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Good cyclic codes and the uncertainty principle

Shai Evra, Emmanuel Kowalski and Alexander Lubotzky

Abstract. A long standing problem in the area of error correcting codes asks whether there
exist good cyclic codes. Most of the known results point in the direction of a negative
answer.

�e uncertainty principle is a classical result of harmonic analysis asserting that given
a non-zero function f on some abelian group, either f or its Fourier transform Of has
large support.

In this note, we observe a connection between these two subjects. We point out that
even a weak version of the uncertainty principle for �elds of positive characteristic would
imply that good cyclic codes do exist. We also provide some heuristic arguments supporting
that this is indeed the case.
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1. Introduction

Let F be a �eld. Given integers n , k and d with 1 � k � n , an Œn; k; d �F -
code, or code over F , is a subspace C of F n of dimension dimF .C / D k , such
that for every 0 ¤ ˛ 2 C , we have wt.˛/ � d , where the weight wt.˛/ of a
vector ˛ D .a0; : : : ; an�1/ 2 F

n is the number of non-zero components ai . �e
integer d is called the distance of the code C .

Furthermore, a code C is called cyclic if it is invariant under cyclic
permutations of the coordinates, i.e. if

.a0; : : : ; an�1/ 2 C , .an�1; a0; : : : ; an�2/ 2 C

(see [Rot, Ch. 8]).
�e code C , or more properly a family .Cn/ of codes in F n where n!1 ,

possibly along some subsequence of positive integers, is called good if there
exists a constant c > 0 such that
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(1)
k

n
� c;

d

n
� c

for all n .
We are interested in the case of cyclic codes over a �nite �eld F with `

elements. �e practical interest of such codes goes back at least to Brown and
Peterson [BP] (e.g., they can be used to e�ciently detect so-called “burst errors”).
A long standing open problem in the area of error correcting codes is whether,
for a �xed value of ` , there exists an in�nite sequence of good cyclic codes.

Most evidence, and maybe the prevailing opinion, goes towards the non-
existence of good cyclic codes. Indeed, it was proved by Berman [Ber] in 1967
that if n ranges over integers whose prime factors are bounded, and these factors
are coprime to the characteristic of the underlying �eld F` , then no sequence
of cyclic codes of lengths n , is good. Babai, Shpilka and Stefankovic [BSS]
proved that this is also the case if n ranges over integers such that the primes p
dividing n all satisfy p � n 12�� for some �xed constant � > 0 . Furthermore, they
also showed that there are no good cyclic codes that are either locally testable
or LDPC (“low density parity check”) codes. We refer to the book [MWS] of
MacWilliams and Sloane and to the textbook of Roth [Rot] for basic terminology
and concepts in coding theory.

On the other hand, the uncertainty principle is a classical result of harmonic
analysis, which in one form asserts that given a function f , either f or its
Fourier transform Of has large support. Many variants exist, and we refer to
Folland and Sitaram [FS] for a survey of the continuous setting. We will consider
the version of the uncertainly principle where f W A ! C is a complex valued
function on a �nite group A , and even more particularly, when A is the cyclic
group Z=pZ of prime order p . In this case, the uncertainty principle states that
for f 6D 0 , we have

(2) j supp.f /j C j supp. Of /j � p C 1;

where supp.g/ is the support of a function (this was observed by Meshulam,
although he did not publish a proof; proofs can be found in papers of Goldstein,
Guralnick, Isaacs [GGI], Tao [Tao] or in §3 below).

One can formulate the uncertainty principle for functions from A D Z=pZ

to any algebraically closed �eld F (see Section 3). �e case of interest to us is
when F has positive characteristic ` , in particular when ` D 2 . �e inequality
(2) does not hold in general in this case (see §4 below), but we will give some
heuristic argument suggesting that some weaker version may still hold.

We will then show that even a much weaker version of the inequality (2) for
F D NF2 would su�ce to imply the existence of good cyclic codes. �is should
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come as quite a surprise, as it goes against the common wisdom in the theory
of error correcting codes.

1.1. Organization of the paper. �is note is arranged as follows:
In � 2, we describe cyclic codes of length n over the prime �eld F` of order

` , as ideals in the group algebra F`ŒZ=nZ� Š F`Œx�=.x
n � 1/ . We then describe

the structure and the ideals of F`ŒZ=pZ� when n D p is a prime, and express
the dimension and the distance of such an ideal in terms of this data (using in
particular the multiplicative order of ` modulo p ).

In � 3, we formulate the uncertainty principle for functions f W Z=pZ! C .
To illustrate the connection with cyclic codes, we show how this uncertainty
principle implies the existence of good cyclic codes over C – the examples we
recover are the well-known Reed-Solomon codes over C . �is is of course not
the end of the story, as one wants such codes over �nite �elds.

In � 4, we formulate a few variants of the uncertainty principle over various
�elds. We present a proof of the uncertainty principle for any �eld of characteristic
zero, following [GGI]. Afterwards, we present some counter-examples to a naive
generalization of the uncertainty principle to �nite �elds.

In � 5, we propose a weaker version of uncertainty principle, and show how
this weaker version implies the existence of good cyclic codes. In � 6, we present
some heuristics, both for this weak uncertainty principle and for the existence of
good cyclic codes.

We conclude with an Appendix that explains that the uncertainty principle for
Z=pZ is equivalent to an old result of Chebotarev.

2. Cyclic codes

2.1. Introduction. �e following is a long standing open problem.

Problem 2.1. Are there good cyclic codes over a �xed �nite �eld F ?

�is was asked by MacWilliams and Sloane [MWS, Problem 9.2, p. 270].
See also [MPW] who attribute the problem to [AMT]. It seems that the common
belief is that there are no such codes and there are a number of results in support
of such a conjecture.

For instance, the most commonly used cyclic codes are the long BCH codes
(see [Rot, §5.6] for de�nition and background of BCH codes), and Lin and
Weldon [LW] proved that at least certain of these codes are not good (although
the general case seems to still be open).
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Partial results toward the conjecture were obtained by Berman [Ber] in 1967
and by Babai, Shpilka and Stefankovic [BSS] in 2005. We state their results
formally:

�eorem 2.2 (Berman). Let F be a �nite �eld of order ` , and .Ct /t a family
of Œnt ; kt ; dt �F -cyclic codes such that there exists some real number c > 0 with
kt
nt
� c for all t . Assume furthermore that there exists ˇ � 1 such that all primes

dividing nt are coprime to ` and at most ˇ . �en there exists an integer m ,
depending on ` and ˇ , such that dt � m . In particular, this family is not a
good family of codes.

�eorem 2.3 (Babai-Shpilka-Stefankovic). Let F be a �nite �eld, and let .Ct /t
be a family of Œnt ; kt ; dt �F -cyclic codes over F . Assume that there exists ı > 0 ,
independent of t , such that for every t and for every prime p dividing nt , we
have p < n1=2�ıt . �en the family .Ct /t is not a good family of codes over F .

�ere are other results which give some support to a negative answer to
Problem 2.1, for example:

�eorem 2.4 (Babai-Shpilka-Stefankovic). Let F be a �nite �eld. �en:

� �ere are no good cyclic LDPC (low density parity check) codes over F ;

� �ere are no good cyclic locally testable codes over F .

