure 2.7: Example 2.3

This can be seen as follows. Let Ω be a minimal transversal disk of E on A.
First, note that the plane H containing AFF ∗ is a common symmetry plane of the
trunk E and the trunk E ′. Note also that since H∩Ω ̸⊂ ⟨E⟩, Ω must be symmetric
to itself with respect to H by (2) from the Symmetrization Lemma. Since the
trunk E is hyperboloidal, the intersection points of Ω and the edges in this trunk
lie on an ellipse passing through A, and A is an endpoint of the major axis of this
ellipse. Hence ∂Ω∩⟨E⟩ consists of A and two points X,Y on the edges A∗C,A∗D,
see Figure 2.7 right. On the other hand, if X,Y are points on the edges A∗C,A∗D
such that |A∗X| = |A∗Y |, then the smallest disk containing the triangle AXY
becomes a transversal disk of E through A. Hence Ω coincides with the minimal
transversal disk of E ′ on A.

Example 2.4. Let P -A1A2 . . . A2m be a regular pyramid with apex P whose base
is a regular (2m)-gon A1A2 . . . A2m. Let E = (P,A1A2 . . . A2m), and Ω1 be the
minimal transversal disk of E on A1. Then ∂Ω1 intersects E in only two edges
PA1, PAm+1, and d(Ω1) = min{|A1X| : X ∈ PAm+1}.

To see this, we may suppose that Ω1 is symmetric to itself with respect to
the plane PA1Am+1 by (1) from the Symmetrization Lemma. Then the plane
containing Ω1 cuts the circular cone determined by E in an ellipse whose major
axis lies in the plane PA1Am+1. Hence ∂Ω intersects only two edges PA1, PAm+1

of E . Moreover, for every X on the edge PAm+1, a disk with diameter A1X which
perpendicularly intersects the plane PA1Am+1 is a transversal disk of E on A1.
Hence d(Ω1) = min{|A1X| : X ∈ PAm+1}.

Similarly to Example 2.4, we have the following

13

Figure 2.7
Example 2.3

�is can be seen as follows. Let ˝ be a minimal transversal disk of E on
A . First, note that the plane H containing AFF � is a common symmetry plane
of the trunk E and the trunk E 0 . Note also that since H \˝ 6� hEi , ˝ must be
symmetric to itself with respect to H by (2) from the Symmetrization Lemma.
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Since the trunk E is hyperboloidal, the intersection points of ˝ and the edges
in this trunk lie on an ellipse passing through A , and A is an endpoint of the
major axis of this ellipse. Hence @˝ \ hEi consists of A and two points X; Y
on the edges A�C;A�D , see Figure 2.7 right. On the other hand, if X; Y are
points on the edges A�C;A�D such that jA�X j D jA�Y j , then the smallest disk
containing the triangle AXY becomes a transversal disk of E through A . Hence
˝ coincides with the minimal transversal disk of E 0 on A .

Example 2.4. Let P -A1A2 : : : A2m be a regular pyramid with apex P whose
base is a regular .2m/ -gon A1A2 : : : A2m . Let E D .P;A1A2 : : : A2m/ , and ˝1

be the minimal transversal disk of E on A1 . �en @˝1 intersects E in only two
edges PA1; PAmC1 , and d.˝1/ D min¹jA1X j W X 2 PAmC1º .

To see this, we may suppose that ˝1 is symmetric to itself with respect to
the plane PA1AmC1 by (1) from the Symmetrization Lemma. �en the plane
containing ˝1 cuts the circular cone determined by E in an ellipse whose major
axis lies in the plane PA1AmC1 . Hence @˝ intersects only two edges PA1; PAmC1
of E . Moreover, for every X on the edge PAmC1 , a disk with diameter A1X
which perpendicularly intersects the plane PA1AmC1 is a transversal disk of E
on A1 . Hence d.˝1/ D min¹jA1X j W X 2 PAmC1º .

Similarly to Example 2.4, we have the following

Example 2.5. Let P -A1A2 : : : A2mC1 be a regular pyramid with apex P whose
base is a regular .2mC 1/ -gon A1A2 : : : A2mC1 . Let E D .P;A1A2 : : : A2mC1/ ,
and ˝1 be the minimal transversal disk of E on A1 . �en ˝1 coincides with the
minimal transversal disk of .PA1; AmC1AmC2/ on A1 , where .PA1; AmC1AmC2/
is a trunk of the tetrahedron PA1AmC1AmC2 .

3. Various results

3.1. �e range of holding circles. �e holding range h.B/ of a convex body
B is a subset of the reals R de�ned by

h.B/ D ¹d 2 R W there is a circle of diameter d that holds B º:

�eorem 3.1. For a regular tetrahedron T , a cube C , and a regular octahedron
O , all having unit edges, we have

.i/ h.T / D Œ1=
p
2; 0:896:::/ ;

.ii/ h.C/ D Œ
p
2; 1:535:::/ ;

.iii/ h.O/ D Œ1; 1:1066:::/ ;
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where the upper bounds of (i), (ii), (iii) are the minimum values of the functions

2.x2 � x C 1/
p
3x2 � 4x C 4

;

p
2.x2 C 2/

p
x2 C 2x C 3

;
2.x2 C 1/

p
3x2 C 2x C 3

;

respectively.

�e result (i) was obtained by Itoh et al. [ITZ], and (ii) as well as (iii) were
obtained by Maehara [Mae2] and Tanoue [Tan3].

Proof. We show only the octahedron case (iii). �e other cases follow similarly.
Put labels A;B;C;A�; B�; C � on the six vertices of O as in Figure 3.1. First,
note that a circle attached to a trunk of O that is not hyperboloidal can always
slip out of O by a translation. Let E D .ABC;A�B�C �/ , a hyperboloidal trunk
of O . It will be clear that the minimum diameter of a holding circle of O is
the diameter of a minimal transversal disk of E , that is, the diameter of the
circumscribed circle of the regular hexagon whose vertices are the midpoints of
the edges in E . Hence its diameter is 1 .
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Figure 3.1: The attached circle Γ

Let us find the value d0 of the diameter of a minimal transversal disk of E on
A. Since the plane H determined by A,A∗ and the midpoint of BC is a symmetry
plane of E , we may consider the diameter of a minimal transversal disk Ω of E on
A that is symmetric to itself with respect to H by (1) from the Symmetrization
Lemma. LetK be the plane that contains the disk Ω. Let P,Q be the points where
K cuts A∗B and A∗C, respectively. Since E is hyperboloidal, the intersections of
K and the edges in E lie on an ellipse and A is an endpoint of the major axis of
this ellipse. Hence the circle ∂Ω must pass through P,Q and A.

Let x = |BP | = |CQ|. Then |PQ| = |PA∗| = 1− x, and since ∠ABA∗ = 90◦,
we have |AP | =

√
1 + x2 = |AQ|. Now, the diameter of the circumscribed circle

of the isosceles triangle APQ is computed as 2(x2+1)√
3x2+2x+3

, and the minimum value

d0 of this function is d0 = 1.106 . . . .

Fruchard [17] proved that for every convex body B, its holding range h(B) is
a subset of the interval (2w/3,∞), where w denotes the width of B, that is, the
minimum distance between a pair of parallel planes bounding a strip containing
B. The lower bound 2w/3 cannot be improved generally.

If P is a regular tetrahedron, or a cube, or a regular octahedron, then h(P)
is an interval as seen in Theorem 3.1. However, the holding range of a convex
polyhedron is not always an interval. Indeed, it is known (Maehara [24]) that the
holding range of a regular icosahedron is disconnected. Moreover, it was shown
by Bárány and Zamfirescu [3] that there are convex bodies B such that h(B) has
arbitrarily many connected components.

