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ŒQ; R� D 0 and Kostant partition functions

András Szenes and Michèle Vergne

Abstract. On a polarized compact symplectic manifold endowed with an action of a
compact Lie group, in analogy with geometric invariant theory, one can de�ne the space of
invariant functions of degree k. A central statement in symplectic geometry, the quantization
commutes with reduction hypothesis, is equivalent to saying that the dimension of these
invariant functions depends polynomially on k. �is statement was proved by Meinrenken and
Sjamaar under positivity conditions. In this paper, we give a new proof of this polynomiality
property based on a study of the Atiyah–Bott �xed point formula from the point of view
of the theory of partition functions, and a technique for localizing positivity.
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1. Introduction

1.1. Quantization and multiplicities. Let M be a compact almost complex
manifold. �e complex structure J 2 �.End.TM// then induces the splitting
TM ˝ C D TJM ˚ NTJM , where TJM is the complex vector bundle of Ci -
eigenspaces, while NTJM is the bundle of �i -eigenspaces of J acting on TM˝C .
When M is a complex manifold endowed with an Hermitian metric, then TJM
may be identi�ed with the complex tangent bundle, while NTJM with the complex
cotangent bundle of M .

To every complex vector bundle E !M over M one can associate an integer
as follows (see (2) below). Set the notation ��J .M; E/ D �.^

�. NTJM/� ˝ E/ for
the anti-holomorphic di�erential forms with values in E , and consider the twisted
Dolbeault-Dirac operator [BGV]

DE W �
even
J .M; E/! �odd

J .M; E/;

which is a �rst-order elliptic di�erential operator on M . We can associate to this
operator the Z2 -graded vector space

(1) Q.M; E/ D Ker.DE/˚ Coker.DE/;

where Ker.DE/ is placed in the even part, while Coker.DE/ in the odd part of
Q.M; E/ .

Remark 1. �ought of as the formal di�erence of Ker.DE/ and Coker.DE/ one
can think of Q.M; E/ as the virtual space of solutions of the corresponding
di�erential equations.

�e (super)-dimension of this Z2 -graded vector space is de�ned to be the
integer

(2) dimQ.M; E/ D dimKer.DE/ � dimCoker.DE/:

�is number may be computed by the Atiyah-Segal-Singer index formula:

(3) dimQ.M; E/ D
Z
M

ch.E/Todd.TJM/I
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here ch.E/ is the Chern character of E and Todd.TJM/ is the Todd class of
M .

Now assume that a compact, connected Lie group G acts compatibly on the
manifold M and the bundle E , and preserves the almost complex structure
J . �en Q.M; E/ becomes a Z2 -graded representation of G , and we still
denote by Q.M; E/ the corresponding element Ker.DE/ � Coker.DE/ of the
Grothendieck ring R.G/ of virtual representations of G . We will be interested
in the decomposition of this virtual representation into irreducible components.

To make this more explicit, we introduce the following notation for the Lie
data:
� Denote by T the maximal torus of G , and
� by g and t the Lie algebras of G and T , respectively;
� we will identify t� with the T -invariant subspace of g� under the coadjoint
action.
� Let ƒ stand for the weight lattice of T thought of as a subspace of t� .
� We will use the notation e� for the character T ! C� corresponding to
� 2 ƒ , and write t� for the value of this character on t 2 T . �us we have
e�.t/ D t

� for t 2 T , and also t� D eih�;Xi if X 2 t and t D exp.X/ .
� Denote the set of roots of G by R , and choose a splitting of R into a
positive and a negative part: R D RC[R� . Let gC D tC˚ nC˚ n� be the
corresponding triangular decomposition of the complexi�cation of the Lie
algebra g of G .
� Write dt for the Haar measure on T satisfying

R
T
dt D 1 .

Further, we introduce the following notation:
� for X 2 g , we denote by VX the vector �eld

VX WM ! TM; VX W q 7!
d

dt
e�tXqjtD0

on M induced by the G -action;
� we de�ne the character �E W T ! C via

�E.t/ D Tr t jKer.DE/ � Tr t jCoker.DE/:

Atiyah–Bott–Segal–Singer [AB1, AB2, AS] gave a formula for �E.t/ in terms of
the connected components of the set of �xed points of the action of t on M .
�e Fourier transform F�E W ƒ! Z of �E is a function with �nite support; its
value

F�E.�/ D

Z
T

t�� �E.t/ dt
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is an integer, called the multiplicity of the weight � in �E . Using the �xed
point formula, one can express F�E.�/ in terms of partition functions. �e �rst
example of such an expression was Kostant’s formula for the multiplicity of a
weight in a �nite-dimensional representation of a compact Lie group in terms of
the number of ways a weight can be expressed as a sum of positive roots.

Our focus will be the calculation of the dimension of the G -invariant part
Q.M; E/G of Q.M; E/ , obtained by taking G -invariants on the right hand side
of (1). �us we have

dimQ.M; E/G D dimKer.DE/
G
� dimCoker.DE/

G :

According to the Weyl character formula, this integer may be expressed via the
multiplicities using the formula

(4) dimQ.M; E/G D
Z
T

Y
˛2R�

.1 � t˛/ �E.t/ dt:

A key tool of our approach is a formula of Paradan [Par1], expressing �E.t/ as
a sum of characters of in�nite dimensional virtual representations of T associated
to a collection of subtori of T (cf. Proposition 41). We will give a direct proof of
this result, deriving it from the Atiyah–Bott–Segal–Singer localization formula.

Let us demonstrate Paradan’s formula for �E.t/ in the simplest example: that
of the complex projective line.

Example 2. Let M D P1.C/ be endowed with the action of the group
G D SU.2/ . Let L be the dual of the tautological bundle, and let E D Lk

for some k 2 Z . �e maximal torus T of the group G corresponds to the set
of diagonal matrices in SU.2/ . �e action of t 2 T on P 1.C/ is given by
t � .x W y/ D .tx W t�1y/ . �e Atiyah–Bott formula reads as

(5) �Lk .t/ D
tk

1 � t�2
C

t�k

1 � t2
:

�en

�Lk .t/ D

8̂̂<̂
:̂
Pk
jD0 t

k�2j ; if 0 � k;
0; if k D �1;
�
P�k�2
jD0 t�k�2�2j ; if k < 0:

�e dimension of the virtual representation Q.M;Lk/ is equal to �Lk .1/ , which
is equal to k C 1 in our case.

Expanding .1 � t2/�1 as the geometric series
P1
jD0 t

2j , we obtain

(6) �Lk .t/ D

1X
jD0

t�kC2j �

1X
jD1

tkC2j :
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Using the identity
P1
jD0 t

2j D
P1
jD�1 t

2j �
P�1
jD�1 t

2j ; we obtain Paradan’s
symmetric expression for �Lk .t/ , which is the sum of three formal characters

(7) �Lk .t/ D t
k

1X
jD�1

t2j �

1X
jD1

t�k�2j �

1X
jD1

tkC2j :

�e character tk
P1
jD�1 t

2j depends on kmod 2 only; it de�nes a generalized
function on T supported at t D ˙1 , and hence it is “invisible” at any t ¤ ˙1 .

1.2. Quantization of symplectic manifolds. Consider an equivariant line bundle
L over M , endowed with a G -invariant Hermitian structure and an Hermitian
connection r . �en the curvature r2 will be of the form �i� , where � is
a closed real 2-form on M . �e G -invariant connection r determines a G -
equivariant map �G WM ! g� , called the moment map:

(8) ih�G ; Xi D LX � rVX ;

where LX is the Lie derivative acting on the sections of L . Observe that if
p 2 M is a �xed point of the T -action, then �G.p/ is in t� � g� , moreover,
�G.p/ is exactly the T -weight of the �ber Lp . Di�erentiating (8), we obtain the
key identity

(9) hd�G ; Xi C�.VX; �/ D 0:

�e goal of this article is to give new proofs of certain polynomiality properties
of the function k 7! dimQ.M;Lk/G .

First, consider the case where G D T is abelian. In this case, we will write
� WM ! t� for the moment map, omitting the index T . Our �rst result concerns
the case of large k .

�eorem 3. Let Eeven and Eodd be T -equivariant vector bundles over the almost
complex manifold M . Let L be an equivariant line bundle with associated
moment map � WM ! t� . Suppose that Eeven and Eodd restricted to ��1.0/ are
isomorphic as T -equivariant vector bundles. �en, for k large, the multiplicities
F�Eeven˝Lk .0/ and F�Eodd˝Lk .0/ are equal.

We give a proof of this theorem in §6, following Meinrenken, based on the
stationary phase principle applied to the integral formula of [BV2] for �E˝Lk .

Now we turn to the case of a general compact connected G . We will need
to weaken the notion of polynomiality as follows.

De�nition 4. Let „ be a lattice, i.e., a free Z -module of �nite rank. A function
P W „ ! C is quasi-polynomial if for some sublattice „0 � „ of �nite index
and every � 2 „ , the function P restricted to �C„0 is polynomial.
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In particular, a function P W Z! C is quasi-polynomial if, for some nonzero
d 2 Z , the function l 7! P.ld C r/ is polynomial for every r 2 Z .

Remark 5. Informally, we will say that P is polynomial/quasi-polynomial on
a subset S � „ if P restricted to S coincides with the restriction of a
polynomial/quasi-polynomial to S . Naturally, this is meaningful only if S is
su�ciently “large” for example, contains a translated cone of maximal rank.

Example 6. We return to Example 2. We compiled the relevant data in the
following table:

k . . . �4 �3 �2 �1 0 1 2 3 . . .
dimQ.M;Lk/ . . . �3 �2 �1 0 1 2 3 4 . . .
dimQ.M;Lk/T . . . �1 0 �1 0 1 0 1 0 . . .
dimQ.M;Lk/SU.2/ . . . 0 0 �1 0 1 0 0 0 . . .

�us we see that

� dimQ.M;Lk/ D k C 1 ; it is thus a polynomial for all k 2 Z .

� dimQ.M;Lk/T D

8̂̂<̂
:̂
1; if 0 � k is even;
�1; if 0 > k is even;
0; if k is odd:

In particular, this is a quasi-polynomial for all k � 0 .

� dimQ.M;Lk/SU.2/ is, however, only quasi-polynomial for k � 1 , and
dimQ.M; .L�1/k/SU.2/ is not quasi-polynomial for k � 1 .

�is last example shows, that, in general, dimQ.M;Lk/G is not quasi-
polynomial for small k . To obtain a stronger statement, we introduce a key
condition on L .

De�nition 7. Given an almost complex manifold .M; J / , we say that a line
bundle L over M is positive if for an Hermitian structure on L , and a compatible
connection r , the corresponding curvature �i� satis�es

(10) �q.V; JV / > 0 for all 0 ¤ V 2 TqM

at every point q 2M .

Remark 8. Note that in this case, � is a symplectic form on M .
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One can arrive at the same setup starting at the other end: let .M;�/ be a
symplectic manifold endowed with a line bundle L , whose curvature is �i� . Such
an object is called a prequantizable symplectic manifold endowed with a Kostant
line bundle [Kos]. In this case, one can choose a unique (up to homotopy) almost
complex structure J such that the quadratic form V 7! �q.V; JV / is positive
de�nite at each point q 2 M , and thus one arrives at the situation described
in De�nition 7. In addition, if such a Kostant line bundle L is endowed with
a G -action and a G -invariant connection, then the virtual representation space
Q.M;L/ does not depend on the choice of such a (positive) G -invariant almost
complex structure J .