We refer to [McK, Ch. 47] for the de�nition of LDPC codes, and to [GS] for
locally testable codes; these are important concepts in coding theory in recent
years.

Let F be any �eld. �e key to the investigation of cyclic codes over F is
their description in algebraic terms using the polynomial ring F ŒX� .

Proposition 2.5. Let n � 1 be an integer. Under the isomorphism

.a0; : : : ; an�1/ 7! a0 C a1X C � � � C an�1X
n�1

between F n and the ring R D F ŒX�=.Xn � 1/ , a subspace C � R is a cyclic
code over F if and only if C is an ideal of R .

Proof. Indeed, an F -vector subspace of R is a cyclic code if and only if XP 2 C
for any P 2 C , which is equivalent to asking that C be an ideal of R .

It will also often be convenient to identify the ring R with the subspace of
polynomials P 2 F ŒX� of degree less than n .
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2.2. Describing the ideals of R D F ŒX�=.Xn�1/ . If we specialize to the case
where n D p is a prime number, we can describe R and its ideals in quite
concrete and well-known terms:

Proposition 2.6. Let p be a prime number di�erent from the characteristic
char.F / of F . �en:

(1) �e ring R D F ŒX�=.Xp � 1/ is a direct sum of �nite extensions of F ;
these �nite extensions are in one to one correspondence with the irreducible
factors of the polynomial Xp � 1 2 F ŒX� .

(2) If Xp�1 splits in linear factors in F ŒX� (e.g., if F is algebraically closed),
then R is isomorphic to F p as a ring;

(3) Assume that F D F` is a �nite �eld of order ` . Let r D ordp.`/ , i.e., the
order of ` as an element of the multiplicative group .Z=pZ/� D F�p . Denote
s D .p � 1/=r . �en

R D F`ŒX�=.X
p
� 1/ Š F` ˚ .F`r /

s

i.e., it is isomorphic as a ring to a direct sum of F` and s copies of the
extension F`r of F` .

Proof. (1) As p ¤ char.F / , the polynomial Xp � 1 is separable in F ŒX� and
hence factors as a product of distinct irreducible polynomials

Qs
iD0 gi , where

we put g0 D X � 1 . It then follows from the Chinese Remainder �eorem
that

R Š

sM
iD0

F ŒX�=.gi /:

Since gi is irreducible, each quotient ring F ŒX�=.gi / is a �eld extension of
F of degree deg.gi / .

(2) By assumption, Xp � 1 D
Qp�1
iD0 .X � �i / , where �i runs over the p -th

roots of unity in F . Since F ŒX�=.X � ˛/ Š F , we get an isomorphism

R Š

p�1M
iD0

F ŒX�=.X � �i / Š F
p:

(3) Since F�p is a cyclic group of order p � 1 , the order r of ` modulo p

divides p � 1 , and hence s D .p � 1/=r is an integer.

We have `r � 1.mod p/ and F�
`r

is a cyclic group of order `r � 1 , hence
the �eld extension F`r of F` contains an element of order p , and is the
smallest extension with this property. In fact, the �eld F`r contains all the
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p -th roots of unity, i.e. F`r is the splitting �eld of the polynomial Xp � 1 .
For every p -th root of unity � , the extension F`Œ�� is equal to F`r (in a
�xed algebraic closure of F` ). �is shows that all the irreducible factors gi
of Xp � 1 , with the exception of X � 1 , are of degree r . Hence

R Š F` ˚ .F`r /
s :

We can now describe the ideals of R . Since R is a direct sum of �elds,
every ideal in R is the direct sum of a certain subset of these �elds. If F
is algebraically closed, for instance, we see that R has

�
p
i

�
distinct ideals of

dimension i , for every 0 � i � p , and a total of 2p ideals.
If F D F` where ` is the power of a prime number, let r be the order of `

modulo p and s D p�1
r

as in the proposition. In the special case r D 1 , namely
when p j `� 1 , the polynomial Xp � 1 splits completely in F`ŒX� and the ideals
are exactly the same as those in the algebraically closed case.

Now assume that r > 1 , which is the case we are most interested in since
we will consider a �xed value of ` as p tends to 1 . �en R has

�
s
i

�
ideals

of dimension ir and
�
s
i

�
ideals of dimension ir C 1 for all integers i with

0 � i � s . Hence the total number of ideals in R is 2sC1 .
We note that r � log`.p C 1/ , and hence s � p�1

log`.pC1/
.

�ere are two extreme cases which are worth singling out, although whether
they actually occur is somewhat conjectural:
(a) Assume that ` is a primitive root mod p , i.e. ` generates the cyclic group

.Z=pZ/� . �en r D p � 1 and so s D 1 , i.e. R Š Fl ˚ Flp�1 and R has
only two non-trivial ideals.

(b) Assume that ` D 2 and that p is a Mersenne prime, namely p D 2m � 1

for some m � 2 . �en we have r D m D log2.pC 1/ and s D p�1
log2.pC1/

; in

this case, R has the “maximal” possible number of ideals 2
p�1

log2.pC1/
C1 .

We stated that it is not known if these cases occur in�nitely often. Indeed, it is
a very famous conjecture of Artin (see Moree’s survey [Mor]) that, for a given
prime number ` , there exist in�nitely many primes p such that ` is a primitive
root modulo p . �e validity of this conjecture is extremely likely, since it was
shown by Hooley [H] to follow from a suitable form of the Generalized Riemann
Hypothesis. Moreover, although it not known to hold for any concrete single
prime ` , Heath-Brown [HB] has shown that it holds for all but at most two
(unspeci�ed) prime numbers.

On the other hand, although it is expected that there are in�nitely many
Mersenne primes, very little is known about this question, or about small values
of ordp.2/ in general, even assuming such conjectures as the Generalized Riemann
Hypothesis (see however Lemma 6.2).
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�e most convenient analytic criterion to �nd primes with ordp.`/ under
control is the following elementary fact:

Lemma 2.7. Let ` , q and p be di�erent primes. If p is totally split in the
extension Kq;` D Q.e2i�=q; q

p
`/ , then p is congruent to 1 modulo q and the

order of ` modulo p divides .p � 1/=q , in particular ordp.`/ < p=q .

Proof. Let O be the ring of integers of Kq;` . If p is totally split in Kq;` , then
the quotient ring O=pO is a product of copies of the �eld Fp . So Fp contains
the q -th roots of unity (in particular, q j p � 1 ) and the q -th roots of ` . So `

is a q -th power in Fp , which means that ordp.`/ divides .p � 1/=q .

Note that as an application of Chebotarev’s density �eorem [Neu, �. 13.4],
for any primes q; ` , there exists in�nitely many primes which totally splits in Kq;` .

To summarize the discussion: the ideals of R and their dimensions can be
easily described, although the existence of certain con�gurations might be subject
to the truth of certain arithmetic conjectures.

It is more complicated to evaluate the distance of ideals of R when interpreted
as cyclic codes. For this we will use the Fourier transform and the uncertainty
principle in the next section. We begin �rst with a general lemma.

