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Abstract. We give an exposition of the Horn inequalities and their triple role characterizing
tensor product invariants, eigenvalues of sums of Hermitian matrices, and intersections
of Schubert varieties. We follow Belkale’s geometric method, but assume only basic
representation theory and algebraic geometry, aiming for self-contained, concrete proofs.
In particular, we do not assume the Littlewood-Richardson rule nor an a priori relation
between intersections of Schubert cells and tensor product invariants. Our motivation is
largely pedagogical, but the desire for concrete approaches is also motivated by current
research in computational complexity theory and e�ective algorithms.
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1. Introduction

�e possible eigenvalues of Hermitian matrices X1; : : : ; Xs such that X1 C
� � � CXs D 0 form a convex polytope. �ey can thus be characterized by a �nite
set of linear inequalities, most famously so by the inductive system of linear
inequalities conjectured by Horn [Hor]. �e very same inequalities give necessary
and su�cient conditions on highest weights �1; : : : ; �s such that the tensor product
of the corresponding irreducible GL.r/ -representations L.�1/; : : : ; L.�s/ contains
a nonzero invariant vector, i.e., c.E�/ WD dim.L.�1/˝ � � � ˝ L.�s//GL.r/ > 0: For
s D 3 , the multiplicities c.E�/ can be identi�ed with the Littlewood-Richardson
coe�cients. Since the Horn inequalities are linear, c.E�/ > 0 if and only if
c.N E�/ > 0 for any integer N > 0 . �is is the celebrated saturation property of
GL.r/ , �rst established combinatorially by Knutson and Tao [KT] building on
work by Klyachko [Kly]. Some years after, Belkale has given an alternative proof
of the Horn inequalities and the saturation property [Bel3]. His main insight is to
‘geometrize’ the classical relationship between the invariant theory of GL.r/ and
the intersection theory of Schubert varieties of the Grassmannian. In particular,
by a careful study of the tangent space of intersections, he shows how to obtain
a geometric basis of invariants.

�e aim of this text is to give a self-contained exposition of the Horn
inequalities, assuming only linear algebra and some basic representation theory
and algebraic geometry, similar in spirit to the approach taken in [VW]. We
also discuss a proof of Fulton’s conjecture which asserts that c.E�/ D 1 if and
only if c.N E�/ D 1 for any integer N � 1 . We follow Belkale’s geometric
method [Bel2, Bel3, Bel4], as recently re�ned by Sherman [She], and do
not claim any originality. Instead, we hope that our text might be useful by
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providing a more accessible introduction to these topics, since we tried to give
simple and concrete proofs of all results. In particular, we do not use the
Littlewood-Richardson rule for determining c.E�/ , and we do not discuss the
relation of a basis of invariants to the integral points of the hive polytope [KT].
Instead, we describe a basis of invariants that can be identi�ed with the Howe-
Tan-Willenbring basis, which is constructed using determinants associated to
Littlewood-Richardson tableaux, as we explained in [VW]. We will come back to
this subject in the future. We note that Derksen and Weyman’s work [DW] can
be understood as a variant of the geometric approach in the context of quivers.
For alternative accounts we refer to the work by Knutson and Tao [KT] and
Woodward [KTW], Ressayre [Res1, Res3] and to the expositions by Fulton and
Knutson [Ful2, Knu].

�e desire for concrete approaches to questions of representation theory
and algebraic geometry is also motivated by recent research in computational
complexity and the interest in e�cient algorithms. Indeed, the saturation property
implies that deciding the nonvanishing of a Littlewood-Richardson coe�cient can
be decided in polynomial time [MNS]. In contrast, the analogous problem for
the Kronecker coe�cients, which are not saturated, is NP-hard, but believed to
simplify in the asymptotic limit [IMW, BCM]. We refer to [Mul, BLMW] for
further detail.

�ese notes are organized as follows: In Section 2, we start by motivating
the triple role of the Horn inequalities characterizing invariants, eigenvalues, and
intersections. �en, in Section 3, we collect some useful facts about positions and
�ags. �is is used in Sections 4 and 5 to establish Belkale’s theorem characterizing
intersecting Schubert varieties in terms of Horn’s inequalities. In Section 6, we
explain how to construct a geometric basis of invariants from intersecting Schubert
varieties. �is establishes the Horn inequalities for the Littlewood-Richardson
coe�cients, and thereby the saturation property, as well as for the eigenvalues
of Hermitian matrices that sum to zero. In Section 7, we sketch how Fulton’s
conjecture can be proved geometrically by similar techniques. Lastly, in the
appendix, we have collected the Horn inequalities for three tensor factors and low
dimensions.

Notation. We write Œn� WD ¹1; : : : ; nº for any positive integer n . For any group
G and representation M , we write MG for the linear subspace of G -invariant
vectors. For any subgroup H � G , we denote by G=H D ¹gH º the right coset
space. If F is an H -space, we denote by G �H F the quotient of G � F

by the equivalence relation .g; f / � .gh�1; hf / for g 2 G , f 2 F , h 2 H .
Note that G �H F is a G -space �bered over G=H , with �ber F . If F if a
subspace of a G -space X , then G �H F is identi�ed by the G -equivariant map
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Œg; f � 7! .gH; gf / with the subspace of G=H � X (equipped with the diagonal
G -action) consisting of the .gH; x/ such that g�1x 2 F .

2. A panorama of invariants, eigenvalues, and intersections

In this section we give a panoramic overview of the relationship between
invariants, eigenvalues, and intersections. Our focus is on explaining the intuition,
connections, and main results. To keep the discussion streamlined, more di�cult
proofs are postponed to later sections (in which case we use the numbering of
the later section, so that the proofs can easily be found). �e rest of this article,
from Section 3 onwards, is concerned with developing the necessary mathematical
theory and giving these proofs.

We start by recalling the basic representation theory of the general linear
group GL.r/ WD GL.r;C/ . Consider Cr with the ordered standard basis
e.1/; : : : ; e.r/ and standard Hermitian inner product. Let H.r/ denote the
subgroup of invertible matrices t 2 GL.r/ that are diagonal in the standard
basis, i.e., t e.i/ D t .i/ � e.i/ with all t .i/ ¤ 0 . We write t D .t.1/; : : : ; t .r// and
thereby identify H.r/ Š .C�/r . To any sequence of integers � D .�.1/; : : : ; �.r// ,
we can associate a character of H.r/ by t 7! t� WD t .1/�.1/ � � � t .r/�.r/ . We say
that � is a weight and call ƒ.r/ D Zr the weight lattice. A weight is dominant
if �.1/ � � � � � �.r/ , and the set of all dominant weights form a semigroup,
denoted by ƒC.r/ . We later also consider antidominant weights ! , which satisfy
!.1/ � � � � � !.r/ .

For any dominant weight � 2 ƒC.r/ , there is an unique irreducible repre-
sentation L.�/ of GL.r/ with highest weight � . �at is, if B.r/ denotes the
group of upper-triangular invertible matrices (the standard Borel subgroup of
GL.r/ ) and N.r/ � B.r/ the subgroup of upper-triangular matrices with all ones
on the diagonal (i.e., the corresponding unipotent), then L.�/N.r/ D Cv� is a
one-dimensional eigenspace of B.r/ of H.r/ -weight � . We say that v� is a
highest weight vector of L.�/ . In Section 6.1 we describe a concrete construction
of L.�/ due to Borel and Weil. Now let U.r/ denote the group of unitary
matrices, which is a maximally compact subgroup of GL.r/ . We can choose
an U.r/ -invariant Hermitian inner product h�; �i (by convention complex linear
in the second argument) on each L.�/ so that the representation L.�/ restricts
to an irreducible unitary representation of U.r/ . Any two such representations
of U.r/ are pairwise inequivalent, and, by Weyl’s trick, any irreducible unitary
representation can be obtained in this way. Let us now decompose their Lie alge-
bras as gl.r/ D u.r/˚ iu.r/ , where i D

p
�1 , and likewise h.r/ D t.r/˚ i t.r/ ,

where we write t.r/ for the Lie algebra of T .r/ , the group of diagonal unitary
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matrices, and similarly for the other Lie groups. Here, iu.r/ denotes the space of
Hermitian matrices and i t.r/ the subspace of diagonal matrices with real entries.
We freely identify vectors in Rr with the corresponding diagonal matrices in
i t.r/ and denote by .�; �/ the usual inner product of i t.r/ Š Rr . For a subset
J � Œr� , we write TJ for the vector (diagonal matrix) in i t.r/ that has ones in
position J , and otherwise zero.

Now let O� denote the set of Hermitian matrices with eigenvalues �.1/ �
� � � � �.r/ . By the spectral theorem, O� is a U.r/ -orbit with respect to the
adjoint action, u �X WD uXu� , and so O� D U.r/ � � , where we identify � with
the diagonal matrix with entries �.1/ � � � � � �.r/ . On the other hand, recall
that any invertible matrix g 2 GL.r/ can be written as a product g D ub , where
u 2 U.r/ is unitary and b 2 B.r/ upper-triangular. Since v� is an eigenvector of
B.r/ , it follows that, in projective space P .L.�// , the orbits of Œv�� for GL.r/
and U.r/ are the same! Moreover, it is not hard to see that the U.r/ -stabilizers
of � and of Œv�� agree, so we obtain a U.r/ -equivariant di�eomorphism

(2.1) O� ! U.r/ � Œv�� D GL.r/ � Œv�� � P .L.�//; u � � 7! u � Œv�� D Œu � v��

which also allows us to think of the adjoint orbit O� as a complex projective
GL.r/ -variety. An important observation is that

(2.2) tr
�
.u � �/A

�
D
hu � v�; ��.A/.u � v�/i

kv�k2

for all complex r�r -matrices A , i.e., elements of the Lie algebra gl.r/ of GL.r/ ;
�� denotes the Lie algebra representation on L.�/ . To see that (2.2) holds true,
we may assume that kv�k D 1 as well as that u D 1 , the latter by U.r/ -
equivariance. Now tr.A�/ D hv�; ��.A/v�i is easily be veri�ed by decomposing
A D LCH CR with L strictly lower triangular, R strictly upper triangular, and
H 2 h.r/ diagonal and comparing term by term. �ese observations lead to the
following fundamental connection between the eigenvalues of Hermitian matrices
and the invariant theory of the general linear group:

Proposition 2.3 (Kempf-Ness, [KN]). Let �1; : : : ; �s be dominant weights for
GL.r/ such that .L.�1/ ˝ � � � ˝ L.�s//GL.r/ ¤ ¹0º . �en there exist Hermitian
matrices Xk 2 O�k such that

Ps
kD1Xk D 0 .

Proof. Let 0 ¤ w 2 .L.�1/˝� � �˝L.�s//GL.r/ be a nonzero invariant vector. �en,
P.v/ WD hw; vi is a nonzero linear function on L.�1/˝� � �˝L.�s/ that is invariant
under the diagonal action of GL.r/ ; indeed, hw; g � vi D hg� � w; vi D hw; vi .
Since the L.�k/ are irreducible, they are spanned by the orbits U.r/v�k . �us
we can �nd u1; : : : ; us 2 U.r/ such that P.v/ ¤ 0 for v D .u1�v�1/˝� � �˝.us �v�s / .



408 N. Berline, M. Vergne and M. Walter

Consider the class Œv� of v in the corresponding projective space P .L.�1/˝

� � � ˝ L.�s// . �e orbit of Œv� under the diagonal GL.r/ -action is contained
in the GL.r/s -orbit, which is the closed set ŒU.r/ � v�1 ˝ � � � ˝ U.r/ � v�s �

according to the discussion preceding (2.1). It follows that GL.r/ � v and its
closure, GL.r/ � v (say, in the Euclidean topology), are contained in the closed
set ¹�.u01 � v�1/˝ � � � ˝ .u0s � v�s /º for � 2 C and u01; : : : ; u

0
s 2 U.r/ .

Since P is GL.r/ -invariant, P.v0/ D P.v/ ¤ 0 for any vector v0 in the
diagonal GL.r/ -orbit of v . By continuity, this is also true in the orbits’ closure,
GL.r/ � v . On the other hand, P.0/ D 0 . It follows that 0 62 GL.r/ � v , i.e., the
origin does not belong to the orbit closure. Consider then a nonzero vector v0 of
minimal norm in GL.r/ � v . By the discussion in the preceding paragraph, this
vector is of the form v0 D �.u01 � v�1/˝ � � � ˝ .u

0
s � v�s / for some 0 ¤ � 2 C and

u01; : : : ; u
0
s 2 U.r/ . By rescaling v we may moreover assume that � D 1 , so that

v0 is a unit vector.
�e vector v0 is by construction a vector of minimal norm in its own GL.r/ -

orbit. It follows that, for any Hermitian matrix A ,

0 D
1

2
@tD0k.e

At
˝ � � � ˝ eAt / � v0k2

D hv0;
�
��1.A/˝ I ˝ � � � ˝ I C � � � C I ˝ � � � ˝ I ˝ ��s .A/

�
v0i

D

sX
kD1

hu0k � v�k ; ��k .A/.u
0
k � v�k /i D

sX
kD1

tr
�
A.u0k � �k/

�
D

sX
kD1

tr.AXk/;

where we have used Eq. (2.2) and set Xk WD u0k � �k for k 2 Œs� . �is implies at
once that

Ps
kD1Xk D 0 .

�e adjoint orbits O� D U.r/ � � (but not the map (2.1)) can be de�ned
not only for dominant weights � but in fact for arbitrary Hermitian matrices.
Conversely, any Hermitian matrix is conjugate to a unique element � 2 i t.r/
such that �.1/ � � � � � �.r/ . �e set of all such � is a convex cone, known as
the positive Weyl chamber CC.r/ , and it contains the semigroup of dominant
weights. �roughout this text, we only ever write O� D U.r/ � � for � that are
in the positive Weyl chamber. For example, if � 2 CC.r/ then �� 2 O�� ,
where �� D .��.r/; : : : ;��.1// 2 CC.r/ . If � is a dominant weight then
�� D .��.d/; : : : ;��.1// is the highest weight of the dual representation of
L.�/ , i.e., L.��/ Š L.�/� .

Remark. Using the inner product .A;B/ WD tr.AB/ on Hermitian matrices we
may also think of � as an element in i t.r/� and of O� as a coadjoint orbit
in iu.r/� . From the latter point of view, the map .X1; : : : ; Xs/ 7!

Ps
kD1Xk is

the moment map for the diagonal U.r/ -action on the product of Hamiltonian
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manifolds O�k , k 2 Œs� . Proposition 2.3 thus relates the existence of nonzero
invariants to the statement that the zero set of the corresponding moment map is
nonempty. �is is a general fact of Mumford’s geometric invariant theory.

De�nition 2.4. �e Kirwan cone Kirwan.r; s/ is de�ned as the set of E� D
.�1; : : : ; �s/ 2 CC.r/

s such that there exist Xk 2 O�k with
Ps
kD1Xk D 0 .

Using this language, Proposition 2.3 asserts that if the generalized Littlewood-
Richardson coe�cient c.E�/ WD dim.L.�1/˝� � �˝L.�s//GL.r/ > 0 is nonzero then
E� is a point in the Kirwan cone Kirwan.r; s/ .

Remark. We will see in Section 6 that, conversely, if E� 2 Kirwan.r; s/ , then
c.E�/ > 0 (by constructing an explicit nonzero invariant). As a consequence, it
will follow that c.E�/ > 0 if and only if c.N E�/ > 0 for some integer N > 0 . �is
is the remarkable saturation property of the Littlewood-Richardson coe�cients. In
fact, we will show that the Horn inequalities give a complete set of conditions for
nonvanishing c.E�/ as well as for E� 2 Kirwan.r; s/ , which in particular establishes
that Kirwan.r; s/ is indeed a convex polyhedral cone. We will come back to these
points at the end of this section.

If there exist permutations wk such that
Ps
kD1wk ��k D 0 then E� 2 Kirwan.r; s/

(choose each Xk as the diagonal matrix wk � �k ). �is su�ces to characterize the
Kirwan cone for s � 2 :

Example. For s D 1 , it is clear that Kirwan.r; 1/ D ¹0º . When s D 2 , then
Kirwan.r; 2/ D ¹.�; ��/º . Indeed, if X1 2 O�1 and X2 2 O�2 with X1 CX2 D 0 ,
then X2 D �X1 2 O��

1
.

In general, however, it is quite delicate to determine if a given E� 2 CC.r/s is
in Kirwan.r; s/ or not. Clearly, one necessary condition is that

Ps
kD1j�kj D 0 ,

where we have de�ned j�j WD
Pr
jD1 �.j / for an arbitrary � 2 h.r/ . �is follows

by taking the trace of the equation
Ps
kD1Xk D 0 . In fact, it is clear that by

adding or subtracting appropriate multiples of the identity matrix we can always
reduce to the case where each j�kj D 0 .

Example. Let Xk 2 O�k such that
Ps
kD1Xk D 0 . For each k , let vk denote a

unit eigenvector of Xk with eigenvalue �k.1/ . �en we have

(2.5) 0 D hvk ; .

sX
lD1

Xl /vki D �k.1/C
X
l¤k

hvk; Xlvki � �k.1/C
X
l¤k

�l .r/
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since �l .r/ D minkvkD1 hv;Xlvi by the variational principle for the minimal eigen-
value of a Hermitian matrix Xl . �ese inequalities, together with

Ps
kD1j�kj D 0 ,

characterize the Kirwan cone for r D 2 , as can be veri�ed by brute force.
�ere is also a pleasant geometric way of understanding these inequalities in

the case r D 2 . As discussed above, we may assume that the Xk are traceless, i.e.,
that �k D .jk ;�jk/ for some jk � 0 . Recall that the traceless Hermitian matrices
form a three-dimensional real vector space, spanned by the Pauli matrices. �us
each Xk identi�es with a vector xk 2 R3 , and the condition that Xk 2 O�k
translates into kxkk D jk . �us we seek to characterize necessary and su�cient
conditions on the lengths jk of vectors xk that sum to zero,

Ps
kD1 xk D 0 . By

the triangle inequality, jk D kxkk �
P
l¤kkxlk D

P
l¤k jl , which is equivalent

to the above. It is instructive to observe that jk �
P
l¤k jl is precisely the

Clebsch-Gordan rule for SL.2/ when the jk are half-integers.

�e proof of Eq. (2.5), which was valid for any s and r , suggests that a more
general variational principle for eigenvalues might be useful to produce linear
inequalities for the Kirwan cones.

De�nition 2.6. A (complete) �ag F on a vector space V , dimV D r , is a chain
of subspaces

¹0º D F.0/ � F.1/ � � � � � F.j / � F.j C 1/ � � � � � F.r/ D V;

such that dimF.j / D j for all j D 0; : : : ; r . Any ordered basis f D

.f .1/; : : : ; f .r// of V determines a �ag by F.j / D span¹f .1/; : : : ; f .j /º . We
say that f is adapted to F .

Now let X 2 O� be a Hermitian matrix with eigenvalues �.1/ � � � � � �.r/ . Let
.fX .1/; : : : ; fX .r// denote an orthonormal eigenbasis, ordered correspondingly,
and denote by FX the corresponding eigen�ag of X , de�ned as above. Note that
FX is uniquely de�ned if the eigenvalues �.j / are all distinct. We can quantify
the position of a subspace with respect to a �ag in the following way:

De�nition 2.7. �e Schubert position of an d -dimensional subspace S � V with
respect to a �ag F on V is the strictly increasing sequence J of integers de�ned
by

J.b/ WD min
®
j 2 Œr�; dimF.j / \ S D b

¯
for b 2 Œd � . We write Pos.S; F / D J and freely identify J with the subset
¹J.1/ < � � � < J.d/º of Œr� . In particular, Pos.S; F / D ¿ for S D ¹0º the
zero-dimensional subspace.

�e upshot of these de�nitions is the following variational principle:
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Lemma 2.8. Let � 2 CC.r/ , X 2 O� with eigen�ag FX , and J � Œr� a subset
of cardinality d . �en,

min
S WPos.S;FX /DJ

tr.PSX/ D
X
j2J

�.j / D .TJ ; �/;

where PS denotes the orthogonal projector onto an d -dimensional subspace
S � Cr .

Proof. Recall that FX .j / D span¹fX .1/; : : : ; fX .j /º , where .fX .1/; : : : ; fX .r// is
an orthonormal eigenbasis of X , ordered according to �.1/ � � � � � �.r/ . Given
a subspace S with Pos.S; FX / D J , we can �nd an ordered orthonormal basis
.s.1/; : : : ; s.d// of S where each s.a/ 2 FX .J.a// . �erefore,

tr.PSX/ D
dX
aD1

hs.a/; Xs.a/i �

dX
aD1

�.J.a// D
X
j2J

�.j /:

�e inequality holds term by term, as the Hermitian matrix obtained by
restricting X to the subspace FX .J.a// has smallest eigenvalue �.J.a// . Since
tr.PSX/ D

P
j2J �.j / for S D span¹fX .j / W j 2 J º , this establishes the

lemma.