3.2 Regular pyramids

Lemma 3.1. Let P -A1A2 . . . An denote a regular pyramid with apex P whose base
is a regular n-gon A1A2 . . . An, n ≥ 3. Let E1 = (PA1, A2A3 . . . An), and denote
by ΩP , Ω1, and Ω the minimal transversal disk of E1 on P , the minimal transversal
disk of E1 on A1, and the minimal transversal disk of E1, respectively. Then the
following statements hold:

(1) d(Ω) < d(Ω1).

(2) The inequality d(Ω) < d(ΩP ) implies that the boundary circle ∂Ω of Ω holds
the pyramid.

15

Figure 3.1
�e attached circle �

Now let � be a circle attached to E . If this circle can slip out of the
octahedron, then during the process of slipping out, the disk conv.� / must meet
vertices of O . We may suppose that A is the �rst vertex that it meets. At the
moment when it meets A , the disk conv.� / becomes a transversal disk of E
on A . Hence the diameter of � must be at least the diameter d0 of a minimal
transversal disk of E on A . On the other hand, if the diameter of � is greater
than or equal to d0 , then � is isotopic over O to the boundary circle of a
transversal disk of E on A by the Isotopy Lemma. �en by a translation in the
direction

���!
C �B , � can slip out of O . Hence we have h.O/ D Œ1; d0/ .

Let us �nd the value d0 of the diameter of a minimal transversal disk of E
on A . Since the plane H determined by A;A� and the midpoint of BC is a
symmetry plane of E , we may consider the diameter of a minimal transversal
disk ˝ of E on A that is symmetric to itself with respect to H by (1) from
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the Symmetrization Lemma. Let K be the plane that contains the disk ˝ . Let
P;Q be the points where K cuts A�B and A�C , respectively. Since E is
hyperboloidal, the intersections of K and the edges in E lie on an ellipse and A
is an endpoint of the major axis of this ellipse. Hence the circle @˝ must pass
through P;Q and A .

Let x D jBP j D jCQj . �en jPQj D jPA�j D 1�x , and since †ABA� D 90ı ,
we have jAP j D

p
1C x2 D jAQj . Now, the diameter of the circumscribed circle

of the isosceles triangle APQ is computed as 2.x2C1/
p
3x2C2xC3

, and the minimum
value d0 of this function is d0 D 1:106 : : : .

Fruchard [Fru] proved that for every convex body B , its holding range h.B/ is
a subset of the interval .2w=3;1/ , where w denotes the width of B , that is, the
minimum distance between a pair of parallel planes bounding a strip containing
B . �e lower bound 2w=3 cannot be improved generally.

If P is a regular tetrahedron, or a cube, or a regular octahedron, then h.P/
is an interval as seen in �eorem 3.1. However, the holding range of a convex
polyhedron is not always an interval. Indeed, it is known (Maehara [Mae4]) that
the holding range of a regular icosahedron is disconnected. Moreover, it was
shown by Bárány and Zam�rescu [BZ1] that there are convex bodies B such that
h.B/ has arbitrarily many connected components.

3.2. Regular pyramids.

Lemma 3.1. Let P -A1A2 : : : An denote a regular pyramid with apex P whose
base is a regular n -gon A1A2 : : : An , n � 3 . Let E1 D .PA1; A2A3 : : : An/ , and
denote by ˝P ; ˝1 , and ˝ the minimal transversal disk of E1 on P , the minimal
transversal disk of E1 on A1 , and the minimal transversal disk of E1 , respectively.
�en the following statements hold:

.1/ d.˝/ < d.˝1/ .

.2/ �e inequality d.˝/ < d.˝P / implies that the boundary circle @˝ of ˝
holds the pyramid.

Proof. (1) Denote by O the center of the base. We may suppose that ˝1 is
symmetric to itself with respect to the symmetry plane A1PO of E1 . Let Q be
the center of ˝1 . To make our argument clear, let us consider the case n D 5 ,
see Figure 3.2. (Other cases follow almost similarly.) In this case, the boundary
circle @˝1 intersects the edges PA3; PA4 at X; Y (possibly X D P D Y ),
respectively, by Example 2.5 (that is, @˝1 is the circumscribed circle of the
triangle A1XY , and Q is the circumcenter of the triangle A1XY ). And the
edges PA2; PA5 pass through the interior of the disk ˝1 . Let B be the ball
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Proof. (1) Denote by O the center of the base. We may suppose that Ω1 is
symmetric to itself with respect to the symmetry plane A1PO of E1. Let Q be
the center of Ω1. To make our argument clear, let us consider the case n = 5, see
Figure 3.2. (Other cases follow almost similarly.) In this case, the boundary circle
∂Ω1 intersects the edges PA3, PA4 at X,Y (possibly X = P = Y ), respectively,
by Example 2.5 (that is, ∂Ω1 is the circumscribed circle of the triangle A1XY ,
and Q is the circumcenter of the triangle A1XY ). And the edges PA2, PA5 pass
through the interior of the disk Ω1. LetB be the ball of diameter d(Ω1) centered at
Q. Since ∠QA1A2 = ∠QA1A5 < 90◦, both A1A2 ∩B and A1A5 ∩B are intervals.
Hence we can rotate the plane containing Ω1 around the line XY slightly so that
the intersection ofB and the rotated plane is a transversal disk of E1. The diameter
of this disk is clearly smaller than d(Ω1), and hence d(Ω) < d(Ω1).
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Figure 3.2: ∂Ω1 is circumscribed to △A1XY

(2) Suppose that d(Ω) < d(ΩP ) and ∂Ω still can slip out of the pyramid.
During the slipping out process, Ω meets vertices of the pyramid. Let Z be the
first vertex that Ω meets, and denote by Ω(Z) the disk at the moment when Ω
meets Z. Then, since d(Ω) < d(Ω1), Z must be P or A2 or A5. If Z = P , then
Ω(P ) is a transversal disk of E1 on P , which means d(Ω) = d(Ω(P )) ≥ d(ΩP ), a
contradiction.

Suppose that Z = A2. The disk Ω(A2) is a transversal disk of the trunk
(PA2, A3A4A5). By Examples 2.4 and 2.5, d(Ω(A2)) is at least the diameter of
the minimal transversal disk of (PA2, A3A4A5A1) on A2, which is equal to d(Ω1),
a contradiction. The case Z = A5 is similar to the case Z = A2.

Let us define the slope ρ of a regular pyramid by

ρ =
height

circumradius of the base
.

Though every circular cone is circle-free, every regular pyramid of slope greater
than 1 is not circle-free.

Theorem 3.2. Every regular pyramid with slope ρ ≥ 1 can be held by a circle.

Remark 3.1. It is known (Maehara [23]) that for every 0 < ε < 1 and m > 2π/ε2,
a regular (4m)-gonal pyramid with slope ρ = 1− ε is circle-free.
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Figure 3.2
@˝1 is circumscribed to 4A1XY

of diameter d.˝1/ centered at Q . Since †QA1A2 D †QA1A5 < 90ı , both
A1A2\B and A1A5\B are intervals. Hence we can rotate the plane containing
˝1 around the line XY slightly so that the intersection of B and the rotated
plane is a transversal disk of E1 . �e diameter of this disk is clearly smaller than
d.˝1/ , and hence d.˝/ < d.˝1/ .