Lemma 2.8. Let p be a prime. For any polynomial f 2 F ŒX� , let If be the ideal
generated by the image of f in R D F ŒX�=.Xp�1/ and let g D gcd.f;Xp�1/ .
(1) We have If D Ig , i.e. the ideal generated by f is the same as the ideal

generated by the greatest common divisor of f and Xp � 1 .
(2) We have

dim If D dim Ig D p � deg.g/

Proof. (a) We obviously have gcd.f;Xp � 1/ j f in F ŒX� , and since F ŒX� is
a principal ideal domain, there exist polynomials h1 and h2 in F ŒX� such that
gcd.f;Xp � 1/ D h1f C h2.X

p � 1/ . Hence we get f j gcd.f;Xp � 1/ in R ,
which proves claim (a).

(b) �e �rst equality follows from (a). For the second equality, it su�ces
to note that, by euclidean division by the polynomial .Xp � 1/=g of degree
d D p�deg.g/ , the elements ¹X i �f j i D 0; 1; : : : ; d �1º form a basis of If .

For later reference, we will denote Z.f / D deg.gcd.f;Xp � 1// for any
polynomial f 2 F ŒX� and any prime p . If F has characteristic di�erent from
p , then Xp � 1 is a separable polynomial, and in that case, the integer Z.f /
is therefore the number of p -th roots of unity � , in an algebraic closure of F ,
such that f .�/ D 0 . �is interpretation will be very useful as we now turn to the
uncertainty principle.
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3. �e uncertainty principle over C

3.1. �e Fourier transform on �nite abelian groups. Let A be a �nite abelian
group. �e dual group bA of A is the group of all homomorphisms A ! S1 ,
where S1 is the group of complex numbers of modulus 1 . �e product on bA is
the pointwise multiplication of functions. �e dual group is also a �nite abelian
group, in fact it is isomorphic to A (non-canonically).

�e Fourier transform on A is a linear map from the space L2.A/ D CA of
complex-valued functions on A to the analogue space L2.bA / of complex-valued
functions on the dual group. For a function f W A ! C , its Fourier transformbf W bA ! C is de�ned by

bf .�/ D 1

jAj

X
a2A

f .a/�.a/

for any � 2 bA .
�e Fourier transform is also an algebra isomorphism, where L2.A/ is viewed

as an algebra with the convolution product

.f1 ? f2/.x/ D
1

jAj

X
a2A

f1.x � a/f2.a/;

and L2.bA / has the pointwise product of functions. In other words, we have

2f1 ? f2 D bf 1 �
bf 2:

�e connection that we will make with cyclic codes emphasizes the group
algebra of a cyclic group. It is therefore convenient to interpret the Fourier
transform in terms of the group algebra CŒA� of the group A instead of L2.A/ .

We identify L2.A/ and CŒA� by the map

f 7!
X
a2A

f .a/a:

�en the Fourier transform gives an isomorphism

CŒA� �! CA

of algebras over C , where the image of the standard basis ¹a 2 Aº is the basis
of characters of the algebra of functions CA .

3.2. �e general uncertainty principle for �nite abelian groups. For f 2
L2.A/ , or equivalently f 2 CŒA� , we denote by supp.f / the support of f ,
namely the set of a 2 A such that f .a/ ¤ 0 .
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Intuitively, by “uncertainty principle”, we mean a statement that asserts that
there are no non-zero functions f such that both f and bf have “small” support
(for instance, in the continuous case, there is no non-zero smooth function with
compact support whose Fourier transform is also compactly supported). �ere
are many variants of this principle. One well-known elementary “uncertainty
principle” version, valid for all �nite abelian groups, is the following result of
Donoho and Stark [DS, §2]:

Proposition 3.1 (Uncertainty principle). Let A be a �nite abelian group and let
f 6D 0 be a function from A to C . �en we have

(3) j supp.f /j � j supp. Of /j � jAj

We present the proof of this fact from [Mes1, �. 1] and [GGI], which �ts
well with our point of view of working with group algebras. For other proofs
and generalizations, we refer to the papers [Mes2] and [Tao], as well as to the
references contained in those articles.

Proof. We view f as an element of the group algebra CŒA� , which is
commutative. Let I D .f / be the principal ideal generated by f . Using the
isomorphism CŒA� ' CA given by the Fourier transform, as we recalled above,
the ideal I corresponds to the principal ideal in CA generated by the Fourier
transform of f . �is ideal is simplyY

bf .x/ 6D0C � CA:

In particular, the dimension r of I , as a C -vector space, is the cardinality of the
support of bf . Since the elements a � f for a 2 A span I as C -vector space,
there exist r elements a1 , . . . , ar such that I is the span of a1 � f , . . . , ar � f .

For any a 2 A � CŒA� , the support of a � f is a � supp.f / . Since f ¤ 0 ,
its support is not empty, hence for any x 2 A , we can �nd some element
a 2 A � CŒA� such that x 2 supp.a � f / .

We then have

A D
[
a2A

supp.a � f / �
r[
iD1

supp.ai � f /

which implies that

jAj �

rX
iD1

j supp.ai � f /j D r j supp.f /j D j supp. bf /j � j supp.f /j;
as claimed.



314 S. Evra, E. Kowalski and A. Lubotzky

3.3. �e uncertainty principle for simple cyclic groups. In the late 1980’s,
R. Meshulam observed that an old result of Chebotarev implies a version of
the uncertainty principle for cyclic groups of prime order p that is much
stronger than Proposition 3.1. �is strong version has been rediscovered several
times since then, and admits a number of proofs and generalizations (see for
instance, Chebotarev [Che], Meshulam [Mes1, Mes2], Goldstein, Guralnick and
Isaacs [GGI], Tao [Tao], Stevenhagen and Lenstra [SL], and the references therein).

�eorem 3.2 (Uncertainty principle for cyclic groups of prime order). Let A be
a cyclic group of prime order p , and f 6D 0 an element of CŒA� . �en

(4) j supp.f /j C j supp. bf /j � p C 1:
We will postpone the proof to Section 3.2, and in the appendix, we will also

explain Meshulam’s original observation that this statement is equivalent to a
classical result of Chebotarev about Vandermonde matrices.

To bring the connection with codes, we will now reformulate this statement.
�e group algebra CŒZ=pZ� of the cyclic group of order p is isomorphic to the
quotient algebra R D CŒX�=.Xp � 1/ by mapping the generator 1 of Z=pZ to
the image of X . �e dual group 2Z=pZ is isomorphic to the group �p.C/ of
p -th roots of unity in C , by mapping a character � to the p -th root of unity
�.1/ . �e Fourier transform of an element f 2 R , represented as the image of
a polynomial

(5) f D a0 C a1X C � � � C ap�1X
p�1

is then identi�ed with the function de�ned on p -th roots of unity by

bf .�/ D 1

p

p�1X
iD0

ai�
�i :

In other words, bf is essentially the evaluation of the representing polynomial (5)
at roots of unity.