Now we are ready to formulate the statement for which we give a new proof
in this article. (As we explain below, this theorem may be obtained as a corollary
of results of [MS].)

�eorem 9. Let .M; J / be a compact, connected, almost complex manifold
endowed with the action of a connected compact Lie group G , and let L be a
positive G -equivariant line bundle on M . Assume that the set of �xed points
under the action of the maximal torus T of G on M is �nite. �en

� the integer function
k ! dimQ.M;Lk/G

is quasi-polynomial for k � 1 , and

� this quasi-polynomial is identically zero if 0 … �G.M/ .

Remark 10. Note that the condition of the �niteness of the T -�xed point set is
not necessary. We chose to impose this condition solely to simplify the discussion.
To prove the theorem in the case of non-isolated �xed points, one needs to use the
equivariant index formula of Atiyah–Segal–Singer [AS], instead of the Atiyah–Bott
�xed point formula [AB1].

1.3. �e ideas of the proof. At �rst sight, the strategy seems to be clear.
�e Atiyah–Bott formula gives an explicit formula for �Lk as a sum of
rational functions (cf. (11)). Choosing a generic direction in t , we can expand
these rational functions into convergent series, obtaining a formula of the form
�Lk D

P
p2F ek�p�p , where �p is a formal character, whose coe�cients are

given by a partition function, and �p is the weight of Lp (cf. (6)). To obtain
a formula for dimQ.M;Lk/G when G is a torus group, one simply needs to
evaluate the constant term of this expansion. �is leads to a formula of the form

dimQ.M;Lk/G D
X
p2F

F�p.�k�p/;
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where F�p.�/ stands for the multiplicity of e� in �p . �e contribution of each
�xed point to this constant term is a polynomial in k , and thus, in this case, the
proof of polynomiality is straightforward.

When G is a general connected compact group, then we need to use (4), and
we obtain a formula of the form

dimQ.M;Lk/G D
X
p2F

X
J�R�

.�1/jJ jF�p
�
�

X
˛2J

˛ � k�p

�
:

Here, because of the shifts by sums of negative roots, the individual terms are
no longer polynomial for small values of k , and polynomiality is the result of a
complicated web of cancelations.

�e novel idea of Paradan, which goes back to the seminal paper of Witten
[Wit], is to use a certain combinatorial expansion of the rational functions from the
Atiyah–Bott �xed point formula, which has terms expanded in di�erent directions,
always away from the origin (cf. (7)). After resummation, one obtains a formula
(Proposition 40), whose terms are parametrized by �xed point sets of subtori of the
maximal torus T � G . Finally, we show that the polynomiality of dimQ.M;Lk/G
hinges on a geometric statement about the weights of the action of these subtori
on the tangent space of M (Proposition 50).

1.4. Comments on ŒQ; R� D 0 and polynomiality. Quantization commutes with
reduction (or ŒQ;R� D 0 for short) is the principle that, in some cases, the virtual
space Q.M; E ˝Lk/G may be identi�ed with the virtual space of solutions of a
Dirac operator associated to a vector bundle of the form E0˝Lk0 on the so-called
reduced space ��1G .0/=G .

If this latter space is smooth, then, combining this principle with the Atiyah–
Singer formula (3) applied to E0˝Lk0 , we can conclude that dimQ.M; E˝Lk/G

depends polynomially on k . �e focus of the present article, the polynomiality
of this dimension function (mostly in the case when E is trivial), is thus a key
manifestation of the ŒQ;R� D 0 principle.

�e idea of ŒQ;R� D 0 was introduced in [GS] (cf. [Sja] and [Ver2] for more
details and references) in the form of a precise conjecture. �e idea came from
considering the case when M is a complex projective G -manifold, L is the
ample bundle and E is trivial. �en the G -action on M may be extended to a
holomorphic action GC �M ! M of the complexi�cation of the compact Lie
group G , and ŒQ;R� D 0 follows from the fact that (cf. [MFK]) the orbit of the
set ��1G .0/ under this complexi�ed action of GC is dense in M if this orbit is
nonempty.

If 0 is a regular value of �G , then the reduced space ��1G .0/=G is a symplectic
orbifold equipped with a Kostant line bundle L0 . Guillemin–Sternberg formulated
the conjecture that Q.M;L/G may be identi�ed with Q.��1G .0/=G;L0/ .
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Meinrenken, in his �rst approach to the Guillemin–Sternberg conjecture [Mei1],
determined the asymptotic behavior of dimQ.M;Lk/G for large k under the
assumption that 0 is a regular value of �G . By a “stationary phase" argument (that
we borrowed in part for our proof of �eorem 3), he showed that dimQ.M;Lk/G
is indeed equal to dimQ.��1G .0/=G;Lk0/ for k su�ciently large, and that the
equality holds for all k � 0 if G is abelian. He later showed polynomiality for
k � 1 for general compact groups in [Mei2]. �ere is also an analytic proof in
this case by Tian and Zhang [TZ].

Meinrenken–Sjamaar in [MS] formulated the Guillemin–Sternberg conjecture
for the case when 0 is not necessarily a regular value of the moment map, and,
using techniques of symplectic cutting, proved this more general statement. Later,
Paradan [Par1] a proof of this generalized Guillemin–Sternberg conjecture using
transversally elliptic operators. �eorem 9 is a consequence of these results.

In the present paper, we prove that dimQ.M;Lk/G is quasi-polynomial in
k for k � 1 directly, and without making the assumption that 0 is a regular
value of the moment map. Our main purpose is to show that this result may be
obtained from the Atiyah–Bott �xed point formula for �Lk , using �eorem 3 as
the only analytic input. �e ideas underlying our paper originated in the works
of Paradan [Par1, Par2].

1.5. Contents of the paper. �e paper is structured as follows: in §2 we study
the calculus of expansions of the rational sum expression given for �E˝Lk by
the Atiyah–Bott �xed point formula. �e main result is Corollary 15, which
gives the answer in terms of partition functions. We then proceed to introduce a
quasi-polynomial character ��ŒE ; a� , which encodes the asymptotic behavior of
this expansion. We begin §3 by Paradan’s combinatorial formula decomposing a
partition function in terms of convolution products of partitions functions in lower
dimensions. �en we apply this formula to our geometric setup (Proposition 41),
which results in a decomposition of �E in terms of certain formal characters,
which are enumerated by �xed-point sets of subtori of T . �is combinatorial
decomposition is the K -theoretical analogue of the strati�cation of the manifold
M via the Morse function k�k2 used by Witten [Wit] to compute intersection
numbers on reduced spaces.

We �nish the proof of �eorem 9 in §5 by studying the terms of this expansion.
We quickly reduce the �nal result to a numerical statement regarding the weights
of the T -action at �xed point sets of subtori. �is statement is then proved via a
“localization of positivity” result: Proposition 50. Finally, we give a quick proof
of �eorem 3 in §6. A list of notations given in §7 helps the reader to navigate
through the paper.
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2. Fixed point formula and a formal character

As in the previous section, let us begin with a connected, compact, almost
complex T -manifold M , and a pair .E ;L/ , consisting of a complex equivariant
vector bundle and a line bundle on M . We assume again that the T -�xed points
are isolated.

In this section, we embark on the study of the sequence of characters �E˝Lk ,
k D 0; 1; : : :

2.1. �e �xed point formula. Our starting point is the Atiyah–Bott �xed point
formula [AB1], which expresses �E as a sum of contributions associated to the
�xed points of the T -action on M .

Before we proceed, we need to introduce notation and terminology for sets
with multiplicities, which we will call lists. A list ˆ thus consists of a set
¹ˆº , and a multiplicity function mˆ W ¹ˆº ! Z>0 . We will use the notation
Œ�1; �2; : : : ; �N � for the list of elements �1; : : : We will also write
�  2 ˆ if  2 ¹ˆº ;
� if  2 ˆ and mˆ. / > 1 , then ˆ � ¹ º will denote the list ˆ with the
multiplicity of  decreased by 1; if mˆ. / D 1 , then ˆ� ¹ º will denote
the list ˆ with  removed;
� for a list ˆ and a set S , we will write ˆ \ S for the list with underlying
set ¹ˆº \S and multiplicity function coinciding with that of ˆ on this set;
we will write ˆ nS for the list with underlying set ¹ˆº nS and multiplicity
function coinciding with that of ˆ on this set;

Now, denote by F the �nite set of �xed points of the T -action on M . For each
�xed point p 2 F , the weights of the T -action on the �ber Ep form a list, which
we will denote by ‰p . Let ch.Ep/ be the function T ! C obtained by taking the
trace of the T -action on the �ber Ep . �us we have ch.Ep/ D

P
�2‰p

e� . Similarly,
we denote by p̂ the list of T -weights of the complex vector space NTJpM .

With these preparations we can state the Atiyah–Bott �xed point formula for
our case:

(11) �E D
X
p2F

ch.Ep/Q
�2ˆp

.1 � e�/
:

�is is an equality between two functions de�ned on an open and dense subset
of T . Indeed, the right hand side is meaningful on the set

¹t 2 T j t� ¤ 1 8p 2 F and � 2 p̂º;

while the left hand side is regular on T .
Let us see two examples. First, we return to our Example 2.
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Example 11. Let M D P 1.C/ with the action of U.1/ given by t � .x W y/ D .tx W
t�1y/ , and let E D Lk be the k th tensor power of the dual of the tautological
line bundle L . �ere are 2 �xed points pC D .1 W 0/ and p� D .0 W 1/ , and we
have

�Lk .t/ D
tk

.1 � t�2/
C

t�k

.1 � t2/
:

�e graph of the function F�Lk is pictured below for k D 4 .

�4 �3 �2 �1 0 1 2 3 4

1

Example 12. Let M be the �ag variety of C3 endowed with the action of the
group U.3/ . �e subgroup D D ¹.t1; t2; t3/I t1; t2; t3 2 U.1/º � U.3/ of diagonal
matrices is the maximal torus of U.3/ , and the weight lattice of D has a canonical
diagonal decomposition: Z�1 C Z�2 C Z�3 . �e coordinate �ag

®
Ce1 � Ce1 ˚Ce2 � Ce1 ˚Ce2 ˚Ce3

¯
is �xed under D , and the rest of the �xed points in MD may be obtained
by applying to this �ag the elements of the permutation group †3 in a natural
manner. We will use the notation w 2 †3 7! pw 2M

D for this correspondence;
in particular, the coordinate �ag will be denoted by p123 .

Consider the line bundle L induced from the character t41 t�12 t�33 of D . �en

�Lk .t1; t2; t3/ D
X
w2†3

w �
t4k1 t�k2 t�3k3

.1 � t2=t1/.1 � t3=t2/.1 � t3=t1/
;

where, again, w� stands for the natural action of †3 on the indices.
In what follows, we consider �Lk as a character of the adjoint group G of

U.3/ . Let T be the maximal torus of G , with Lie algebra t . �en t� has basis
the simple roots ˛ D �1 � �2 and ˇ D �2 � �3 and the weight lattice ƒ of T is
Z˛CZˇ: �e weight �123 of the bundle L at p123 is 4˛C3ˇ: �e multiplicity
function F�L on ƒ then may be represented as follows.
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D 3

D 2

D 1

�123

˛ˇ

2.2. �e partition function. Recall that �E is determined by its Fourier
coe�cients F�E W ƒ ! Z , and that this latter function has �nite support in
ƒ . Our immediate goal is to convert the equality (11) into an equality of two
functions in the Fourier dual space of Z -valued functions on ƒ . For this task,
we follow the same method as [GLS], [GP].