(2) Suppose that d.˝/ < d.˝P / and @˝ still can slip out of the pyramid.
During the slipping out process, ˝ meets vertices of the pyramid. Let Z be the
�rst vertex that ˝ meets, and denote by ˝.Z/ the disk at the moment when ˝
meets Z . �en, since d.˝/ < d.˝1/ , Z must be P or A2 or A5 . If Z D P , then
˝.P / is a transversal disk of E1 on P , which means d.˝/ D d.˝.P // � d.˝P / ,
a contradiction.

Suppose that Z D A2 . �e disk ˝.A2/ is a transversal disk of the trunk
.PA2; A3A4A5/ . By Examples 2.4 and 2.5, d.˝.A2// is at least the diameter
of the minimal transversal disk of .PA2; A3A4A5A1/ on A2 , which is equal to
d.˝1/ , a contradiction. �e case Z D A5 is similar to the case Z D A2 .

Let us de�ne the slope � of a regular pyramid by

� D
height

circumradius of the base
:

�ough every circular cone is circle-free, every regular pyramid of slope greater
than 1 is not circle-free.

�eorem 3.2. Every regular pyramid with slope � � 1 can be held by a circle.

Remark 3.1. It is known (Maehara [Mae3]) that for every 0 < " < 1 and
m > 2�="2 , a regular .4m/ -gonal pyramid with slope � D 1 � " is circle-free.

Proof. To make our argument clear, let us consider again the case of a
regular pyramid with pentagonal base. Let P -A1A2A3A4A5 denote a regular
pyramid with apex P whose base is a regular pentagon A1A2A3A4A5 . De�ne
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Proof. To make our argument clear, let us consider again the case of a regular
pyramid with pentagonal base. Let P -A1A2A3A4A5 denote a regular pyramid
with apex P whose base is a regular pentagon A1A2A3A4A5. Define E1, ΩP , Ω1, Ω
as in Lemma 3.1 and let E = (P,A1A2A3A4A5). Note that a transversal disk of E
on A1 is a transversal disk of E1 on A1, and vice versa.
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Figure 3.3: ∂ΩP is circumscribed to △PST

By Lemma 3.1 (2), it is enough to show that ρ ≥ 1 implies d(Ω) < d(ΩP ).
The minimal transversal disk ΩP of E1 on P intersects the edges A1A2, A1A5 at
S, T such that |A1S| = |A1T | > 0, see Figure 3.3. Now, let Q be the center of ΩP ,
and B be the ball with center Q and diameter d(ΩP ). For every i (2 ≤ i ≤ 5), the
triangle A1PAi is an isosceles triangle with base A1Ai and height greater than
or equal to |OP |, where O is the center of the base. Thus, ρ ≥ 1 implies that
∠A1PAi ≤ 90◦, and hence ∠QPAi < 90◦ for i = 2, 3, 4, 5. This implies that the
edges PAi, i = 2, 3, 4, 5, pass through the interior of B. Therefore, by rotating
slightly the plane PST around the line ST , we have a plane whose intersection
with B is a transversal disk of E1 with diameter smaller than d(ΩP ). Hence,
d(Ω) < d(ΩP ).

Lemma 3.2. Let P -ABC be a regular pyramid with apex P whose base is an equi-
lateral triangle ABC, and let ρ be the slope of P -ABC. Let AA∗ be the diameter
of the circumscribed circle of ABC. Let D be a point on the edge AP such that
|AD| : |DP | = |AB| : |BP |. Let E be a point on the line through A∗ perpendicular
to the plane ABC, lying in the opposite side of P with respect to the plane ABC,
with |A∗E| = |AO|/(2ρ), see Figure 3.4. Then

(1) the trunk E = (PA,BC) is hyperboloidal, and
(2) the line DE is the axis of a hyperboloid of revolution containing E.

Proof. By Theorem 2.1, it is enough to show that the line DE is the equidistant
line of the four lines AB,AC,PB, PC. We may suppose that the circumscribed
circle of △ABC has unit radius with center O. Then the height of the pyramid
is ρ, i.e., |PO| = ρ. Note that |AB| = |BC| =

√
3, |BO| = |BA∗| = 1 and

|PA| = |PB| = |PA∗| =
√
1 + ρ2. Since |AD| : |DP | = |AB| : |PB|, we have

∠ABD = ∠PBD. Since ∠ABA∗ = 90◦, AB is perpendicular to the plane BA∗E,
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Figure 3.3
@˝P is circumscribed to 4PST

E1; ˝P ; ˝1; ˝ as in Lemma 3.1 and let E D .P;A1A2A3A4A5/ . Note that a
transversal disk of E on A1 is a transversal disk of E1 on A1 , and vice versa.

By Lemma 3.1 (2), it is enough to show that � � 1 implies d.˝/ < d.˝P / .
�e minimal transversal disk ˝P of E1 on P intersects the edges A1A2; A1A5
at S; T such that jA1S j D jA1T j > 0 , see Figure 3.3. Now, let Q be the
center of ˝P , and B be the ball with center Q and diameter d.˝P / . For every
i .2 � i � 5/ , the triangle A1PAi is an isosceles triangle with base A1Ai and
height greater than or equal to jOP j , where O is the center of the base. �us,
� � 1 implies that †A1PAi � 90ı , and hence †QPAi < 90ı for i D 2; 3; 4; 5 .
�is implies that the edges PAi ; i D 2; 3; 4; 5 , pass through the interior of B .
�erefore, by rotating slightly the plane PST around the line ST , we have a
plane whose intersection with B is a transversal disk of E1 with diameter smaller
than d.˝P / . Hence, d.˝/ < d.˝P / .

Lemma 3.2. Let P -ABC be a regular pyramid with apex P whose base is an
equilateral triangle ABC , and let � be the slope of P -ABC . Let AA� be the
diameter of the circumscribed circle of ABC . Let D be a point on the edge AP
such that jADj W jDP j D jABj W jBP j . Let E be a point on the line through A�

perpendicular to the plane ABC , lying in the opposite side of P with respect
to the plane ABC , with jA�Ej D jAOj=.2�/ , see Figure 3.4. �en

(1) the trunk E D .PA;BC/ is hyperboloidal, and

(2) the line DE is the axis of a hyperboloid of revolution containing E .

Proof. By �eorem 2.1, it is enough to show that the line DE is the equidistant
line of the four lines AB;AC;PB;PC . We may suppose that the circumscribed
circle of 4ABC has unit radius with center O . �en the height of the pyramid
is � , i.e., jPOj D � . Note that jABj D jBC j D

p
3 , jBOj D jBA�j D 1 and

jPAj D jPBj D jPA�j D
p
1C �2 . Since jADj W jDP j D jABj W jPBj , we have
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Figure 3.4: The line DE is an equidistant line of {AB,AC,PB, PC}

and hence AB ⊥ BE. Since

|PE|2 = (|PO|+ |A∗E|)2 + |OA∗|2

= (ρ+ 1
2ρ )

2 + 1 = ρ2 + 1 + 1/(2ρ)2 + 1

= |PB|2 + |A∗E|2 + |BA∗|2

= |PB|2 + |BE|2,

we have PB ⊥ BE. Now, ∠ABD = ∠PBD, AB ⊥ BE, and PB ⊥ BE imply
together that every point on the plane DBE is equidistant to the lines AB and
PB. Since E is symmetric to itself with respect to the plane DPE, we can deduce
that the line DE is equidistant from the lines AB,AC,PB, PC.