Recall that the Grassmannian Gr.d; V / is the space of d -dimensional
subspaces of V . We may partition Gr.d; V / according to the Schubert position
with respect to a �xed �ag:

De�nition 2.9. Let F be a �ag on V , dimV D r , and J � Œr� a subset of
cardinality d . �e Schubert cell is

�0J .F / D
®
S � V W dimS D d; Pos.S; F / D J

¯
:

�e Schubert variety �J .F / is de�ned as the closure of �0J .F / in the
Grassmannian Gr.d; V / .

�e closures in the Euclidean and Zariski topology coincide; the �J .F /

are indeed algebraic varieties. Using these de�nitions, Lemma 2.8 asserts that
minS2�0

J
.FX /

tr.PSX/ D
P
j2J �.j / for any X 2 O� . Since the orthogonal

projector PS is a continuous function of S 2 Gr.d; V / (in fact, the Grassmannian
is homeomorphic to the space of orthogonal projectors of rank d ), it follows at
once that

(2.10) min
S2�J .FX /

tr.PSX/ D
X
j2J

�.j / D .TJ ; �/:

As a consequence, intersections of Schubert varieties imply linear inequalities of
eigenvalues of matrices summing to zero:
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Lemma 2.11. Let Xk 2 O�k be Hermitian matrices with
Ps
kD1Xk D 0 . If

J1; : : : ; Js � Œr� are subsets of cardinality d such that
Ts
kD1�Jk .FXk / ¤ ¿ ,

then
Ps
kD1.TJk ; �k/ � 0 .

Proof. Let S 2
Ts
kD1�Jk .FXk / . �en, 0 D

Ps
kD1 tr.PSXk/ �

Ps
kD1.TJk ; �k/

by (2.10).

Remarkably, we will �nd that it su�ces to consider only those J1; : : : ; Js such
that

Ts
kD1�Jk .Fk/ ¤ ¿ for all �ags F1; : : : ; Fs . We record the corresponding

eigenvalue inequalities, together with the trace condition, in Corollary 2.13
below. Following [Bel3], we denote s -tuples by calligraphic letters, e.g., J D
.J1; : : : ; Js/ , F D .F1; : : : ; Fs/ , etc. In the case of Greek letters we continue to
write E� D .�1; : : : ; �s/ , etc., as above.

De�nition 2.12. We denote by Subsets.d; r; s/ the set of s -tuples J , where each
Jk is a subset of Œr� of cardinality d . Given such a J , let F be an s -tuple of
�ags on V , with dimV D r . �en we de�ne

�0J .F/ WD
s\

kD1

�0Jk .Fk/; �J .F/ WD
s\

kD1

�Jk .Fk/:

We shall say that J is intersecting if �J .F/ ¤ ¿ for every s -tuple of �ags F ,
and we denote denote the set of such J by Intersecting.d; r; s/ � Subsets.d; r; s/ .

Corollary 2.13 (Klyachko, [Kly]). If E� 2 Kirwan.r; s/ then
Ps
kD1j�kj D 0 , and

for any 0 < d < r and any s -tuple J 2 Intersecting.d; r; s/ we have thatPs
kD1.TJk ; �k/ � 0 .

Example. If J D ¹1; : : : ; dº � Œr� then �0J .F / D ¹F.d/º is a single point. On
the other end, if J D ¹r � d C 1; : : : ; rº then �0J .F / is dense in Gr.r; V / , so
that �J .F / D Gr.r; V / . It follows that J D .J1; ¹r � d C 1; : : : ; rº; : : : ; ¹r �

d C 1; : : : ; rº/ 2 Intersecting.d; r; s/ is intersecting for any J1 (and likewise for
permutations of the s factors).

For d D 1 , this means that �¹rº.F / D P .V / , so that (2.10) reduces to the
variational principle for the minimal eigenvalue, �.r/ D minkvkD1 hv;Xvi , which
we used to derive (2.5) above. Indeed, since .¹aº; ¹rº; : : : ; ¹rº/ is intersecting for
any a , we �nd that (2.5) is but a special case of Corollary 2.13.

In order to understand the linear inequalities in Corollary 2.13, we need to
understand the sets of intersecting tuples. In the remainder of this section we thus
motivate Belkale’s inductive system of conditions for an s -tuple to be intersecting.
For reasons that will become clear shortly, we slightly change notation: E will be
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a complete �ag on some n -dimensional vector space W , I will be a subset of Œn�
of cardinality r , and hence �0I .E/ will be a Schubert cell in the Grassmannian
Gr.r;W / . We will describe Gr.r;W / and �0I .E/ in detail in Section 3. For now,
we note that the dimension of Gr.r;W / is r.n� r/ . In fact, Gr.r;W / is covered
by a�ne charts isomorphic to Cr.n�r/ . �e dimension of a Schubert cell and the
corresponding Schubert variety (its Zariski closure) is given by

(3.1.8) dim�0I .E/ D dim�I .E/ D
rX
aD1

�
I.a/ � a

�
DW dim I:

Indeed, �0I .E/ is contained in an a�ne chart Cr.n�r/ and is isomorphic
to a vector subspace of dimension dim I . So locally �0I .E/ is de�ned by
r.n� r/� dim I equations. �is is easy to see and we give a proof in Section 3.

De�nition 2.14. Let I 2 Subsets.r; n; s/ . �e expected dimension associated with
I is

edim I WD r.n � r/ �
sX

kD1

�
r.n � r/ � dim Ik

�
:

�is de�nition is natural in terms of intersections, as the following lemma
shows:

Lemma 2.15. Let E be an s -tuple of �ags on W , dimW D n , and I 2
Subsets.r; n; s/ . If �0I.E/ ¤ ¿ then its irreducible components (in the sense of
algebraic geometry) are all of dimension at least edim I .

Proof. Each Schubert cell �0Ik
.Ek/ is locally de�ned by r.n � r/ � dim Ik

equations. It follows that any irreducible component Z � �0I.E/ D
Ts
kD1�

0
Ik
.Ek/

is locally de�ned by
Ps
kD1.r.n�r/�dim Ik/ equations. �ese equations, however,

are not necessarily independent. �us the codimension of Z is at most that number,
and we conclude that dimZ � edim I .

Belkale’s �rst observation is that the expected dimension of an intersecting
tuple I 2 Intersecting.r; n; s/ is necessarily nonnegative,

(4.2.7) edim I D r.n � r/ �
sX

kD1

.r.n � r/ � dim Ik/ � 0:

�is inequality, as well as some others, will be proved in detail in Section 4.
For now, we remark that the condition is rather natural from the perspective of
Kleiman’s moving lemma. Given I 2 Intersecting.r; n; s/ , it not only implies that
the intersection of the Schubert cells, �0I.E/ D

Ts
kD1�

0
Ik
.Ek/ ¤ ¿ , is nonempty
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for generic �ags, but in fact transverse, so that the dimensions of its irreducible
components are exactly equal to the expected dimension; hence, edim I � 0 .

We now show that (4.2.7) gives rise to an inductive system of conditions.
Given a �ag E on W and a subspace V � W , we denote by EV the �ag
obtained from the distinct subspaces in the sequence E.i/ \ V , i D 0; : : : ; n .
Given subsets I � Œn� of cardinality r and J � Œr� of cardinality d , we also
de�ne their composition IJ as the subset IJ D ¹I.J.1// < � � � < I.J.d//º � Œn� .
(For s -tuples I and J we de�ne IJ componentwise.) �en we have the
following ‘chain rule’ for positions: If S � V � W are subspaces and E is a
�ag on W then

(3.2.9) Pos.S;E/ D Pos.V;E/Pos.S;EV /:

We also have the following description of Schubert varieties in terms of Schubert
cells:

(3.1.6) �I .E/ D
[
I 0�I

�0I 0.E/;

where the union is over all subsets I 0 � Œn� of cardinality r such that I 0.a/ � I.a/
for a 2 Œr� . Both statements are not hard to see; we will give careful proofs in
Section 3 below. We thus obtain a corresponding chain rule for intersecting tuples:

Lemma 2.16. If I 2 Intersecting.r; n; s/ and J 2 Intersecting.d; r; s/ , then we
have IJ 2 Intersecting.d; n; s/ .

Proof. Let E be an s -tuple of �ags on W D Cn . Since I is intersecting,
there exists V 2 �I.E/ . Let EV denote the s -tuple of induced �ags on V .
Likewise, since J is intersecting, we can �nd S 2 �J .EV / . In particular,
Pos.V;Ek/.a/ � Ik.a/ for a 2 Œr� and Pos.S;EV

k
/ � Jk.b/ for b 2 Œd �

by (3.1.6). �us (3.2.9) shows that Pos.S;Ek/.b/ D Pos.V;Ek/
�
Pos.S;EV

k
/.b/

�
�

Pos.V;Ek/.Jk.b// � Ik.Jk.b// . Using (3.1.6) one last time, we conclude that
S 2 �IJ .E/ .

As an immediate consequence of Inequality (4.2.7) and Lemma 2.16 we obtain
the following set of necessary conditions for an s -tuple I to be intersecting:

Corollary 2.17. If I 2 Intersecting.r; n; s/ then for any 0 < d < r and any
s -tuple J 2 Intersecting.d; r; s/ we have that edim IJ � 0 .

Belkale’s theorem asserts that these conditions are also su�cient. In fact, it
su�ces to restrict to intersecting J with edimJ D 0 :
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De�nition 2.18. Let Horn.r; n; s/ denote the set of s -tuples I 2 Subsets.r; n; s/
de�ned by the conditions that edim I � 0 and, if r > 1 , that

edim IJ � 0

for all J 2 Horn.d; r; s/ with 0 < d < r and edimJ D 0 .

�eorem 5.3.4 (Belkale, [Bel3]). For r 2 Œn� and s � 2 , Intersecting.r; n; s/ D
Horn.r; n; s/ .

We will prove �eorem 5.3.4 in Section 5. �e inequalities de�ning
Horn.r; n; s/ are in fact tightly related to those constraining the Kirwan cone
Kirwan.r; s/ and the existence of nonzero invariant vectors. To any s -tuple of
dominant weights E� for GL.r/ such that

Ps
kD1j�kj D 0 , we will associate an

s -tuple I 2 Subsets.r; n; s/ for some Œn� such that edim I D 0 . Furthermore, if E�
satis�es the inequalities in Corollary 2.13 then I 2 Horn.r; n; s/ . In Section 6 we
will explain this more carefully and show how Belkale’s considerations allow us
to construct a corresponding nonzero GL.r/ -invariant in L.�1/˝� � �˝L.�s/ . By
Proposition 2.3, we will thus obtain at once a characterization of the Kirwan cone
as well as of the existence of nonzero invariants in terms of Horn’s inequalities:

Corollary 6.3.3 (Knutson–Tao, [KT]). (a) Horn inequalities: �e Kirwan cone
Kirwan.r; s/ is the convex polyhedral cone of E� 2 CC.r/

s such thatPs
kD1j�kj D 0 , and for any 0 < d < r and any s -tuple J 2 Horn.d; r; s/

with edimJ D 0 we have that
Ps
kD1.TJk ; �k/ � 0 .

(b) Saturation property: For a dominant weight E� 2 ƒC.r/
s , the space of

invariants .L.�1/ ˝ � � � ˝ L.�s//
GL.r/ is nonzero if and only if E� 2

Kirwan.r; s/ .

In particular, c.E�/ WD dim.L.�1/ ˝ � � � ˝ L.�s//GL.r/ > 0 if and only if
c.N E�/ > 0 for some integer N > 0 .

�e proof of Corollary 6.3.3 will be given in Section 6. In Appendices A and
B, we list the Horn triples as well as the Horn inequalities for the Kirwan cones
up to r D 4 .

3. Subspaces, �ags, positions

In this section, we study the geometry of subspaces and �ags in more detail
and supply proofs of some linear algebra facts used previously in Section 2.
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3.1. Schubert positions. We start with some remarks on the Grassmannian
Gr.r;W / , which is an irreducible algebraic variety on which the general linear
group GL.W / acts transitively. �e stabilizer of a subspace V 2 Gr.r;W / is
equal to the parabolic subgroup P.V;W / D ¹ 2 GL.W / W V � V º , with Lie
algebra p.V;W / D ¹x 2 gl.W / W xV � V º . �us we obtain that

Gr.r;W / D GL.W / � V Š GL.W /=P.V;W /;

and we can identify the tangent space at V with

TV Gr.r;W / D gl.W / � V Š gl.W /=p.V;W / Š Hom.V;W=V /:

If we choose a complement Q of V in W then

(3.1.1) Hom.V;Q/! Gr.r;W /; � 7! .idC�/.V /

parametrizes a neighborhood of V . �is gives a system of a�ne charts in
Gr.r;W / isomorphic to Cr.n�r/ . In particular, dimGr.r;W / D r.n � r/ , a fact
we use repeatedly in this article.

We now consider Schubert positions and the associated Schubert cells and
varieties in more detail (De�nitions 2.7 and 2.9) For all  2 GL.W / , we have
the following equivariance property:

(3.1.2) Pos.�1V;E/ D Pos.V; E/;

which in particular implies that

(3.1.3) �0I .E/ D �
0
I .E/:

�us �0I .E/ is preserved by the Borel subgroup B.E/ D ¹ 2 GL.W / W E.i/ �
E.i/ .8i/º , which is the stabilizer of the �ag E . We will see momentarily that
�0I .E/ is in fact a single B.E/ -orbit. We �rst state the following basic lemma,
which shows that adapted bases (De�nition 2.6) provide a convenient way of
computing Schubert positions:

Lemma 3.1.4. Let E be a �ag on W , dimW D n , V � W an r -dimensional
subspace, and I � Œn� a subset of cardinality r , with complement I c . �e
following are equivalent:

(i) Pos.V;E/ D I .

(ii) For any ordered basis .f .1/; : : : ; f .n// adapted to E , there exists a (unique)
basis .v.1/; : : : ; v.r// of V of the form

v.a/ 2 f
�
I.a/

�
C span

®
f .i/ W i 2 I c ; i < I.a/

¯
:
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(iii) �ere exists an ordered basis .f .1/; : : : ; f .n// adapted to E such that
¹f .I.1//; : : : ; f .I.r//º is a basis of V .

�e proof of Lemma 3.1.4 is left as an exercise to the reader. Clearly, B.E/
acts transitively on the set of ordered bases adapted to E . �us, Lemma 3.1.4, (iii)
shows that �0I .E/ is a single B.E/ -orbit. �at is, just like Grassmannian itself,
each Schubert cell is a homogeneous space. In particular, �0I .E/ and its closure
�I .E/ (De�nition 2.9) are both irreducible algebraic varieties.

Example. Consider the �ag E on W D C4 with adapted basis .f .1/; : : : ; f .4// ,
where f .1/ D e.1/Ce.2/Ce.3/ , f .2/ D e.2/Ce.3/ , f .3/ D e.3/Ce.4/ , f .4/ D
e.4/ . If V D span¹e.1/; e.2/º then Pos.V;E/ D ¹2; 4º , while Pos.V;E0/ D ¹1; 2º
for the standard �ag E0 with adapted basis .e.1/; e.2/; e.3/; e.4// .

Note that the basis .v.1/; v.2// of V given by v.1/ D f .2/�f .1/ D e.1/ and
v.2/ D f .4/�f .3/Cf .1/ D e.1/Ce.2/ satis�es the conditions in Lemma 3.1.4, (ii).
It follows that .f .1/; v.1/; f .3/; v.2// is an adapted basis of E that satis�es the
conditions in (iii).

�e following lemma characterizes each Schubert variety explicitly as a union
of Schubert cells:

Lemma 3.1.5. Let E be a �ag on W , dimW D n , and I � Œn� a subset of
cardinality r . �en,

(3.1.6) �I .E/ D
[
I 0�I

�0I 0.E/;

where the union is over all subsets I 0 � Œn� of cardinality r such that I 0.a/ � I.a/
for a 2 Œr� .

Proof. Recall that �I .E/ can be de�ned as the Euclidean closure of �0I .E/ . �us
let .Vk/ denote a convergent sequence of subspaces in �0I .E/ with limit some
V 2 Gr.r;W / . �en dimE.I.a//\V � dimE.I.a//\Vk for su�ciently large k ,
since intersections can only become larger in the limit, but dimE.I.a//\Vk D a
for all k . It follows that Pos.V;E/.a/ � I.a/ .

Conversely, suppose that V 0 2 �0I 0.E/ , where I 0.a/ � I.a/ for all a . Let a0
denote the minimal integer such that I 0.a/ D I.a/ for a D a0C 1; : : : ; r . We will
show that V 0 2 �I .E/ by induction on a0 . If a0 D 0 then I 0 D I and there is
nothing to show. Otherwise, let .f 0.1/; : : : ; f 0.n// denote an adapted basis for E
such that v0.a/ D f 0.I 0.a// is a basis of V 0 (as in (iii) of Lemma 3.1.4). For each
" > 0 , consider the subspace V" with basis vectors v".a/ D v0.a/ for all a ¤ a0
together with v".a

0/ WD v0.a0/ C "f 0.I.a0// . �en the space V" is of dimension
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r and in position ¹I 0.1/; : : : ; I 0.a0 � 1/; I.a0/; : : : ; I.r/º with respect to E . By
the induction hypothesis, V" 2 �I .E/ for any " > 0 , and thus V 0 2 �I .E/ as
V" ! V 0 for "! 0 .

We now compute the dimensions of Schubert cells and varieties. �is is
straightforward from Lemma 3.1.4, however it will be useful to make a slight
detour and introduce some notation. �is will allow us to show that we can exactly
parametrize �0I .E/ by a unipotent subgroup of B.E/ , which in particular shows
that it is an a�ne space.

Choose an ordered basis .f .1/; : : : ; f .n// that is adapted to E . �en
V WD span¹f .i/ W i 2 I º 2 �0I .E/ . By Lemma 3.1.4, (ii) any V 2 �0I .E/ is
of this form. Now de�ne

HomE .V;W=V /
WD
®
� 2 Hom.V;W=V / W �

�
E.i/ \ V

�
�
�
E.i/C V

�
=V for i 2 Œn�

¯
D

°
� 2 Hom.V;W=V / W �

�
f
�
I.a/

��
� span

®
f
�
I c.b/

�
C V W b 2 ŒI.a/ � a�

¯
for a 2 Œr�

±
where the f .j / C V for j 2 I c form a basis of W=V . In particular,
HomE .V;W=V / is of dimension

Pr
aD1.I.a/ � a/ . Using this basis, we can

identify W=V with Q WD span¹f .j / W j 2 I cº . �en W D V ˚Q and we can
identify HomE .V;W=V / with

HE .V;Q/ WD
°
� 2 Hom.V;Q/ W �

�
f
�
I.a/

��
� span

®
f
�
I c.b/

�
W b 2 ŒI.a/ � a�

¯
for a 2 Œr�

±
:

Lemma 3.1.4, (ii) shows that for any � 2 HE .V;Q/ , we obtain a distinct subspace
.idC�/.V / in �0I .E/ , and that all subspaces in �0I .E/ can obtained in this way.
�us, �0I .E/ is contained in the a�ne chart Hom.V;Q/ of the Grassmannian
described in (3.1.1) and isomorphic to the linear subspace HE .V;Q/ of dimension
dim I . We de�ne a corresponding unipotent subgroup,

UE .V;Q/ WD ¹u� D idC� D
 
idV 0

� idQ

!
2 GL.W / W � 2 HE .V;Q/º:

�us we obtain the following lemma:
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Lemma 3.1.7. Let E be a �ag on W , dimW D n , I � Œn� a subset
of cardinality r , V 2 �0I .E/ , and Q as above. �en we can parametrize
HE .V;Q/ Š UE .V;Q/ Š �0I .E/ D UE .V;Q/V , hence HE .V;Q/ Š TV�

0
I .E/

and

(3.1.8) dim�0I .E/ D dim�I .E/ D dimHE .V;Q/ D
rX
aD1

�
I.a/ � a

�
DW dim I:

It will be useful to rephrase the above to obtain a parametrization of �0I .E/
in terms of the �xed subspaces

(3.1.9)
V0 WD span¹f .1/; : : : ; f .r/º D E.r/;
Q0 WD span¹ Nf .1/; : : : ; Nf .n � r/º;

where the Nf .i/ WD f .rCi/ for i 2 Œn�r� form a basis of Q0 . �en W D V0˚Q0 .