In this paragraph, we make the additional assumption that the generic stabilizer
of the T -action on M is �nite; this is equivalent to the condition that p̂ spans
t� for all p 2 F .

Before we proceed, we need to introduce a few basic notions.

� We denote by R.T / the set of �nite integral linear combinations of the
characters e�; � 2 ƒ , and

� by OR.T / the space of formal, possibly in�nite, integral linear combinations of
these characters. �us the elements of OR.T / are in one-to-one correspondence
with the functions m.�/ W ƒ! Z via � WD

P
�2ƒm.�/e� 2

OR.T / . We will
write F� for the function m in this case. Conversely, given a function m ,
we will call the corresponding series � its character. If we extend the weights
� 2 ƒ to linear functions on tC , then we can also think of the elements of
OR.T / as formal series of holomorphic exponential functions on tC .

� Informally, we will call ı 2 OR.T / a quasi-polynomial character if its Fourier
transform Fı W ƒ! Z is quasi-polynomial (cf. De�nition 4).

We collect some simple observations needed later.
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Lemma 13. (1) OR.T / is a module over R.T / , and the set of quasi-polynomial
characters forms a linear subspace in OR.T / which is stable under multipli-
cation by R.T / .

(2) Elements of OR.T / whose Fourier transforms are supported on a �xed acute
cone in ƒ may be multiplied, thus they form a ring.

(3) For ‚ 2 OR.T / and �;� 2 ƒ , we have F.e�‚/.�/ D F‚.� � �/ .
(4) If a quasi-polynomial function f on ƒ vanishes at all points of a set Q\ƒ ,

where Q is a non-empty open cone, then f D 0 .

�e proofs are straightforward and will be omitted. With these preparations,
we are ready to introduce the basic building block of our constructions. For a
list of weights ˆ , we will need to represent the function

Q
�2ˆ.1� e�/

�1 by an
element of OR.T / . To this end, we can expand each factor of the form .1� e�/

�1

as a geometric series, but this product is only meaningful in the ring OR.T / if ˆ
lies in an acute cone. To remedy this problem, we will reverse the signs of some
of the vectors in ˆ , which, in turn, necessitates the introduction of the notion of
polarization.

Let ˆ be a list of nonzero elements of ƒ . We will call Y 2 t polarizing for
ˆ if h�; Y i ¤ 0 for every � 2 ˆ . For nonempty ˆ and polarizing Y , split ˆ
in ˆ D ˆC [ˆ� , where

ˆC D
®
� 2 ˆ j h�; Y i > 0

¯
and Phi� D

®
� 2 ˆ j h�; Y i < 0

¯
;

and introduce the formal character

(12) ‚Œˆ"Y � D .�1/jˆ�j
Y
�2ˆ�

e�� �
Y
�2ˆ�

� 1X
kD0

e�k�

�
�

Y
�2ˆC

� 1X
kD0

ek�

�
:

It is easy to verify that the products in this formula are meaningful, and hence
the series ‚Œˆ"Y � de�nes an element of OR.T / . We also set ‚Œ¿"Y � D 1 for
any Y 2 t .

�e notation ‚Œˆ"Y � represents the fact that we have reoriented the elements
of ˆ using Y . Note, however, that ‚Œˆ"Y � coincides with ‚ŒˆY � , where ˆY
is the reoriented list, up to a sign and a shift only. �ese are motivated by the
following

Lemma 14. (1) F‚Œˆ"Y � is supported on the pointed cone generated in t� by
the set ˆC [ .�ˆ�/ , in particular, apart from the origin, on the half-space
¹Y > 0º .

(2) As a formal character, ‚Œˆ"Y � 2 OR.T / satis�es

‚Œˆ"Y � �
Y
�2ˆ

.1 � e�/ D 1:
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(3) Considered as a series of holomorphic functions on the complexi�cation TC

of the torus group T , the series (12) converges absolutely, in a neighborhood
of the point exp.iY / 2 TC , to the function

Q
�2ˆ.1 � e�/

�1:

�e proofs are straightforward and are left to the reader. Using these facts,
we can rewrite (11) as follows.

Corollary 15 ([GLS, GP]). For a vector Y , which is polarizing for the union
[p2F p̂ of the lists p̂ , the following equality holds in OR.T / :

(13) �E D
X
p2F

ch.Ep/ �‚Œ p̂ "Y �:

Indeed, multiplying the right hand side of (11) and (13) byY
p2F

Y
�2ˆp

.1 � e�/;

we obtain the same result. On the other hand, it is easy to see that the operation
of multiplication by this product is injective on the subspace of elements of OR.T /
which are supported on a half-space bounded by a hyperplane orthogonal to Y .

Remark 16. �e function F‚Œˆ " Y � W ƒ ! Z , traditionally, has been called
the partition function, since, assuming ˆ D ˆC , its value at � equals the
number of ways one can write � as a nonnegative integral linear combinations
of vectors from ˆ . In particular, the equality (13) applied to Weyl’s formula for
the characters leads to Kostant’s formula for the multiplicity of a weight in an
irreducible representation of a reductive Lie group.

A key fact is that the Fourier transform F‚Œˆ"Y � , as a function on ƒ , is
piecewise quasi-polynomial. Let us describe this in more detail:

De�nition 17. Given a list ˆ spanning t� , we will call an element 
 2 t�

ˆ -regular if it is not the linear combination of fewer than dim.t/ elements of ˆ .

�e set of ˆ -regular elements form the complement of a hyperplane arrange-
ment in t� , and we will use the term ˆ -tope for the connected components of
this set.1 It will be convenient to use the notation T .
/ for the tope containing
the ˆ -regular element 
 . Note that topes are open convex cones, which are
invariant under rescaling.

1We use the word tope, as our de�nition is similar to the notion of tope in matroid theory.
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Lemma 18 ([DM], see also [CPV]). Let ˆ be a list of nonzero vectors spanning
t� , let Y be a polarizing vector for ˆ , choose a ˆ -tope T . �en there
exists a unique quasi-polynomial character ıŒˆ"Y; T � , whose Fourier transform
FıŒˆ"Y; T � coincides with F‚Œˆ"Y � on ƒ \ T .

Remark 19. �is lemma may be naturally extended to the situation when ˆ does
not span t� . In this case, denoting the smallest linear subspace of t� containing
ˆ by span.ˆ/ , the tope T is in span.ˆ/ , and ıŒˆ"Y; T � is a function supported
on span.ˆ/ , whose restriction to span.ˆ/ is quasipolynomial. �e degree of the
quasi-polynomial FıŒˆ"Y; T � is equal to jˆj � dim span.ˆ/ .

Example 20. Let t� D R˛; ƒ D Z˛ , ˆ D Œ˛� and let Y 2 t to be the vector
satisfying h˛; Y i D 1 . �en

‚Œˆ"Y � D

1X
kD0

ek˛:

�en T C WD ¹t˛; t > 0º , T � WD ¹t˛; t < 0º are topes. �e function F‚Œˆ"Y �
coincides with the constant function 1 on Z˛ \ T C and with 0 on Z˛ \ T � .
�e character ı D

P
k2Z ek˛ is quasi-polynomial as the multiplicity Fı is the

constant function 1 on Z˛ . �us

ıŒˆ"Y; T C� D
X
k2Z

ek˛; while ıŒˆ"Y; T �� D 0:

2.3. �e asymptotics of the character. We return to our geometric setup. We
continue to assume that the torus T acts on the compact almost complex manifold
M with a �nite set of �xed points. We consider a Hermitian T -equivariant line
bundle L , a complex equivariant vector bundle E , and we would like to study
the character �E˝Lk .

As a �rst step, we take a closer look at �L . We choose an equivariant Hermitian
connection on L . Recall from §1 that �.p/ , the value of the associated moment
map � W M ! t� at a �xed point p 2 F , is the weight of the T -action on the
�ber Lp . �us, in this instance, formula (13) may be written in the form

(14) �L D
X
p2F

e�.p/‚Œ p̂ "Y �;

and hence

(15) F�L.�/ D
X
p2F

F‚Œ p̂ "Y �
�
� � �.p/

�
:

Now assume that the generic stabilizer of the action of T on M is �nite, or,
equivalently, that p̂ spans t� for all p 2 F . �en the moment map � gives
rise to a real a�ne hyperplane arrangement whose complement is the open set
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(16)
\
p2F

®

 2 t�j 
 � �.p/ is p̂-regular

¯
� t�:

We will use the term alcove for the connected components of the set (16). �e
alcoves are thus minimal nonempty intersections of the translated polyhedral cones
T C �.p/ , where p 2 F , and T is a tope of p̂ . Just as in the case of topes,
we will use the notation a.C / for the alcove containing the connected subset C
of the set (16).

Remark 21 ([Ati2, GS]). If L is a positive line bundle (cf. De�nition 7), then
�.M/ is the convex hull of the set of points ¹�.p/I p 2 F º , and the set (16) is
contained in the set of regular values of � .

Next, we de�ne a quasi-polynomial character ��ŒE ; a� by formally replacing
the generating function for the partition function ‚Œ p̂ " Y � in (13) by an
appropriately chosen quasi-polynomial ıŒ p̂ "Y; T � (cf. Lemma 18).

De�nition 22. Given a T -equivariant vector bundle E over M , and an alcove
a � t� , we de�ne the formal character

(17) ��ŒE ; a� D
X
p2F

ch.Ep/ � ı
�
p̂ "Y; T

�
a � �.p/

��
;

where ch.Ep/ , as usual, stands for the sum of T -weights of the �ber Ep .

Remark 23. Note that we omitted the dependence on Y in the notation (cf.
Corollary 29).

�e meaning of this object will become clear after Proposition 28. Note that
since ��ŒE ; a� is a linear combination of quasi-polynomial characters, it is itself
quasi-polynomial.

We �rst consider the case E D L .

Lemma 24. �e quasi-polynomial F��ŒL; a� coincides with F�L at all points
of a \ƒ .

Proof. Indeed, since ch.Lp/ D �.p/ , we have

F��ŒL; a�.�/ D
X
p2F

Fı
�
p̂ "Y; T

�
a � �.p/

���
� � �.p/

�
:

On the other hand, by the de�nition of ıŒˆ"Y; T � , if � belongs to the alcove
a , then

Fı
�
p̂ "Y; T

�
a � �.p/

���
� � �.p/

�
D F‚Œ p̂ "Y �

�
� � �.p/

�
:

Now (15) immediately implies the statement of the Lemma.
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Remark 25. �e �nite set a \ ƒ may be small, even empty, hence we
cannot necessarily determine ��ŒL; a� by restricting the quasi-polynomial function
F��ŒL; a� to this set.

Example 26. We return to Example 12, with � associated to the line bundle
L . �e diagram depicts the dual of the Lie algebra of the maximal torus of the
adjoint group of U.3/ . �e straight lines cut the plane into alcoves. �e support
of the multiplicity function F�L is the highlighted hexagon, and the function is
invariant under the symmetries of this hexagon.

a0

a1 a2

�123

For this example, the quasi-polynomials are polynomials, and can be guessed
by “interpolation” from the picture of F�L given in Example 12. We have

F��ŒL; a0�.n1˛ C n2ˇ/ D 3;
F��ŒL; a1�.n1˛ C n2ˇ/ D 4 � n2;
F��ŒL; a2�.n1˛ C n2ˇ/ D 5 � n1:

Now we conider the behavior of the formal character (17) for the sequence
of bundles E ˝ Lk , k 2 Z .