Theorem 3.3. A right pyramid P -ABC with apex P and equilateral triangular
base ABC is circle-free if and only if

ρ ≤ ρ0 :=

√
(3
√
17− 5)/32 = 0.47988...

where ρ is the slope of the pyramid.

Tanoue [32] proved that if ρ > ρ0, then P -ABC can be held by a circle, and
Maehara [23] proved the converse.

Corollary 3.1. The property “circle-freeness” is not affine invariant.

Proof of Theorem 3.3. We use the same notations as in Lemma 3.2 and Figure
3.4. By Theorem 3.2, we may consider the case ρ < 1. Let E = (AP,BC), and H
be the one-sheet hyperboloid of revolution with directed axis l = DE. Note that
the conditions (i) and (ii) of the Isotopy Lemma hold. First, we show that any
circle Γ attached to E is isotopic over ⟨E⟩ to a circle attached to E that satisfies
the condition (†) of the Isotopy Lemma (1). We may suppose that Γ is symmetric
to itself with respect to the plane H = APO by the Symmetry Lemma. The
intersection conv(Γ )∩ ⟨E⟩ is an isosceles trapezoid XY ZW , where X,Y, Z,W are
the intersection points of conv(Γ ) with the edges PB,PC,AC,AB, respectively.
Let L,N be the midpoints of XY,ZW , respectively. If ∠LNA ≥ π/2, then the

18

Figure 3.4
�e line DE is an equidistant line of ¹AB;AC;PB;PC º

†ABD D †PBD . Since †ABA� D 90ı , AB is perpendicular to the plane
BA�E , and hence AB ? BE . Since

jPEj2 D
�
jPOj C jA�Ej

�2
C jOA�j2

D .�C 1
2�
/2 C 1 D �2 C 1C 1=.2�/2 C 1

D jPBj2 C jA�Ej2 C jBA�j2

D jPBj2 C jBEj2;

we have PB ? BE . Now, †ABD D †PBD , AB ? BE , and PB ? BE imply
together that every point on the plane DBE is equidistant to the lines AB and
PB . Since E is symmetric to itself with respect to the plane DPE , we can
deduce that the line DE is equidistant from the lines AB;AC;PB;PC .

�eorem 3.3. A right pyramid P -ABC with apex P and equilateral triangular
base ABC is circle-free if and only if

� � �0 WD

q
.3
p
17 � 5/=32 D 0:47988 : : :

where � is the slope of the pyramid.

Tanoue [Tan1] proved that if � > �0 , then P -ABC can be held by a circle,
and Maehara [Mae3] proved the converse.

Corollary 3.1. �e property “circle-freeness" is not a�ne invariant.

Proof of �eorem 3:3 . We use the same notations as in Lemma 3.2 and Fig-
ure 3.4. By �eorem 3.2, we may consider the case � < 1 . Let E D .AP;BC/ ,
and H be the one-sheet hyperboloid of revolution with directed axis l D DE .
Note that the conditions (i) and (ii) of the Isotopy Lemma hold. First, we show
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that any circle � attached to E is isotopic over hEi to a circle attached to
E that satis�es the condition .�/ of the Isotopy Lemma (1). We may suppose
that � is symmetric to itself with respect to the plane H D APO by the
Symmetrization Lemma. �e intersection conv.� /\hEi is an isosceles trapezoid
XYZW , where X; Y;Z;W are the intersection points of conv.� / with the edges
PB;PC;AC;AB , respectively. Let L;N be the midpoints of XY;ZW , respec-
tively. If †LNA � �=2 , then the plane of � clearly cuts DE , and the condition
.�/ of the Isotopy Lemma (1) holds. Suppose †LNA < �=2 . Let XYZ0W 0 be
the isosceles trapezoid obtained by cutting the pyramid by the plane containing
XY and being perpendicular to the line AM . �en the height of the trapezoid
XYZ0W 0 is smaller than that of XYZW , and jZ0W 0j < jZW j . Hence, by a
continuous rotation of � around the line XY , we have an isotopy over the
pyramid to a circle attached to E that satis�es the condition .�/ of the Isotopy
Lemma (1). Hence, any circles attached to E are isotopic over the pyramid to a
circle that lies on the plane containing the minimal circle attached to E by the
Isotopy Lemma. �erefore, to show that the pyramid is circle-free if and only if
� � �0 , it is enough to show that the boundary circle of the minimal transversal
disk of E , denoted by ˝ , holds the pyramid if and only if � > �0 . Note here
that ˝ is symmetric to itself with respect to the plane APM , and its boundary
circle @˝ intersects the four edges AB;AC;PB;PC (for otherwise, by sliding
˝ slightly in the direction ��!MA or ��!MP , and squeezing its radius, we could get
a transversal disk of smaller radius).

Let P0 be the point on the line DE such that PP0 ? DE . Since � < 1 ,
we have jABj > jPBj . Since AB ? BE and PB ? BE (see the proof of
Lemma 3.2), we have jPEj2 D jPBj2C jBEj2 and jAEj2 D jABj2C jBEj2 . Put
a D jAOj . �en jAP j2 D a2.1C�2/ and jABj2 D 3a2 . Hence jABj2�2jAP j2 D
3a2 � 2a2.1 C �2/ D a2.1 � �2/ > 0 . �us, jABj2 > 2jAP j2 D jAP j2 C jPBj2 ,
and hence

jAP j2 C jPEj2 D jAP j2 C jPBj2 C jBEj2 < jABj2 C jBEj2 D jAEj2:

�is implies that †EPA is an obtuse angle, which implies that P0 lies on the
line segment DE . �erefore, the disk with center P0 and radius jPP0j whose
plane perpendicularly cuts DE at P0 , is a transversal disk of E .

Let Q;X be the points on the lines DE;PB , respectively, such that jQX j
is the minimum distance between the lines DE and PB . �en the section of H
by the plane perpendicular to l at Q is the smallest circle lying on H (cf. the
statement ? in the proof of �eorem 2.1). See Figure 3.5.

Case (a): �e ray ��!PM does not intersect the line DE .
In this case, we have †P0PM � �=2 , and hence †P0PB.D †P0PC/ � �=2 ,
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|QX| lying on the plane perpendicular to DE is the minimal transversal disk Ω
of E . The boundary circle ∂Ω intersects the edges AB,AC,PB, PC.

Let ΩP be the minimal transversal disk of E on P . The boundary circle ∂ΩP

also intersects the edges AB,AC. Since Q ̸= P0, we have d(Ω) < 2|P0P |. If
d(ΩP ) ≥ 2|P0P |, then we have d(ΩP ) > d(Ω), and the circle ∂Ω holds the pyramid
by (2) of Lemma 3.1.

Suppose that d(ΩP ) < 2|P0P |. Let Z be the intersection point of l and ΩP ,
and S, T be the intersection points of ΩP with the edges AB,AC, respectively.
The three points Z, S, T lie on the same side of the plane that perpendicularly
intersects the line l = DE at P0. If Z lies on P0D and Z ̸= P0, then |ZS| = |ZT | >
d(S, l) > |P0P |, and |ZP | > |P0P |. Hence the radius of the circumscribed circle
of the isosceles triangle PST is larger than |P0P |, which implies that d(ΩP ) >
2|P0P |, contradicting the assumption d(ΩP ) < 2|P0P |. Therefore, Z lies on P0E.
Then, ∠ZPM < π/2, and hence, by rotating ΩP slightly around the line ST , and
squeezing its radius, we can get a transversal disk of E . Hence d(Ω) < d(ΩP ), and
∂Ω holds the pyramid by (2) of Lemma 3.1.
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Figure 3.5: The minimal circle on H

Thus, the pyramid is not circle-free if and only if the ray
−−→
PM intersects the line

DE. Now we show that the ray
−−→
PM intersects the lineDE if and only if ρ > ρ0. To

do this, let us regard the plane PAO as the xy-plane, and A = (−1, 0), O = (0, 0),
see Figure 3.6. Then P = (0, ρ),M = (1/2, 0), A∗ = (1, 0), E = (1, −1

2ρ ), and since

|AB| : |BP | =
√
3 :

√
1 + ρ2,

D =

(
−
√

1+ρ2

√
3+

√
1+ρ2

, ρ
√
3√

3+
√

1+ρ2

)
.