With this notation, recalling the de�nition Z.f / D deg.gcd.f;Xp � 1// and
the fact that this is the number of zeros of f among p -th roots of unity, the
uncertainty principle of �eorem 3.2 gets the following form:

�eorem 3.3. Let p be a prime. For any polynomial

f D

p�1X
iD0

aiX
i
2 CŒX�
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of degree < p , let wt.f / D j¹i jai ¤ 0ºj and let Z.f / D j¹� 2 �p.C/jf .�/ D 0ºj ,
i.e. the number of p -th roots of unity of f which are also roots of f . �en we
have

(6) Z.f / � wt.f / � 1:

Indeed, by de�nition, if we view f as an element of R D CŒZ=pZ� , then
we have j supp.f /j D wt.f / and j supp. bf /j D p � Z.f / , and therefore (4) and
(6) are equivalent.

Remark 3.4. (1) �e restriction deg.f / < p is necessary: the polynomial
f D Xp � 1 has wt.f / D 2 and Z.f / D p .

(2) �e inequality (6) is best possible. For instance, the cyclotomic polynomial
f D Xp�1

X�1
D 1 C X C : : : C Xp�1 vanishes on all the non-trivial p -roots

of unity, so Z.f / D p � 1 D wt.f /� 1 . Another example is f D X � 1 , in
which case we also obtain Z.f / D 1 D wt.f / � 1 .

We can now use Lemma 2.8 to obtain another reformulation of �eorems 3.2
and 3.3. �e point is that if f is a polynomial in CŒX� of degree < p , viewed
also as an element of R , then by Lemma 2.8 (2), the dimension of the ideal If
generated by the image of f in R satis�es

dim.If / D p � Z.f /:

From �eorem 3.3, we get therefore:

�eorem 3.5 (Uncertainty principle reformulated). For every non-zero polynomial
f 2 CŒX� of degree < p , considered as an element of R D CŒX�=.Xp � 1/ , we
have:

(7) wt.f /C dim.If / � p C 1

when If D .f / is the ideal of R generated by the image of f .

We conclude this section by showing how this interpretation of the uncertainty
principle gives a good family of cyclic codes over C :

Corollary 3.6. �ere exists a family of good cyclic codes over C .

Proof. Let � D e
2�i
p 2 C , and de�ne

f D

p�1
2Y
iD1

.X � � i / 2 CŒX�:
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Since f j.Xp � 1/ , we have dim.If / D p � deg.f / D pC1
2

by Lemma 2.8 (2).
Let then h 6D 0 be an element of If . We then have dim.Ih/ � dim.If / , so

that
wt.h/ � p C 1 � dim.Ih/ � p C 1 � dim.If / D

p C 1

2

by �eorem 3.5. �e ideal Cp D If is therefore a Œp; pC1
2
; pC1

2
�C -cyclic code,

and the family ¹Cpºp prime is a good family of cyclic codes.

�e codes we have “found” in this proof are special cases of the famous
Reed-Solomon codes (see, e.g., [Rot, §5.2]). In fact, these codes are in some
sense best possible: their parameters Œn; k; d � D Œp; .p C 1/=2; .p C 1/=2� satisfy
the condition

k C d D p C 1 D nC 1

where in general the so-called singleton bound implies that kCd � nC1 . (Such
codes are called “maximum distance separable” codes, or MDS codes).

4. Uncertainty principle for general �elds

4.1. General statements. �e formulation of the uncertainty principle in �eo-
rem 3.3, in the form of the inequality (6) and in �eorem 3.5, through (7), make
sense for all �elds. As we will see later, these statements are not true in such
generality, but they might be true, and useful, in some weaker form. For this
reason, we make the following de�nition.

De�nition 4.1. Let F be a �eld, p a prime number and R D F ŒX�=.Xp � 1/ .
For f 2 R , represented by a polynomial of degree < p , we denote by If the
ideal generated by f in R , and we denote

�F;p.f / D wt.f /C dim.If /:

We then de�ne the invariant

�F;p D min¹�F;p.f /j0 ¤ f 2 Rº:

We will sometimes write �.f / instead of �F;p.f / , when the �eld and prime
involved are clear in context.

Here are some simple observations:
� If E=F is a �eld extension and f 2 F ŒX�=.Xp � 1/ , then �F;p.f / D

�E;p.f / for any prime number p . In particular, it follows that �E;p � �F;p
for each p .
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� For f D 1 C X C : : : C Xp�1 , we have wt.f / D p and dim.If / D 1 . It
follows that �F;p � p C 1 for any �eld F and any prime p .

� According to the uncertainty principle for F D C (�eorems 3.2, 3.3 and
3.5), we have �C;p D p C 1 for every prime p .

So for any �eld we can state the uncertainty principle as follows:

De�nition 4.2 (Uncertainty principle). A �eld F is said to satisfy the uncertainty
principle if, for any prime number p , we have �F;p > p , or equivalently if
�F;p D p C 1 , for all p .

As we shall see in §4.2, the uncertainty principle does not hold in general,
but let us start with some positive results:

Proposition 4.3. Let F D F` be the �nite �eld of prime order ` and assume that
` is a primitive root modulo p , i.e., that ordp.`/ D p � 1 . �en �F;p D p C 1 .

Proof. Let � ¤ 1 be a primitive p -th root of unity in NF` . As recalled in
Section 2.2, the extension F`.�/=F` is then of degree ordp.`/ D p � 1 . �is
implies that the polynomial Xp�1

X�1
D 1CX C : : :CXp�1 is irreducible over F` .

In particular, for every polynomial f 2 F`ŒX� of degree less then p , the gcd
of f and Xp � 1 can only be one of 1 , X � 1 or .Xp � 1/=.X � 1/ . �en
the dimension dim.If / D p � deg.gcd.f;Xp � 1// is equal to p , p � 1 or 1 ,
respectively (Lemma 2.8 (2)).

We consider each case in turn and show that �.f / � p C 1 in any case. If
dim.If / D p , then since wt.f / � 1 (because f ¤ 0 ), we get �.f / � p C 1 . If
dim.If / D p � 1 , then we have gcd.f;Xp � 1/ D X � 1 , so X � 1 j f . Since
the only non-zero polynomials of weight 1 are monomials cX i with c 6D 0 ,
and X � 1 − cX i for 0 � i < p , we must have wt.f / � 2 , and therefore
�.f / � p�1C2 D pC1 . Finally, if dim.If / D 1 , then we have f D c

Pp�1
iD0 X

i

for some c 6D 0 , and then wt.f / D p and �.f / D p C 1 .

Another case is the following claim (which appears also in [Fre, Lemma 2]
and [GGI, Lemma 6.5]), that we will use later:

Proposition 4.4. Let p be a prime and let F be a �eld of characteristic p .
�en we have �F;p D p C 1 .

Proof. By Lemma 2.8 (2), we need to show that for any 0 ¤ f 2 F ŒX�=.Xp�1/ ,
we have

wt.f / > p � dim.If / D deg.gcd.f;Xp � 1//:
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Since F has characteristic p , we have Xp�1 D .X�1/p , which means that there
exists some integer m with 0 � m < p such that gcd.f;Xp � 1/ D .X � 1/m . So
we need to prove that for a polynomial f with .X�1/mjf , we have wt.f / > m .

We proceed by induction on deg.f / < p . In the base case deg.f / D 0 , we
have f D c ¤ 0 . �en X � 1 − f , so that m D 0 and wt.f / D 1 > m , as
claimed.