Lemma 27. �e function .�; k/ 7! F��ŒE ˝ Lk ; a�.�/ is quasi-polynomial on
the lattice ƒ � Z .
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Proof. Recall that, for p 2 F , we denoted by ‰p the list of T -weights of
the �ber Ep , and we set ch.Ep/ D

P
�2‰p

e� . Clearly, we have ch.Ep ˝ Lkp/ D
ch.Ep/ � ek�.p/ . For a formal character � 2 OR.T / and �;� 2 ƒ , the identity
Fek��.�/ D F�.� � k�/ holds. �is implies that

F��ŒE ˝ Lk; a�.�/ D
X
�2‰p

Fı
�
p̂ "Y; a � �.p/

��
� � � � k�.p/

�
:

As ı is a quasi-polynomial character, each term on the right hand side is a
quasi-polynomial function of .�; k/ , and this completes the proof.

For small k , in particular for k D 0 , ��ŒE ˝Lk; a� does not have any direct
relationship with �E˝Lk . We have, nevertheless, the following asymptotic analog
of Lemma 24.

Proposition 28. Let b be a compact subset of an alcove a . �en there exists a
positive integer K such that for every k > K and � 2 kb \ƒ , the equality

(18) F��ŒE ˝ Lk; a�.�/ D F�E˝Lk .�/

holds.

Proof. Recall that ‰p is the list of T -weights of the �ber Ep , and ch.Ep/ DP
�2‰p

e� . According to (13), we have

F�E˝Lk .�/ D
X
p2F

X
�2‰p

F‚
�
p̂ "Y

��
� � � � k�.p/

�
;

while, by Lemma 27,

F��ŒE ˝ Lk; a�.�/ D
X
p2F

X
�2‰p

Fı
�
p̂ "Y; T

�
a � �.p/

���
� � � � k�.p/

�
:

Hence, by the de�nition of the quasi-polynomial character ı given in Lemma 18,
these two expressions coincide as long as for each p 2 F and � 2 ‰p , we have
� � � � k�.p/ 2 T .a � �.p// . Since topes are invariant under rescaling, we can
conclude that (18) holds if

(19)
�

k
�
�

k
2 a for each � 2 [p2F‰p:

As the set [p2F‰p is �nite, for large enough k , we will have b � �=k � a

for every � from this set. Hence (19) holds for large enough k , uniformly in
� 2 kb \ƒ . �is completes the proof.

Corollary 29. �e quasi-polynomial character ��ŒE ; a� (cf. De�nition 22) does
not depend on the choice of the polarizing vector Y .



ŒQ;R� D 0 and Kostant partition functions 489

Indeed, note that Proposition 28 holds independently of the vector Y chosen
to de�ne ��ŒE ˝ Lk; a� , and, according to Lemma 27, F��ŒE ˝ Lk ; a� is
quasi-polynomial on ƒ �Z . Now, by choosing an appropriate b with nonempty
interior in Proposition 28, one can conclude that this quasipolynomial restricted
to ¹kI k > Kºb \ ƒ is the same for all choices of polarizing vectors Y . Now,
the statement follows, since the restriction to such an open set determines a
quasipolynomial (cf. Lemma 13 (4)).

Let us summarize what Proposition 28 says about F��ŒE ; a� . Consider the
function .k; �/ 7! F�E˝Lk .�/ , and interpolate its values on Z�ƒ from the values
on the sets kb\ƒ for k su�ciently large. �is will result in a quasi-polynomial
function, which is de�ned for all .k; �/ . �en, the restriction to k D 0 of this
quasi-polynomial function gives us our function F��ŒE ; a� .

Remark 30. One can give the following geometric interpretation to the character
��ŒE ; a� when the moment map � W M ! t� is associated to a positive line
bundle. In this case, the curvature form � is non-degenerate, and � is the moment
map for the corresponding Hamiltonian structure on M . �en any element 
 in
an alcove a is a regular value of � , and the torus T acts with �nite stabilizers
on ��1.
/ . �e quotient ��1.
/=T is the same orbifold for all 
 2 a , and thus
we can denote it by Ma .

�e bundle E descends to an orbifold bundle Ea on Ma , and each character
� allows us to twist Ea by the associated line bundle L� D ��1.
/ �T C� over
Ma . According to the index formula for orbifolds ([Ati1], see also [Ver1]), the
function � ! dimQ.Ma; Ea ˝ L�/ is quasi-polynomial. It can be easily shown
using the results of [Mei1] that, in this setup, the character ��ŒE ; a� appears as
the generating function of this quasi-polynomial:

��ŒE ; a� D
X
�

dimQ.Ma; Ea ˝ L�/ e�:

We will not use this geometrical interpretation in the present article.

In what follows, we will need the extension of the de�nition of ��ŒE ; a� to
the case when the generic stabilizer of the T action on the connected manifold
M is not �nite.

De�nition 31. Let the Lie group G with Lie algebra g act on a manifold M .
�en, for a subset C �M , we denote by

gC D
®
X 2 gI VX vanishes on C

¯
and by GC the connected subgroup of G with Lie algebra gC .
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In our set up then, TM is the connected component of the generic stabilizer
of M containing the identity element, tM � t is the Lie algebra of TM , and for
every p 2 F , the weights p̂ span the annihilator t?M � t� .

Clearly, the group TM acts on each of the �bers Eq , q 2M , and since M is
connected, this representation does not depend on q . In particular, for two �xed
points p; q 2 F , the weights �.p/ and �.q/ of T di�er by an element of t?M ,
and hence the a�ne-linear subspace

(20) AM D �.p/C t?M

of t� does not depend on p 2 F . Note that, according to equation (9), the image
�.M/ is contained in AM .

Now we can repeat the de�nitions given in (16) and (17) with t� replaced by
t?M . More precisely, we consider the open set in AM consisting of those elements

 for which 
 � �.p/ is p̂ -regular for any p 2 F . An alcove a � AM is a
connected component of this open set. As before, for an alcove a , we denote
by T .a � �.p// the p̂ -tope in t?M containing a � �.p/ . �e formal character
��ŒE ; a� may be de�ned by equation (17) (here we choose any polarizing vector
in t ):

(21) ��ŒE ; a� D
X
p2F

ch.Ep/ � ı
�
p̂ "Y; T

�
a � �.p/

��
:

Note that the function FıŒ p̂ "Y; T .a � �.p//� is supported on t?M \ ƒ , while
the weights in ‰p do not necessarily belong to t?M \ ƒ . �us the multiplicity
function F��ŒE ; a� is supported on a �nite number of translates of t?M \ƒ , and
it is quasi-polynomial on each translate.

Denote by C� the trivial line bundle over M endowed with the action e� of
T . For any equivariant bundle E over M , we have a decomposition

(22) E D
M

�2ƒ=ƒ\t?
M

C� ˝ .E ˝C��/
TM ;

where the sum is understood as taken over any system of representatives of the
quotient. �is leads to the formula

(23) ��ŒE ; a� D
X

�2ƒ=ƒ\t?
M

e���Œ.E ˝C��/
TM ; a�;

which expresses the formal T -character ��ŒE ; a� through quasi-polynomial
characters of the torus T=TM . Formula (23) has the following simple corollary:

Lemma 32. If for some � 2 ƒ , the multiplicity F��ŒE ; a�.�/ is not zero, then
the restriction of � to tM is a weight of the representation of TM on a �ber
of E .
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We end this section with a quick study of the situation when the a�ne space
AM given by equation (20) is linear, i.e. passes through the origin. �is is
equivalent to the condition that TM acts trivially on the �bers of L , i.e. L is a
T=TM -line bundle.

Lemma 33. Let E be a T -bundle, and L be a T=TM -line bundle on M . �en
k 7! F��ŒE ˝ Lk; a�.0/ is a quasi-polynomial function of k .

Proof. Applying (23) to the bundle E ˝ Lk , and using the condition on L , we
obtain the equality

��ŒE ˝ Lk ; a�.0/ D ��ŒETM ˝ Lk; a�.0/:

Since ETM is a T=TM -equivariant vector bundle, we can replace T by
T=TM . According to Lemma 27, F��ŒETM ˝ Lk; a�.�/ is quasi-polynomial in
.�; k/ 2 .t?M \ ƒ/ � Z , and hence F��ŒETM ˝ Lk ; a�.0/ is a quasi-polynomial
function of k .

3. Decomposition of partition functions

In this section, we prove a decomposition formula for the generating function
‚Œˆ " Y � of the partition function introduced in (12). �is formula is due to
Paradan and it will serve as the combinatorial engine of our proof of �eorem 9.

De�nition 34. Given a list ˆ of weights in ƒ � t� , introduce the set of
ˆ -rational subspaces:

R.ˆ/ D
®
S � t� linearI ˆ \ S spans S

¯
:

�is is the set of linear subspaces of t� spanned by some subset of ˆ .

Remark 35. 1. Note that ¹0º 2 R.ˆ/ , and t� 2 R.ˆ/ if ˆ spans t� .
2. Comparing this de�nition to De�nition 17, we see that all subspaces
S 2 R.ˆ/ , except for S D t� , consist of non-regular elements.

Fix a positive de�nite scalar product .�; �/ on t� . �is will allow us to de�ne
orthogonal projections in t� , as well as to identify t and t� whenever necessary.

For each rational subspace S 2 R.ˆ/ and 
 2 t� , introduce the notation 
S

for the orthogonal projection of 
 onto S , and YS;
 for the vector .
S �
/ (see
the diagram below). �us we have the orthogonal decomposition


 D 
S � YS;
 :

In what follows, we will consider YS;
 to be an element of t .
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0




S
S

YS;


Recall from Lemma 18 and Remark 19 that, on a ˆ -tope T in the linear subspace
span.ˆ/ generated by ˆ , the partition function F‚Œˆ"Y � coincides with a quasi-
polynomial FıŒˆ"Y; T � on the lattice span.ˆ/\ƒ . It is thus natural to compare
the two functions at all points of ƒ \ span.ˆ/ . As we will see, the di�erence
may be expressed as a sum of (convolution) products of partition functions and
quasi-polynomials coming from lower-dimensional systems.

Now we can formulate Paradan’s decomposition formula ([Par2], Section 5.4,
proof of �eorem 5.1) as follows.

Proposition 36. Let ˆ be a list of vectors in ƒ , and let Y 2 t be a polarizing
vector for ˆ . Assume that 
 2 t� is such that for every S 2 R.ˆ/ , the projection

S 2 S is .ˆ \ S/ -regular, while the orthogonal component YS;
 is polarizing
for ˆnS . �en

(24) ‚Œˆ"Y � D
X

S2R.ˆ/

‚
�
ˆnS "YS;


�
� ı
�
ˆ \ S "Y; T .
S /

�
:

Observe that the set of 
 2 t� satisfying the assumptions of Proposition 36
is a complement of the union of a �nite number of hyperplanes. Indeed 
S is
ˆ -regular if it is not contained in a union of hyperplanes in S � t , while YS;

is polarizing if it is not contained in a union of hyperplanes in t .

Also note that if �
 is in the dual cone to the cone generated by ˆC[�ˆ� ,
then all the terms but the one corresponding to S D ¹0º vanish, and hence, in
this case, the identity (24) is tautological.