The ray
−−→
PM intersects the line DE if and only if the slope of the line DE is

greater than the slope of the line PM . The slope of PM is −2ρ, and the slope of
DE is (

−1
2ρ − ρ

√
3√

3+
√

1+ρ2

)
/

(
1 +

√
1+ρ2

√
3+

√
1+ρ2

)
.

20

Figure 3.5
�e minimal circle on H

which implies that Q lies on the ray ���!P0D , possibly with Q D P0 . By the
Isotopy Lemma the boundary circle @˝ of the minimal transversal disk ˝ of E
is isotopic over the pyramid to a boundary circle � 0 of a transversal disk of NE
that is perpendicular to l . If the plane of � 0 intersects the ray ��!P0E , then the
radius of � 0 is larger than jP0P j (since the most constricted part of H is the
section of H by the plane perpendicular to l at Q ). Hence @˝ can slip out of
the pyramid, and hence the pyramid is circle-free.

Case (b): �e ray ��!PM intersects the line DE .
In this case Q lies on the ray ��!P0E and Q ¤ P0 . Let P1 be the foot of
perpendicular dropped from M to DE . Since P1 lies between P0 and E , we
have †P1BP < �=2 . Hence Q lies between P0 and P1 . �erefore the disk
with center Q and radius jQX j lying on the plane perpendicular to DE is the
minimal transversal disk ˝ of E . �e boundary circle @˝ intersects the edges
AB;AC;PB;PC .

Let ˝P be the minimal transversal disk of E on P . �e boundary circle
@˝P also intersects the edges AB;AC . Since Q ¤ P0 , we have d.˝/ < 2jP0P j .
If d.˝P / � 2jP0P j , then we have d.˝P / > d.˝/ , and the circle @˝ holds the
pyramid by (2) of Lemma 3.1.

Suppose that d.˝P / < 2jP0P j . Let Z be the intersection point of l and
˝P , and S; T be the intersection points of ˝P with the edges AB;AC ,
respectively. �e three points Z;S; T lie on the same side of the plane that
perpendicularly intersects the line l D DE at P0 . If Z lies on P0D and
Z ¤ P0 , then jZS j D jZT j > d.S; l/ > jP0P j , and jZP j > jP0P j . Hence
the radius of the circumscribed circle of the isosceles triangle PST is larger
than jP0P j , which implies that d.˝P / > 2jP0P j , contradicting the assumption
d.˝P / < 2jP0P j . �erefore, Z lies on P0E . �en, †ZPM < �=2 , and hence,
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Figure 3.6: Projection on the plane APO

Thus, the ray
−−→
PM intersects the line DE if and only if(

−1
2ρ − ρ

√
3√

3+
√

1+ρ2

)
> −2ρ

(
1 +

√
1+ρ2

√
3+

√
1+ρ2

)
,

and (by simplifying) if and only if

√
3− 2

√
3ρ2 < (8ρ2 − 1)

√
1 + ρ2.

The left side is monotone decreasing on ρ, whereas the right side is monotone
increasing on ρ. So let us find the value of ρ where both sides become equal.
Putting ξ = ρ2, we have

√
3 − 2

√
3ξ = (8ξ − 1)

√
1 + ξ, and after squaring both

sides as well as simple calculations, we have

64ξ3 + 36ξ2 − 3ξ − 2 = 0.

This equation has three real solutions, namely

ξ =
−5± 3

√
17

32
,
−1

4
.

Since ξ > 0, we have ξ = −5+3
√
17

32 , and hence the pyramid is not circle-free if and
only if ρ > ρ0.

Remark 3.2. It was proved by Maehara [23] that a regular pyramid with square

base can be held by a circle if and only if ρ >
√
(
√
33− 3)/4 ≈ 0.828.

3.3 Holding circles with much play

Let Γ be a circle attached to a convex polyhedron Π, and PQ be an edge of Π
such that PQ∩ conv(Γ ) = ∅. Suppose that there is an isotopy Γt, 0 ≤ t ≤ 1, over
Π with Γ0 = Γ such that (i) Q ̸∈ conv(Γt) for all t, and (ii) conv(Γ1) cuts the edge
PQ into two segments. Then we say that Γ (and any circle isotopic to it over Π)
can cross over P .

Theorem 3.4. For every vertex P of a regular icosahedron, there is a holding
circle of the regular icosahedron that can cross over P .

21

Figure 3.6
Projection on the plane APO

by rotating ˝P slightly around the line ST , and squeezing its radius, we can
get a transversal disk of E . Hence d.˝/ < d.˝P / , and @˝ holds the pyramid
by (2) of Lemma 3.1.

�us, the pyramid is not circle-free if and only if the ray ��!PM inter-
sects the line DE . Now we show that the ray ��!PM intersects the line
DE if and only if � > �0 . To do this, let us regard the plane PAO as
the xy -plane, and A D .�1; 0/;O D .0; 0/ , see Figure 3.6. �en P D

.0; �/;M D .1=2; 0/; A� D .1; 0/; E D .1; �1
2�
/ , and since jABj W jBP j D

p
3 Wp

1C �2 ,

D D

�
�

p
1C�2

p
3C
p
1C�2

; �
p
3

p
3C
p
1C�2

�
:

�e ray ��!PM intersects the line DE if and only if the slope of the line DE is
greater than the slope of the line PM . �e slope of PM is �2� , and the slope
of DE is �

�1
2�
�

�
p
3

p
3C
p
1C�2

�
=

�
1C

p
1C�2

p
3C
p
1C�2

�
:

�us, the ray ��!PM intersects the line DE if and only if�
�1
2�
�

�
p
3

p
3C
p
1C�2

�
> �2�

�
1C

p
1C�2

p
3C
p
1C�2

�
;

and (by simplifying) if and only if
p
3 � 2

p
3�2 < .8�2 � 1/

p
1C �2:

�e left side is monotone decreasing on � , whereas the right side is monotone
increasing on � . So let us �nd the value of � where both sides become equal.
Putting � D �2 , we have

p
3� 2

p
3� D .8� � 1/

p
1C � , and after squaring both

sides as well as simple calculations, we have

64�3 C 36�2 � 3� � 2 D 0:
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�is equation has three real solutions, namely

� D
�5˙ 3

p
17

32
;
�1

4
:

Since � > 0 , we have � D �5C3
p
17

32
, and hence the pyramid is not circle-free if

and only if � > �0 .

Remark 3.2. It was proved by Maehara [Mae3] that a regular pyramid with
square base can be held by a circle if and only if � >

q
.
p
33 � 3/=4 � 0:828 .

3.3. Holding circles with much play. Let � be a circle attached to a convex
polyhedron ˘ , and PQ be an edge of ˘ such that PQ \ conv.� / D ¿ .
Suppose that there is an isotopy �t ; 0 � t � 1; over ˘ with �0 D � such
that (i) Q 62 conv.�t / for all t , and (ii) conv.�1/ cuts the edge PQ into two
segments. �en we say that � (and any circle isotopic to it over ˘ ) can cross
over P .