De�nition 3.1.10. Let I � Œn� be a subset of cardinality r . �e shu�e permutation
�I 2 Sn is de�ned by

�I .a/ D

´
I.a/ for a D 1; : : : ; r;
I c.a � r/ for a D r C 1; : : : ; n:

and wI 2 GL.W / is the corresponding permutation operator with respect to the
adapted basis .f .1/; : : : ; f .n// , de�ned as wI f .i/ WD f .��1I .i// for i 2 Œn� .

�en V0 D wIV , where V D span¹f .i/ W i 2 I º 2 �0I .E/ as before, and so

V0 2 wI�
0
I .E/ D �

0
I .wIE/

using (3.1.3). �e translated Schubert cell can be parametrized by

HwIE .V0;Q0/

D

°
� 2 Hom.V0;Q0/ W �

�
f .a/

�
� span¹ Nf .1/; : : : ; Nf

�
I.a/ � a/º for a 2 Œr�

±
;

where we identify Q0 Š W=V0 . We thus obtain the following consequence of
Lemma 3.1.7:

Corollary 3.1.11. Let E be a �ag on W , dimW D n , I � Œn� of cardinality r ,
and V 2 �0I .E/ . Moreover, de�ne wI as above for an adapted basis. �en,

�0I .E/ D w
�1
I �0I .wIE/ D w

�1
I UwIE .V0;Q0/V0:
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Example (r D 3 ,n D 4 ). Let I D ¹1; 3; 4º and E0 the standard �ag on W D C4 ,
with its adapted basis .e.1/; : : : ; e.4// . �en �I D

�
1 2 3 4
1 3 4 2

�
,

w�1I D

0BBB@
1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1CCCA

and V D w�1I V0 D span¹e.1/; e.3/; e.4/º is indeed in position I with respect to
E0 , in agreement with the preceding discussion. Moreover,

HwIE0.V0;Q0/ D
® �
0 � �

� ¯
� Hom.C3;C1/;

UwIE0.V0;Q0/ D

8̂̂̂<̂
ˆ̂:
0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 � � 1

1CCCA
9>>>=>>>; � GL.4/;

and so Corollary 3.1.11 asserts that

�0I .E0/ D w
�1
I UwIE0.V0;Q0/ span¹e.1/; e.2/; e.3/º D span

8̂̂̂<̂
ˆ̂:
0BBB@
1

0

0

0

1CCCA ;
0BBB@
0

�

1

0

1CCCA ;
0BBB@
0

�

0

1

1CCCA
9>>>=>>>; ;

which agrees with Lemma 3.1.4.

3.2. Induced �ags and positions. �e space HomE .V;W=V / can be understood
more conceptually as the space of homomorphisms that respect the �ltrations
E.i/ \ V and .E.i/ C V /=V induced by the �ag E . Here we have used the
following concept:

De�nition 3.2.1. A (complete) �ltration F on a vector space V is a chain of
subspaces

¹0º D F.0/ � F.1/ � � � � � F.i/ � F.i C 1/ � � � � � F.l/ D V;

such that the dimensions increase by no more than one, i.e., dimF.i C 1/ �
dimF.i/ C 1 for all i D 0; : : : ; l � 1 . �us distinct subspaces in a �ltration
determine a �ag.

Given a �ag E on W and a subspace V � W , we thus obtain an induced �ag
EV on V from the distinct subspaces in the sequence E.i/\V , i D 0; : : : ; n . We
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may also induce a �ag EW=V on the quotient W=V from the distinct subspaces
in the sequence .E.i/ C V /=V . �ese �ags can be readily computed from the
Schubert position of V :

Lemma 3.2.2. Let E be a �ag on W , dimW D n , and V � W an r -
dimensional subspace in position I D Pos.V;E/ . �en the induced �ags EV on
V and EW=V on W=V are given by

EV .a/ D E
�
I.a/

�
\ V;

EW=V .b/ D
�
E
�
I c.b/

�
C V

�
=V

for a 2 Œr� and b 2 Œn � r� , where I c denotes the complement of I in Œn� .

Proof. Using an adapted basis as in Lemma 3.1.4, (iii), it is easy to see that
dimE.i/ \ V D jŒi � \ I j and therefore that dim.E.i/C V /=V D jŒi � \ I c j . Now
observe that jŒi �\ I j D a if and only if I.a/ � i < I.aC 1/ , while jŒi �\ I c j D b
if and only if I c.b/ � i < I c.b C 1/ . �us we obtain the two assertions.

We can use the preceding result to describe HomE .V;W=V / in terms of �ags
rather than �ltrations and without any reference to the ambient space W .

De�nition 3.2.3. Let V and Q be vector spaces of dimension r and n � r ,
respectively, I � Œn� a subset of cardinality r , F a �ag on V and G a �ag on
Q . We de�ne

HI .F;G/ WD
®
� 2 Hom.V;Q/ W �

�
F.a/

�
� G

�
I.a/ � a

�¯
;

which we note is well-de�ned by

(3.2.4) 0 � I.a/ � a � I.aC 1/ � .aC 1/ � n � r .a D 1; : : : ; r � 1/:

It now easily follows from Lemmas 3.1.7 and 3.2.2 that

(3.2.5) TV�
0
I .E/ Š HomE .V;W=V / D HI .EV ; EW=V /:

As a consequence:

(3.2.6) HwIE .V0;Q0/ D HI
�
.wIE/

V0 ; .wIE/Q0
�
D HI .E

V0 ; EQ0/

We record the following equivariance property:

Lemma 3.2.7. Let F be a �ag on V and G a �ag on Q . If � 2 HI .F;G/ ,
a 2 GL.V / and d 2 GL.Q/ , then d�a�1 2 HI .aF; dG/ . In particular,
HI .F;G/ is stable under right multiplication by the Borel subgroup B.F / and
left multiplication by the Borel subgroup B.G/ .
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We now compute the position of subspaces and subquotients with respect to
induced �ags. Given subsets I � Œn� of cardinality r and J � Œr� of cardinality
d , we recall that we had de�ned their composition IJ in Section 2 as the subset

IJ D
®
I
�
J.1/

�
< � � � < I

�
J.d/

�¯
� Œn�:

We also de�ne their quotient to be the subset

I=J D
®
I
�
J c.b/

�
� J c.b/C b W b 2 Œr � d�

¯
� Œn � d�;

where J c denotes the complement of J in Œr� . It follows from (3.2.4) that I=J
is indeed a subset of Œn � d� .

�e following lemma establishes the ‘chain rule’ for positions:

Lemma 3.2.8. Let E be a �ag on W , S � V � W subspaces, and
I D Pos.V;E/ , J D Pos.S;EV / their relative positions. �en there exists an
adapted basis .f .1/; : : : ; f .n// for E such that ¹f .I.a//º is a basis of V and
¹f .IJ.b//º a basis of S . In particular,

(3.2.9) Pos.S;E/ D IJ D Pos.V;E/Pos.S;EV /:

Proof. According to Lemma 3.1.4, (iii), there exists an adapted basis .f .1/; : : : ;
f .n// for E such that .f .I.1//; : : : ; f .I.r/// is a basis of V , where r D dimV .
By Lemma 3.2.2, this ordered basis is in fact adapted to the induced �ag EV .
�us we can apply Lemma 3.1.4, (ii) to EV and the subspace S � V to obtain
a basis .v.1/; : : : ; v.s// of S of the form

v.b/ 2 f
�
IJ.b/

�
C span

®
f
�
I.a/

�
W a 2 J c ; a < J.b/

¯
:

It follows that the ordered basis .f 0.1/; : : : ; f 0.n// obtained from .f .1/; : : : ; f .n//

by replacing f .IJ.b// with v.b/ has all desired properties. We now obtain the
chain rule, Pos.S;E/ D IJ , as a consequence of Lemma 3.1.4, (iii) applied to
f 0 and S � W .

We can visualize the subsets IJ; IJ c � Œn� and I=J � Œn � d� as follows.
Let L denote the string of length n de�ned by putting the symbol s at the
positions in IJ , v at those in I n IJ D IJ c , and w at all other positions.
�is mirrors the situation in the preceding Lemma 3.2.8, where the adapted basis
.f .1/; : : : ; f .n// can be partitioned into three sets according to membership in
S , V n S , and W n V . Now let L0 denote the string of length n � d obtained
by deleting all occurrences of the symbol s . �us the remaining symbols are
either v or w , i.e., those that were at locations .IJ /c in L . We observe that the
b -th occurrence of v in L was at location IJ c.b/ , where it was preceded by
J c.b/� b occurrences of s . �us the occurrences of v in L0 are given precisely
by the quotient position, .I=J /.b/ D IJ c.b/ � .J c.b/ � b/ .
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Example. If n D 6 , I D ¹1; 3; 5; 6º and J D ¹2; 4º , then IJ D ¹3; 6º and
L D .v; w; s; w; v; s/ . It follows that L0 D .v; w;w; v/ and hence the symbols v
appear indeed at positions I=J D ¹1; 4º .

We thus obtain the following recipe for computing positions of subquotients:

Lemma 3.2.10. Let E be a �ag on W and S � V � W subspaces. �en,

Pos.V=S;EW=S / D Pos.V;E/=Pos.S;EV /:

Proof. Let I D Pos.V;E/ and J D Pos.S;EV / . According to Lemma 3.2.8,
there exists an adapted basis .f .1/; : : : ; f .n// of E such that ¹f .I.a//º is a
basis of V and ¹f .IJ.b//º a basis of S . �is shows not only that ¹f .IJ c.b//º
is a basis of V=S , but also, by Lemma 3.2.2, that .f ..IJ /c.b/// is an adapted
basis for EW=S . Clearly, IJ c � .IJ /c , and the preceding discussion showed that
the location of the IJ c in .IJ /c is exactly equal to the quotient position I=J .
�us we conclude from Lemma 3.1.4, (iii) that Pos.V=S;EW=S / D I=J .

One last consequence of the preceding discussion is the following lemma:

Lemma 3.2.11. Let E be a �ag on W , dimW D n , S � V � W subspaces,
and I D Pos.V;E/ , J D Pos.S;EV / . �en F.i/ WD

�
.E.i/ \ V / C S

�
=S is a

�ltration on V=S , and

IJ c.b/ D min
®
i 2 Œn� W dimF.i/ D b

¯
for b D 1; : : : ; dimV=S .

Proof. As in the preceding proof, we use the adapted basis .f .1/; : : : ; f .n// from
Lemma 3.2.8. �en ¹f .IJ c.b//º is a basis of V=S and F.i/ D span¹f .IJ c.b// W
b 2 Œq�; IJ c.b/ � iº , and this implies the claim.

�e following corollary uses Lemma 3.2.11 to compare �ltrations for a space
that is isomorphic to a subquotient in two di�erent ways, .S1 C S2/=S2 Š

S1=.S1 \ S2/ .

Corollary 3.2.12. Let E be a �ag on W , dimW D n , and S1; S2 � W

subspaces. Furthermore, let J D Pos.S1; E/ , K D Pos.S1 \ S2; ES1/ , L D
Pos.S1 C S2; E/ , and M D Pos.S2; ES1CS2/ . �en both JKc and LM c are
subsets of Œn� of cardinality q WD dimS1=.S1 \ S2/ D dim.S1 C S2/=S2 , and

JKc.b/ � LM c.b/

for b 2 Œq� .
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Proof. Consider the �ltration F.j / WD
�
.E.j / \ S1/ C .S1 \ S2/

�
=.S1 \ S2/ of

S1=.S1 \ S2/ and the �ltration F 0.j / WD
�
.E.j / \ .S1 C S2// C S2

�
=S2 of

.S1 C S2/=S2 . If we identify S1=.S1 \ S2/ Š .S1 C S2/=S2 , then F.j / gets
identi�ed with the subspace

�
.E.j / \ S1/C S2

�
=S2 of F 0.j / . It follows that

JKc.b/ D min
®
j 2 Œn� W dimF.j / D b

¯
� min

®
j 2 Œn� W dimF 0.j / D b

¯
D LM c.b/;

where we have used Lemma 3.2.11 twice.

We now compute the dimension of quotient positions:

Lemma 3.2.13. Let I � Œn� be a subset of cardinality r and J � Œr� a subset
of cardinality d . �en:

dim I=J D dim I C dimJ � dim IJ

Proof. Straight from the de�nition of dimension and quotient position,

dim I=J D
r�dX
bD1

I
�
J c.b/

�
�

r�dX
bD1

J c.b/

D

� rX
aD1

I.a/ �

dX
bD1

I
�
J.b/

��
�

� rX
aD1

a �

dX
bD1

J.b/
�

D

rX
aD1

�
I.a/ � a

�
C

dX
bD1

�
J.b/ � b

�
�

dX
bD1

�
I
�
J.b/

�
� b

�
D dim I C dimJ � dim IJ:

Lastly, given subsets I � Œn� of cardinality r and J � Œr� of cardinality d ,
we de�ne

I J D
®
I
�
J.b/

�
� J.b/C b W b 2 Œd �

¯
� Œn � .r � d/�:

Clearly, I J D I=J c , but we prefer to introduce a new notation to avoid confusion,
since the role of I J will be quite di�erent. Indeed, I J is related to composition,
as is indicated by the following lemmas:

Lemma 3.2.14. Let I � Œn� be a subset of cardinality r , J � Œr� a subset of
cardinality d . �en,

dim I JK � dimK D dim I.JK/ � dimJK

for any subset K � Œd � . In particular, dim I J D dim IJ � dimJ .
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Proof. Let m denote the cardinality of K . �en:

dim I JK � dimK D
mX
cD1

�
I J
�
K.c/

�
�K.c/

�
D

mX
cD1

�
I
�
J
�
K.c/

�
� J

�
K.c/

��
D dim I.JK/ � dimJK:

Lemma 3.2.15. Let I � Œn� be a subset of cardinality r , � 2 Hom.V;Q/ , and
F a �ag on V . Let S D ker� denote the kernel, J WD Pos.S; F / its position
with respect to F , and N� 2 Hom.V=S;Q/ the corresponding injection.

�en � 2 HI .F;G/ if and only if N� 2 HI=J .FV=S ; G/ . In this case, we have
for all  2 HJ .F S ; FV=S / that N� 2 HIJ .F S ; G/ .

Proof. For the �rst claim, note that if � 2 HI .F;G/ then

N�
�
FV=S .b/

�
D �

�
F
�
J c.b/

��
� G

�
I
�
J c.b/

�
� J c.b/

�
D G

�
.I=J /.b/ � b

�
:

Conversely, if N� 2 HI=J .FV=S ; G/ , then this shows that

�
�
F.a/

�
� G

�
I.a/ � a

�
for all a D J c.b/ , and hence for all a , since �.F.J c.b/// D � � � D �.F.J c.b C
1/ � 1// .

For the second, we use HJ .F
S ; FV=S / D HomF .S; V=S/ (Eq. (3.2.5)) and

compute

N� 
�
F S .a/

�
D N� 

�
F
�
J.a/

�
\ S

�
� N�

��
F
�
J.a/

�
C S

�
=S
�

D �
�
F
�
J.a/

��
� G

�
I
�
J.a/

�
� J.a/

�
D G.I J .a/ � a/:

3.3. �e �ag variety. �e Schubert cells of the Grassmannian were de�ned by
�xing a �ag and classifying subspaces according to their Schubert position. As
we will later be interested in intersections of Schubert cells for di�erent �ags, it
will be useful to also consider variations of the �ag for a �xed subspace.

Let Flag.W / denote the (complete) �ag variety, de�ned as the space of
(complete) �ags on W . It is a homogeneous space with respect to the transitive
GL.W / -action, so indeed an irreducible variety.
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De�nition 3.3.1. Let V � W be a subspace, dimV D r , dimW D n , and
I � Œn� a subset of cardinality r . We de�ne

Flag0I .V;W / D
®
E 2 Flag.W / W Pos.V;E/ D I

¯
;

and FlagI .V;W / as its closure in Flag.W / (in either the Euclidean or the Zariski
topology).

We have the following equivariance property as a consequence of (3.1.2): For
all  2 GL.W / ,

(3.3.2)  Flag0I .V;W / D Flag0I .V;W /:

In particular, Flag0I .V;W / and FlagI .V;W / are stable under the action of the
parabolic subgroup P.V;W / D ¹ 2 GL.W / W V � V º , which is the stabilizer
of V .

We will now show that Flag0I .V;W / is in fact a single P.V;W /-orbit. �is
implies that both Flag0I .V;W / and FlagI .V;W / are irreducible algebraic varieties.

De�nition 3.3.3. Let E be a �ag on W , dimW D n , V0 D E.r/ , and I � Œn�

a subset of cardinality r . We de�ne

GI .V0; E/ WD
®
 2 GL.W / W E 2 Flag0I .V0; W /

¯
;

so that Flag0I .V0; W / Š GI .V0; E/=B.E/ .

Lemma 3.3.4. Let E be a �ag on W , dimW D n , V0 D E.r/ , and I � Œn�

a subset of cardinality r . �en, GI .V0; E/ D P.V0; W /wIB.E/ . In particular,
Flag0I .V0; W / D P.V0; W /wIE .

Proof. Let  2 GL.W / . �en,

 2 GI .V0; E/, V0 2 �
0
I .E/ D �

0
I .E/ D B.E/w

�1
I V0,  2 P.V0; W /wIB.E/;

where we have used that �0I .E/ D B.E/w�1I V0 .

We now derive a more precise parametrization of Flag0I .V0; W / .

Lemma 3.3.5. Let E be a �ag on W , dimW D n , V0 and Q0 as in (3.1.9),
and I � Œn� a subset of cardinality r . �en we have that GI .V0; E/ D

P.V0; W /UwIE .V0;Q0/wI .

Proof. Let  2 GL.W / . �en,

 2 GI .V0; E/, V0 2 �
0
I .E/ D �

0
I .E/ D w

�1
I UwIE .V0;Q0/V0

,  2 P.V0; W /UwIE .V0;Q0/wI ;

since �0I .E/ D w�1I UwIE .V0;Q0/V0 (Corollary 3.1.11).
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In coordinates, using W D V0 ˚Q0 and (3.2.6), we obtain that

GI .V0; E/

D

´ 
a b

0 d

! 
1 0

� 1

!
W a 2 GL.V0/; d 2 GL.Q0/; � 2 HI .EV0 ; EQ0/

µ
wI

D

´ 
a b

c d

!
W a � bd�1c 2 GL.V0/; d 2 GL.Q0/; d�1c 2 HI .EV0 ; EQ0/

µ
wI :

In particular, dimGI .V0; E/ D dimP.V0; W /C dim I . �is allows us to compute
the dimension of the subvarieties Flag0I .V;W / and to relate their codimension to
the codimension of the Schubert cells of the Grassmannian:

Corollary 3.3.6. Let V � W be a subspace, dimW D n , dimV D r , and
I � Œn� a subset of cardinality r . �en,

dimFlag0I .V;W / D dimFlagI .V;W /(3.3.7)
D dimFlag.V /C dimFlag.Q/C dim I

and

(3.3.8) dimFlag.W / � dimFlag0I .V;W / D dimGr.r;W / � dim I:

Proof. Without loss of generality, we may assume that V D V0 D E.r/ for some
�ag E on W . �en, Flag0I .V0; W / Š GI .V0; E/=B.E/ and hence

dimFlag0I .V0; E/ D dimP.V0; W /C dim I � dimB.E/
D dimGL.W / � dimGr.r;W /C dim I � dimB.E/
D dimFlag.W / � dimGr.r;W /C dim I

since Gr.r;W / Š GL.W /=P.V0; W / and Flag.W / D GL.W /=B.E/ . �is estab-
lishes (3.3.8). On the other hand, a direct calculation shows that

dimFlag.W / � dimGr.r;W / D dimFlag.V /C dimFlag.Q/;

so we also obtain (3.3.7).

At last, we study the following set of �ags on the target space of a given
homomorphism:

De�nition 3.3.9. Let V , Q be vector spaces of dimension r and n � r ,
respectively, and I � Œn� . Moreover, let F be a �ag on V and � 2 Hom.V;Q/
an injective homomorphism. We de�ne

Flag0I .F; �/ WD
®
G 2 Flag.Q/ W � 2 HI .F;G/

¯
where we recall that HI .F;G/ was de�ned in De�nition 3.2.3.
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It is clear that I.a/ � 2a is necessary and su�cient for Flag0I .F; �/ to be
nonempty.

Example (r=3,n=8). Let V0 Š C3 , with basis e.1/; : : : ; e.3/ , and Q0 Š C5 , with
basis Ne.1/; : : : ; Ne.5/ . Take � W V0 ! Q0 to be the canonical injection and let F0
denote the standard �ag on V0 . For I D ¹3; 4; 7º , G 2 Flag0I .F0; �/ if and only
if

C Ne.1/ � G.2/; C Ne.1/˚C Ne.2/ � G.2/; C Ne.1/˚C Ne.2/˚C Ne.3/ � G.4/:

For example, the standard �ag G0 on Q0 is a point in Flag0I .F0; �/ .
On the other hand, if I D ¹2; 3; 7º then we obtain the condition C Ne.1/ ˚

C Ne.2/ � G.1/ which can never be satis�ed. �us in this case Flag0I .F0; �/ D ¿ .