Example 37. Let t� D R˛; ƒ D Z˛ , ˆ WD Œ˛� and set Y 2 t to be the vector
satisfying h˛; Y i D 1 . �en

‚Œˆ"Y � D

1X
kD0

ek˛:
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�e identity

(25)
1X
kD0

ek˛ D

1X
kD�1

ek˛ �

�1X
kD�1

ek˛

is a particular case of Formula (24).
Indeed, in this one-dimensional case, the set R.ˆ/ has two elements: S D ¹0º

and S D t� .
If we let 
 D t˛ for some t > 0 , then on the right hand side of (24) we have
� ıŒˆ"Y; T .
S /� D

P
k2Z ek˛ for S D t� , and

� ‚Œˆ"YS;
 � D �
P
k>0 e�k˛ , for S D ¹0º .

�en Formula (24) reads:

‚
�
ˆ"Y

�
D ı

�
ˆ"Y; T .
S /

�
C‚

�
ˆ"YS;


�
;

and this is Formula (25).

Proof of Proposition 36. Replacing 
 by its orthogonal projection on the sub-
space generated by ˆ , we may assume that V is spanned by ˆ . We pass to the
Fourier transforms in order to prove that the two sides of (24) coincide. Observe
that for each term on the right hand side of (24), the Fourier transform restricted
to a tope of ˆ is quasi-polynomial.

We begin by showing that the Fourier coe�cients of the two sides coincide on
the tope T .
/ . Indeed, the term corresponding to S D t� is ıŒˆ"Y; T .
/� , whose
Fourier coe�cients coincide with those of ‚Œˆ " Y � on the tope T .
/ by the
de�nition of ıŒˆ"Y; T .
/� . On the other hand, for any S 2 R.ˆ/ di�erent from
t� , by construction, the Fourier transform of the corresponding term ‚Œ n̂S "YS;
 ��

ıŒˆ\S "Y; T .
S /� is a function on ƒ supported on the subset ¹�I h�; YS;
 i � 0º
(cf. Lemma 14). Since h
; YS;
 i D �j
S � 
 j2 < 0 , we see that this function
vanishes on a conic neighborhood of the half line RC
 , and thus on T .
/ .

To extend the equality of Fourier coe�cients to the rest of ƒ , we use induc-
tion on the number of elements in ˆ . If ˆ is empty, then both sides are equal
to 1. Now pick an element � 2 ˆ , and consider ˆ0 D ˆ� ¹�º (cf. the beginning
of §2 for our conventions). Clearly .1� e�/ �‚Œˆ"Y � D ‚Œˆ

0"Y � . If we restrict
the Fourier transform of this equation to a tope T , we obtain

.1 � e�/ ıŒˆ"Y; T � D ıŒˆ0"Y; T 0�

if ˆ0 generates V and T 0 is the tope of ˆ0 containing T , while

.1 � e�/ ıŒˆ"Y; T � D 0

if ˆ0 does not generate V .
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We multiply both sides of (24) by .1� e�/ , and compare the results. On the
left hand side, we end up with ‚Œˆ0 " Y � . For a term on the right hand side
corresponding to S 2 R.ˆ/ , we separate three cases:

1. � … S In this case, S 2 R.ˆ0/; ˆ \ S D ˆ0 \ S and

.1 � e�/ � ‚ŒˆnS "YS;
 � D ‚Œˆ
0
nS "YS;
 �:

�us, after multiplication by .1 � e�/ , we end up with the term

(26) ‚Œˆ0nS "YS;
 � � ı
�
ˆ0 \ S "Y; T .
S /

�
:

2. � 2 S , and S 2 R.ˆ0/ In this case n̂S D ˆ0nS while .ˆ\S/�¹�º D ˆ0\S ,
which implies that

.1 � e�/ ı
�
ˆ \ S "Y; T .
S /

�
D ı

�
ˆ0 \ S "Y; T 0.
S /

�
:

�us we end up with the term (26) again.
3. � 2 S , and S … R.ˆ0/ In this case,

.1 � e�/ ı
�
ˆ \ S "Y; T .
S /

�
D 0:

�us multiplying the right hand side of (24) by .1 � e�/ has the e�ect
of replacing ˆ by ˆ0 . Using the inductive assumption, we can conclude that
after multiplying both sides of (24) by .1 � e�/ for any � 2 ˆ , we obtain
an identity. As ˆ spans t� , this implies that the Fourier coe�cients of the
di�erence of the two sides of (24) form a periodic function with respect to the
sublattice of �nite index in ƒ generated by ˆ . Since we also know that these
coe�cients vanish on T .
/ , they must vanish on all of ƒ . �is completes the
proof.

4. Decomposition of characters

4.1. Decomposition of a T -character. No we return to the geometric setup of
§2.3. In particular, from now on, we assume that the generic stabilizer of the
action of T on the almost complex manifold M is �nite.

In this section, using the moment map � , we obtain an expression (Propo-
sition 41) for the character �E associated to an equivariant vector bundle E
on M .

We start with the formula (13) for �E from Corollary 15:

�E D
X
p2F

ch.Ep/ �‚Œ p̂ "Y �:
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Our plan is to substitute the decomposition formula (24) for the partition function
‚Œ p̂ " Y � in each term parametrized by p 2 F in this expression. Note that
while performing this substitution, we can take a vector 
p in (24) depending
on the �xed point p . We take advantage of this possibility: we choose a �xed
vector 
 2 t� and we set the vector


p D 
 � �.p/

to be the polarizing vector for the corresponding term. Informally, this means
that we expand the denominator of the term in the �xed point formula (11)
corresponding to p 2 F in the direction of 
 from �.p/ .

It is clear that if we choose 
 outside a �nite set of a�ne hyperplanes, then

p satis�es the assumptions of Proposition 36 for each p 2 F . We will call such
a 
 generic. For generic 
 , we obtain

(27) �E D
X
p2F

X
S2R.ˆp/

ch.Ep/ �‚
�
p̂nS "YS;
p

�
� ı
�
p̂ \ S "Y; T .
pS /

�
:

Our next step is to present a geometric interpretation of this expression. We begin
by introducing certain closed subsets of M with special stabilizers. Recall that
each X 2 t de�nes a vector �eld VX on M , which vanishes on the �xed point
set F .

De�nition 38. For p 2 F and S 2 R. p̂/ , denote by C.p; S/ the connected
component of the set

MS?
D
®
m 2M jVX.m/ D 0 for every X 2 S?

¯
which contains p . Let CompT .M/ stand for the set of all the connected subsets
C.p; S/ of M obtained this way:

CompT .M/ D
®
C.p; S/jp 2 F; S 2 R. p̂/

¯
:

We make two important observations:

� Since MS? is also the �xed point set of the subtorus of T with Lie algebra
S? , the set C.p; S/ is smooth, and hence it is a submanifold of M .
� For a submanifold C D C.p; S/ 2 CompT .M/ , the Lie algebra of the
stabilizing subtorus TC � T is S? .

It follows then that there is a one-to-one correspondence®
.p; S/jp 2 F; S 2 R. p̂/

¯
$
®
.p; C /jC 2 CompT .M/; p 2 C \ F

¯
;

and hence we can regroup the terms of the sum in (27) according to the �xed
point component C 2 CompT .M/ to which it corresponds.
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To write down this formula, we will need to introduce some new notation which
re�ects this correspondence; in particular, we will give new names to the vectors


p
S and YS;
p . Using our scalar product to identify t with its dual, we can write

t� D tC ˚ t?C . Recall the de�nition of the a�ne subspace AC D �.p/C t?C � t�

and the fact that if p and q 2 C \F , then �.p/��.q/ belongs to t?C (cf. (20)
and the discussion preceding it). �is implies that the projection of �.p/� 
 to
tC does not depend on the choice of the �xed point p 2 C \ F:

Using this observation, we introduce the following notations.

De�nition 39. Given C 2 CompT .M/ and a generic 
 , denote by 
C the
orthogonal projection of 
 on the a�ne space AC , and introduce the notation

YC
def
D 
C � 


for the polarizing vector in tC , omitting its dependence on 
 (see Figure below).

�en, given C D C.p; S/ 2 CompT .M/ , and a generic 
 2 t� , we have
YS;
p D YC , and 


p
S D 
C � �.p/ .

�.q/
�.p/




AC
C

YC

0

�e manifold C inherits a T -invariant almost complex structure from M , and
the set of weights of the �ber of the complex vector bundle NTJC at p 2 C \F
is p̂ \ t?C . We can thus regroup the terms of (27) and obtain the following
result.

Proposition 40. Let E be a complex vector bundle over an almost complex
T -manifold M , and 
 2 t� a generic point. �en, with the notation introduced
above, we have

(28) �E D
X

C2CompT .M/

TermC Œ�; E ; 
�;
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where

(29) TermC Œ�; E ; 
�

WD

X
p2C\F

ch.Ep/ �‚Œ p̂nt
?
C "YC � � ı

�
p̂ \ t?C "Y; T

�

C � �.p/

��
:

Our next step is to represent the contribution TermC Œ�; E ; 
� of the �xed point
set C 2 CompT .M/ to the sum (28) in the form ��Œ QEC ; a.
C /� , where QEC is a
certain in�nite-dimensional bundle over C , and a.
C / , as usual, stands for the
alcove containing 
C .

�e bundle QEC is constructed as follows. Consider the bundle KC D
NTJM= NTJC ; this is a T -equivariant complex bundle2 on C , whose TC -weights
are constant along C . �e list ˆC of these weights may be obtained by restricting
p̂ nt
?
C to tC for any p 2 C \ F . We split ˆC into two groups according to

the sign of their value on the polarizing vector YC 2 tC :

(30) ˆC D ˆ
C

C [ˆ
�
C ; ˆ

�
C D

®
� 2 ˆC j h�; YC i < 0

¯
:

�is splitting induces a direct sum decomposition of KC :

KC D KCC ˚KC�;

where KCC and KC� are the subspaces generated by eigenvectors of TC with
weights from ˆCC and ˆ�C , respectively. Finally, de�ne the in�nite-dimensional
T -equivariant virtual bundle

(31) S.KC "YC / D .�1/
rankKC� det.KC ��/˝

1M
mD0

S Œm�.KC �� ˚KCC/

over C , where S Œm�.V / stands for the m th symmetric tensor product of the
vector space V , and det.V / for its top exterior power.

�en the combination of the �xed point formula with Proposition 36 leads to
the following statement.

Proposition 41. Let 
 be a generic point in t� , and denote by EC the restriction
of E to C . �en for C 2 CompT .M/ , the sum

(32) ��
�
EC ˝ S.KC "YC /; a.
C /

�
def
D .�1/rankKC�

1X
mD0

��
�
EC ˝ det.KC ��/˝ S Œm�.KC �� ˚KCC/; a.
C /

�
2 In the Kahler case, KC is the conormal vector bundle to C .
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is a well-de�ned formal character, and, in fact,

(33) TermC Œ�; E ; 
� D ��
�
EC ˝ S.KC "YC /; a.
C /

�
;

where the left hand side is de�ned in (29).
Hence, in view of (28), we have the following equality in OR.T / :

(34) �E D
X

C2CompT .M/

��
�
EC ˝ S.KC "YC /; a.
C /

�
:

Proof. Indeed, for C 2 CompT .M/ , the �bers of the bundle (31) over points of
C form a TC -representation with �nite multiplicities. Recalling the de�nition of
the formal character ‚ from (12), we see that for p 2 C \F , the T -character of
the �ber S.KC "YC /p is ‚Œ p̂nt

?
C "YC � . �en, (33) follows from comparing (17)

and (29).