�eorem 3.4. For every vertex P of a regular icosahedron, there is a holding
circle of the regular icosahedron that can cross over P .

Proof. We use Figure 2.7 left and the same notations as in Example 2.3. It is
enough to show the case P D A . Let ˝ be the minimal transversal disk of E
on A . �en ˝ is also a minimal transversal disk of E 0 on A by Example 2.3.

Since the trunk E is hyperboloidal, it is possible to rotate the circumscribed
circle of the pentagon ABCDE slightly around the line passing through A and
being perpendicular to the plane H determined by AFF � (see Figure 3.7), and to
squeeze its radius a bit so that it is still attached to the trunk E . Hence the diameter
of ˝ is smaller than the diameter of the circumscribed circle of the pentagon
ABCDE . Let X; Y be the points where ˝ cuts the edges A�C;A�D , respectively,
and let M be the midpoint of XY . Since the boundary circle @˝ of ˝ intersects

Proof. We use Figure 2.7 left and the same notations as in Example 2.3. It is
enough to show the case P = A. Let Ω be the minimal transversal disk of E on
A. Then Ω is also a minimal transversal disk of E ′ on A by Example 2.3.

Since the trunk E is hyperboloidal, it is possible to rotate the circumscribed
circle of the pentagon ABCDE slightly around the line passing through A and
being perpendicular to the plane H determined by AFF ∗ (see Figure 3.8), and
to squeeze its radius a bit so that it is still attached to the trunk E . Hence the
diameter of Ω is smaller than the diameter of the circumscribed circle of the
pentagon ABCDE. Let X,Y be the points where Ω cuts the edges A∗C,A∗D,
respectively, and let M be the midpoint of XY . Since the boundary circle ∂Ω of
Ω intersects the icosahedron only at the points A,X, Y , and ∠MAF < ∠F ∗AF =
90◦, it is possible to rotate slightly the circle ∂Ω around the line XY in either
direction, without intersecting the interior of the icosahedron. Hence there is
an isotopy Γt, 0 ≤ t ≤ 1, over the icosahedron such that conv(Γ0) ∩ AF = ∅,
F ̸∈ conv(Γt) for all t, and conv(Γ1) cuts the edgeAF dividing it into two segments.
Hence Γ0 (and Γ1) can cross over the vertex A.
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Figure 3.7: Move the circumscribed circle of ABCDE

Let us show that Γ1 holds the icosahedron. The diameter of Γ1 is equal to d(Ω).
We may assume that the disk conv(Γ1) contains no vertex, and cuts all edges of the
trunk (BCDEF,AA∗B∗C∗D∗E∗). Suppose Γ1 can slip out of the icosahedron.
During the slipping out process, conv(Γ1) meets vertices of the icosahedron. Let
Z be the first vertex that conv(Γ1) meets during the slipping out process. We may
suppose that Z ̸= A. Clearly, Z ̸= F, F ∗ and Z ̸= C,D,C∗, D∗. Is it possible that
Z = B? If B is the first vertex that conv(Γ1) meets during the slipping out process
of Γ1, then at the moment that conv(Γ1) meets B, conv(Γ1) becomes a transversal
disk of the trunk (BB∗, DE) on B, and it is not symmetric to itself with respect to
the plane FBF ∗, which is a symmetry plane of (BB∗, DE). Hence, the diameter
of conv(Γ1) must be greater than the diameter of the minimal transversal disk of
(BDE,B∗) on B, by the Symmetrization Lemma. However, the latter is equal
to the diameter of the minimal transversal disk of E ′ on A, which is equal to the
diameter of Ω, a contradiction. Similarly Z ̸= E.

If Z = A∗, then at the moment that conv(Γ1) meets A∗, it becomes a transver-
sal disk of the trunk (A∗A,BF ) on A∗, and analogously we have a contradiction.
We can deduce Z ̸= B∗, E∗, similarly. Hence Γ1 cannot slip out of the icosahe-
dron.

22

Figure 3.7
Move the circumscribed circle of ABCDE
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the icosahedron only at the points A;X; Y , and †MAF < †F �AF D 90ı , it is
possible to rotate slightly the circle @� around the line XY in either direction,
without intersecting the interior of the icosahedron. Hence there is an isotopy
�t ; 0 � t � 1 , over the icosahedron such that conv.�0/\AF D ¿ , F 62 conv.�t /
for all t , and conv.�1/ cuts the edge AF dividing it into two segments. Hence
�0 (and �1 ) can cross over the vertex A .

Let us show that �1 holds the icosahedron. �e diameter of �1 is equal
to d.˝/ . We may assume that the disk conv.�1/ contains no vertex, and cuts
all edges of the trunk .BCDEF;AA�B�C �D�E�/ . Suppose �1 can slip out
of the icosahedron. During the slipping out process, conv.�1/ meets vertices
of the icosahedron. Let Z be the �rst vertex that conv.�1/ meets during the
slipping out process. We may suppose that Z ¤ A . Clearly, Z ¤ F;F � and
Z ¤ C;D;C �;D� . Is it possible that Z D B ? If B is the �rst vertex that
conv.�1/ meets during the slipping out process of �1 , then at the moment that
conv.�1/ meets B , conv.�1/ becomes a transversal disk of the trunk .BB�;DE/
on B , and it is not symmetric to itself with respect to the plane FBF � , which
is a symmetry plane of .BB�;DE/ . Hence, the diameter of conv.�1/ must be
greater than the diameter of the minimal transversal disk of .BDE;B�/ on B ,
by the Symmetrization Lemma. However, the latter is equal to the diameter of
the minimal transversal disk of E 0 on A , which is equal to the diameter of ˝ ,
a contradiction. Similarly Z ¤ E .

If Z D A� , then at the moment that conv.�1/ meets A� , it becomes a
transversal disk of the trunk .A�A;BF / on A� , and analogously we have a
contradiction. We can deduce Z ¤ B�; E� , similarly. Hence �1 cannot slip out
of the icosahedron.

Remark 3.3. �e boundary circle � D @˝ of the minimal transversal disk of
the trunk E D .ABCDE;A�B�C �D�E�/ on A cannot cross over F and F � .
However, since E is hyperboloidal with symmetry plane, � is isotopic over the
icosahedron to the boundary circle of the minimal transversal disk of E on B ,
by the Isotopy Lemma. Hence � can cross over B and, similarly, can cross over
C;D;E .

Now, there arises a problem. Does there exist a convex polyhedron, together
with its holding circle, such that the circle can cross over every vertex of
the polyhedron? �e answer is yes. From the regular icosahedron shown in
Figure 2.7 we get, by cutting o� two pentagonal pyramids F -ABCDE and
F � -A�B�C �D�E� , a regular pentagonal anti-prism as shown in Figure 3.8.
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Remark 3.3. The boundary circle Γ = ∂Ω of the minimal transversal disk of the
trunk E = (ABCDE,A∗B∗C∗D∗E∗) on A cannot cross over F and F ∗. However,
since E is hyperboloidal with symmetry plane, Γ is isotopic over the icosahedron
to the boundary circle of the minimal transversal disk of E on B, by the Isotopy
Lemma. Hence Γ can cross over B and, similarly, can cross over C,D,E.