In the following lemma we show that Flag0I .F; �/ is a smooth variety and
compute its dimension.

Lemma 3.3.10. Let V , Q be vector spaces of dimension r and n�r , respectively,
and I � Œn� a subset of cardinality r . Moreover, let F be a �ag on V and
� 2 Hom.V;Q/ an injective homomorphism. If Flag0I .F; �/ is nonempty, that is,
if I.a/ � 2a for all a 2 Œr� , then it is a smooth irreducible subvariety of Flag.Q/
of dimension

dimFlag0I .F; �/ D dimFlag.Q0/C dim I � r.n � r/:

Proof. Without loss of generality, we may assume that V D V0 Š Cr ,
Q D Q0 Š Cn�r , that F D F0 is the standard �ag on V0 and � the canonical
injection Cr ! Cn�r . �en the standard �ag G0 on Q0 is an element of
Flag0I .F0; �/ . We will show that

MI WD
®
h 2 GL.Q0/ W hG0 2 Flag0I .F0; �/

¯
is a subvariety of GL.Q0/ and compute its dimension. Note that h 2 MI if
and only if h�1� 2 HI .F0; G0/ . We now identify V0 with its image �.V0/ and
denote by R0 Š Cn�2r its standard complement in Q0 . �us Q0 Š V0˚R0 and
we can think of h�1 2 GL.Q0/ as a block matrix

h�1 D
�
A B

�
where A 2 Hom.V0;Q0/ and B 2 Hom.R0;Q0/ . �e condition h�1� 2

HI .F0; G0/ amounts to demanding that A 2 HI .F0; G0/ , while B is uncon-
strained. �us we can identify MI via h 7! h�1 with the invertible elements
in
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HI .F0; G0/ �Hom.R0;Q0/;
which form a nonempty Zariski-open subset, and hence a smooth irreducible
subvariety of GL.Q0/ . It follows that Flag0I .F0; �/ D MI=B.G0/ is likewise a
smooth irreducible subvariety, and

Flag0I .F0; �/ D dimMI � dimB.G0/ D dim I C .n � r/.n � 2r/ � dimB.G0/
D dimFlag.Q0/C dim I � .n � r/r;

where we have used Eq. (3.1.8) and that Flag.Q0/ Š GL.Q0/=B.G0/ .

4. Intersections and Horn inequalities

In this section, we study intersections of Schubert varieties. Recall from
De�nition 2.12 that given an s -tuple E of �ags on W , dimW D n , and
I 2 Subsets.r; n; s/ , we had de�ned

�0I.E/ D
s\

kD1

�0Ik .Ek/ and �I.E/ D
s\

kD1

�Ik .Ek/:

We are particularly interested in the intersecting I , denoted I 2 Intersecting.r; n; s/ ,
for which �I.E/ ¤ ¿ for every E .

4.1. Coordinates. Without loss of generality, we may assume that W D

Cn , and we shall do so for the remainder of this article. As before, we
denote by .e.1/; : : : ; e.n// the ordered standard basis of Cn and by E0 the
corresponding standard �ag. Let V0 D E0.r/ be the standard r -dimensional
subspace, with ordered basis .e.1/; : : : ; e.r// , and Q0 the subspace with ordered
basis . Ne.1/; : : : ; Ne.n�r// , where Ne.b/ WD e.rCb/ . �us W D V0˚Q0 . We denote
the corresponding standard �ags on V0 and Q0 by F0 and G0 , respectively.
Note that F0 D E

V0
0 and, if we identify Q0 Š W=V0 , then G0 D .E0/W=V0 .

We further abbreviate the Grassmannian by Gr.r; n/ WD Gr.r;Cn/ , the parabolic
by P.r; n/ WD P.V0;Cn/ and the Borel by B.n/ WD B.E0/ . We write Flag.n/ WD
Flag.W / and Flag0I .r; n/ WD Flag0I .V0; W / for the set of �ags with respect to
which V0 has position I ; FlagI .r; n/ WD FlagI .V0; W / is its closure. We recall
from De�nition 3.2.3 that

HI .F0; G0/ D
°
� 2 Hom.V0;Q0/ W phi

�
e.a/

�
� span

®
Ne.1/; : : : ; Ne

�
I.a/ � a

�¯±
;

and Lemma 3.3.5 reads

(4.1.1) GI .r; n/ D P.r; n/

´ 
idV0 0

� idQ0

!
W � 2 HI .F0; G0/

µ
wI ;

where we have introduced GI .r; n/ WD GI .V0; E0/ .
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4.2. Intersections and dominance. We start by reformulating the intersecting
property in terms of the dominance of certain morphisms of algebraic varieties.
�is allows us to give a simple proof of Lemma 4.2.6, which states that the
expected dimension of an intersecting tuple is necessarily nonnegative.

We caution that while �0I.E/ � �I.E/ , the latter is not necessarily the closure
of the former:

Example. Let W D C2 , I1 D ¹1º , I2 D ¹2º , and E1 D E2 the same �ag on W .
Since the Schubert cells �0Ik .E/ partition the projective space P .W / D Gr.1;W / ,
�0I.E/ D ¿ is empty, but �I.E/ D ¹E1.1/º is a point.

It is also possible that �0I.E/ or �I.E/ are nonempty for some E but empty
for generic s -tuples E :

Example. Let W D C2 , I1 D I2 D ¹1º . �en �0I.E/ D �I.E/ D E1.1/\E2.1/ ,
so the intersection is nonempty if and only if E1 D E2 .

We will later show the existence of a ‘good set’ of su�ciently generic E
such that I is intersecting if and only if �0I.E/ ¤ ¿ for any single ‘good’ E
(Lemma 4.3.1). Here is a more interesting example:

Example 4.2.1. Let W D C6 , s D 3 , and I D .I1; I2; I3/ where all Ik D
¹2; 4; 6º . �e triple I is intersecting. Let

f .t/ WD e1 C te2 C
t2

2Š
e3 C

t3

3Š
e4 C

t4

4Š
e5 C

t5

5Š
e6

and consider the one-parameter family of �ags E.t/ with adapted basis
.f .t/; d

dt
f .t/; : : : ; d

5

dt5
f .t// . We consider the 3-tuple E D .E1; E2; E3/ , where

E1 WD E.0/ is the standard �ag, E2 WD E.1/ , and E3 WD E.�1/ . �en the
intersection �0I.E/ consists of precisely two points:

V1 D span
°
e2 C

p
5e1; e4 � 24

p
5e1 � 3

p
5e3; e6 � 24

p
5e3 C

p
5e5

¯
;

V2 D span
°
e2 �
p
5e1; e4 C 24

p
5e1 C 3

p
5e3; e6 C 24

p
5e3 �

p
5e5

±
;

and coincides with �I.E/ .

To study generic intersections of Schubert cells, it is useful to introduce the
following maps: Let I 2 Subsets.r; n; s/ . We de�ne

!0I W

´
GL.n/ � Flag0I1.r; n/ � � � � � Flag0Is .r; n/! Flag.n/s

.; E1; : : : ; Es/ 7! .E1; : : : ; Es/
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and its extension

(4.2.2) !I W

´
GL.n/ � FlagI1.r; n/ � � � � � FlagIs .r; n/! Flag.n/s

.; E1; : : : ; Es/ 7! .E1; : : : ; Es/:

�e following lemma shows that the images of !0I and !I , respectively,
characterize the s -tuples E of �ags for which the intersections �0I.E/ and
�I.E/ are nonempty:

Lemma 4.2.3. Let I 2 Subsets.r; n; s/ . �en,

im!0I D
®
E 2 Flag.n/s W �0I.E/ ¤ ¿

¯
;

im!I D
®
E 2 Flag.n/s W �I.E/ ¤ ¿

¯
:

In particular, I 2 Intersecting.r; n; s/ if and only if !I is surjective.

Proof. If E 2 im!0I then there exists  2 GL.n/ such that Ek 2  Flag0Ik .r; n/
for k 2 Œs� . But

Ek 2  Flag0Ik .r; n/, �1Ek 2 Flag0Ik .r; n/, V0 2 �
0
Ik
.�1Ek/

, V0 2 �
0
Ik
.Ek/;

and therefore V0 2 �0I.E/ . Conversely, if V 2 �0I.E/ , then we write V D V0
and obtain that Ek 2  Flag0Ik .r; n/ for all k , and hence that E 2 im!0I . �e
result for im!I is proved in the same way.

We now use some basic algebraic geometry (see, e.g., [Per]). Recall that a
morphism f W X ! Y of irreducible algebraic varieties is called dominant if its
image is Zariski dense. In this case, the image contains a nonempty Zariski-open
subset Y0 such that the dimension of any irreducible component of the �bers
f �1.y/ for y 2 Y0 is equal to dimX � dimY . Furthermore, if X0 � X is a
nonempty Zariski-open subset then f is dominant if and only if its restriction
f to X0 is dominant.

We also recall for future reference the following results: If X and Y are
smooth (irreducible algebraic) varieties and f W X ! Y is dominant then the set
of regular values (i.e., the points y such that dfx is surjective for all preimages
x 2 f �1.y/ ) contains a Zariski-open set. Also, if dfx is surjective for every x

then the image by f of any Zariski-open set in X is a Zariski-open set in Y .
In particular this is the case when f W V ! B is a vector bundle.

In the present context, the maps !0I and !I are morphisms of irreducible
algebraic varieties and so the preceding discussion applies. Furthermore, the
domain of !I is the closure of the domain of !0I in GL.n/�Flag.n/s . �erefore,
!I is dominant if and only if !0I is dominant.
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Lemma 4.2.4. Let I 2 Subsets.r; n; s/ . �en I 2 Intersecting.r; n; s/ if and only
if !I or !0I is dominant.

Proof. On the one hand, Lemma 4.2.3 shows that I is intersecting if and
only if !I is surjective. On the other hand, we have just observed that !0I
is dominant if and only if !I is dominant. �us it remains to show that !I

is automatically surjective if it is dominant. For this, we observe that the space
FlagI1.r; n/ � � � � � FlagIs .r; n/ is left invariant by the diagonal action of the
parabolic P.r; n/ , as can be seen from (3.3.2). �us !I factors over a map

(4.2.5) N!I W

´
GL.n/ �P.r;n/ FlagI1.r; n/ � � � � � FlagIs .r; n/! Flag.n/s

Œ; E1; : : : ; Es� 7! .E1; : : : ; Es/:

Clearly, !I and N!I have the same image. If N!I is dominant, then its image
contains a nonempty Zariski-open set and therefore is dense in the Euclidean
topology. But the domain of N!I is compact in the Euclidean topology and
hence the image is also closed in the Euclidean topology. It follows that N!I is
automatically surjective if N!I is dominant.

A �rst, obvious condition for I to be intersecting is therefore that the dimension
of the domain of !I is no smaller than the dimension of the target space. If we
apply this argument to the factored map (4.2.5), which has the same image, we
obtain that the expected dimension introduced in De�nition 2.14 is nonnegative:

Lemma 4.2.6. If I 2 Intersecting.r; n; s/ then

(4.2.7) edim I D r.n � r/ �
sX

kD1

.r.n � r/ � dim Ik/ � 0:

Proof. Let X WD GL.n/�P.r;n/ FlagI1.r; n/� � � � � FlagIs .r; n/ and Y WD Flag.n/s .
If I is intersecting then the map N!I W X ! Y in (4.2.5) is dominant, hence
dimX � dimY . But

dimX � dimY D
�
dimGL.n/=P.r; n/

�
C

sX
kD1

�
dimFlagIk .r; n/ � dimFlag.n/

�(4.2.8)

D dimGr.r; n/ �
sX

kD1

�
dimGr.r; n/ � dim Ik

�
D edim I

where the �rst equality is obvious and the second is Eq. (3.3.8).
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At this point, we have established all facts that we used in Section 2 to prove
Corollary 2.17. �at is, the proof of Corollary 2.17 is now complete.

We conclude this section by recording the following rules for the expected
dimension,

edim I=J D edim I C edimJ � edim IJ ;(4.2.9)
edim IJK � edimK D edim I.JK/ � edimJK;(4.2.10)

edim IJ
D edim IJ � edimJ ;(4.2.11)

which hold for all I 2 Subsets.r; n; s/ , J 2 Subsets.d; r; s/ , and K 2

Subsets.m; d; s/ . Equations (4.2.9) to (4.2.11) are direct consequences of Lem-
mas 3.2.13 and 3.2.14. Eq. (4.2.10) in particular will play a crucial role in
Section 5.3, as we will use it to show that if I satis�es the Horn inequali-
ties and J is intersecting then so does IJ . �is will be key to establishing
Belkale’s theorem on the su�ciency of the Horn inequalities by induction (�e-
orem 5.3.4).

4.3. Slopes and Horn inequalities. We are now interested in proving a strength-
ened version of Corollary 2.17 (see Corollary 4.3.11 below). As a �rst step, we
introduce the promised ‘good set’ of s -tuples of �ags which are su�ciently
generic to detect when an s -tuple I is intersecting: De�ne in analogy to (4.2.5)
the map

N!0I W

´
GL.n/ �P.r;n/ Flag0I1.r; n/ � � � � � Flag0Is .r; n/! Flag.n/s

Œ; E1; : : : ; Es� 7! .E1; : : : ; Es/
:

Lemma 4.3.1. �ere exists a nonempty Zariski-open subset Good.n; s/ � Flag.n/s
that satis�es the following three properties for all r 2 Œn� :

(a) Good.n; s/ consists of regular values (in the image) of N!0I for every
I 2 Intersecting.r; n; s/ .

(b) For every I 2 Subsets.r; n; s/ , the following are equivalent:

(i) I 2 Intersecting.r; n; s/ .

(ii) For all E 2 Good.n; s/ , �0I.E/ ¤ ¿ .

(iii) �ere exists E 2 Good.n; s/ such that �0I.E/ ¤ ¿ .

(c) If I 2 Intersecting.r; n; s/ , then for every E 2 Good.n; s/ the variety �0I.E/
has the same number of irreducible components, each connected component
is of dimension edim I , and �0I.E/ is dense in �I.E/ .



434 N. Berline, M. Vergne and M. Walter

Proof. Let us construct Good.n; s/ satisfying the properties above. Let I 2
Subsets.r; n; s/ , where r 2 Œn� . If I 62 Intersecting.r; n; s/ then by Lemma 4.2.4
the map !0I is not dominant, and we de�ne UI as the complement of the Zariski-
closure of im!0I . �us UI is a nonempty Zariski-open subset of Flag.n/s .
Otherwise, if I 2 Intersecting.r; n; s/ then !0I is dominant by Lemma 4.2.4.
�e map N!0I has the same image as !0I and is therefore also a dominant map
between smooth irreducible varieties. �us its image contains a nonempty Zariski-
open subset UI of Flag.n/s consisting of regular values, such that the �bers
. N!0I/

�1.E/ for E 2 UI all have the same number of irreducible components, each
of dimension equal to edim I , by the calculation in (4.2.8). We now de�ne the
good set as

Good.n; s/ WD
\
I

UI ;

where the intersection is over all s -tuples I , intersecting or not. As a �nite
intersection of nonempty Zariski-open subsets, Good.n; s/ is again nonempty and
Zariski-open. By construction, it satis�es property (a).

We now show that Good.n; s/ satis�es (b). To see that (bi) implies (bii), note
that for any I 2 Intersecting.r; n; s/ and E 2 Good.n; s/ , E 2 UI � im N!0I D
im!0I . �us Lemma 4.2.3 shows that �0I.E/ ¤ ¿ . Clearly, (bii) implies (biii)
since Good.n; s/ is nonempty. Lastly, suppose that (biii) holds. By Lemma 4.2.3,
�0I.E/ ¤ ¿ implies that E 2 im!0I . But E 2 Good.n; s/ � .im!I/

c � .im!0I/c
unless I is intersecting; this establishes (bi).

Lastly, we verify c. Observe that, for any E 2 Flag.n/s , the �ber . N!0I/�1.E/
is equal to the set of Œ; �1E1; : : : ; 

�1Es� such that �1Ek 2 Flag0Ik .r; n/
for all k 2 Œs� . It can therefore by  7! V0 be identi�ed with �0I.E/ . Now
assume that I 2 Intersecting.r; n; s/ . As we vary E 2 Good.n; s/ , E 2 UI and
so . N!0I/

�1.E/ Š �0I.E/ has the same number of irreducible components, each of
dimension edim I . We still need to show that �0I.E/ is dense in �I.E/ . �is
will follow if we can show that �0I.E/ meets any irreducible component Z of
�I.E/ . Let us assume that this is not the case, so that Z � �I.E/ n�0I.E/ . But

�I.E/ n�0I.E/ D
s[

kD1

�
.�Ik .Ek/ n�

0
Ik
.Ek//\

\
l¤k

�Il .El /

�
D

[
I 0
1
�I1; :::; I

0
s�Is

9k2Œs�WI 0
k
¤Ik

�0I0

by Lemma 3.1.5. �at is, �I.E/ n �0I.E/ is a union of varieties �0I0.E/ with
edim I 0 < edim I . If I 0 is intersecting then any irreducible component of
�0I0.E/ has dimension equal to edim I 0 . Otherwise, if I 0 is not intersecting,
then �0I0.E/ D ¿ . It follows that any irreducible component of �I.E/ n �0I.E/
has dimension strictly smaller than edim I . But this is a contradiction, since the
dimension of Z is equal to at least edim I .
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�e following is a direct consequence of the equivalence between (bi) and (biii)
in Lemma 4.3.1:

(4.3.2) Intersecting.r; n; s/ D
®
Pos.V; E/ W V � Cn; dimV D r

¯
for every E 2 Good.n; s/ .

We now study the numerical inequalities satis�ed by intersecting s -tuples more
carefully. Recall that a weight � for GL.r/ is antidominant if �.1/ � � � � � �.r/ .
For example, given a subset I � Œn� of cardinality r , the weight �.a/ WD I.a/�a
is antidominant. It is convenient to introduce the following de�nition:

De�nition 4.3.3. Given an s -tuple E� D .�1; : : : ; �s/ of antidominant weights for
GL.r/ , we de�ne the slope of a tuple J 2 Subsets.d; r; s/ as

�E� .J / WD
1

d

sX
kD1

X
a2Jk

�k.a/ D
1

d

sX
kD1

.TJk ; �k/:

For any nonzero subspace ¹0º ¤ S � Cr and s -tuple of �ags F on Cr , we
further de�ne

�E� .S;F/ WD �E�
�
Pos.S;F/

�
:

Here and in the following, we write Pos.S;F/ for the s -tuple of positions
.Pos.S; Fk//k2Œs� .

Note that we can interpret �E� .J / as a sum of averages of the nowhere
decreasing functions �k for uniform choice of a 2 Jk .

�e following lemma asserts that there is a unique slope-minimizing subspace
of maximal dimension:

Lemma 4.3.4 (Harder–Narasimhan, [Bel1]). Let E� be an s -tuple of antidominant
weights for GL.r/ , and F 2 Flag.r/s . Let m� WD min¹0º¤S�Cr �E� .S;F/ and
d� WD max¹dimS W �E� .S;F/ D m�º . �en there exists a unique subspace S� � Cr

such that �E� .S�;F/ D m� and dimS� D d� > 0 .

Proof. Existence is immediate, so it remains to show uniqueness. �us suppose
for sake of �nding a contradiction that there are two such subspaces, S1 ¤ S2 ,
such that �E� .Sj ;F/ D m� and dimSj D d� for j D 1; 2 . We note that d� > 0

and that the inclusions S1 \ S2 ¨ S1 and S2 ¨ S1 C S2 are strict.
Let J D Pos.S1;F/ and K D Pos.S1\S2;FS1/ . �en Pos.S1\S2;F/ D JK

by the chain rule (Lemma 3.2.8). Let us �rst assume that S1 \ S2 ¤ ¹0º , so that
�E� .JK/ is well-de�ned. �en,

�E� .JK/ D �E� .S1 \ S2;F/ � m� D �E� .S1;F/ D �E� .J /;
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where the equalities hold by de�nition, and the inequality holds as m� is the
minimal slope. On the other hand, note that Jk D JkKk [JkKck for each k 2 Œs� ,
hence we can write

�E� .J / D
d

d�
�E� .JK/C

d� � d

d�
�E� .JKc/;

where d WD dimS1 \ S2 < dimS1 D d� . It follows that

(4.3.5) m� D �E� .J / � �E� .JKc/:

If S1 \ S2 D ¹0º then J D JKc and so (4.3.5) holds with equality.
Likewise, let L D Pos.S1 C S2;F/ and M D Pos.S2;FS1CS2/ . Since

S2 ¨ S1 C S2 , but S2 was assumed to be a maximal-dimensional subspace
with minimal slope, it follows that the slope of S1 C S2 is strictly larger than
m� :

�E� .LM/ D �E� .S2;F/ D m� < �E� .S1 C S2;F/ D �E� .L/:

Just as before, we decompose

�E� .L/ D
d�

d 0
�E� .LM/C

d 0 � d�

d 0
�E� .LM

c/;

where now d 0 WD dimS1 C S2 > dimS2 D d� > 0 . �us we obtain the strict
inequality

(4.3.6) �E� .LM
c/ > �E� .LM/ D m�:

At last, we apply Corollary 3.2.12, which shows that JkKck.b/ � LkM
c
k
.b/ for

all b and k , and hence
�E� .JKc/ � �E� .LM

c/:

Together with (4.3.5) and (4.3.6), we obtain the desired contradiction:

m� � �E� .JKc/ � �E� .LM
c/ > m�:

We will now use Lemmas 4.3.1 and 4.3.4 to show that the conditions in
Corollary 2.17 with edimJ D 0 imply those for general intersecting J .