Proposition 41 is a particular case of [Par1, Proposition 6.14 and Formula 1.6].
Paradan obtained this statement via localization of the index of a transversally
elliptic operator, and then derived Proposition 36 as a corollary of [Par1]. In
our work, these statements appear in a natural order: we proved Proposition 36
directly for partition functions by elementary combinatorial manipulations, and
then we deduced Proposition 41 from the Atiyah–Bott �xed point formula and
Proposition 36.

Remark 42. Let us take a closer look at the decomposition (34) of the character
�E . �e term corresponding to the case when C consists of a single �xed point
p 2 F is ch.Ep/ � ‚Œ p̂ " .�.p/ � 
/� . It is reassuring to compare this to (13),
which contains a similar term: ch.Ep/ � ‚Œ p̂ " Y � , but where p̂ is reoriented
with a vector Y independent of the point p . According to Lemma 14, these
two expressions, interpreted as generalized functions on T , coincide with the
smooth function

Q
�2ˆp

�
1 � t�

��1 on the open set ¹t 2 T I t� ¤ 18� 2 p̂º .
Now we observe that all the other terms of (34) correspond to generalized
functions supported on positive-codimensional subtori of T . In particular, the
term TermM Œ�; E ; 
� , which equals ��ŒE ; a� (cf. (17)), is supported on a �nite
number of points of T . One can thus think of formula (34) as a re�nement of
the Atiyah–Bott formula (11).

Next, we consider the supports of the Fourier transforms of the terms of (34)
in the Fourier dual space ƒ . For simplicity, we formulate our conclusions for the
case E D L . (To follow the notation, it will be helpful to consult the Figure on
Page 496).
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Proposition 43. Consider the terms of the decomposition (34) for the case E D L .
�en the following statements hold.

(1) Suppose that M ¤ C 2 CompT .M/ . �en the support of the Fourier
transform FTermC Œ�;L; 
� , lies in the half-space

(35)
®
�I h�; YC i � h
C ; YC i

¯
:

(2) When C D M , then the corresponding term of the sum (34) reduces to
��ŒL; a.
/� , which is a quasi-polynomial character.

(3) On the alcove a.
/ , the multiplicity function F�E coincides with the quasi-
polynomial F��ŒL; a.
/� .

�e �rst two statements immediately follow from the de�nition (33) of
TermC Œ�; E ; 
� . �e third statement is a consequence of the �rst two, since the half-
spaces (35) are in the complement of a.
/ . (Cf. Figure on Page 496: the half-space
(35) is the half-space under the thick line, i.e., the one not containing 
 .)

Let us verify these statements on our examples. In Example 2, the decompo-
sition (7):

�Lk .t/ D t
k

1X
jD�1

t2j �

1X
jD1

t�k�2j �

1X
jD1

tkC2j :

is an instance of (34). �e �rst term corresponds to C D P1.C/ , while the other
two terms come from the two �xed points.

We also give a two-dimensional example.

Example 44. In Example 12 (see also Example 26), the set of �xed point
components CompT .M/ consists of the following elements:

� �e complex 3-dimensional manifold M itself,

� the 6 �xed points pw , w 2 †3 , corresponding to the vertices of the
highlighted hexagon. �e corresponding values of the moment map, are as
follows:

�123 D 4˛ C 3ˇ; �213 D �˛ C 3ˇ; �132 D 4˛ C ˇ;

�321 D �3˛ � 4ˇ; �231 D �3˛ C ˇ; �312 D �˛ � 4ˇ

� 9 components isomorphic to P1.C/ , whose images are intervals which span
the 9 lines on the picture below. Each of these components contains precisely
two �xed points; we will use the notation C Œpv; pw � for the component con-
taining the �xed points pv and pw , and `h�v; �wi for the corresponding line.
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For example, the �xed point component C Œp123; p213� may be described as
the set of �ags of the form

Cv � Ce1 ˚Ce2 � Ce1 ˚Ce2 ˚Ce3:

�e stabilizer group of this submanifold is ¹.t; t; u/I t; u 2 U.1/º:

�123

`h�123; �132i

`h�123; �213i

`h�123; �321i

`h�132; �231i

˛ˇ

Let us consider �L as a character of the maximal torus T of the adjoint group
of U.3/ with lattice of weights ƒ D Z˛˚Zˇ , and set 
 D 0 . �e decomposition
(34) of the character �L involves 16 formal characters of T . By symmetry with
respect to the Weyl group, we only need to describe the terms corresponding to
M , the term corresponding to the �xed point �123 , and the terms corresponding
to C.�132; �231/ , C.�123; �213/ .
� C DM contributes the polynomial character TermM Œ�;L; 0� D 3

P
�2ƒ e� .

� �e term corresponding to C D p123 is

Termp123 Œ�;L; 0� D �e�123e.˛CˇC.˛Cˇ// �
1X
kD0

ek˛ �

1X
kD0

ekˇ �

1X
kD0

ek.˛Cˇ/

which is supported outside the marked hexagon.
� �e term corresponding to C D C Œp123; p213� is

TermCŒp123;p213�Œ�;L; 0� D e�123e.ˇC.˛Cˇ// �
X
k2Z

ek˛ �

1X
kD0

ekˇ �

1X
kD0

ek.˛Cˇ/;

which is supported above the line `h�123; �213i .
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� �e term corresponding to C D C Œp132; p231� is

TermCŒp132;p231�Œ�;L; 0� D �e�132e.˛Cˇ/ �
X
k2Z

ek˛ �

1X
kD0

ekˇ �

1X
kD0

ek.˛Cˇ/;

which is supported above the line `h�132; �231i .

We can thus conclude that the multiplicities F�L restricted to the alcove a.0/

(which is the small central triangle on the picture) equals the constant 3.

Remark 45. If 
 2 �.M/ and L is positive, then, in fact, more is true: F�L

coincides with F�M� on the closure of the alcove a.
/ . �is e�ect may be
observed in the example above. We will not use this re�ned property in this
article.

4.2. Decomposition of a G -character. Returning to the setup of §1, we consider
a compact connected Lie group G acting compatibly on an almost complex
manifold M , bundles E and L and the connection r on L . Consider the
character �E of the representation of G on Q.M; E/ .

Recall from §1 our notation: T is the maximal torus of G , R D RC [R�

is the decomposition of the set of roots of G corresponding to the triangular
decomposition gC D tC ˚ nC ˚ n� . We will use WG for the Weyl group of
G , and ƒdom � ƒ will stand for the subset of dominant weights, which serves
as a fundamental domain for the WG -action on ƒ � t� , and whose elements
parametrize the irreducible characters of G . We will identify �� with its restriction
to T .

Our goal is to understand what formula (34) tells us about �E as a G -character.

Remark 46. As observed by Atiyah–Bott [AB1], the Weyl character formula

�� WD
X
w2WG

ew�Q
˛2R�.1 � ew˛/

is the Atiyah–Bott �xed point formula for �L� associated to the line bundle
L� D G �G� C� on the coadjoint orbit G� .

Our character �E 2 R.G/ may be expressed in a unique way as a �nite linear
combination of irreducible characters �� , � 2 ƒdom . In particular, the quantityR
G
�E dg D dimQ.M; E/G , which we are trying to understand, is precisely the

coe�cient of the trivial character in this decomposition. To obtain an explicit
formula for this multiplicity, we use the following simple corollary of the Weyl
character formula for �� .
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Lemma 47. We have

(36) dimQ.M; E/G D F Œ�G � �E �.0/;

where
�G D

Y
˛2R�

.1 � e˛/ 2 R.T /:

Now we make the formal observation that multiplying �E by �G amounts to
tensoring E by the trivial Z2 -graded bundle over M with �ber ^�n� D ^evenn�˚
^oddn� endowed with the adjoint T -action. More precisely, let us extend the
de�nition of the character �E to Z2 -graded vector bundles G� D Geven˚Godd via

�G� D �Geven � �Godd :

�en (36) may be written in the form

(37) dimQ.M; E/G D F�E˝^�n�.0/:

Proposition 41 states that

(38) �E˝^�n� D
X

C2CompT .M/

��
�
EC ˝^�n� ˝ S.KC "YC /; a.
C /

�
:

It turns out that after tensoring E with ^�n� , one can signi�cantly strengthen
the condition on C under which the corresponding term in (38) vanishes.

We consider the G -equivariant moment map �G WM ! g� satisfying equation
(8). �en the map � , obtained as the composition of �G with the restriction
g� ! t� , serves as a moment map for the T -action. Note that the image
�G.M/ \ t� is usually strictly smaller than �.M/ . For example, if M D G� is
the coadjoint orbit of � 2 t� , then �G.M/\ t� is the orbit WG� of � under the
Weyl group, while �.M/ is the convex hull of WG� .

Also, recall the de�nition of the a�ne subspace AC D �.p/C t?C � t� , where
p 2 C , associated to a �xed point component C 2 CompT .M/ .

�eorem 48. Let G be a compact connected Lie group acting on the almost
complex manifold M endowed with the moment maps � and �G as de�ned
above, and let E be a G -equivariant vector bundle on M . �en for a generic

 2 t� , the term

��
�
EC ˝^�n� ˝ S.KC "YC /; a.
C /

�
;

of (38) vanishes if the alcove a.
C / is not contained in �G.C / \ AC � t� .

�is theorem is due to Paradan ([Par1], Proposition 6.14 and Formula 1.6). In
the argument below, we will make use of �eorem 3, whose proof is postponed
to §6.
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Proof. Indeed, �G.C / is compact, while a.
C / is open, thus if a.
C / 6�

�G.C / \ AC , then there is � 2 a.
C / n .�G.C / \ AC / , which is a regular
value of � .

According to Corollary 56 proved in §6, if we construct a T -equivariant
isomorphism over C\��1.�/ between the two equivariant complex vector bundles
with �bers ^evenn� and ^oddn� , then for any T -bundle G on C , we have

��
�
G ˝^�n�; a.
C /

�
D 0:

Such an isomorphism may be constructed as follows. Let g D t˚ q be the T -
invariant decomposition of g with q D Œt; g� . �e dual decomposition g� D t�˚q�

provides us with a map �? WM ! q� satisfying

�G.q/ D �.q/˚ �?.q/:

�e condition � … �G.C / \ AC implies that for q 2 C \ ��1.�/ we have
�?.q/ ¤ 0 .

Fix a G -invariant positive de�nite scalar product on g , and extend it as an
Hermitian product to gC . �is induces a T -invariant isomorphism h W q� ! n�

satisfying kh.�/k2 D k�k2 .
Now recall that for a Hermitian vector space H , one can de�ne a linear

map c W H ! End.^H/ , called Cli�ord multiplication, given by the formula

c.v/ WD �.v/ � �.v/�:

Here �.v/ is the multiplication operator in the exterior algebra of H :

�.v/ W � 7! v ^ �; � 2 ^H;

and �.v/� is the Hermitian dual of �.v/ , which is the contraction by scalar
multiplication by v . Clearly, if H is a T -module with invariant Hermitian
structure, then c is T -equivariant.

A key fact is that c.v/2 D �kvk2 � id , and hence c.v/ is a linear isomorphism
whenever v ¤ 0 . �is means that the correspondence

Œq; �� 7!
�
q; c

�
hŒ�?.q/�

�
�
�

de�nes the map we sought: a T -equivariant bundle-map C � ^evenn� !