Now, there arises a problem. Does there exist a convex polyhedron, together
with its holding circle, such that the circle can cross over every vertex of the
polyhedron? The answer is yes. From the regular icosahedron shown in Figure 2.7
we get, by cutting off two pentagonal pyramids F -ABCDE and F ∗-A∗B∗C∗D∗E∗,
a regular pentagonal anti-prism as shown in Figure 3.9.
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Figure 3.8: A regular pentagonal anti-prism

Theorem 3.5. In case of the regular pentagonal anti-prism (see Figure 3.4) the
boundary circle of the minimal transversal disk Ω of (ABCDE,A∗B∗C∗D∗) on
A can cross over every vertex of the anti-prism, but still it cannot slip out of the
anti-prism.

Proof. Let d0 be the diameter of Ω. As seen in Remark 3.3, ∂Ω can cross over
every vertex of the anti-prism.

To show that ∂Ω cannot slip out of the anti-prism, we suppose the contrary,
namely that it can slip out of the anti-prism. During the slipping out process,
the disk Ω crosses over vertices of the anti-prism. We may suppose that A is the
first vertex that Ω crosses over, and Ω is at the position of a transversal disk
of the trunk (BCDE,AA∗B∗C∗D∗E∗). Let Z be the vertex that Ω meets next.
We may assume Z ̸= A. It is also clear that Z cannot be any of C,D,C∗, D∗.
Suppose Z = B. At the moment when Ω meets B, it becomes a transversal disk of
(BB∗, DE) on B. At that moment, since Ω becomes not symmetric to itself with
respect to the plane determined by B,B∗ and the midpoint of ED, this disk is not
a minimal transversal disk of (BB∗, DE) on B (which has diameter d0). Hence
the diameter of Ω is greater than d0, a contradiction. Thus, Z ̸= B. Similarly, we
have Z ̸= E,B∗, E∗.

Finally, consider the case that Z = A∗. We use the following fact which will
be proved later.

(⋆) The diameter of the minimal transversal disk of (AA∗, BE) on
A∗ is greater than the diameter of the minimal transversal disk of
(AA∗, C∗D∗) on A∗.
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Figure 3.8
A regular pentagonal anti-prism

�eorem 3.5. In case of the regular pentagonal anti-prism (see Figure 3.4) the
boundary circle of the minimal transversal disk ˝ of .ABCDE;A�B�C �D�/
on A can cross over every vertex of the anti-prism, but still it cannot slip out of
the anti-prism.

Proof. Let d0 be the diameter of ˝ . As seen in Remark 3.3, @˝ can cross over
every vertex of the anti-prism.

To show that @˝ cannot slip out of the anti-prism, we suppose the contrary,
namely that it can slip out of the anti-prism. During the slipping out process, the
disk ˝ crosses over vertices of the anti-prism. We may suppose that A is the
�rst vertex that ˝ crosses over, and ˝ is at the position of a transversal disk of
the trunk .BCDE;AA�B�C �D�E�/ . Let Z be the vertex that ˝ meets next.
We may assume Z ¤ A . It is also clear that Z cannot be any of C;D;C �;D� .
Suppose Z D B . At the moment when ˝ meets B , it becomes a transversal disk
of .BB�;DE/ on B . At that moment, since ˝ becomes not symmetric to itself
with respect to the plane determined by B;B� and the midpoint of ED , this
disk is not a minimal transversal disk of .BB�;DE/ on B (which has diameter
d0 ). Hence the diameter of ˝ is greater than d0 , a contradiction. �us, Z ¤ B .
Similarly, we have Z ¤ E;B�; E� .

Finally, consider the case that Z D A� . We use the following fact which will
be proved later.

.?/ �e diameter of the minimal transversal disk of .AA�; BE/ on
A� is greater than the diameter of the minimal transversal disk of
.AA�; C �D�/ on A� .

At the moment when ˝ meets A� , it becomes a transversal disk of .BCDE;AA�/
on A� , which is at least the diameter of the minimal transversal disk of .AA�;DE/
on A� . Hence the diameter of this minimal transversal disk is greater than the
diameter of the minimal transversal disk of .AA�; C �D�/ on A� by .?/ , which
is equal to d0 by Example 2.3, a contradiction. �erefore, the circle @˝ cannot
slip out of ˘ .
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Now we show .?/ . Suppose the minimal transversal disk of .AA�; BE/ cuts
the edges AB;AE at X; Y , respectively. We may assume that jBX j D jEY j D t .
Let X 0; Y 0 be points on AC �; AD� such that jC �X 0j D jD�Y 0j D t . Consulting
Figure 2.7 left, we can see that jA�Bj D jA�Ej D jA�C �j D jA�D�j and
†A�BA D †A�D�A D †A�EA D †A�C �A D 90ı . Hence jA�X j D jA�X 0j D
jA�Y j D jA�Y 0j . Since jXY j > jX 0Y 0j , the diameter of the circumscribed circle
of the isosceles triangle A�XY is greater than the diameter of the circumscribed
circle of the isosceles triangle A�X 0Y 0 . Since the latter is greater than or equal
to the diameter of the minimal transversal disk of .AA�; C �D�/ , the proof is
complete.

4. Supplement

4.1. Proof of the Symmetrization Lemma. Let K be the plane containing ˝ ,
and let ˝ 0; K 0 be the mirror images of ˝;K with respect to H , respectively.
�e disk ˝ 0 is also a transversal disk of E .

If K D K 0 , then put ˝t D ˝ C t
2

�!
zz0 , where z; z0 are the centers of the

disks ˝ and ˝ 0 , respectively. �en @˝t ; t 2 Œ0; 1� , is an isotopy over hEi and
@˝0 D @˝ , @˝1 is symmetric to itself with respect to H . Moreover, if ˝ ¤ ˝ 0 ,
then the smallest disk containing ˝\˝ 0 is a transversal disk of E that is smaller
than ˝ .

Now suppose that K ¤ K 0 , and put E D .U; V / . Let KC denote the side
(half space) of K that contains U , and K� be the other side containing V .
Similarly, let K 0C be the side of K 0 that contains U , and K 0� be the other side
of K 0 . �e planes K and K 0 together divide R3 into four regions

KC \K
0
C; KC \K

0
�; K� \K

0
C; K� \K

0
� :

Figure 4.1 shows the projections on the plane perpendicular to the line H \K .
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Figure 4.1: Projections onto the plane perpendicular to H ∩K

Next, suppose that K ̸= K ′ and Ω∩H ̸⊂ ⟨E⟩. Since Ω∩H = Ω∩Ω′, it follows
that Ω ∩Ω′ ̸⊂ ⟨E⟩. Thus, at least one endpoint of the line segment Ω ∩Ω′ is not
contained in ⟨E⟩, that is, ∂Ω ∩ ∂Ω′ ̸⊂ ⟨E⟩. Note that conv(Ω ∪ Ω′) ∩ ∂Ω̃1/2 =
∂Ω ∩ ∂Ω′. Since

⟨E⟩ ∩ ∂Ω̃1/2 = ⟨E⟩ ∩K1/2 ∩ ∂Ω̃1/2 ⊂ conv(Ω ∪Ω′) ∩ ∂Ω̃1/2 = ∂Ω ∩ ∂Ω′,

∂Ω ∩ ∂Ω′ ̸⊂ ⟨E⟩ implies that ⟨E⟩ ∩ ∂Ω̃1/2 consists of at most one point. Since the
boundary circle of a minimal transversal disk of E must intersect E in at least two
points, Ω̃1/2 is not a minimal transversal disk of E . Therefore, Ω is not a minimal
transversal disk of E , too.