De�nition 4.3.7. Let I � Œn� be a subset of cardinality r . We de�ne �I 2 ƒC.r/
by

�I .a/ WD a � I.a/ .a 2 Œr�/:

Any highest weight � with �.1/ � 0 , �.r/ � r � n can be written in this form.
Moreover, if I c denotes the complement of I in Œn� then the dominant weight
�Ic 2 ƒC.n � r/ can be written as

�Ic .b/ D b � I
c.b/ D �#

®
a 2 Œr� W I.a/ < I c.b/

¯
(4.3.8)

D �#
®
a 2 Œr� W I.a/ � a < b

¯
:
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Remark. �is equation has a pleasant interpretation in terms of Young diagrams.
Consider the Young diagram YI corresponding to ��I , which has I.r C 1� a/�
.r C 1 � a/ boxes in its a -th row. By de�nition, its transpose Y tI is the Young
diagram such that the number of boxes in the b -th row is equal to the number
of boxes in the b -th column of TI . �us (4.3.8) asserts that Y tI D r1n�r C �Ic ,
i.e., the two Young diagrams Y tI and YIc (the latter with rows in reverse order)
make up a rectangle of size r � .n � r/ .

Lemma 4.3.9. Let I 2 Subsets.r; n; s/ . Set �k D �Ik C .n� r/1r for k 2 Œs � 1�
and �s D �Is . �en we have that edim I D �

Ps
kD1j�kj . More generally, for

every J 2 Subsets.d; r; s/ ,

edim IJ � edimJ D �
sX

kD1

.TJk ; �k/ D d��E�.J /;

where we recall that .TJ ; �/ D
P
j2J �.j / for any J � Œr� and � 2 i t.r/ .

Proof. It su�ces to prove the second statement, which follows from

edim IJ � edimJ D d.n � r/.1 � s/C
sX

kD1

X
a2Jk

�
Ik.a/ � a

�
D d.n � r/.1 � s/ �

sX
kD1

.TJk ; �Ik / D �

sX
kD1

.TJk ; �k/

D d�
�E�
.J /:

It follows that minimizing �
�E�
.J / and 1

d

�
edim IJ � edimJ

�
as a function

of J are equivalent. We then have the following result:

Proposition 4.3.10. Let I 2 Subsets.r; n; s/ such that edim I � 0 and, for
any 0 < d < r and J 2 Intersecting.d; r; s/ with edimJ D 0 we have that
edim IJ � 0 . �en we have for any 0 < d < r and J 2 Intersecting.d; r; s/ that

edim IJ � edimJ :

Proof. Suppose for sake of �nding a contradiction that there exists J 2

Intersecting.d; r; s/ with 0 < d < r and edim IJ < edimJ , so that �
�E�
.J / < 0

according to Lemma 4.3.9. Fix some F 2 Good.r; s/ . �en �0J .F/ ¤ ¿ by
Lemma 4.3.1, (bii). �us there exists a subspace ¹0º ¤ S � Cr such that
�
�E�
.S;F/ D �

�E�
.J / < 0 .
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Now let S� be the unique subspace of minimal slope m� < 0 and maximal
dimension d� > 0 from Lemma 4.3.4 and denote by J� WD Pos.S�;F/ its s -tuple
of positions. �e uniqueness statement implies that �0J�.F/ D ¹S�º , since slope
and dimension are fully determined by the position. Moreover, J� is intersecting
by (4.3.2), and therefore edimJ� D dim�0J�.F/ D 0 by Lemma 4.3.1. �us we
have found an s -tuple J� 2 Intersecting.d�; r; s/ with d� > 0 , edimJ� D 0 , and

edim IJ� D edim IJ� � edimJ� D d�m� < 0;

where we have used Lemma 4.3.9 once again in the last equality. Since edim I � 0 ,
this also implies that d� < r . �is is the desired contradiction.

Proposition 4.3.10 will be useful to prove Belkale’s �eorem 5.3.4 in Section 5
below, since it allows us to work with a larger set of inequalities.

Remark. �e proof of Proposition 4.3.10 shows that we may in fact restrict to J
such that �0J .F/ is a point for all s -tuples of good �ags F 2 Good.r; s/ – or also
to those for which �J .F/ is a point, which is equivalent by the last statement
in Lemma 4.3.1. See the remark after Corollary 6.3.3 for the implications of this
on the description of the Kirwan cone.

We also record the following corollary which follows together with and
improves over Corollary 2.17.

Corollary 4.3.11. If I 2 Intersecting.r; n; s/ then for any 0 < d < r and any
s -tuple J 2 Intersecting.d; r; s/ we have that edim IJ � edimJ .

We remark that for d D r there is only one s -tuple, J D .Œr�; : : : ; Œr�/ , and it is
intersecting and satis�es edimJ D 0 . In this case, edim IJ � edimJ D edim I ,
and so we may safely allow for d D r in Corollaries 2.17 and 4.3.11 and
Proposition 4.3.10.

We conclude this section with some simple examples of the Horn inequalities of
Corollary 4.3.11. We refer to Appendix A for lists of all Horn triples I D .I1; I2; I3/
up to n D 4 .

Example 4.3.12 (r D 1 ). �e only condition for I 2 Intersecting.1; n; s/ is
the dimension condition, edim I � 0 . Indeed, the Grassmannian Gr.1; n/ is the
projective space P .Cn/ , whose Schubert varieties are given by �¹iº.E/ D ¹Œv� 2
P .Cn/ W v 2 E.i/º . �us I D .¹i1º; : : : ; ¹isº/ is intersecting if and only if for any
s -tuple of �ags E , E1.i1/ \ � � � \ Es.is/ ¤ ¹0º . By linear algebra, it is certainly
su�cient that

Ps
kD1.n � ik/ � n � 1 , which is equivalent to edim I � 0 . �is

also establishes �eorem 5.3.4 in the case r D 1 .
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Example (s D 2 , r D 2 ). Let I D .I1; I2/ . �en the condition edim I � 0 is
I1.1/CI1.2/CI2.1/CI2.2/ � 2nC2 . However, there are two additional conditions
coming from the J 2 Intersecting.1; 2; 2/ with edimJ D 0 . By the preceding
example, there are two such pairs, .¹1º; ¹2º/ and .¹2º; ¹1º/ . �e corresponding
conditions are I1.1/C I2.2/ � nC 1 and I1.2/C I2.1/ � nC 1 .

For example, if n D 4 then I D .¹1; 4º; ¹2; 4º/ satis�es all Horn inequalities.
On the other hand, I D .¹1; 4º; ¹2; 3º/ fails one the Horn inequalities. Indeed, if
we consider J D .¹1º; ¹2º/ then IJ D .¹1º; ¹3º/ is such that edim IJ D �1 < 0 .

5. Su�ciency of Horn inequalities

In this section we prove that the Horn inequalities are also su�cient to
characterize intersections of Schubert varieties.

5.1. Tangent maps. In Lemma 4.2.4, we established that an s -tuple I is
intersecting if and only if the corresponding morphism !I de�ned in (4.2.2)
is dominant. Now it is a general fact that a morphism f W X ! Y between
smooth and irreducible varieties is dominant if and only if there exists a point
p 2 X where the di�erential Tpf is surjective. �is will presently allow us to
reduce the intersecting of Schubert varieties to an in�nitesimal question about
tangent maps. Later, in Section 6, we will also use the determinant of the tangent
map to construct explicit nonzero tensor product invariants and establish the
saturation property.

Lemma 5.1.1. Let I 2 Subsets.r; n; s/ . �en I 2 Intersecting.r; n; s/ if and only
if there exist Eg D .g1; : : : ; gs/ 2 GL.V0/s and Eh D .h1; : : : ; hs/ 2 GL.Q0/s such
that the linear map
(5.1.2)

�I; Eg;Eh W

´
Hom.V0;Q0/ �HI1.F0; G0/ � � � � �HIs .F0; G0/! Hom.V0;Q0/s

.�; �1; : : : ; �s/ 7! .� C h1�1g
�1
1 ; : : : ; � C hs�sg

�1
s /

is surjective.

Proof. Using the isomorphisms Flag0Ik .r; n/ D GIk .r; n/E0 Š GIk .r; n/=B.n/

(De�nition 3.3.3 and Section 4.1) and Flag.n/ Š GL.n/=B.n/ , we �nd that !0I
is dominant if and only if
(5.1.3)
GL.n/ �GI1.r; n/ � � � � �GIs .r; n/! GL.n/s; .; 1; : : : ; s/ 7! .1; : : : ; s/

is dominant. �is is again a morphism between smooth and irreducible varieties
and thus dominance is equivalent to surjectivity of the di�erential at some point
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.; 1; : : : ; s/ . �e map (5.1.3) is GL.n/ -equivariant on the left and B.n/s -
equivariant on the right. By the former, we may assume that  D 1 , and by the
latter that k D pkwIk for some pk D

�
gk bk
0 hk

�
, since GIk .r; n/ D P.r; n/wIkB.n/

according Lemma 3.3.4.
We now compute the di�erential. �us we consider an arbitrary curve 1C "X

tangent to  D 1 , where X 2 gl.n/ , and curves .1 C "Yk/pkwIk through the
k D pkwk , where Yk 2 gl.n/ . If we write Yk D

�
Ak Bk
Ck Dk

�
with Ak 2 gl.r/

etc., then we see from (4.1.1) that .1 C "Yk/pkwIk is tangent to GIk .r; n/

precisely if h�1
k
Ckgk 2 HIk .F0; G0/ , that is, if Ck 2 hkHIk .F0; G0/g

�1
k

.
Lastly, the calculation .1 C "X/.1 C "Yk/k D k C ".X C Yk/k C O."2/

shows that the di�erential of (5.1.3) at .g; 1; : : : ; s/ can be identi�ed with
.X; Y1; : : : ; Ys/ 7! .X C Y1; : : : ; X C Ys/ .

We may check for surjectivity block by block. Since there are no constraints
on the Ak , Bk , and Dk , it is clear that the di�erential is surjective on the
three blocks corresponding to p.r; n/ . �us we only need to check surjectivity on
the last block of the linear map, corresponding to Hom.V0;Q0/ . �is block can
plainly be identi�ed with (5.1.2), since the Ck are constrained to be elements of
hkHIk .F0; G0/g

�1
k

. �us we obtain that !I is dominant if and only if (5.1.2) is
surjective.

Remark 5.1.4. �e map �I; Eg;Eh can be identi�ed with the di�erential of Nı0I at
the point Œ1; E � , where Ek 2 Flag0Ik .r; n/ is such that .Ek/V0 D gk � F0 and
.Ek/Q0 D hk � G0 for k 2 Œs� . �is follows from the proof of Lemma 5.1.1 and
justi�es calling �I; Eg;Eh a tangent map.

By the rank-nullity theorem and using Lemma 3.1.7, the kernel of the linear
map �I; Eg;Eh de�ned in (5.1.2) is of dimension at least

(5.1.5)
dim

�
Hom.V0;Q0/ �HI1.F0; G0/ � � � � �HIs .F0; G0/

�
� dimHom.V0;Q0/s

D r.n � r/.1 � s/C

sX
kD1

dim Ik D edim I;

and �I; Eg;Eh is surjective if and only if equality holds. On the other hand, it is
immediate that

(5.1.6) ker�I; Eg;Eh D

s\
kD1

hkHIk .F0; G0/gk D

s\
kD1

HIk .Fk ; Gk/;

where Fk D gkF0 and Gk D hkG0 . As we vary gk and hk , the Fk and Gk
are arbitrary �ags on V0 and Q0 , respectively. �us we obtain the following
characterization:



�e Horn inequalities from a geometric point of view 441

De�nition 5.1.7. Let I 2 Subsets.r; n; s/ . We de�ne the true dimension of I as

(5.1.8) tdim I WD min
F ;G

dimHI.F ;G/ D min
Eg;Eh

dimker�I; Eg;Eh;

where the �rst side minimization is over all s -tuples of �ags F on V0 and G
on Q0 , the second one over Eg 2 GL.r/s , Eh 2 GL.n � r/s , and where

HI.F ;G/ WD
s\

kD1

HIk .Fk; Gk/ � Hom.V0;Q0/:

Corollary 5.1.9. Let I 2 Subsets.r; n; s/ . �en we have tdim I � edim I , with
equality if and only if I 2 Intersecting.r; n; s/ .

We note that for the purpose of computing true dimensions we may always
assume that F1 and G1 are the standard �ags on V0 and Q0 , respectively (by
equivariance).

Example (s=2,r=2,n=4). We verify the example at the end of Section 4 by using
Corollary 5.1.9. We �rst consider I D .¹1; 4º; ¹2; 4º/ . �en edim I D 1 . To bound
tdim I , we let F D .F1; F2/ and G D .G1; G2/ , where F1 is the standard �ag
on V0 , F2 the �ag with adapted basis .e.1/ C e.2/; e.2// , and G1 D G2 the
standard �ags on Q0 . �en

HI.F ;G/ D

´ 
0 �

0 �

!µ
\HI2.F2; G2/ D

´ 
0 �

0 0

!µ
is one-dimensional, which shows that tdim I � 1 . Since always tdim I � edim I ,
it follows that, in fact, tdim I D edim I and so I is intersecting.

We now consider I D .¹1; 4º; ¹2; 3º/ . �en edim I D 0 . Let F and G be
pairs of �ags on V0 and Q0 , respectively. Without loss of generality, we shall
assume that F1 and G1 are the standard �ags. �en

HI.F ;G/ D

´ 
0 �

0 �

!µ
\HI2.F2; G2/ D C

 
0 x

0 y

!
;

where C
�
x
y

�
WD G2.1/ . Indeed, HI2.F2; G2/ consists of those linear maps that

map any vector in V0 into G2.1/ . In particular, HI.F ;G/ is one-dimensional for
any choice of F2 and G2 . �us tdim I D 1 > 0 D edim I , and we conclude that
I is not intersecting.
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Example (s=2,r=3,n=6). Let I D .¹3; 4; 6º; ¹2; 4; 5º/ . �en edim I D 3 . We now
establish that I is intersecting by verifying that tdim I D 3 . Again we choose
F1 and G1 to be the standard �ags on V0 and Q0 , respectively, while F2 and
G2 are de�ned as follows in terms of adapted bases:

F2 W e.1/C z21e.2/C z31e.3/; e.2/C z32e.3/; e.3/;

G2 W Ne.1/C u21 Ne.2/C u31 Ne.3/; Ne.2/C u32 Ne.3/; Ne.3/:

�en a basis for HI.F ;G/ is on the open set where u31u32 ¤ 0 given by

�1 D

0B@ �z21u32 u32 0

�z21.u32u21 � u31/ u32u21 � u31 0

0 0 0

1CA ;
�2 D

0B@ z31u32 0 0

z31.u32u21 � u31/ 0 u31

0 0 u32u31

1CA ; �3 D

0B@0 0 1

0 0 u21

0 0 u31

1CA
as can be checked by manual inspection.

5.2. Kernel dimension and position. Let us consider a tuple I 2 Subsets.r; n; s/ ,
where we always assume that r 2 Œn� . To prove su�ciency of the Horn inequal-
ities, we aim to use Corollary 5.1.9, which states that tdim I � edim I , with
equality if and only if I is intersecting.

If tdim I D 0 then, necessarily, tdim I D edim I D 0 , since edim I is
nonnegative by assumption (part of the Horn inequalities). Hence in this case I
is intersecting.

�us the interesting case is when tdim I > 0 . To study the spaces HI.F ;G/
in a uni�ed fashion, we consider the space

P.I/ WD
®
.F ;G; �/ 2 Flag.V0/s � Flag.Q0/s �Hom.V0;Q0/ W � 2 HI.F ;G/

¯
:

We caution that P.I/ is not in general irreducible, as the following example
shows:

Example. Let s D 2 , n D 3 , r D 1 , and consider I1 D I2 D ¹2º . �ere
is only a single �ag on V0 Š C , while any �ag G on Q0 Š C2 is
determined by a line L D G.1/ 2 P .C2/ . �us we can identify P.I/ Š
¹.L1; L2; �/ 2 P .C2/2 � Hom.C1;C2/ W �.e.1// 2 L1 \ L2º . If we consider
the map .L1; L2; �/ 7! .L1; L2/ , then the �ber for any L1 D L2 is a one-
dimensional line, while for any L1 ¤ L2 the �ber is just � D 0 . In particular,
we note that P.I/ is not irreducible.



�e Horn inequalities from a geometric point of view 443

We now restrict to those .F ;G/ such that the intersection HI.F ;G/ is of
dimension tdim I . �us we introduce

Pt.I/ WD
®
.F ;G; �/ 2 P.I/ W dimHI.F ;G/ D tdim I

¯
;

Bt.I/ WD
®
.F ;G/ 2 Flag.V0/s � Flag.Q0/s W dimHI.F ;G/ D tdim I

¯
:

�e subscripts in Pt.I/ and Bt.I/ stands for the true dimension, tdim I . We use
similar subscripts throughout this section when we �x various other dimensions
and positions.

Since tdim I is the minimal possible dimension, this is the generic case.
Moreover, this restriction makes Pt.I/ irreducible, as it is a vector bundle over
Bt.I/ . We record this in the following lemma:

Lemma 5.2.1. �e space P.I/ is a closed subvariety of Flag.V0/s �Flag.Q0/s �
Hom.V0;Q0/ , and Pt.I/ is a nonempty Zariski-open subset of P.I/ . Moreover,
Bt.I/ is a nonempty Zariski-open subset of Flag.V0/s � Flag.Q0/s , and the map
.F ;G; �/ 7! .F ;G/ turns Pt.I/ into a vector bundle over Bt.I/ . In particular,
Pt.I/ is an irreducible and smooth variety.

In particular:

(5.2.2) dimPt.I/ D s
�
dimFlag.V0/C dimFlag.Q0/

�
C tdim I

Belkale’s insight is now to consider the behavior of generic kernels of maps
� 2 HI.F ;G/ , where .F ;G/ 2 Bt.I/ . We start with the following de�nition:

De�nition 5.2.3. Let I 2 Subsets.r; n; s/ . We de�ne the kernel dimension of I
as

kdim I WD min
®
dimker� W � 2 HI.F ;G/ where .F ;G/ 2 Bt.I/

¯
�ere are two special cases that we can treat right away. If kdim I D r then

any morphism in HI.F ;G/ for .F ;G/ 2 Bt.I/ is zero, and hence tdim I D 0 .
�is is the case that we had discussed initially and we record this observation
for future reference:

Lemma 5.2.4. Let I 2 Subsets.r; n; s/ such that edim I � 0 . If kdim I D r then
tdim I D edim I D 0 , and hence I 2 Intersecting.r; n; s/ .

Likewise, the case where kdim I D 0 can easily be treated directly. �e idea
is to compute the dimension of Pt.I/ in a second way and compare the result
with (5.2.2).
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Lemma 5.2.5. Let I 2 Subsets.r; n; s/ . If kdim I D 0 then

dimPt.I/ D s
�
dimFlag.V0/C dimFlag.Q0/

�
C edim I:

Proof. We �rst note that kdim I D 0 implies that there exists an injective map
� 2 HI.F ;G/ for some .F ;G/ 2 Bt.I/ . In particular, Ik.a/�a � a for all k 2 Œs�
and a 2 Œr� (a fact that we use further below in the proof). Now de�ne

Pk WD
®
.F ;G; �/ 2 P.I/ W dimker� D 0

¯
�en Pk is a nonempty Zariski-open subset of P.I/ that intersects Pt.I/ . By
Lemma 5.2.1, the latter is irreducible. �us it su�ces to show that Pk is likewise
irreducible and to compute its dimension.