Now assume that the property is valid for all polynomials of degree < deg.f /
and that .X � 1/mjf . If f .0/ D 0 , we deduce that .X � 1/mjf .X/=X , hence
by induction we obtain m < wt.f =X/ D wt.f / . If f .0/ ¤ 0 , on the other
hand, then we consider the derivative f 0 of f . From .X � 1/m j f , it follows
that .X � 1/m�1 j f 0 : indeed, writing f D f1.X � 1/

m and di�erentiating, we
get f 0 D f 01.X � 1/

m C mf1.X � 1/
m�1 , which is divisible by .X � 1/m�1 . By

induction, we therefore get wt.f 0/ > m�1 . But then, since f .0/ ¤ 0 and m < p ,
we have wt.f / D wt.f 0/C 1 > m , as needed.

4.2. Fields of characteristic zero. We will now present a proof (following
[GGI]) of the uncertainty principle for any �eld F of characteristic zero. Note
that �eorems 3.2, 3.3 and 3.5 are special cases of this result, where the �eld is
C . Since it is elementary that we need only prove the uncertainty principle for
�nitely generated �elds F , and since such a �eld F of characteristic 0 can be
embedded into C , we could simply deduce the result from the case of C . We
give a complete proof anyway.

�e next lemma is the key step in the proof.

Lemma 4.5 (Specialization). Let p be a prime, F a �eld of characteristic 0 ,
and

f D

p�1X
iD0

aiX
i

a non-zero element of R D F ŒX�=.Xp � 1/ . �en for every prime number q ,
there exists a �eld E of characteristic q and a polynomial Qf 2 EŒX�=.Xp � 1/
such that wt. Qf / � wt.f / and dimE .I Qf / � dimF .If / .

Sketch of the proof. (1) Since char.F / D 0 , the �eld Q is a sub�eld of F .
Let A D QŒa0; : : : ; ap�1� , which is a Q -subalgebra of F . By Hilbert’s
Nullstellensatz, the homomorphisms � W A ! NQ , where NQ is the algebraic
closure of Q , separate the points of A , and therefore there exists a morphism
� W A! NQ , such that �.ai / ¤ 0 for every i , with 0 � i � p � 1 , such that
ai 6D 0 . Let K1 be the number �eld (a �nite extension of Q ) generated by
the image of � and f1 the polynomial
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f1 D

p�1X
iD0

�.ai /X
i
2 K1ŒX�:

�en by the de�nition of K1 , we have wt.f1/ D wt.f / . Moreover, � induces
an isomorphism between the p -th roots of unity in NK and those in NQ , so
that Z.f / D Z.f1/ also. �is means that we may replace K and f by K1

and f1 , and reduce to the case where K is a number �eld.
(2) Let OK be the ring of integers of K , and m a maximal ideal in OK that

contains q 2 Z � OK . �en E D OK=m is a �nite �eld of characteristic q .
(3) Let t 2 OK be a non-zero integer such that tai 2 OK for all i , and such

that there exists some i such that tai … m (this exists because not all ai
are zero). �en, if Qf is the image of tf under the reduction map from OK
to E , we have Qf ¤ 0 in EŒX� , and Qf is a polynomial of degree < p .

(4) By construction, we have wt. Qf / � wt.f / . On the other hand, we get

dimF If � dimF Itf D p � deg
�
gcd.tf;Xp � 1/

�
� p � deg

�
gcd. Qf ;Xp � 1/

�
D dimE I Qf :

�eorem 4.6. For every �eld F of characteristic 0 and every prime p , we have
�F;p D pC1 , i.e., the uncertainty principle is true over any �eld of characteristic
0 .

Proof. Let F be a �eld of characteristic zero, and let p be a prime. Let
f 2 F ŒX�=.Xp � 1/ be non-zero. By the Specialization Lemma 4.5 with
q D p , there exists a �eld E of characteristic p and a non-zero element
Qf 2 EŒX�=.Xp�1/ such that �E;p. Qf / � �F;p.f / . Because E has characteristic
p , Proposition 4.4 implies that �F;p.f / � �E;p. Qf / > p . Since this holds for all
f , the result follows.

4.3. Counter examples to the uncertainty principle over �nite �elds. Speci�c
examples of �nite �elds F for which the uncertainty principle of De�nition 4.2
does not hold over a �nite �eld F are given in [GGI]. One such example is
F D F2 . If we take p D 7 and f D X3CXC1 2 F2ŒX�=.X7�1/ , then we have

X7 � 1 D .X � 1/.X3 CX2 C 1/.X3 CX C 1/;

hence dim.If / D 4 while wt.f / D 3 , so that �F2;7 � 7 .
�e next counter-examples to the naive uncertainty principal for �nite �elds

were suggested to us by Madhu Sudan.
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Let q < p be two di�erent primes, and r D ordp.q/ . Let F D Fq and
E D Fqr , so that E contains all the p -th roots of unity. Moreover, E is
generated as an F -vector space by the p -th roots of unity. We consider the trace
polynomial

T D

r�1X
iD0

Xq
i

2 F ŒX�:

A basic but crucial observation is that the function from E to E de�ned by
the trace polynomial T is a surjective F -linear map from E to the sub�eld F ,
which we denote tr . In particular, tr is not identically zero on E , and since
the p -th roots of unity generate E as F -vector space, this means that T is not
identically zero on the p -th roots of unity.

By the pigeon-hole principle, there exists some ˛ 2 F such that at least p
q

of
the p -th roots of unity in E are roots of T C ˛ . Let then f D T C ˛ 2 F ŒX� .
�en we have

�F;p.f / D wt.f /C dimF .If / � r C 1C
�
1 �

1

q

�
p

(using the interpretation of dimF .If / as the number of roots of unity where f
does not vanish), and consequently

�E;p � �F;p � p C 1C r �
p

q
:

In particular, if r D ordp.q/ < p
q
, we obtain a counter example to the uncertainty

principle for the �eld E D Fqr .
�ere exist in�nitely many pairs of primes with this property. For instance,

take q D 2 and let p be a prime such that the Legendre symbol . 2
p
/ is equal to

1 . �en q D 2 is a square modulo p , which implies that 2.p�1/=2 � 1 mod p ,
hence that the order of 2 modulo p is � .p � 1/=2 < p=2 D p=q .

More generally, �x the prime q and take any prime ` > q . By Lemma 2.7, if
p is any prime that is totally split in the Galois extension K` D Q.e2i�=`; `

p
q/ ,

we have ordp.2/ � .p � 1/=` < p=q . It is a well-known consequence of the
Chebotarev density theorem that there are in�nitely such primes.

In anticipation of the next section, we note however that, for any pair q < p
with r < p=q , it still remains true that

�F;p.f / � p C 1C r �
p

q
�
p

2
;

or in other words, the uncertainty principle for f does not fail drastically.
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5. �e weak uncertainty principle

5.1. Statement. �e uncertainty principle in its current version over C states
that for each prime p , we have �C;p > p . We have seen that this inequality
does not always hold if C is replaced by any �eld. Because of the link with
good cyclic codes, we introduce a weaker version:

De�nition 5.1 (Weak uncertainty principle). Let ı be a real number such that
0 < ı � 1 . We say that a �eld F satis�es the ı -uncertainty principle for a prime
p if

(8) �F;p > ı � p:

�is variant of the uncertainty principle is weaker than the one in the previous
section in two respects: the lower bound for �F;p is relaxed, and it is stated with
respect to an individual prime p , and not all of them.