C � ^oddn� , which is an isomorphism over ��1.�/ \ C . �is completes the
proof.

5. Quasi-polynomial behavior of multiplicities: �e main result

We continue with the setup of the previous section, and, at this point, we
impose the condition of positivity on our line bundle L . Recall that this means
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that the curvature of the connection r on L is of the form �i! , where the
closed 2-form ! is such that the quadratic form V 7! !q.V; JV / is positive
de�nite at each point q 2M . Note that this condition, in particular, implies that
! is symplectic.

As we pointed out in the introduction, instead, one may start by a symplectic
manifold .M;!/ and a Kostant line bundle L , and arrive at the same setup. Indeed,
then one can choose an almost complex structure J such that the quadratic form
V 7! !q.V; JV / is positive. �is J is unique up to continuous deformations,
thus �Lk does not depend on its choice.

Our purpose in this section is to analyse (34) for E D Lk in this situation,
and prove our main result, �eorem 9, which we repeat here for reference.

�eorem 49. Let .M; J / be a compact, connected, almost complex manifold
endowed with the action of a connected compact Lie group G , and let L be a
positive G -equivariant line bundle on M . Suppose the set of �xed points under
the action of the maximal torus T of G on M is �nite. �en
� the integer function

k ! dimQ.M;Lk/G

is quasi-polynomial for k � 1 , and
� this quasi-polynomial is identically zero if 0 … �G.M/ .

Proof. Recall some of our notations: C 2 CompT .M/ means that C is a
connected component of the �xed point set of a subtorus TC � T with Lie
algebra tC , AC is the a�ne space spanned the image �.C/ of C in t� , 
C is
the orthogonal projection of 
 onto AC , a.
C / is the alcove of AC containing

C and YC D 
C �
 is thought of as a vector in tC (see De�nitions 38 and 39).

Combining (37), (38) and �eorem 48, and setting E D Lk , we obtain the
formula

(39) dimQ.M;Lk/G D
X
C

F��
�
Lk ˝^�n� ˝ S.KC "YC /; a.
C /

�
.0/;

where 
 is a generic element of t� , and the sum runs over C 2 CompT .M/

satisfying 
C 2 �.C \ �
�1
G .t

�// .
First, consider the terms of this sum corresponding to C 2 CompT .M/ for

which the a�ne-linear subspace AC passes through the origin: 0 2 AC . For any
such C , Lemma 33 shows that

k ! F��
�
Lk ˝^�n� ˝ S.KC "YC /; a.
C /

�
.0/

is a quasi-polynomial function of k . �e most important case of such a
component is C D M , and the corresponding term is the quasi-polynomial
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F��
�
Lk ˝^�n�; a.
/

�
.0/ . If 0 is a regular value of � , then this is the only

component with 0 2 AC .
Furthermore, the terms corresponding to C with 0 2 AC will be absent

in (39) if 0 … �G.M/ . Indeed, then, for 
 chosen su�ciently close to 0 ,
the orthogonal projection 
C of 
 to AC is also close to 0 , and thus

C … �.C \ �

�1
G .t

�// � �G.M/ .
Now, both assertions of �eorem 49 will follow if we show that, for 
 chosen

generic and su�ciently close to 0 , the terms on the right hand side of (39)
corresponding to �xed point components C 2 CompT .M/ with 0 … AC and

C 2 �.C \ �

�1
G .t

�// � �G.M/ vanish for k � 1 .
Consider thus such a �xed point component C 2 CompT .M/ and �x a point

q 2 C \ ��1G .t
�/ satisfying �.q/ D 
C . �us we have

(40) q 2 C; �?.q/ D 0 and �.q/ D 
C :

Assume, ad absurdum, that the zero weight occurs with nonzero multiplicity in
the T -character

��
�
Lk ˝^�n� ˝ S.KC "YC /; a.
C /

�
:

According to Lemma 32, this implies that the representation of TC on the �ber
of the bundle Lk ˝^�n� ˝ S.KC "YC / contains the trivial weight at any point
of C . In particular, the Lie algebra element YC 2 tC annihilates a nonzero vector
in the �ber

(41)
�
Lk ˝^�n� ˝ S.KC "YC /

�
q

at our chosen point q .
To �nd a contradiction, we will give a positive lower bound on the eigenvalues

of YC on this space assuming 
 2 t� is a generic vector near 0 . Let us consider
the eigenvalues of YC on each of the 3 tensor factors in (41):

� �e eigenvalue of YC acting on Lkq is equal to kh�.q/; YC i D kh
C ; YC i .
� �e list of eigenvalues of YC on ^�n� is parametrized by subsets I � R�

of the negative roots, and the eigenvalue corresponding to I is
P
˛2I h˛; YC i .

� Finally, recall the de�nition of S.KC "YC / from (31). Clearly, all eigenvalues
of YC on S Œm�.KC �� ˚KCC/q are nonnegative, and hence, the eigenvalues
of YC on S.KC " YC / are bounded from below by the eigenvalue of YC
on detKC �� . �is eigenvalue equals

(42) �

X
�2ˆ�

C

h�; YC i;

where ˆ�C is de�ned in (30).
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�e positivity of the eigenvalues of YC on the vector space (41) thus translates
into the inequality

(43) kh
C ; YC i C
X
˛2I

h˛; YC i �
X
�2ˆ�

C

h�; YC i > 0 for k > 0 and every I � R�:

Consider the �rst term: According to our assumption, the a�ne subspace AC � t�

does not pass through the origin, and hence, denoting half the distance from the
origin to AC by dC , we see that

(44) kh
C ; YC i � d
2
C

for 
 su�ciently close to the origin (see the Figure on Page 496).
By the de�nition of ˆ�C , the expression (42) is also positive. �us our worry

is the set of negative contributions, which could appear in the second term of
(43): these correspond to those ˛ 2 R� for which h˛; YC i < 0 .

Clearly, for any I � R�

(45)
X
˛2I

h˛; YC i �
X

˛2R�; h˛;YC i<0

h˛; YC i;

and we have the estimates

(46)
ˇ̌̌ X
˛2R�; h˛;YC i<0

h˛; YC i �
X

˛2R�; .˛;
C /<0

h˛; YC i
ˇ̌̌
< c1jj
 jj;

and

(47)
ˇ̌̌ X
�2ˆ�

C

h�; YC i �
X

�2ˆC ; .�;
C /<0

h�; YC i
ˇ̌̌
< c2jj
 jj

for constants c1; c2 independent of 
 .
Combining inequalities (44), (45), (46) and (47), we can conclude that if we

prove the inequlity

d2C � .c1 C c2/jj
 jj C
h X
˛2R�; .˛;
C /<0

h˛; YC i �
X

�2ˆC ; .�;
C /<0

h�; YC i
i
> 0

for jj
 jj su�ciently small, then (43) will follow. Clearly, it is su�cient to show
that the expression in the square brackets is nonnegative, and this, in turn, will
follow if we prove that the roots ˛ 2 R� satisfying .˛; 
C / < 0 are in the list
of weights ˆC of the action of the torus TC on the bundle NTJM= NTJC on C .

�is latter statement is the content of the following crucial proposition, which,
we emphasize, is the only geometric ingredient of our proof.

We note that below, we pass from the TC -weights of the bundle NTJM= NTJC
to those of the bundle TJM , which has the e�ect of reversing all signs, and
adding a number of zero-weights.
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Proposition 50. Let .M;!;�G/ be a Hamiltonian G -manifold, and let J be
a G -invariant almost complex structure such that !.v; J v/ > 0 for all tangent
vectors v ¤ 0 . Fix a point q 2 M such that �G.q/ D �.q/ , i.e., �?.q/ D 0 .
�en the list of complex weights of the stabilizer group Tq on TJqM with respect
to the almost complex structure J contains the following sublist of restricted
roots:

(48)
�
˛jtqI ˛ 2 R; .�.q/; ˛/ > 0

�
:

Proof. Recall that VX.q/ stands for the tangent vector in TqM corresponding to
X 2 g under the G -action on M . As our calculations below will take place in
the tangent space TqM , we will omit the dependence on q from our notation.

We need to show that under the conditions described above, there is a nonzero
tangent vector W 2 TqM such that

X �W D h˛;XiJ.W /

for every X 2 tq . Here, X �W stands for the action of the stabilizer Lie algebra
gq on TqM .

Let us extend the map V W g! TqM to gC by complex linearity via

V ŒX C iY � D VX C J.V Y /:

�en V W gC ! .TqM;J / is a map of complex vector spaces, which is equivariant
with respect to the action of Tq , the stabilizer group of q , acting on gC by the
adjoint action, and on TqM by its natural action.

Let ˛ 2 R be a root satisfying .�.q/; ˛/ > 0 , and let X˛; Y˛ 2 g be two Lie
algebra elements, such that X˛ C iY˛ is in the root space gC.˛/ , and the triple

E˛ D
�1

2
.X˛ C iY˛/; F˛ D

1

2
.X˛ � iY˛/; H˛ D �i ŒX˛; Y˛�

satis�es the commutation relations of the standard basis of sl2 :

ŒH˛; E˛� D 2E˛; ŒH˛; F˛� D �2F˛; ŒE˛; F˛� D H˛:

�en we also have .ˇ; ˛/ D c˛hˇ; iH˛i with c˛ > 0 for any ˇ 2 t� .
For any X 2 tq , we have X � VE˛ D h˛;XiJ.VE˛/ . �us the statement is

proved if we verify that VE˛ does not vanish. To show this, we prove that
!q.VE˛; J.VE˛// ¤ 0 . Indeed, we have

4!q
�
VE˛; J.VE˛/

�
D !q

�
VX˛; J.VX˛/

�
C !q

�
V Y˛; J.V Y˛/

�
� 2!q.VX˛; V Y˛/:

�e �rst two terms of this sum are nonnegative by our assumptions on ! . As
for the last term, from the key identity (9), we have



508 A. Szenes and M. Vergne

!q.VX˛; V Y˛/C hrV Y˛ �G ; X˛i D 0;

where r denotes the directional derivative. On the other hand, from the invariance
of �G , we have hrV Y˛ �G ; X˛i C h�G ; ŒY˛; X˛�i D 0 , which leads to

(49) !q.VX˛; V Y˛/ D �
˝
�G.q/; ŒX˛; Y˛�

˛
D
�1

c˛

�
�G.q/; ˛

�
< 0:

�is completes the proof of Proposition 50 and the proof of our main result
�eorem 49 as well.

6. �e asymptotic result in the torus case

�e purpose of this section is to give a concise proof of the following variant of
�eorem 3, which is a special case of the asymptotic result proved by Meinrenken
in [Mei1].