For this, we consider the map

� W Pk ! Mk WD Flag.V0/s �Hom�.V0;Q0/; .F ;G; �/ 7! .F ; �/

where we write Hom�.V0;Q0/ for the Zariski-open subset of injective linear
maps in Hom.V0;Q0/ . �e �bers of � are given by

��1.F ; �/ Š
sY

kD1

Flag0Ik .Fk ; �/

which according to Lemma 3.3.10 are smooth irreducible varieties of dimension
s dimFlag.Q0/� sr.n� r/C

Ps
kD1 dim Ik . It is not hard to see that � gives Pk

the structure of a �ber bundle over Mk . �erefore, Pk is irreducible. Moreover,
the space Mk has dimension s dimFlag.V0/C r.n� r/ . By adding the dimension
of the �bers, we obtain that the dimension of Pk , and hence of Pt.I/ , is indeed
the one claimed in the lemma.

Corollary 5.2.6. Let I 2 Subsets.r; n; s/ . If kdim I D 0 then tdim I D edim I ,
and hence I 2 Intersecting.r; n; s/ .

Proof. �is follows directly by comparing Eq. (5.2.2) and Lemma 5.2.5.

We now consider the general case, where 0 < d WD kdim I < r . We �rst note
that the kernel dimension is attained generically. �us we de�ne

Pkt.I/ WD
®
.F ;G; �/ 2 Pt.I/ W dimker� D kdim I

¯
;

Bkt.I/ WD
®
.F ;G/ W 9� s.th. .F ;G; �/ 2 Pkt.I/

¯
� Bt.I/;

where the subscripts denote that we �x both the true dimension as well as the
kernel dimension. We have the following lemma:
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Lemma 5.2.7. �e set Pkt.I/ is a nonempty Zariski-open subset of Pt.I/ ,
hence also irreducible. Moreover, Bkt.I/ is a nonempty Zariski-open subset of
Flag.V0/s � Flag.Q0/s .

Proof. �e �rst claim holds since Pkt.I/ can be de�ned by the nonvanishing
of certain minors. �e second claim now follows as Bkt.I/ is the image of the
Zariski-open subset Pkt.I/ of the vector bundle Pt.I/! Bt.I/ .

Belkale’s insight is to consider the positions of generic kernels for an induction:

De�nition 5.2.8. Let I 2 Subsets.r; n; s/ . �en we de�ne the kernel position of
I as the tuple J 2 Subsets.d; r; s/ de�ned by

Jk.b/ WD min
®
Pos.ker�; Fk/.b/ W .F ;G; �/ 2 Pkt.I/

¯
for b 2 Œd � and k 2 Œs� . We write kPos.I/ D J .

�e goal in the remainder of this subsection is to prove the following equality:

tdim I D edimJ C edim I=J ;

where J D kPos.I/ . �is will again be accomplished by computing the dimension
of Pt.I/ in a second way and comparing the result with (5.2.2). Speci�cally, we
consider the spaces

Pkpt.I/ WD
®
.F ;G; �/ 2 Pkt.I/ W Pos.ker�;F/ D kPos.I/

¯
;

Bkpt.I/ WD
®
.F ;G/ W 9� s.th. .F ;G; �/ 2 Pkpt.I/

¯
� Bkt.I/:

�en Pkpt.I/ is Zariski-open in Pkt.I/ , since it can again be de�ned by demanding
that certain minors are nonzero. We obtain the following lemma, the second claim
in which is proved as before:

Lemma 5.2.9. Let I 2 Subsets.r; n; s/ such that 0 < kdim I < r . �en Pkpt.I/
is a nonempty Zariski-open subset of Pkt.I/ , hence also irreducible. Moreover,
Bkpt.I/ is a nonempty Zariski-open subset of Flag.V0/s � Flag.Q0/s .

Corollary 5.2.10. Let I 2 Subsets.r; n; s/ such that 0 < kdim I < r . �en
kPos.I/ 2 Intersecting.d; r; s/ .

Proof. According to Lemma 5.2.9, Bkpt.I/ is a nonempty Zariski-open subset
of Flag.V0/s � Flag.Q0/s , hence Zariski-dense. It follows that its image under
the projection .F ;G/ 7! F is likewise Zariski-dense. For any such F , there
exists a G and � such that .F ;G; �/ 2 Pkpt.I/ , and hence ker� 2 �0kPos.I/.F/ ;
in particular, �0kPos.I/.F/ is nonempty. �us Lemmas 4.2.3 and 4.2.4 show that
kPos.I/ is intersecting.
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We now compute the dimension of Pkpt.I/ . As in the proof of Lemma 5.2.5,
it will be useful to consider an auxiliary space where we do not enforce the true
dimension:

Pkp.I/ WD
®
.F ;G; �/ 2 P.I/ W Pos.ker�;F/ D kPos.I/

¯
Note that constraint on the position of the kernel implies that its dimension is
kdim I .

Lemma 5.2.11. Let I 2 Subsets.r; n; s/ such that 0 < kdim I < r . �en Pkp.I/
is nonempty, smooth, irreducible, and satis�es

dimPkp.I/ D s
�
dimFlag.V0/C dimFlag.Q0/

�
C edimJ C edim I=J ;

where J WD kPos.I/ .

Proof. Clearly, Pkp.I/ is nonempty since it contains Pkpt.I/ . We now introduce

Mkp WD
®
.F ; �/ 2 Flag.V0/s �Hom.V0;Q0/ W Pos.ker�;F/ D kPos.I/

¯
and consider the map

� W Pkp.I/! Mkp; .F ;G; �/ 7! .F ; �/:

Its �bers are given by

��1.F ; �/ Š
sY

kD1

®
Gk 2 Flag.Q0/ W � 2 HIk .Fk ; Gk/

¯
To understand the right-hand side, de�ne S WD ker� and let N� W V0=S ! Q0 the
corresponding injective map. By Lemma 3.2.15, � 2 HIk .Fk; Gk/ if and only if
N� 2 HIk=Jk ..Fk/V0=S ; Gk/ , that is, Gk 2 Flag0Ik=Jk ..Fk/V0=S ; N�/ as introduced in
De�nition 3.3.9. �us we �nd that the �bers of � can be identi�ed as

��1.F ; �/ Š
sY

kD1

Flag0Ik=Jk ..Fk/V0=S ; N�/:

By Lemma 3.3.10, the k -th factor on the right-hand side is a smooth irreducible
variety of dimension dimFlag.Q0/ � .r � d/.n � r/ C dim Ik=Jk , where d WD

dimker� D kdim I . It is not hard to see that � is a �ber bundle, and we will
show momentarily that Mkp is irreducible. Hence

(5.2.12) dimPkp.I/ D dimMkpCs dimFlag.Q0/�s.r�d/.n�r/C
sX

kD1

dim Ik=Jk :
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It remains to show that Mkp is smooth and irreducible and to compute its
dimension. For this, we consider the map

� W Mkp ! Gr.d; V0/; .F ; �/ 7! ker�:

Since � can be speci�ed in terms of the kernel S WD ker� and the injection
N� W V0=S ! Q0 , it is clear that the �bers of � are given by

��1.S/ D Hom�.V0=S;Q0/ �
sY

kD1

Flag0Jk .S; V0/:

Since � is likewise a �ber bundle, we obtain that Mkp is smooth and irreducible
and, using (3.3.7), that

dimMkp D dimGr.d; V0/C .r � d/.n � r/C
sX

kD1

dimFlag0Jk .S; V0/

D d.r � d/C .r � d/.n � r/C s
�
dimFlag.S/C dimFlag.V0=S/

�
C

sX
kD1

dimJk

D d.r � d/.1 � s/C .r � d/.n � r/C s dimFlag.V0/C
sX

kD1

dimJk :

By plugging this result into (5.2.12) and simplifying, we obtain the desired
result.

Corollary 5.2.13. Let I 2 Subsets.r; n; s/ such that 0 < kdim I < r , and
J D kPos.I/ . �en,

(5.2.14) tdim I D edimJ C edim I=J

Proof. Recall that Pkp.I/ � P.I/ � Pt.I/ . Moreover,

Pkpt.I/ D Pkp.I/ \ Pt.I/ � P.I/:

All three varieties Pkpt.I/ , Pkp.I/ , Pt.I/ are irreducible (Lemmas 5.2.1, 5.2.9
and 5.2.11). Moreover, Pkpt.I/ is nonempty and Zariski-open in P.I/ , hence in
both Pkp.I/ and Pt.I/ . It follows that

dimPkp.I/ D dimPkpt.I/ D dimPt.I/:

We now obtain (5.2.14) via Lemma 5.2.11 and Eq. (5.2.2).

Remark. Purbhoo [Pur2] asserts that if J denotes the kernel position of I
then I=J is intersecting. However, we believe that the proof given therein is
incomplete, as it is not clear that the map .F ;G; �/ 7! .FV=S ;G/ is dominant
(cf. the remark at [Pur1]). �e following argument suggests that the situation is
somewhat more delicate.
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5.3. �e kernel recurrence. To conclude the proof in the case that 0 < kdim I <
r , we need to understand the right-hand side of (5.2.14) some more. We start
with the calculation

(5.3.1) tdim I � edim I D edimJ � .edim IJ � edimJ / D edimJ � edim IJ ;

where the �rst equality is due to Eqs. (4.2.9) and (5.2.14) and the second is
Eq. (4.2.11).

�e last missing ingredient is to understand the expected dimension of the
kernel position, edimJ .

Lemma 5.3.2. Let I 2 Subsets.r; n; s/ such that 0 < kdim I < r , and let
J WD kPos.I/ . �en we have edimJ � tdim IJ .

Proof. For any .F ;G; �/ 2 Pkp.I/ , the space HJ .Fker� ;FV0= ker�/ injects into
HIJ .Fker� ;G/ by composition with the injective map N� W V0= ker� ! Q0 induced
by � (Lemma 3.2.15). �us,

edimJ � tdimJ � dimHJ .Fker� ;FV0= ker�/ � dimHIJ .Fker� ;G/;

where the �rst inequality is always true (Corollary 5.1.9), the second holds by
de�nition of the true dimension and the third follows from the injection. It thus
su�ces to prove that there exists .F ;G; �/ 2 Pkp.I/ such that dimHIJ .FS ;G/ �
tdim IJ .

For this, let K.d; V0/ denote the �ber bundle over Gr.d; V0/ with �ber over
S 2 Gr.d; V0/ given by Flag.S/s�Flag.Q0/s . It is an irreducible algebraic variety
and we denote its elements by .S; QF ;G/ . We consider the morphism

� W Pkp.I/! K.d; V0/; .F ;G; �/ 7! .ker�;Fker� ;G/:

For any .F ;G; �/ 2 Pkp.I/ , dim ker� D d and Pos.ker�;F/ D J , hence � is
indeed a morphism.

We �rst prove that � is dominant. Note that, as a consequence of Lemma 5.2.9,
the map Pkp.I/ ! Flag.Q0/s; .F ;G; �/ 7! G contains a nonempty Zariski-
open subset U � Flag.Q0/s . We now show that the image of � contains all
elements .S; QF ;G/ with S 2 Gr.d; V0/ , QF 2 Flag.S/s and G 2 U . For this, let
.F0;G; �0/ 2 Pkp.I/ be the preimage of some arbitrary G 2 U . Let S0 WD ker�0
and choose some g 2 GL.V0/ such that g � S0 D S . Using the corresponding
diagonal action, F WD g � F0 and � WD g � �0 , we obtain that .F ;G; �/ 2 Pkp.I/
and ker� D S . Given QF 2 Flag.S/s , we now choose Eh 2 GL.V0/s such that
hkS � S , hk � F Sk D QFk , and hk acts trivially on V0=S for all k 2 Œs� . �en
Pos.S; Eh � F/ D Pos.S;F/ D J , which shows that .Eh � F/S D Eh � FS D QF .
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Moreover, .Eh �F/V0=S D FV0=S . �us � 2 HI.F ;G/ implies that � 2 HI.Eh �F ;G/
by Lemma 3.2.15. Together, we �nd that the triple .Eh �F ;G; �/ is in Pkp.I/ and
mapped by � to .S; QF ;G/ . We thus obtain that � is dominant.

To conclude the proof, we note that the subset W � K.d; V0/ consisting
of those .S; QF ;G/ with dimHIJ . QF ;G/ D tdim IJ is a nonempty Zariski-open
subset, and hence Zariski-dense since K.d; V0/ is irreducible. For each �xed
choice of S , this is the claim in Lemma 5.2.1 for Bt .I/ , with IJ instead of I .
�e ‘parametrized version’ is proved in the same way. Since � is dominant, the
preimage ��1.W / is a nonempty Zariski-open subset of Pkp.I/ . In particular,
any .F ;G; �/ 2 ��1.W / � Pkp.I/ satis�es dimHIJ .FS ;G/ � tdim IJ .

We thus obtain the following fundamental recurrence relation, due to Sher-
man [She], as a consequence of Eq. (5.3.1) and Lemma 5.3.2:

(5.3.3) tdim I � edim I � tdim IJ
� edim IJ

Now we have assembled all ingredients to prove Belkale’s theorem:

�eorem 5.3.4 (Belkale [Bel3], restated).
For r 2 Œn� and s � 2 , Intersecting.r; n; s/ D Horn.r; n; s/ .

Proof. We proceed by induction on r . �e base case, r D 1 , is Example 4.3.12.
�us we have Intersecting.1; n; s/ D Horn.1; n; s/ for all n � 1 .

Now let r > 1 . By the induction hypothesis, Horn.d; n0; s/ D
Intersecting.d; n0; s/ for all 0 < d < r and d � n0 . In particular, Horn.r; n; s/
from De�nition 2.18 can be written in the following form:

Horn.r; n; s/
D
®
I W edim I � 0; 8J 2 Intersecting.d; r; s/; 0 < d < r;

edimJ D 0 W edim IJ � 0
¯

D
®
I W edim I � 0; 8J 2 Intersecting.d; r; s/; 0 < d < r; edim IJ � edimJ

¯
where the second equality is due to Proposition 4.3.10. Hence it is a direct
consequence of Corollary 2.17 that Intersecting.r; n; s/ � Horn.r; n; s/ . We now
prove the converse.

�us let I 2 Horn.r; n; s/ . Let d WD kdim I . If d D 0 or d D r then we
know from Lemma 5.2.4 and Corollary 5.2.6, respectively, that I is intersecting.
We now discuss the case where 0 < d < r . By Eq. (5.3.3), we have that

tdim I � edim I � tdim IJ
� edim IJ ;

where J WD kPos.I/ denotes the kernel position of I . If we can show that IJ

is intersecting then the right-hand side is zero by Corollary 5.1.9, hence so is the
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left-hand side, since tdim I � edim I � 0 , and thus I is intersecting, which is
what we set out to prove.

To see that IJ is intersecting, we note that Intersecting.d; n � r C d; s/ D
Horn.d; n� r C d; s/ by the induction hypothesis, hence it remains to verify that
IJ satis�es the Horn inequalities. Let K 2 Horn.m; d; s/ D Intersecting.m; d; s/
for any 0 < m � d , where we have used the induction hypothesis one last time.
�us JK 2 Intersecting.m; r; s/ by Corollary 5.2.10 and Lemma 2.16. It follows
that

edim IJK � edimK D edim I.JK/ � edimJK � 0

where the �rst step is (4.2.10) and the second step holds because by assumption
I 2 Horn.r; n; s/ and JK 2 Intersecting.m; r; s/ D Horn.m; r; s/ , as explained
above. We remark that these inequalities include edim IJ � 0 (corresponding to
m D d ). �us we have shown that IJ satis�es the Horn inequalities. �is is
what remained to be proved.

6. Invariants and Horn inequalities

In this section, we show that the Horn inequalities not only characterize
intersections, but also the existence of corresponding nonzero invariants and,
thereby, the Kirwan cone for the eigenvalues of sums of Hermitian matrices.

6.1. Borel–Weil construction. For any dominant weight � 2 ƒC.r/ there exists
an irreducible representation L.�/ of GL.r/ with highest weight � , unique up
to isomorphism. Following Borel and Weil, it can be constructed as follows:

For any weight � 2 ƒ.r/ , let us denote by �� W B.r/ ! C� the character
of B.r/ such that ��.t/ D t� D t .1/�.1/ � � � t .r/�.r/ for all t 2 H.r/ � B.r/ .
Here, we recall that B.r/ is the group of upper-triangular invertible matrices and
H.r/ � B.r/ the Cartan subgroup, which consists of invertible matrices t 2 GL.r/
that are diagonal in the standard basis, with diagonal entries t .1/; : : : ; t .r/ . Lastly,
we write 1r D .1; : : : ; 1/ 2 ƒ.r/ for the highest weight of the determinant
representation of GL.r/ , denoted detr . It is clear that L.�Ck1r / D L.�/˝detkr
for any � 2 ƒC.r/ and k 2 Z .

De�nition 6.1.1. Let � 2 ƒC.r/ . �en we de�ne the Borel–Weil realization of
L.�/ as

LBW .�/ D
®
s W GL.r/! C holomorphic W s.gb/ D s.g/���.b/

8g 2 GL.r/; b 2 B.r/
¯
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with the action of GL.r/ given by .g � s/.h/ WD s.g�1h/ . We recall that
�� D .��.r/; : : : ;��.1// .

�e Borel–Weil theorem asserts that LBW .�/ is an irreducible GL.r/ -
representation of highest weight � . Note that, by de�nition, a holomorphic function
is in LBW .�/ if it is a highest weight vector of weight �� with respect to the
right multiplication representation, .g ? s/.h/ WD s.hg/ .

�e space LBW .�/ can also be interpreted as the space of holomorphic
sections of the GL.r/ -equivariant line bundle LBW .�/ WD GL.r/�B.r/C��� over
Flag.r/ Š GL.r/=B.r/ , where we write C� for the one-dimensional representation
of B.r/ given by the character �� .

It is useful to observe that we have a GL.r/ -equivariant isomorphism

(6.1.2) L.�/� ! LBW .�
�/; f 7!

�
sf W GL.r/! C; g 7! f .g � v�/

�
where v� denotes a �xed highest weight vector in L.�/ .

�e tensor product of several Borel–Weil representations can again be identi�ed
with a space of functions. E.g., if � 2 ƒC.r/ and �0 2 ƒC.r

0/ then

LBW .�/˝ LBW .�
0/

Š
®
s W GL.r/ �GL.r 0/! C holomorphic; s.gb; g0b0/ D s.g; g0/���.b/��0�.b0/

8g 2 GL.r/; g0 2 GL.r 0/; b 2 B.r/; b0 2 B.r 0/
¯
:

We will use this below to obtain a nonzero vector in a tensor product space by
exhibiting a corresponding holomorphic function with the appropriate equivariance
properties.

6.2. Invariants from intersecting tuples. Let us consider the tangent map (5.1.2),

�I; Eg;Eh W

´
Hom.V0;Q0/ �HI1.F0; G0/ � � � � �HIs .F0; G0/! Hom.V0;Q0/s

.�; �1; : : : ; �s/ 7! .� C h1�1g
�1
1 ; : : : ; � C hs�sg

�1
s /

If edim I D 0 then (5.1.5) implies that the dimension of the domain and target
space are the same. �us we may consider the determinant of �I; Eg;Ed , as in the
following de�nition:

De�nition 6.2.1. Let I 2 Subsets.r; n; s/ such that edim I D 0 . �en we de�ne
the determinant function as the holomorphic function

ıI W

´
GL.r/s �GL.n � r/s ! C;

.Eg; Eh/ 7! det�I; Eg;Eh

where the determinant is evaluated with respect to two arbitrary bases.



452 N. Berline, M. Vergne and M. Walter

Here, and throughout the following, we identify V0 Š Cr and Q0 Š Cn�r , so
that GL.V0/ Š GL.r/ and GL.Q0/ Š GL.n�r/ and the discussion in Section 6.1
is applicable.

If I is intersecting then also tdim I D edim I by Corollary 5.1.9. Hence
by (5.1.8) there exist Eg; Eh such that ıI.Eg; Eh/ ¤ 0 . �at is, ıI is a nonvanishing
holomorphic function of GL.r/s�GL.n�r/s . Our goal is to show that ıI can be
interpreted as an invariant in a tensor product of irreducible GL.r/�GL.n� r/ -
representations.

We now consider the representation of GL.r/ � GL.n � r/ on Hom.V0;Q0/
given by .a; d/ �� WD d�a�1 . Since Hom.V0;Q0/ D V �0 ˝Q0 , it is clear that for
g 2 GL.V0/ , g0 2 GL.Q0/ ,

(6.2.2) det
�
Hom.V0;Q0/ 3 � 7! g0�g�1 2 Hom.V0;Q0/

�
D det.g/�.n�r/ det.g0/r :

We now restrict to the subspaces HI .F0; G0/ :

Lemma 6.2.3. Let I � Œn� be a subset of cardinality r . �en HI .F0; G0/ �

Hom.V0;Q0/ is B.r/ � B.n � r/ -stable. Furthermore, for b 2 B.r/ and
b0 2 B.n � r/ we have

det
�
HI .F0; G0/ 3 � 7! b0�b�1 2 HI .F0; G0/

�
D ��I .b/��IcCr1n�r .b

0/;

where we recall that �I was de�ned in De�nition 4.3.7.