Example 5.2. We �rst present some �nite �elds that satisfy the weak uncertainty
principle for certain primes. Let ` be a prime number, and let P be an in�nite
set of primes such that ` is a primitive root in F�p for all p 2 P . As we have
already mentioned, Artin’s Conjecture asserts that such a set P exists for any
prime ` , and Hooley [H] con�rmed this under a suitable form of the Generalized
Riemann Hypothesis. By Proposition 4.3, we have �F`;p > p , for any p 2 P ,
and hence the weak uncertainly principle is satis�ed by the �eld F` for any prime
in P .

�is example does not however lead to good cyclic codes. Indeed, if we
consider proper ideals Ip � F`ŒZ=pZ� D F`ŒX�=.X

p�1/ for p 2 P , the fact that
` is a primitive root modulo p means that Ip is generated either by X � 1 or
by .Xp � 1/=.X � 1/ . In the �rst case, we have dim Ip D p � 1 , but the element
X �1 has weight 2 , so that the distance of the code Ip is 2 . In the second case,
we have dim Ip D 1 . In either case, the codes corresponding to Ip are not good
as p !C1 in P since one of the inequalities in (1) fails.

�is example motivates our last variant of the uncertainty principle.

De�nition 5.3 (Weak uncertainty principle, 2). Let ı and � be real numbers
such that 0 < ı � 1 and 0 < � < ı . We say that a �eld F of size ` satis�es the
.�; ı/-uncertainty principle if there exists an in�nite set of primes P such that,
for all primes p 2 P , the two following conditions holds:
(1) We have �F;p > ıp ,
(2) We have ordp.`/ < �p .
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�e existence of �nite �elds F which satisfy such an uncertainty principle
implies the existence of good cyclic codes over F :

�eorem 5.4. Let F D F` be a �nite �eld prime order ` . Assume there exist
real numbers 0 < � < ı < 1 such that F satis�es the .�; ı/-uncertainty principle.
�en there exists an in�nite family of good cyclic codes over the �eld F .

Proof. For each prime p 2 P , let Ip � F ŒX�=.Xp � 1/ be a non-zero ideal such
that

�p

2
� dim.Ip/ < �p:

Such an element exists because r D ordp.`/ < �p by de�nition, and R D

F ŒX�=.Xp � 1/ is a sum of ideals of dimension r each, plus a one dimensional
ideal, see Proposition 2.6 (3).

For every element h 2 Ip , we have Ih � Ip and hence dim.Ih/ � dim.Ip/ .
From the weak uncertainty inequality that we assume, we get

wt.h/ D j supp.h/j > ıp � dim.Ih/ � ıp � dim.Ip/ > .ı � �/p:

�e cyclic code Ip has length p ; the last computation shows that its distance
is � .ı � �/p , and its dimension is � �p=2 . Hence by de�nition (see (1)), the
sequence .Ip/p2P is an in�nite sequence of good cyclic codes over F .

Generally speaking, condition (1) in De�nition 5.3 ensures that we can �nd
ideals with “large” distance, while condition (2) is used to show the existence of
such ideals with “large” dimension.

Remark 5.5. Our proof shows that any choice of ideal Ip , such that �
2
p �

dim.Ip/ < �p will give a good code. �ere are many possibilities for such ideals.
�is suggests that a randomized process might be used to prove existence of
cyclic good codes even under a weaker uncertainty principle.

5.2. A uniform weak uncertainty principle does not hold. It is only natural
to ask (and maybe hope) that a uniform weak uncertainty principle, uniform with
respect to ı , should hold for all �nite �elds, or in other words, to ask whether
there exists ı > 0 such that �F;p > ıp for any �nite �eld F and any prime p .

We will show – following an argument of Eli Ben-Sasson – that, assuming
the existence of in�nitely many Mersenne primes, this is not the case.

Proposition 5.6 (No uniform weak uncertainty principle). Assume that there exist
in�nitely many Mersenne primes. �en, for any ı > 0 , there exists a �nite �eld
F and a prime number p such that �F;p � ıp .
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For the proof, we will use the following result of Ore [Ore]:

Lemma 5.7 (Ore). Let q be a prime number and n � 1 . Let F D Fqn , and
view F as an Fq -vector space of dimension n . For every integer k � n and
every Fq -a�ne subspace A � F of dimension k , the polynomial

fA D
Y
a2A

.X � a/

satis�es

fA D ˛ C

kX
iD0

˛iX
qi

where ˛ and ˛i are elements of F . In particular, we have wt.fA/ � k C 2 .

Proof. It is easy to see that it su�ces to consider the case where A is a vector
subspace of dimension k . �en fA is a separable polynomial whose roots form an
additive subgroup of F . �is implies that fA is an additive polynomial (see [Gos,
�. 1.2.1]), which is necessarily of the desired form (with ˛ D 0 in that case)
by [Gos, Prop. 1.1.5].

Remark 5.8. In general, if K is any �eld, an additive polynomial f 2 KŒX�
is a polynomial such that f .x C y/ D f .x/C f .y/ for any x and y in K . If
K has characteristic zero, it is easy to check that f is necessarily of the form
f D aX for some a 2 K , but this is not so in characteristic p > 0 , since any
monomial Xpi is then an additive polynomial. �e result we used is that any
additive polynomial is a linear combination of these monomials.

Proof of Proposition 5.6. Let q D 2 and let p D 2n�1 be a Mersenne prime, so
that n D ordp.2/ . Let F D F2n . �en the non-zero elements of F are precisely
the p -th roots of unity.

We view F as an n -dimensional vector space over F2 , and �x a basis e1 , . . . ,
en . Let k be an integer parameter such that 1 � k < n .

�ere exist disjoint a�ne subspaces A1 , . . . , Ak in F , none of which contains
0 , with dim.Ai / D n � i (for instance, we could take Ai to be the subspace
de�ned by the equations

Ai D ¹x 2 F j x1 D � � � D xi�1 D 0; xi D 1º;

where .x1; : : : ; xn/ are the coordinates of an element x of F with respect to the
chosen basis .e1; : : : ; en/ ).
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�e disjoint union of the subspaces Ai has cardinalityˇ̌̌ [
1�i�k

Ai

ˇ̌̌
D

kX
iD1

2n�i D 2n
�
1 �

1

2k

�
:

�us if we denote by fi the polynomial associated to Ai as in Lemma 5.7, and
put

f D

kY
iD1

fi 2 F ŒX�;

then we have

deg.f / D
kX
iD1

deg.fi / D
ˇ̌̌ [
1�i�k

Ai

ˇ̌̌
D 2n

�
1 �

1

2k

�
< 2n � 1 D p

since 1 � k < n and

wt.f / �
kY
iD1

wt.fi / �
kY
iD1

.n � i C 2/ � .nC 1/k :

Since gcd.f;Xp � 1/ D f , we have

dim.If / D p � deg
�
gcd.f;Xp � 1/

�
D p � deg.f / D 2n�k � 1 �

p

2k
:

Let ı > 0 be any given real number. Take some integer k � 1 such that
1

2k
�

ı
2
. By the assumption that there exist in�nitely many Mersenne primes, we

can �nd a prime p D 2n � 1 for which n > k and

.nC 1/k �
ı

2
p:

�en using the polynomial f obtained as above for these parameters p D 2n� 1
and k , we get

�F;p � wt.f /C dim.If / � .nC 1/k C
p

2k
�
ı

2
p C

ı

2
p D ıp;

and therefore �F;p � ıp .