4.2 Proof of the Isotopy Lemma

(1) We may suppose that Ω0 is symmetric to itself with respect to the symmetry
plane H of E = (U, V ). Then the center Z of Ω0 lies on H. Let K be the plane that
contains Ω0. Let H ∩ Γ = {P,Q}. The line segment PQ is a diameter of Ω0 and

Z is the midpoint of PQ. We may suppose that l intersects the ray
−→
ZP . Let O be

the intersection of l and the plane that perpendicularly bisects PQ, and let B be
the ball with center O and radius |OP |, see Figure 4.2. Among the points on PQ
that are obtained by the orthogonal projection of the points Ω0 ∩ E on PQ, let X̌
be the one nearest to P . Let X be a point in Ω0∩E that is projected to X̌. Then,
clearly |OX| ≤ |OP |. Let K ′ be the plane containing XX̌ and perpendicular to l,
and let Z ′ be the intersection point of K ′ and l. Since every line Ē lies on H, the
circle K ′ ∩H has center Z ′, radius |Z ′X|. Since |OX| ≤ |OP |, the circle K ′ ∩H is
contained in the disk B ∩K ′. Hence, every line in Ē also passes through B ∩K ′.
Let K+ (resp. K−) be the upper side (resp. the lower side) of K. Let K ′

+ (resp.
K ′

−) be the upper side (resp. the lower side) of K ′. Then U ⊂ K+, V ⊂ K− and
Q ∈ K ′

+, P ∈ K ′
−.

Claim: No line in Ē passes through int(K+ ∩K ′
−).

To see this, suppose, on the contrary, a line g in Ē passes through int(K+∩K ′
−).

Then the projection ǧ of g on the plane H never intersects the segment X̌P .
For otherwise, we have a contradiction to the definition of X̌. Hence ǧ must
intersect the line segment X̌Q. Let AB (A ∈ U,B ∈ V ) be the edge of E that

25

Figure 4.1
Projections onto the plane perpendicular to H \K
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Note that U � KC\K 0C; V � K�\K 0� . Since ˝ 0 is the mirror image of ˝ with
respect to the plane H , the disks ˝ and ˝ 0 together determine a ball B such
that B\K D ˝; B\K 0 D ˝ 0 . Let Kt ; t 2 Œ0; 1� , denote the uniform rotation of
the plane K around the line K \H , through .KC \K 0�/[ .K� \K 0C/ such that
K0 D K and K1 D K 0 . Since Kt separates U from V for each t 2 Œ0; 1� , Kt
intersects all edges in E . Since conv.˝ [˝ 0/ � B , Kt \ B intersects all edges
of E , that is, Kt \ B is a transversal disk of E .

Now put Q̋ t D Kt \B for t 2 Œ0; 1� . Note that among the planes Kt ; t 2 Œ0; 1� ,
the planes K0 D K and K1 D K 0 are those nearest to the center of B . Hence
d. Q̋ t / � d.˝/ for all t 2 Œ0; 1� . �erefore, replacing each Q̋ t by the concentric
disk ˝t in Kt whose diameter equals d.˝/ , we have an isotopy @˝t ; t 2 Œ0; 1� ,
over hEi . �en @˝1=2 is symmetric to itself with respect to H .

Next, suppose that K ¤ K 0 and ˝ \H 6� hEi . Since ˝ \H D ˝ \˝ 0 , it
follows that ˝\˝ 0 6� hEi . �us, at least one endpoint of the line segment ˝\˝ 0
is not contained in hEi , that is, @˝\@˝ 0 6� hEi . Note that conv.˝[˝ 0/\@ Q̋1=2 D
@˝ \ @˝ 0 . Since

hEi \ @ Q̋1=2 D hEi \K1=2 \ @ Q̋1=2 � conv.˝ [˝ 0/ \ @ Q̋1=2 D @˝ \ @˝ 0;

@˝ \ @˝ 0 6� hEi implies that hEi \ @ Q̋1=2 consists of at most one point. Since
the boundary circle of a minimal transversal disk of E must intersect E in at
least two points, Q̋1=2 is not a minimal transversal disk of E . �erefore, ˝ is
not a minimal transversal disk of E , either.

4.2. Proof of the Isotopy Lemma. (1) We may suppose that ˝0 is symmetric
to itself with respect to the symmetry plane H of E D .U; V / . �en the center
Z of ˝0 lies on H . Let K be the plane that contains ˝0 . Let H \� D ¹P;Qº .
�e line segment PQ is a diameter of ˝0 and Z is the midpoint of PQ . We
may suppose that l intersects the ray ��!ZP . Let O be the intersection of l and
the plane that perpendicularly bisects PQ , and let B be the ball with center O
and radius jOP j , see Figure 4.2. Among the points on PQ that are obtained
by the orthogonal projection of the points ˝0 \ E on PQ , let LX be the one
nearest to P . Let X be a point in ˝0 \ E that is projected to LX . �en, clearly
jOX j � jOP j . Let K 0 be the plane containing X LX and perpendicular to l , and
let Z0 be the intersection point of K 0 and l . Since every line NE lies on H ,
the circle K 0 \H has center Z0 , radius jZ0X j . Since jOX j � jOP j , the circle
K 0 \ H is contained in the disk B \ K 0 . Hence, every line in NE also passes
through B \ K 0 . Let KC (resp. K� ) be the upper side (resp. the lower side)
of K . Let K 0C (resp. K 0� ) be the upper side (resp. the lower side) of K 0 . �en
U � KC; V � K� and Q 2 K 0C; P 2 K

0
� .

Claim: No line in NE passes through int.KC \K 0�/ .
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determines the line g. Then, since the line g never passes through int(K− ∩K ′
−)

and B ∈ K− ∩ K ′
+, it follows that there is no transversal plane of E that is

perpendicular to l, contradicting the assumption (i) of the theorem.
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Figure 4.2: Projection on the plane H

Let Ωt (0 ≤ t ≤ 1) denote the continuous rotation of Ω0 around the line
XX̌ (if X = X̌, then around the line through X̌ and perpendicular to H) as
shown by the curved arrow in Figure 4.2 such that Ω1 lies on the plane K ′. Since
each lines in Ē passes through both Ω and K ′ ∩B, and since no line of Ē passes
through int(K+ ∩ K ′

−), Ωt (0 ≤ t ≤ 1) are all transversal disks of Ē . Since
Π is enclosed by the planes determined by the “lateral faces” of ⟨E⟩, we have
(B ∩K+ ∩K ′

−) ∩ int(Π) = ∅. Hence Γ is isotopic over Π to ∂Ω1.

(2) Let Γ1, Γ2 be congruent circles attached to E , each lying on the plane
perpendicular to l. Consider the tube obtained as the trajectory of the translation
of Γ1 to Γ2. Since each line in Ē passes through conv(Γi), i = 1, 2, int(Π) does
not intersect this tube. Hence Γ1 and Γ2 are isotopic over Π. Now, (2) follows
from (1).

Acknowledgment. The authors are grateful to the referee for his helpful com-
ments and suggestions.
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To see this, suppose, on the contrary, a line g in NE passes through
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E that is perpendicular to l , contradicting the assumption (i) of the theorem.
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.2/ Let �1; �2 be congruent circles attached to E , each lying on the plane
perpendicular to l . Consider the tube obtained as the trajectory of the translation
of �1 to �2 . Since each line in NE passes through conv.�i /; i D 1; 2 , int.˘/
does not intersect this tube. Hence �1 and �2 are isotopic over ˘ . Now, (2)
follows from (1).
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