Proof. For the �rst claim, we use Lemma 3.2.7: Since the �ag F0 is stabilized
by B.r/ and the �ag G0 is stabilized by B.n � r/ , it is clear that HI .F0; G0/
is stable under the action of B.r/ � B.n � r/ .

For the second claim, we note that unipotent elements always act by
representation matrices of determinant one. Hence it su�ces to verify the formula
for the determinant for t 2 H.r/ and t 0 2 H.n � r/ . For this, we work in the
weight basis of HI .F0; G0/ given by the elementary matrices Eb;a that send
e.a/ 7! Ne.b/ , where a 2 Œr� and b 2 ŒI.a/ � a� , and all other basis vectors to
zero. �en:

det
�
HI .F0; G0/ 3 � 7! t 0�t�1 2 HI .F0; G0/

�
D

rY
aD1

I.a/�aY
bD1

t 0.b/t.a/�1 D

� rY
aD1

t .a/a�I.a/
�� n�rY

bD1

t 0.b/r�#¹aWI.a/�a<bº
�

D t�I t 0
r1n�rC�Ic ;

where we have used (4.3.8) in the last step.
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We now show that the ıI can be interpreted as an invariant:

�eorem 6.2.4. Let I 2 Subsets.r; n; s/ such that edim I D 0 , and let ıI denote
the corresponding determinant function (De�nition 6.2.1). �en ıI belongs toNs
kD1

�
LBW .�

�
Ik
/˝LBW .�

�

Ic
k

�r1n�r /
�
. Moreover, it transforms under the diagonal

action of GL.r/ �GL.n � r/ by the character det.n�r/.s�1/r ˝ detr.1�s/n�r .

Proof. For the �rst claim, we note that if Eg0 2 B.r/s , Eh0 2 B.n � r/s then we
can write �I; Eg Eg0;Eh Eh0 as a composition of �I; Eg;Eh with the automorphisms on
HIk .F0; G0/ that send �k 7! h0

k
�k.g

0
k
/�1 . Using Lemma 6.2.3, we obtain

ıI.Eg Eg0; Eh Eh0/ D ıI.Eg; Eh/

sY
kD1

��I .g
0
k/��Ic

k
Cr1n�r .h

0
k/:

In view of the discussion at the end of Section 6.1 this establishes the �rst claim.
For the second claim, let g 2 GL.r/ and g0 2 GL.n� r/ . �us �I;g�1 Eg;g0�1 Eh

maps .�; �1; : : : ; �s/ to

.� C g0�1h1�1g
�1
1 g; : : : ; � C g0�1hs�sg

�1
s g/

D g0�1.g0�g�1 C h1�1g
�1
1 ; : : : ; g0�g�1 C hs�sg

�1
s /g

�us we can write �I;g�1 Eg;g0�1 Eh as a composition of three maps: �e auto-
morphism � 7! g0�g�1 of Hom.V0;Q0/ , the map �I; Eg;Eh and the automorphism
E� 7! g0�1 E�g on Hom.V0;Q0/s . �us, using Eq. (6.2.2),�
.g; g0/ � ıI

�
.Eg; Eh/ D ıI.g

�1
Eg; g0

�1 Eh/ D det.g/�.n�r/.1�s/ det.g0/r.1�s/ıI.Eg; Eh/;

which establishes the second claim.

If I is intersecting then we had argued before that ıI is nonzero. By dualizing
and simplifying, we obtain the following corollary of �eorem 6.2.4:

Corollary 6.2.5. Let I 2 Intersecting.r; n; s/ and edim I D 0 . �en,�
det.s�1/.n�r/r ˝

sO
kD1

L.�Ik /
�GL.r/

¤ 0 and
�
detrn�r ˝

sO
kD1

L.�Ic
k
/
�GL.n�r/

¤ 0:

Let us correspondingly de�ne

c.I/ WD dim
�
det.s�1/.n�r/r ˝

sO
kD1

L.�Ik /
�GL.r/

:
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�en Corollary 6.2.5 states that, if I is intersecting and edim I D 0 then
c.I/ > 0 . �is relationship between generic intersections of Schubert cells and
tensor product multiplicities can be made quantitative. While we do not use this
in the following Section 6.3 to describe the Kirwan cone and prove the saturation
property for tensor product multiplicities, we will give a brief sketch later on in
Section 6.4 and use it to establish the Fulton conjecture.

6.3. Kirwan cone and saturation. We now show that the existence of nonzero
invariants is characterized by the Horn inequalities. For this, recall that we de�ned
c.E�/ as the dimension of the space of GL.r/ -invariants in the tensor productNs
kD1L.�k/ . �us, if we de�ne �k D �Ik C .n � r/1r for k 2 Œs � 1� and

�s D �Is , then Corollary 6.2.5 shows that

(6.3.1) c.E�/ D c.I/ > 0

whenever I is intersecting and edim I D 0 . Here, we have somewhat arbitrarily
selected the �rst s � 1 highest weights �1; : : : ; �s�1 to have nonnegative entries
no larger than n � r , while �s has nonpositive entries no smaller than r � n .
Conversely, any s -tuple of highest weights E� with these properties can be
obtained in this way from some I 2 Subsets.r; n; s/ (recall discussion below
De�nition 4.3.7).

Proposition 6.3.2. Let E� 2 ƒC.r/s be an s -tuple such that
Ps
kD1j�kj D 0 , and

for any 0 < d < r and any s -tuple J 2 Horn.d; r; s/ with edimJ D 0 we have
that

Ps
kD1.TJk ; �k/ � 0 . �en c.E�/ > 0 .

Proof. By adding/removing suitable multiples of 1r , the highest weight of the
determinant representation, we may assume that �1.r/; : : : ; �s�1.r/ � 0 and
�s.1/ � 0 . Let n WD r C q , where q WD max¹�1.1/; : : : ; �s�1.1/;��s.r/º . �en E�
is associated to an s -tuple I 2 Subsets.r; n; s/ as in Lemma 4.3.9.

We now show that edim I D 0 and that I is intersecting. �e former follows
from the �rst statement in Lemma 4.3.9, which gives that edim I D �

Ps
kD1j�kj D

0 . To see that I is intersecting, we may use �eorem 5.3.4 and show instead that
I satis�es the Horn inequalities edim IJ � 0 for any J 2 Horn.d; r; s/ with
edimJ D 0 and 0 < d < r . But the second statement in Lemma 4.3.9 implies
that these are equivalent to the linear inequalities

Ps
kD1.TJk ; �k/ � 0 , which

hold by assumption. �us I is indeed intersecting and satis�es edim I D 0 .
Now (6.3.1) shows that c.E�/ D c.I/ > 0 .

At last we can prove the saturation property and characterize of the Kirwan
cone in terms of Horn inequalities.
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Corollary 6.3.3 (Knutson–Tao, [KT], restated). (a) Horn inequalities: �e Kir-
wan cone Kirwan.r; s/ is the convex polyhedral cone of E� 2 CC.r/s such thatPs
kD1j�kj D 0 , and for any 0 < d < r and any s -tuple J 2 Horn.d; r; s/

with edimJ D 0 we have that
Ps
kD1.TJk ; �k/ � 0 .

(b) Saturation property: For a dominant weight E� 2 ƒC.r/
s , the space of

invariants .L.�1/ ˝ � � � ˝ L.�s//
GL.r/ is nonzero if and only if E� 2

Kirwan.r; s/ .

In particular, c.E�/ WD dim.L.�1/ ˝ � � � ˝ L.�s//GL.r/ > 0 if and only if
c.N E�/ > 0 for some integer N > 0 .

Proof. �e two statements are closely interlinked. For clarity, we give separate
proofs that do not refer to each other.

(a) Any E� 2 Kirwan.r; s/ satis�es the Horn inequalities (Corollary 2.13). We now
observe that Kirwan.r; s/ is a closed subset of CC.r/s which, moreover, is
invariant under rescaling by nonnegative real numbers. �us it su�ces to
prove the converse only for E� 2 ƒC.r/s . For this, we use that if E� satis�es the
Horn inequalities then c.E�/ > 0 by Proposition 6.3.2, hence E� 2 Kirwan.r; s/
by Proposition 2.3.

(b) Let E� 2 ƒC.r/s . If c.E�/ > 0 then E� 2 Kirwan.r; s/ by Proposition 2.3.
Conversely, if E� 2 Kirwan.r; s/ then it satis�es the Horn inequalities by
Corollary 2.13, hence c.E�/ > 0 by Proposition 6.3.2.

Remark 6.3.4. As follows from the discussion below Proposition 4.3.10, the
Kirwan cone is in fact already de�ned by those J such that �J .G/ is a point
for all G 2 Good.r; s/ . Ressayre has shown that the corresponding inequalities are
irredundant and can be computed by an inductive algorithm [Res2]. Demanding
that �J .G/ is a point for all good G is a more stringent requirement than
edimJ D 0 , and indeed the set of inequalities edim IJ � 0 for J 2 Horn.d; r; s/
with edimJ D 0 is in general still redundant. However, from a practical point of
view we prefer the latter criterion since it is much easier to check numerically.

6.4. Invariants and intersection theory. We now explain how the relationship
between generic intersections of Schubert cells and tensor product multiplicities
can be made more quantitative. Speci�cally, we shall relate the dimension c.I/
of the space of GL.r/ -invariants to the number of points in a generic intersection
�I.E/ , as in the following de�nition:



456 N. Berline, M. Vergne and M. Walter

De�nition 6.4.1. Let I 2 Subsets.r; n; s/ such that edim I D 0 . We de�ne the
corresponding intersection number as

cint.I/ WD #�0I.E/ D #�I.E/;

where E is an arbitrary s -tuple of �ags in Good.n; s/ . By Lemma 4.3.1, the right-
hand side is �nite and independent of the choice of E in Good.n; s/ . Moreover,
cint.I/ > 0 if and only if I is intersecting.

In Section 6.2 we showed that if I is intersecting then c.I/ > 0 . Indeed, in
this case the determinant function ıI on GL.r/s �GL.n� r/s is nonzero, so that
for some suitable Eh 2 GL.n � r/s the function

(6.4.2) ıI;Eh W GL.r/
s
! C; ıI;Eh.Eg/ WD ıI.Eg;

Eh/

is a nonzero vector in
Ns
kD1LBW .�

�
Ik
/ that transforms as the character

det.n�r/.s�1/r with respect to the diagonal action of GL.r/ .
In the following we show that, as we vary Eh , the functions ıI;Eh span a

vector space of dimension at least cint.I/ , which will imply that c.I/ � cint.I/ .
More precisely, we shall construct elements .Eg˛; Eh˛/ 2 GL.r/s � GL.n � r/s for
˛ 2 Œcint.I/� such that ıI.Eg˛; Eh˛/ ¤ 0 while ıI.Eg˛; Ehˇ / D 0 if ˛ ¤ ˇ . �e
construction, due to Belkale [Bel2], depends on a choice of good �ags E and
goes as follows.

Let E be an s -tuple of good �ags and consider the intersection

�0I.E/ D ¹V1; : : : ; Vcint.I/º:

Let ˛ 2 GL.n/ such that V˛ D ˛ � V0 for each ˛ 2 Œcint.I/� , and consider
the s -tuple of �ags E˛ D .E˛;1; : : : ; E˛;s/ de�ned by E˛;k D �1˛ � Ek . �en
N!0I.Œ˛; E˛�/ D E . According to Lemma 4.3.1, E is a regular value of N!0I , since I is
intersecting. Since edim I D 0 , this implies that the di�erential of N!0I is bijective
at Œ˛; E˛� , and, by equivariance, so is its di�erential at Œ1; E˛� . By Remark 5.1.4,
its determinant is precisely ıI.Eg˛; Eh˛/ , where Eg˛ D .g˛;1; : : : ; g˛;s/ 2 GL.r/
and Eh˛ D .h˛;1; : : : ; h˛;s/ 2 GL.n � r/ are such that g˛;k � F0 D .E˛;k/

V0 and
h˛;k �G0 D .E˛;k/Q0 for all ˛ and k . In particular, ıI.Eg˛; Eh˛/ ¤ 0 .

Using edim I D 0 , Eqs. (5.1.5) and (5.1.6) imply that

(6.4.3) ıI.Eg; Eh/ ¤ 0 , dimHI.Eg � F0; Eh �G0/ D 0:

�en we have the following lemma:

Lemma 6.4.4. Let I be intersecting, edim I D 0 , and E 2 Good.n; s/ . As above,
choose ˛ , Eg˛ and Eh˛ for ˛ 2 Œcint.I/� . De�ne ıI;˛.Eg/ WD det�I; Eg;Eh˛

. �en
ıI;˛.Eg˛/ ¤ 0 for all ˛ , while ıI;ˇ .Eg˛/ D 0 for all ˛ ¤ ˇ .



�e Horn inequalities from a geometric point of view 457

Proof. We only need to consider the case that ˛ ¤ ˇ . In view of (6.4.3), it
su�ces to show that HI..E˛/V0 ; .Eˇ /Q0/ ¤ ¹0º . For this, we de�ne the map

�˛;ˇ W V0 ! Cn=V0 Š Q0; v 7! .˛/
�1ˇv C V0;

which is nonzero since ˛V0 D V˛ ¤ Vˇ D ˇV0 . �en �˛;ˇ is a nonzero element
in HI..E˛/V0 ; .Eˇ /Q0/ , since

�˛;ˇ
�
.Eˇ;k/

V0.a/
�
D �˛;ˇ

�
Eˇ;k

�
Ik.a/

��
D E˛;k

�
Ik.a/

�
CV0 D .E˛;k/Q0.Ik.a/�a/

for all a 2 Œr� and k 2 Œs� , using that I D Pos.V0; E˛/ .

Lemma 6.4.4 shows that the functions ıI;1; : : : ; ıI;cint.I/ are linearly indepen-
dent. If we identify them with GL.r/ -invariants as before, we obtain the following
corollary:

Corollary 6.4.5. Let edim I D 0 . �en, c.I/ � cint.I/ .

In fact, it is a classical result that

(6.4.6) c.I/ D cint.I/

(see, e.g., [Ful1]). �us Corollary 6.4.5 shows that we can produce a basis of
the tensor product invariants from Belkale’s determinants ıI;Eh.Eg/ D det�I; Eg;Eh .
�ese invariants can be identi�ed with the construction of Howe, Tan and
Willenbring [HTW], as described in [VW].

7. Proof of Fulton’s conjecture

We now revisit the conjecture by Fulton which states that if c.E�/ D 1 for
an s -tuple of highest weights then c.N E�/ D 1 for all N � 1 . We note that its
converse is also true and holds as a direct consequence of the saturation property
and the bound c.N E�/ � c.E�/ , which follows from the semigroup property of
the Littlewood-Richardson coe�cients. Fulton’s conjecture was �rst proved by
Knutson, Tao and Woodward [KTW]. We closely follow Belkale’s geometric
proof [Bel2, Bel3, Bel4], in its simpli�ed form due to Sherman [She], which in
turn was in part inspired by the technique of Scho�eld [Sch].

7.1. Nonzero invariants and intersections. Let c.E�/ D 1 . Equivalently, c.E��/ D
1 and so there exists a nonzero GL.r/ -invariant holomorphic function f in
LBW .�

�
1/˝ : : :˝ LBW .�

�
s / , which is unique up to rescaling.
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Suppose for a moment that there exists a nowhere vanishing function g in
LBW .�

�
1/˝ : : :˝LBW .�

�
s / (not necessarily GL.r/ -invariant). In this case, if g0 is

any other holomorphic function in LBW .��1/˝ : : :˝LBW .��s / , then g0=g is right
B.r/s -invariant and therefore descends to a holomorphic function on Flag.r/s .
But this is a compact space, hence any such function is constant. It then follows
that each LBW .��k/ is one-dimensional and hence that the �k are just characters,
i.e., �k D mk1r and L.�k/ D detmkr for some mk 2 Z . In this case, Fulton’s
conjecture is certainly true.

We now consider the nontrivial case when f has zeros. For any function in
LBW .�

�
1/˝ : : :˝ LBW .�

�
s / , the zero set is right B.r/s -stable. Accordingly, we

shall write f .F/ D 0 for the condition that f .Eg/ D 0 , where F D Eg � F0 , and
consider

Zf WD
®
F 2 Flag.r/s W f .F/ D 0

¯
:

Without loss of generality, we may assume that there exists an s -tuple I with
edim I D 0 that is related to E� as in Lemma 4.3.9, i.e.,

(7.1.1) �k D �Ik C .n � r/1r for k 2 Œs � 1� ; �s D �Is

(otherwise we may add/remove suitable multiples of 1r , as in the proof of
Proposition 6.3.2). Now recall from (6.4.2) that the functions ıI;Eh D ıI.�; Eh/

are in
Ns
kD1LBW .�

�
Ik
/ and transform as the character det.n�r/.s�1/r with

respect to the diagonal action of GL.r/ . It follows that each QıI;Eh.Eg/ WD

det�.n�r/r .g1/ � � � det�.n�r/r .gs�1/ıI;Eh.Eg/ must be proportional to f . Hence,

(7.1.2) ıI.Eg; Eh/ D det.n�r/r .g1/ � � � det.n�r/r .gs�1/f .Eg/ Of .Eh/;

for some function Of W GL.n� r/s ! C , which is nonzero due to (6.4.6). In view
of (6.4.3), we obtain the following lemma:

Lemma 7.1.3. Let f , I as above. If F 2 Zf then HI.F ;G/ ¤ ¹0º for all
G 2 Flag.Q0/s . Conversely, if Of .G/ ¤ 0 then HI.F ;G/ ¤ ¹0º implies that
F 2 Zf .

For sake of �nding a contradiction, let us assume that c.N E�/ > 1 for some
N . �en there exists an invariant f 0 2 LBW .N��1/ ˝ : : : ˝ LBW .N��s / that is
linearly independent from f N .

Lemma 7.1.4. Let L be a holomorphic line bundle over a smooth irreducible vari-
ety. �en two linearly independent holomorphic sections f1 , f2 are automatically
algebraically independent.
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Proof. Let us suppose that f1 and f2 satisfy a nontrivial relation
P
i;j ci;jf

i
1 f

j
2 D

0 . Each f i1 f
j
2 is a section of the line bundle L˝.iCj / . �e relation holds degree

by degree, and so we may assume that i C j is the same for each nonzero ci;j .
But any homogeneous polynomial in two variables is a product of linear factors.
�us we have

Q
i .aif1 C bif2/ D 0 for some ai ; bi 2 C , and one of the factors

has to vanish identically. �is shows that f1 and f2 are linearly dependent, in
contradiction to our assumption.

Lemma 7.1.4 implies that f N and f 0 , and therefore f and f 0 are
algebraically independent. As a consequence, there exists a nonempty Zariski-
open subset of F 2 Zf such that f 0.F/ ¤ 0 .

Our strategy in the below will be as follows. As before, we consider the
kernel position J of a generic map 0 ¤ � 2 HI.F ;G/ , with now F varying in
Zf . Although J is not necessarily intersecting, the condition f 0.F/ ¤ 0 will
be su�cient to show that the tuple IJ is intersecting. In Section 7.2 we will
then prove Sherman’s re�ned version of his recurrence relation (5.3.3), which
will allow us to show that HI.F ;G/ D ¹0º for generic F 2 Zf . In view of
Lemma 7.1.3, this will give a contradiction.

We �rst prove a general lemma relating semistable vectors and moment
maps. Let M be a complex vector space equipped with a GL.r/ -representation
and U.r/ -invariant Hermitian inner product h�; �i , complex linear in the second
argument, and denote by �M W gl.r/! gl.M/ the Lie algebra representation. We
de�ne the corresponding moment map ˆM W P .M/! iu.r/ by

tr
�
ˆM .Œm�/A

�
D
hm; �M .A/mi

kmk2

for all A 2 gl.r/ ; cf. Eq. (2.2).

Lemma 7.1.5. Let A 2 iu.r/ and 0 ¤ m 2 M . If exp.At/ �m 6! 0 as t ! �1
then

lim
t!�1

tr
�
ˆM .Œexp.At/ �m�/A

�
� 0:

Proof. Write m D
Pk
iD1mi where the mi are nonzero eigenvectors of �M .A/ ,

with eigenvalues �1 < � � � < �k . �en,

exp.At/ �m D
kX
iD1

e�i tmi 6! 0

as t ! �1 if and only if �1 � 0 . In this case,

lim
t!�1

tr
�
ˆM .Œexp.At/ �m�/A

�
D lim

t!�1

P
i �ie

2�i tkmik
2P

i e
2�i tkmik2

D �1 � 0:
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We now relate the position of subspaces to components of the moment map:

Lemma 7.1.6. Let � 2 ƒC.r/ , F D g � F0 a �ag on V0 , S a nonzero subspace
of Cr , and PS the orthogonal projector. �en,

lim
t!�1

tr
�
ˆL.�/.Œexp.PS t /g � v��/PS

�
D hTJ ; �i ;

where J D Pos.S; F / .