It is important to notice that this counter-example does not show that F2 does
not satisfy the ı -uncertainty principle for the prime p , since the polynomials
fi and f do not usually belong to F2ŒX� . Furthermore, as the underlying �eld
depends on the primes p , this counter example is not really relevant to our search
of families of cyclic good codes, since in such a family we need to work with a
�xed underlying �eld while in the last example, the size of F grows to in�nity.
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6. Why good cyclic codes should exist

6.1. Preliminaries. In this section, we describe some heuristic arguments that
all point in the direction of the existence of families of good cyclic codes, and
of the weak uncertainty principle according to De�nition 5.3.

In both arguments, the main unproved claim is that for a polynomial of
degree < p , the property of being “sparse” (i.e., of having small weight wt.f / )
and of vanishing on many roots of unity should be roughly independent. �e
following result is then relevant.

Lemma 6.1. Let ı be a �xed real number with 0 < ı < 1=2 . Let Sı be the set
of polynomials f in F2ŒX�=.Xp � 1/ with wt.f / � ıp . �en we have

jSı j D 2
pH2.ı/Co.p/

where H2.ı/ D H.ı/= log.2/ and

H.ı/ D �ı log.ı/ � .1 � ı/ log.1 � ı/

is the entropy for Bernoulli random variables.

Sketch of proof. We have 
p

bıpc

!
� jSı j �

ıpX
jD1

 
p

j

!
� p

 
p

bıpc

!
which the Stirling formula reveals to be of size

eH.ı/pCo.p/ D 2pH.ı/= log.2/Co.p/;

as claimed.

We also recall some fairly classical results on primes where 2 has relatively
small multiplicative order.

Lemma 6.2. (1) For any � with 0 < � < 1 , there exist in�nitely many primes
p such that ordp.2/ < � � p .

(2) Assume the Generalized Riemann Hypothesis for Dedekind zeta functions of
number �elds. For any � > 0 , there exist in�nitely many primes p such that
ordp.2/ < p3=4C� .
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Proof. In both cases, we use the criterion of Lemma 2.7: if ` is an odd prime
and if p is an odd prime distinct from ` such that p is totally split in the �eld
K` D Q.e2i�=`;

p̀
2/ , then p � 1 .mod `/ and the order of 2 modulo p divides

.p � 1/=` , hence is < p=` .
Hence, taking ` to be any prime such that ` > 1=� , the �rst statement follows

from the existence of in�nitely many primes totally split in K` (this is an easy
consequence of the Chebotarev Density �eorem, see for instance [Neu, �. 13.4]).

For the second, we use the explicit form of the Chebotarev Density �eorem,
following Serre’s presentation of the results of Lagarias and Odlyzko: for any odd
prime ` and any X � 2 , the number �`.X/ of primes � X which are totally
split in K` satis�es

�`.X/ D
1

ŒK` W Q�

Z X

2

dt

log t
CO

�p
X log.`X/

�
where the implied constant is absolute, under the assumption that Dedekind zeta
functions satisfy the Riemann Hypothesis. Precisely, this follows from [Ser, �.
4], applied with E D K` , K D Q and C the trivial conjugacy class of the
identity element; then nE D ŒK` W Q� and the discriminant dE is estimated using
the bound [Ser, (20)].

In particular, since the integral is of size X=.logX/ and ŒK` W Q� � `
2 , this

result shows that if � > 0 is �xed and ` is any prime large enough, there exists
a prime p totally split in K` with p � `4C� . Such a prime p satis�es

ordp.2/ <
p

`
< p1�1=.4C�/;

and the result follows.

�e interest of these statements is that if the order r of 2 modulo p is
“small” compared with p , then by the discussion following Proposition 2.6, the
ring R D F2ŒX�=.Xp � 1/ contains many ideals. In particular, if r D p3=4C� and
� with 0 < � < 1 is �xed, and if we look for ideals of dimension ir � �p ,
then for such primes we have approximately

�
s
i

�
ideals of dimension �p , where

(see Proposition 2.6), we have s D .p � 1/=r and i D �p=r � �s . By Stirling’s
formula, as in the Lemma 6.1, this numbers grows exponentially with s .

6.2. Picking ideals at random. Fix some real number with 0 < � < 1 . Let
p be a prime such that there exists an ideal I in R D F2ŒX�=.Xp � 1/ with
dim.I / � �p .

Let ı > 0 be another parameter. Assuming that the probability for an element
of Ip to be in the set Sı of Lemma 6.1 is approximately the same as the probability
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for a general element of R , the expected cardinality of the intersection Sı \ I

should be about

2pH2.ı/Cdim.I /�pCo.1/ D 2p.H2.ı/�.1��//Co.1/

by Lemma 6.1. If � and ı are chosen so that

1 � � > H2.ı/;

this expectation is < 1 . So, as in the Borel-Cantelli lemma, if we select an ideal
Ip of this approximate dimension for all primes where this is possible (an in�nite
set, by Lemma 6.2 and Proposition 2.6), we may expect that only �nitely many
p will have the property that Ip intersects Sı . Since H2.ı/ ! 0 as ı ! 0 , a
suitable choice of ı exists for any �xed � .

Moreover, under the Generalized Riemann Hypothesis, picking the primes p
as given by Lemma 6.2 (2), the number of options for Ip grows exponentially
as a function of s D p= ordp.2/ � p1=4�� , and we need to succeed only with a
single one of them to obtain a good cyclic code with rate � .

6.3. �e weak uncertainty principle should hold. Here we give a heuristic
argument, suggested by B. Poonen, as to why the weak uncertainty principle of
De�nition 5.3 should hold for the �eld F2 for an in�nite sequence of primes.
�is is a variant of the previous argument.

First, the Generalized Riemann Hypothesis implies that there are in�nitely
many primes such that ordp.2/ D p�1

2
(this is a simple variant of the argument

of Hooley [H] for primitive roots, where we count primes that are split in the
quadratic �eld Q.

p
2/ , and not split in any �eld Q.e2i�=`;

p̀
2/ for ` � 3 prime,

see Lemma 2.7 and [Mor]).
We consider such primes and explain that all but �nitely many should satisfy

De�nition 5.3 with � D 1=2 and ı D 3=5 . Indeed, the condition ordp.2/ < �p

holds by construction. Suppose �F;p � ıp . �en there exists a non-zero f 2 F2ŒX�

of degree < p such that

(9) �F;p.f / D wt.f /C dim If D wt.f /C p � deg
�
gcd.f;Xp � 1/

�
� ıp:

Since ordp.2/ D .p � 1/=2 , the polynomial .Xp � 1/=.X � 1/ has exactly two
irreducible factors of degree .p�1/=2 . So the gcd of f and Xp�1 is of degree
1 , .p � 1/=2 or p � 1 . In the �rst case, the inequality (9) is clearly false. In
the third case, we have f D .Xp � 1/=.X � 1/ , with wt.f / D p , and again (9)
is false. So f must be divisible by exactly one of the two factors of degree
.p � 1/=2 , say f1 , and then we must have wt.f / � p=10C 1=2 for (9) to hold.