Proof. Let d D #J . We may assume that S D S0 is generated by the �rst d
vectors e.1/; : : : ; e.d/ of the standard basis of V0 , and also that g D u is unitary.
�us PS0 is the diagonal matrix with d ones and r � d zeros, and we need to
show that

lim
t!�1

tr
�
ˆL.�/.Œexp.PS0 t /u � v��/PS0

�
D hTJ ; �i :

Let R0 denote the orthogonal complement of S0 in V0 . �e action of U.S0/ �
U.R0/ commutes with PS0 and hence we can assume that F S0 is the standard
�ag on S0 , while FV0=S0 has the adapted basis e.J c.b// C S0 for b 2

Œr � d� . �us we see that limt!�1 exp.PS0 t /F D wJF0 . It follows that
limt!�1Œexp.PS0 t /u � v�� D ŒwJ � v�� and hence, using (2.2), that

lim
t!�1

tr
�
ˆL.�/.Œexp.PS0 t /u � v��/PS0

�
D
hv�; ��.w

�1
J PS0wJ /v�i

kv�k2
D hTJ ; �i :

We now use the preceding lemma to obtain from any nonzero invariant an
s -tuple of �ags with nonnegative slope:

Lemma 7.1.7. Let p 2 .L.N�1/˝� � �˝L.N�s//� a GL.r/ -invariant homogeneous
polynomial such that p.g1 � vN�1 ˝ � � � ˝ gs � vN�s / ¤ 0 , and de�ne F D
.g1F0; : : : ; gsF0/ . �en

Ps
kD1.TJk ; �k/ � 0 for all J D Pos.S;F/ , where S

is an arbitrary nonzero subspace of Cr .

Proof. Consider the representation M D L.N�1/ ˝ � � � ˝ L.N�s/ with its
moment map ˆM , and m WD g1 � vN�1 ˝ � � � ˝ gs � vN�s . Let PS denote
the orthogonal projector onto the subspace S . As p is GL.r/ -invariant,
p.exp.PS t / �m/ D p.m/ ¤ 0 , which implies that exp.PS t / �m 6! 0 as t ! �1 .
�us Lemma 7.1.5 implies that

lim
t!�1

tr
�
ˆM .Œexp.PS t / �m�/PS

�
� 0:

On the other hand, Lemma 7.1.6 shows that the left-hand side of this inequality
is equal to

sX
kD1

lim
t!�1

tr
�
ˆL.N�k/.Œexp.PS t /gk � vN�k �/PS

�
D

sX
kD1

lim
t!�1

.TJk ; �k/:
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Corollary 7.1.8. Let E� and I as in (7.1.1), f 0 2 .LBW .N�
�
1/ ˝ � � � ˝

LBW .N�
�
s //

GL.r/ . Let F 2 Flag.V0/s , ¹0º ¤ S � Cr , and J D Pos.S;F/ .
If f 0.F/ ¤ 0 then IJ is intersecting.

Proof. Write F D .g1 � F0; : : : ; gs � F0/ for suitable g1; : : : ; gs 2 GL.r/ . �en,
using (6.1.2), there exists a GL.r/ -invariant homogeneous polynomial p 2

.L.N�1/˝� � �˝L.N�s//
� such that p.g1 �vN�1˝� � �˝gs �vN�s / D f 0.g1; : : : ; gs/ ¤

0 . �us the assumptions of Lemma 7.1.7 are satis�ed.
We now show that IJ is intersecting. For this, we use �eorem 5.3.4

and verify the Horn inequalities. �us let 0 < m � d D dimS and K 2
Horn.m; d; s/ D Intersecting.m; d; s/ : Since K is intersecting, there exists some
subspace S 0 2 �K.FS / . Hence S 0 2 �JK.F/ by the chain rule (3.2.9). According
to Lemma 3.1.5, J 0 D Pos.S 0;F/ is such that J 0

k
.a/ � JkKk.a/ for all k 2 Œs�

and a 2 Œm� . �us we obtain the �rst inequality in

edim IJK � edimK D edim I.JK/ � edimJK

D �

sX
kD1

.TJkKk ; �k/ � �

sX
kD1

.TJ 0
k
; �k/ � 0I

the �rst equality is (4.2.11), the second is Lemma 4.3.9, and the last inequality
is Lemma 7.1.7, applied to S 0 . �is concludes the proof.

7.2. Sherman’s re�ned lemma. We now study the behavior of dimHI.F ;G/
in more detail. We proceed as in Section 5, but for a �xed s -tuple of �ags
F 2 Flag.V0/s . Speci�cally, we consider the following re�nement of the true
dimension (5.1.8) for �xed F :

tdimF I WD min
G

dimHI.F ;G/

�us we study the variety

PF .I/ WD
®
.G; �/ 2 Flag.Q0/s �Hom.V0;Q0/ W � 2 HI.F ;G/

¯
:

Restricting to those G such that dimHI.F ;G/ D tdimF I , we obtain open sets
BF ;t.I/ � Flag.Q0/s and PF ;t.I/ � PF .I/ . Let kdimF .I/ denote the minimal
(and hence generic) dimension of ker� for .G; �/ 2 PF ;t.I/ . �e following lemma
is proved just like Corollary 5.2.6:

Lemma 7.2.1. If kdimF I D 0 then tdimF I D edim I .

Let us now assume that kdimF I > 0 . Let kPosF .I/ denote the kernel position,
de�ned as in De�nition 5.2.8 but for �xed F . We thus obtain an irreducible
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variety PF ;kpt.I/ over a Zariski-open subset BF ;kpt.I/ of BF ;t.I/ . To compute its
dimension, we again de�ne PF ;kp.I/ � PF .I/ , where we �x the kernel dimension
and position, but not the dimension of HI.F ;G/ . In contrast to Lemma 5.2.11,
the variety PF ;kp.I/ is in general neither smooth nor irreducible. However, we
can describe it similarly as before: We �rst constrain S D ker� to be in �0J .F/
(which may not be irreducible), then � is determined by N� 2 Hom�.V0=S;Q0/
and G by Gk 2 Flag0Ik=Jk ..Fk/V0=S ; N�/ . �us we obtain for each irreducible
component C � �0J .F/ a corresponding irreducible component PF ;kp;C .I/ .
In particular, there exists some component CF such that PF ;kp;CF .I/ is the
closure of PF ;kpt.I/ in PF ;kp.I/ , namely the irreducible component containing
the elements S D ker� for .�;G/ varying in the irreducible variety PF ;kpt.I/ .
As a consequence, dimPF ;kpt.I/ D dimPF ;kp;CF .I/ , and so we obtain, using
completely analogous dimension computations, the following re�nement of (5.3.1):

(7.2.2) tdimF I � edim I D dimCF � edim IJ

Indeed, when we apply (7.2.2) to generic F 2 Flag.V0/s then J is intersecting
and dimCF D edimJ , so we recover (5.3.1). We now instead apply the above to
generic F in a component of the zero set Zf of the unique nonzero invariant f .
�us we obtain the following variant of the key recursion relation (5.3.3):

Lemma 7.2.3 (Sherman). Let f; I as above in Section 7.1, and Z � Zf an
irreducible component such that kdimF I ¤ 0 for all F 2 Z . �en there exists
J and a nonempty Zariski-open subset of F 2 Z such that kPosF I D J and

tdimF I � edim I � tdim IJ
� edim IJ :

Proof. We choose d and J as the kernel dimension and position for generic
F 2 Z . We note that d < r , since d D r would imply that HI.F ;G/ D ¹0º , in
contradiction to Lemma 7.1.3. Let U � Z denote the Zariski-open subset such
that kPosF I D J for all F 2 U . We proceed as in Lemma 5.3.2. Let

X WD
®
.F ;G; �/ W F 2 U; .G; �/ 2 PF ;kp;CF .I/

¯
;

Y WD
®
.S; QF ;G/ W S 2 Gr.d; V0/; QF 2 Flag.S/s;G 2 Flag.Q0/s

¯
:

Both X and Y are irreducible varieties and we have a morphism

� W X ! Y; .F ;G; �/ 7! .ker�;Fker� ;G/:

As before, we argue that � is dominant. By construction, the image of X
by the map .F ;G; �/ 7! G contains a Zariski-open subset U 0 of Flag.Q0/s .
We may also assume that Of .G/ ¤ 0 for all G 2 U 0 , where Of is the map
from (7.1.2). We now show that the image of � contains all elements .S; QF ;G/
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with S 2 Gr.d; V0/ , QF 2 Flag.S/s , and G 2 U 0 . For this, let .F0;G; �0/ 2 X
be the preimage of some arbitrary G 2 U 0 . Let S0 WD ker�0 and choose some
g 2 GL.V0/ such that g � S0 D S . Using the corresponding diagonal action,
de�ne F WD g � F0 and � WD g � �0 . �en .F ;G; �/ 2 X , since Z is stable
under the diagonal action of GL.V0/ , and ker� D S . Now consider the group
G � GL.V0/s consisting of all elements Eh 2 GL.V0/s such that hkS � S and
hk acts trivially on V0=S for all k 2 Œs� . Note that G is an irreducible algebraic
group. By construction, � 2 HI.Eh �F ;G/ , while d < r implies that � ¤ 0 . �is
means that HI.Eh �F ;G/ ¤ 0 , and so we obtain from Lemma 7.1.3 that Eh �F 2 Zf .
It follows that, in fact, Eh �F 2 Z , as it is obtained by the action of the irreducible
algebraic group G on F 2 Z , and so stays in the same irreducible component.
For given QF 2 Flag.S/s , we now choose Eh 2 G such that hk � F Sk D QFk for
k 2 Œs� . �en .Eh �F ;G; �/ 2 X is a preimage of .S; QF ;G/ , and we conclude that
� is dominant.

As before, the dominance implies that we can �nd a nonempty Zariski-open
set of .F ;G; �/ 2 X such that dimHIJ .Fker� ;G/ D tdim IJ . We may assume
in addition that ker� 2 CF is a smooth point. For any F in this set, N� injects
HJ .Fker� ;FV0= ker�/ into HIJ .Fker� ;G/ (Lemma 3.2.15). �us,

dimCF D dimTker�CF � HJ .Fker� ;FV0= ker�/ � dimHIJ .Fker� ;G/ D tdim IJ ;

where in the �rst inequality we have used that the intersection �0J .F/ is not
necessarily transversal at S and so the tangent space of the intersection is in
general only a subspace of the intersection of the tangent spaces (3.2.5). In view
of (7.2.2), we obtain the desired inequality.

�eorem 7.2.4 (Belkale). Let c.E�/ D 1 . �en c.N E�/ D 1 for all N > 1 .

Proof. Let f , I as in Section 7.1 and recall that edim I D 0 . Assume for sake
of �nding a contradiction that c.N E�/ ¤ 1 for some N > 0 . �en there exists
another invariant f 0 , as in Section 7.1, such that f 0.F/ ¤ 0 for a nonempty
Zariski-open subset of some irreducible component Z � Zf . If kdimF I D 0

for some F 2 Z then tdimF I D 0 by Lemma 7.2.1. Otherwise, we may apply
Lemma 7.2.3 to the component Z . We �nd that there exists some J and another
Zariski-open subset of F in Z such that kPosF I D J and

(7.2.5) tdimF I � edim I � tdim IJ
� edim IJ :

As a consequence, there exists some F 2 Zf for which all three of the properties
f 0.F/ ¤ 0 , kPosF I D J and (7.2.5) hold true. By Corollary 7.1.8, the �rst two
properties imply that IJ D 0 , and hence the right-hand side of (7.2.5) is equal
to zero by Corollary 5.1.9. �is again implies that tdimF I D 0 .
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It follows that in either case there exist some G such that HI.F ;G/ D ¹0º .
According to Lemma 7.1.3, this can only be if F 62 Zf . But F 2 Zf . �is is the
desired contradiction.

Remark. It likewise holds that c.E�/ D 2 implies that c.N E�/ D N C1 [Ike, She].
However, in general it is not true that c.E�/ D c implies c.N E�/ D O.N c�1/ .
Belkale has a found a counterexample for c D 6 .

A. Horn triples in low dimensions

In this appendix, we list all Horn triples J 2 Horn.d; r; 3/ for d < r � 4 ,
as de�ned in De�nition 2.18, as well as the expected dimensions edimJ . �e
triples with edimJ D 0 are highlighted in bold.

Example A.1 (d D 1 ). As discussed in Example 4.3.12, only the dimension
condition edimJ � 0 is necessary. �e following are the triples in Horn.1; r; 3/
(up to permutations):

r J1 J2 J3 edimJ

2 ¹1º ¹2º ¹2º 0
¹2º ¹2º ¹2º 1

3 ¹1º ¹3º ¹3º 0
¹2º ¹2º ¹3º 0
¹2º ¹3º ¹3º 1

¹3º ¹3º ¹3º 2

4 ¹1º ¹4º ¹4º 0
¹2º ¹3º ¹4º 0
¹2º ¹4º ¹4º 1

¹3º ¹3º ¹3º 0
¹3º ¹3º ¹4º 1

¹3º ¹4º ¹4º 2

¹4º ¹4º ¹4º 3

Example A.2 (d D 2 ). �e dimension condition edimJ � 0 reads�
J1.1/C J1.2/

�
C
�
J2.1/C J2.2/

�
C
�
J3.1/C J3.2/

�
� 4r C 1:

In addition, we have to satisfy three Horn inequalities, corresponding to
K D .¹1º; ¹2º; ¹2º/ and its permutations, which are the only elements in
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Horn.1; 2; 3/ with dimK D 0 . �e resulting Horn inequalities, edimJK � 0 , are

J1.1/C J2.2/C J3.2/ � 2r C 1;

J1.2/C J2.1/C J3.2/ � 2r C 1;

J1.2/C J2.2/C J3.1/ � 2r C 1:

�us we obtain the following triples in Horn.2; r; 3/ (up to permutations):

r J1 J2 J3 edimJ

3 ¹1;2º ¹2;3º ¹2;3º 0
¹1;3º ¹1;3º ¹2;3º 0
¹1; 3º ¹2; 3º ¹2; 3º 1

¹2; 3º ¹2; 3º ¹2; 3º 2

4 ¹1;2º ¹3; 4º ¹3; 4º 0
¹1;3º ¹2; 4º ¹3; 4º 0
¹1; 3º ¹3; 4º ¹3; 4º 1

¹1; 4º ¹1; 4º ¹3; 4º 0
¹1; 4º ¹2; 4º ¹2; 4º 0
¹1; 4º ¹2; 4º ¹3; 4º 1

¹1; 4º ¹3; 4º ¹3; 4º 2

¹2;3º ¹2;3º ¹3; 4º 0
¹2;3º ¹2; 4º ¹2; 4º 0
¹2; 3º ¹2; 4º ¹3; 4º 1

¹2; 3º ¹3; 4º ¹3; 4º 2

¹2; 4º ¹2; 4º ¹2; 4º 1

¹2; 4º ¹2; 4º ¹3; 4º 2

¹2; 4º ¹3; 4º ¹3; 4º 3

¹3; 4º ¹3; 4º ¹3; 4º 4

Example A.3. We �nd the following triples in Horn.3; 4; 3/ (up to permutations):

r J1 J2 J3 edimJ

4 ¹1;2;3º ¹2;3; 4º ¹2;3; 4º 0
¹1;2; 4º ¹1;3; 4º ¹2;3; 4º 0
¹1; 2; 4º ¹2; 3; 4º ¹2; 3; 4º 1

¹1;3; 4º ¹1;3; 4º ¹1;3; 4º 0
¹1; 3; 4º ¹1; 3; 4º ¹2; 3; 4º 1

¹1; 3; 4º ¹2; 3; 4º ¹2; 3; 4º 2

¹2; 3; 4º ¹2; 3; 4º ¹2; 3; 4º 3
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Remark. It is not an accident that both Horn.1; 4; 3/ and Horn.3; 4; 3/ have
the same number of elements. In fact, we can identify Intersecting.d; r; s/ Š
Intersecting.r � d; r; s/ via Jk 7! ¹r C 1 � a W a 2 J

c
k
º . �is can be seen by

using the canonical isomorphism Gr.d;Cr / Š Gr.r � d; .Cr /�/ . However, the
corresponding Horn inequalities are distinct (see below).

B. Kirwan cones in low dimensions

In this appendix, we list necessary and su�cient conditions on highest weights
�;�; � 2 ƒC.r/ such that .L.�/˝ L.�/˝ L.�//U.r/ ¤ ¹0º , up to r D 4 . �at
is, these conditions describe the Kirwan cones as in Corollary 6.3.3. We use the
abbreviation Horn0.d; r; s/ for the set of Horn triples in J 2 Horn.d; r; s/ such
that edimJ D 0 (highlighted bold in Appendix A).

Example B.1 (r D 1 ). Clearly, the only condition is �.1/C �.1/C �.1/ D 0 .

Example B.2 (r D 2 ). We always have the Weyl chamber inequalities �.1/ �
�.2/ , �.1/ � �.2/ , and �.1/ � �.2/ , and the equation�

�.1/C �.2/
�
C
�
�.1/C �.2/

�
C
�
�.1/C �.2/

�
D 0:

Using Example A.1, we obtain three Horn inequalities, namely

�.1/C �.2/C �.2/ � 0;

corresponding to the triple .¹1º; ¹2º; ¹2º/ 2 Horn0.d; r; s/ , and its permutations.
�ese are the well-known conditions for the existence of nonzero invariants in
a triple tensor product of irreducible U.2/ -representations. We remark that the
Weyl chamber inequalities are redundant.

Example B.3 (r D 3 ). In addition to the Weyl chamber inequalities and
j�j C j�j C j�j D 0 , we obtain the following two inequalities from Horn0.1; 3; 3/
and Example A.1,

�.1/C �.3/C �.3/ � 0;

�.2/C �.2/C �.3/ � 0;

and the following from Horn0.2; 3; 3/ and Example A.2,�
�.1/C �.2/

�
C
�
�.2/C �.3/

�
C
�
�.2/C �.3/

�
� 0;�

�.1/C �.3/
�
C
�
�.1/C �.3/

�
C
�
�.2/C �.3/

�
� 0;

as well as their permutations.
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Example B.4 (r D 4 ). Again we have the Weyl chamber inequalities and
j�jC j�jC j�j D 0 . We have the following two inequalities and their permutations
from Horn0.1; 4; 3/ and Example A.1,

�.1/C �.4/C �.4/ � 0;

�.2/C �.3/C �.4/ � 0;

�.3/C �.3/C �.3/ � 0;

the following six and their permutations from Horn0.2; 4; 3/ and Example A.2,�
�.1/C �.2/

�
C
�
�.3/C �.4/

�
C
�
�.3/C �.4/

�
� 0;�

�.1/C �.3/
�
C
�
�.2/C �.4/

�
C
�
�.3/C �.4/

�
� 0;�

�.1/C �.4/
�
C
�
�.1/C �.4/

�
C
�
�.3/C �.4/

�
� 0;�

�.1/C �.4/
�
C
�
�.2/C �.4/

�
C
�
�.2/C �.4/

�
� 0;�

�.2/C �.3/
�
C
�
�.2/C �.3/

�
C
�
�.3/C �.4/

�
� 0;�

�.2/C �.3/
�
C
�
�.2/C �.4/

�
C
�
�.2/C �.4/

�
� 0;

and the following three and their permutations from Horn0.3; 4; 3/ and Exam-
ple A.3,�

�.1/C �.2/C �.3/
�
C
�
�.2/C �.3/C �.4/

�
C
�
�.2/C �.3/C �.4/

�
� 0;�

�.1/C �.2/C �.4/
�
C
�
�.1/C �.3/C �.4/

�
C
�
�.2/C �.3/C �.4/

�
� 0;�

�.1/C �.3/C �.4/
�
C
�
�.1/C �.3/C �.4/

�
C
�
�.1/C �.3/C �.4/

�
� 0:

Remark. In low dimensions, all Horn triples with edimJ D 0 are such that the
intersection is one point, i.e., c.I/ D cint.I/ D 1 . �is implies that the equations
are irredundant [Bel3, Res1] (cf. Remark 6.3.4), and it can also be explicitly
checked in the examples above. In general, however, this is not the case, and so
the Horn inequalities are still redundant. An example of such a Horn triple is the
one given in Example 4.2.1.
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