Now comes the heuristic argument, where we will assume that the property of
being divisible by f1 and of having support of size � p=10 are “independent”: the
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number of polynomials f of degree < p divisible by f1 is about 2p=2 , and on
the other hand, the number of polynomials f of degree < p with wt.f / < p=10
is 2pH2.1=10/Co.p/ by Lemma 6.1. Since

H2.1=10/ D
H.1=10/

log.2/
' 0:47 < 1=2;

we may hope that the expected number of polynomials in the intersection is

O.2.0:47�1=2/p/ D O.2�3p=100/

and since the sum of the series
P
2�3p=100 is �nite, this suggests (by analogy

with the Borel-Cantelli lemma) that the set of primes where the intersection is
non-empty is �nite.

F. Voloch has pointed out that one must be careful with this heuristic. Indeed,
let Cp , for p odd, be the quadratic residue code of dimension .p�1/=2 , namely
the cyclic code corresponding to the principal ideal generated by the polynomialY

a2.F�p /2

.X � a/ 2 ŒX�:

If the last step is taken literally, the previous argument suggests that the family of
the cyclic codes Cp , parameterized by primes p such that ordp.2/ D .p � 1/=2 ,
is good. However, assuming GRH, Voloch’s results [Vol] imply that this is not
the case.

More precisely, Voloch shows, under the Generalized Riemann Hypothesis, that
there exist an in�nite sequence of primes p for which the distance of the code Cp
is � p.logp/�1 (he obtains an unconditonal bound of size � p.log logp/�1 ).
Although the primes that he constructs in [Vol] do not necessarily satisfy the
condition ordp.2/ D .p � 1/=2 that we wish to impose, we will now show that
the two can be combined (as was suggested to us by Voloch).

Indeed, Voloch de�nes a sequence of Galois extensions L`=Q of degree about
.`�1/2` , for ` a prime. He shows that if p is totally split in L` , then the distance
of Cp is � .p � 1/=.2`/ (for this purpose, he uses a formula of Helleseth). It
turns out that the splitting restrictions in L` are compatible with those involved
in constructing primes with ordp.2/ D .p�1/=2 . Under the Generalized Riemann
Hypothesis, one gets by following Hooley’s method (see, e.g., [Mor, §5]) that for
a given odd prime ` and for X � 2 , there are roughly

1

ŒL` W Q�

X

logX
CO

 
X.log logX/
.logX/2

!
primes p � X satisfying all the desired combined splitting conditions. Since
the degree of L` over Q is about `2` , we can �nd a prime p of size about
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exp.exp.`// that satis�es the desired conditions. �is provides an in�nite family
of codes Cp with distance � p=.log logp/ , under the Generalized Riemann
Hypothesis.

Although this discussion shows that the heuristic argument cannot be literally
correct, the optimist might still hope that the events which we consider are
su�ciently independent to still lead to in�nitely many primes where the weak
uncertainty principle holds. It is maybe a positive sign that the primes given by
Voloch’s argument are rather sparse, and even then, only a very slow decay of
their distance is proved.

Appendix

Chebotarev’s �eorem. A well-known (but not the best-known!) result of
Chebotarev [Che] states the following:

�eorem 6.3 (Chebotarev). Let p be a prime and � D e
2�i
p 2 C . Let V be the

Vandermonde matrix V D .� ij /
p�1
i;jD0 2 Mp.C/ . �en each minor of the matrix

V is invertible, i.e., we have det.V jA�B/ ¤ 0 for any A;B � ¹0; : : : ; p � 1º ,
jAj D jBj , where V jA�B denotes the minor of V with rows in A and columns
in B .

Let R D CŒX�=.Xp � 1/ . �en R is a vector space over C with basis the
images of the monomials ei D X i for 0 � i � p � 1 .

A (multiple of) the Fourier transform on Z=pZ can be interpreted as the
linear map F W f 7! bf from R to R such that

bf D p�1X
iD0

f .��i /X i 2 R:

It is elementary that the matrix representing this linear map is V 0 D .��ij /p�1i;jD0 2

Mp.C/ . �en each minor of the matrix V has a non-zero determinant if and
only if the same property holds for the matrix V 0 , so we may replace V by V 0

in proving Chebotarev’s �eorem.
We now show that �eorem 6.3 is equivalent to the uncertainty principle over

C . For a direct simple proof of Chebotarev’s �eorem, see the note [Fre] of
Frenkel.

Proposition 6.4. Chebotarev’s �eorem 6.3 is equivalent to the uncertainty
principle for Z=pZ over C , i.e., to �eorem 3.2.
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Proof. For each A � ¹0; : : : ; p�1º , we denote by `2.A/ the space of elements of
R which have zero coe�cients for the basis vectors ei for i … A , i.e., polynomials
f with support contained in A . For an element

f D
X
i

aiX
i
2 R

we denote by f jA the element X
i2A

aiX
i

of `2.A/ .
For any two subsets A and B of ¹0; : : : ; p�1º with the same cardinality, the

linear map TA;B W `
2.A/ ! `2.B/ obtained by restricting the Fourier transform

(i.e., TA;B.f / D bf jB for f 2 `2.A/ ) is represented by the matrix V 0A�B with
respect to the bases .ei /i2A and .ei /i2B .

(�eorem 6.3 ) �eorem 3.2) Assume for contradiction that there exists a
non-zero element

f D

p�1X
iD0

aiX
i
2 CŒX�

such that j supp.f /j C j supp. bf /j � p . Let A D supp.f / . Since j supp. bf /j �
p � jAj , the complement of supp. bf / has cardinality � jAj . We can therefore
�nd a subset B of the complement of supp. bf / such that jBj D jAj . Let
T D TA;B W `

2.A/! `2.B/ . We then have T .f / D bf jB D 0 since B is in the
complement of the support of bf , but f is non-zero in `2.A/ . Hence T is not
invertible. Hence, by the previous remark, the matrix V 0A�B has determinant zero,
which contradicts Chebotarev’s �eorem.

(�eorem 6.3 ( �eorem 3.2) Now assume that there exist subsets A;B �

¹0; : : : ; p�1º with jAj D jBj and det.V 0jA�B/ D 0 . �is means that the linear map
T D TA;B W l

2.A/! l2.B/ is not invertible. In particular, T is not injective. Let
f 6D 0 be an element of `2.A/ such that 0 D T .f / D bf jB . �en supp.f / � A
and B is contained in the complement of the support of bf . Hence

j supp.f /j � jAj D jBj � p � j supp. bf /j;
which contradicts the uncertainty principle.

In this argument, we may replace C with any other �eld F containing a
p -primitive root of unity � . So for any prime p and for any �eld F containing
a p -primitive root of unity � , �eorem 6.3 with respect to the prime p (i.e., the
claim that each minor of the p �p Vandermonde matrix .� ij /i;j is invertible) is
equivalent to the uncertainty principle for the �eld F with respect to p , i.e., to
the claim that �F;p > p .
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