�eorem 51. Let M be a compact almost complex T -manifold, let L be a T -
equivariant line bundle over M with moment map � , and let E� D Eeven˚ Eodd

be a Z2 -graded equivariant vector bundle over M . Assume that for a compact
subset b of the regular values of � , Eeven and Eodd are equivariantly isomorphic
on ��1.
/ for every 
 2 b . �en there is a K > 0 such that

F�E�˝Lk .�/ D 0 for k > K and � 2 kb \ƒ:

Proof. Again, our starting point is the Atiyah–Bott �xed point formula (11):

(50) �E�˝Lk D
X
p2F

ek�.p/chŒE�p �Q
�2ˆp

.1 � e�/
:

Here we used the notation chŒE�p � D chŒEeven
p � � chŒEodd

p � .
It clearly follows from our hypothesis that if p 2 F is such that �.p/ 2 b ,

we have chŒE�p � D 0 . �us, introducing the subset F 0 D ¹p 2 F I �.p/ … bº of all
�xed points, we can write

(51) F�E�˝Lk .�/ D

Z
T

e��.t/
X
p2F 0

ek�.p/.t/chŒE�p �.t/Q
�2ˆp

�
1 � e�.t/

� dt:
To estimate this integral, we would like to exchange the summation and the
integration in this formula. However, the terms of the sum are singular expressions,
and thus we can only estimate the part of this integral where the terms of the
sum are bounded.
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To �nd this partial estimate, we proceed as follows. Consider the open set

Treg D
®
g 2 T j e�.g/ ¤ 18� 2 p̂; p 2 F

0
¯
;

of those elements g 2 T for which the terms of our sum are regular, and for
each g 2 Treg pick a ball Ug � t centered at 0 2 t such that g exp.Ug/ � Treg .
Now, let �g W T ! Œ0; 1� be an auxiliary smooth function with compact support
on g exp.Ug/ , and consider the piece

(52)
Z
T

�g.t/e��.t/�E�˝Lk .t/ dt

of the integral in (51) supported in g exp.Ug/ . Pulling this integral back to t via
the map g exp W t! T , we can estimate the absolute value of (52) as being less
or equal than

(53)
X
p2F 0

ˇ̌̌̌
ˇZt eikh�.p/��=k;Xi �g

�
g exp.X/

�
chŒE�p �

�
g exp.X/

�Q
�2ˆp

�
1 � eih�;Xie�.g/

� dX

ˇ̌̌̌
ˇ :

Note that we omitted the constant factor eik�.p/�i�.g/ , since it is of absolute
value 1.

Now we recall the following standard estimate from Fourier analysis.

Lemma 52. Let 0 ¤ � 2 t� , and H W t! C be a smooth compactly supported
function. �en for every positive integer d , the inequalityˇ̌̌̌Z

t

eih�;XiH.X/ dX

ˇ̌̌̌
�
Cd .H/

k�k2d

holds, where the constant Cd .H/ depends only on a �nite number of derivatives
of H ; in fact, one can take

Cd .H/ D max
X2t

ˇ̌̌̌
ˇ̌
"X

i

@2i

#d �
H.X/

�ˇ̌̌̌ˇ̌ :
Now we return to (53), and consider expression �.p/��=k in the exponent.

Since, according to our assumptions, �=k 2 b , and �.p/ is not in b , we have
the bound j�.p/ � �=kj � ı for some positive ı . Applying Lemma 52 to our
integrand with � D k.�.p/ � �=k/ , we obtain the following

Corollary 53. For g 2 Treg , and smooth function �g W T ! Œ0; 1� with compact
support in Ug , the integral (52), goes to zero faster than any negative power of
k , uniformly for � 2 kb .
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In order to bound the rest of the integral (51), for each g 2 T n Treg , we
will replace the Atiyah-Bott formula by an expression, which is regular at g .
Such formulas were given in [BV2]; here we sketch the setup and the relevant
notions. We begin with the case of the unit element of T : g D 1 . We follow the
exposition of ([BGV], chapters 7,8).

For a manifold M with a T -action, we de�ne the algebra AT .M/ of
equivariant forms as the space of smooth maps ˛ W t ! �.^�T�M/T , from
t to the set of invariant di�erential forms on M . As a matter of notation, we
will write ˛.X/ for the resulting di�erential form on M , and ˛.X; q/ for the
value of this di�erential form at q 2M .

�e equivariant di�erential D W AT .M/! AT .M/ , given by the formula

D˛.X/ D d˛.X/ � �.VX/˛.X/;

satis�es D2 D 0 . (Here �.v/˛ is the contraction of the di�erential form ˛ by the
vector v .) Accordingly, ˛ 2 AT .M/ is called equivariantly closed if D˛ D 0 .
�e formulas in [BV1] express the integral

R
M
˛ W t ! C of an equivariantly

closed form ˛ in terms of local data on M .
Returning to our setup of a T -manifold M , endowed with a line bundle L

with curvature RL D �i! , we observe that we have already encountered such
equivariantly closed forms: indeed, equation (9) may be interpreted as saying that
the expression

(54) RL.X/ D RL C LX � rVX D ih�;Xi � i!;

the equivariant curvature of the bundle L , is equivariantly closed. �e equivariant
curvature may be constructed for any equivariant bundle B over M by choosing
a T -invariant connection r on B with curvature RB . �en, again, we can de�ne
RB.X/ D RB C LX � rVX which is a smooth map from t to the T -invariant
sections of the bundle of algebras ^�T�M ˝ End.B/ . We can then de�ne the
equivariant forms

(55) chB.X/ D TrB
�
exp

�
RB.X/

��
; ToddB.X/ D detB

"
RB.X/

1 � exp
�
�RB.X/

�# ;
where the trace and the determinant are taken in End.B/ . �ese forms are called,
respectively, the equivariant Chern class and the equivariant Todd class of the
bundle B . Note that the latter is only de�ned in a neighborhood of 0 2 t .

Now let us denote by Qb the set of those regular values � of � in t� for
which Eeven and Eodd are isomorphic over ��1.�/ ; clearly, Qb is an open set
containing b .

Observe that since Eeven is isomorphic to Eodd over ��1.Qb/ , we can assume
that the corresponding connections rEeven and rEodd are chosen to coincide
over ��1.Qb/ .
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Applying the above construction to the bundles Eeven , Eodd and TJM , we
obtain the equivariant curvature forms REeven , REodd and RTJM , respectively, and
thus we have

(56) REeven.X; q/ D REodd.X; q/ if �.q/ 2 Qb:

Now we are ready to write down the relevant formula from [BV2] (see also
[BGV], Chapter 8):

�E�˝Lk .expX/

D
1

.2�i/dimM=2

Z
M

chLk .X/
�
chEeven.X/ � chEodd.X/

�
ToddTJM .X/I

this equality is valid for X from the neighborhood U1 of 0 2 t where
ToddTJM .X/ is de�ned.

Writing chE�.X/ for chEeven.X/ � chEodd.X/ and using (54), we can rewrite
this expression as

(57) �E�˝Lk .expX/ D
1

.2�i/dimM=2

Z
M

eikh�;Xi�ik! chE�.X/ToddTJM .X/:

Now we proceed similarly to our analysis of the Atiyah–Bott formula above. We
choose an auxiliary smooth function �1 W T ! Œ0; 1� with compact support in
exp.U1/ , and we write

(58) .2i�/dimM=2
Z
T

�1.t/e��.t/�E�˝Lk .t/ dt

D

Z
M

dimM=2X
jD0

.�ik/j

j Š
!j�

Z
t

�1
�
exp.X/

�
eikh�.q/��=k;Xi chE�.X/ToddTJM .X/ dX:

According to (56), the factor chE�.X; q/ vanishes whenever �.q/ 2 Qb . Denoting
the distance between b and the complement of Qb by ı , we can again assume
that j�.q/ � �=kj > ı whenever � 2 kb . Since both M and the support of �1
are compact, we have bounds on the derivatives of the integrand in (58), which
are uniform in q . Hence we can apply Lemma 52 again to conclude that for
each d , there is a constant Cd , independent of q , such that the integral over t

in (58) is bound by Cdk
�2d . Integrating over M then gives us

Corollary 54. �e integral (58) goes to zero as k !1 faster than any negative
power of k as k !1 .

Finally, we can extend these arguments to all g 2 T , using the generalization
of (57) given in [BV2, �eorem 3.23]. We �rst introduce the twisted versions of
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our characteristic forms: if s 2 T acts trivially on M , then we can de�ne the
twisted Chern character

chB;s.X/ D Tr
�
s exp

�
RB.X/

��
;

and
DB;s D det

�
1 � s�1 exp

�
�RB.X/

��
;

as s acts �berwise in any T -equivariant vector bundle over M .
Now let g 2 T be an arbitrary element, denote by M g the submanifold �xed

by g (thus g acts trivially on M g ) and let NM g be the normal bundle of M g

in M . �en the formula in [BV2] states that

(59) �E�˝Lk .g expX/ D
1

.2�i/dimMg=2

Z
Mg

chLk ;g.X/ chE�;g.X/ToddMg .X/

DNMg ;g.X/

for X in a neighborhood Ug of 0 .
From here on, the arguments are identical to those we gave in the case g D 1 ,

and hence they will be omitted. �e result may be formulated as follows.

Lemma 55. For g 2 T , let Ug be a neighborhood of 0 2 t such that for X 2 Ug
the characteristic classes ToddMg .X/ and DNMg ;g.X/

�1 are de�ned on M g .
�en for any smooth function �g W T ! Œ0; 1� compactly supported in g exp.Ug/ ,
and any � 2 kb , the integralZ

T

�g.t/e��.t/�E�˝Lk .t/ dt

goes to zero faster than any negative power of k .

Now we can easily �nish the proof of the theorem. Indeed, the sets
¹g exp.Ug/j g 2 T º form an open cover of the compact torus T . We can thus
pick a �nite subset S � T such that [g2Sg exp.Ug/ D T . Next, we choose a
partition of unity subordinated to this cover, i.e functions �g W T ! Œ0; 1� , g 2 S
such that �g is compactly supported in g exp.Ug/ and

P
g2S �g D 1 . �en, for

� 2 kb , we haveZ
T

e��.t/�E�˝Lk .t/ dt D
X
g2S

Z
T

�g.t/e��.t/�E�˝Lk .t/ dt:

Each term of the sum goes to zero as k ! 1 uniformly in � , and hence so
does their sum, the expression on the left hand side, which equals F�E�˝Lk . As
F�E�˝Lk is an integer, this completes the proof of �eorem 51.

Finally, we can formulate an important corollary of �eorem 51, which is used
in the paper. Recall De�nition 22 and Proposition 28.
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Corollary 56. Let E� D Eeven ˚ Eodd be a Z2 -graded bundle over M , and
let a � t� be an alcove. If for some 
 2 a , which is a regular value of
� , the T -equivariant bundles Eeven and Eodd are isomorphic on ��1.
/ , then
��ŒE�; a� D 0: In particular, if ��1.
/ is empty, then ��ŒE�; a� D 0 for any
Z2 -graded vector bundle E� .

Proof. According to Lemma 18 and Proposition 28, this follows from the fact
that for a compact b � a and k su�ciently large

� 2 kb ) F�E�˝Lk .�/ D 0:

7. List of notations

� �.E/ – space of smooth sections of the vector bundle E .
� .M;!/ – compact symplectic manifold; E – vector, L – line bundle over
M .
� EC – vector bundle restricted to the submanifold C .
� TM – the tangent bundle of M , J 2 �.End.TM// stands for an almost
complex structure, TJ and NTJ denote the ˙i eigenspaces of J .
� T – compact torus group, t – its Lie algebra, ƒ – weight lattice of T , G
– compact Lie group with maximal torus T and Lie algebra g .
� �G W M ! g� and � W M ! t� – moment maps, corresponding to a not
necessarily positive line bundle.
� F stands for the T -�xed point set of M , which we assume to be �nite.
For p 2 M , we denote by p̂ the list of tangent weights of M at p , and
by ‰p the list of T -weights of Ep ; the weight of Lp equals �.p/ . We will
use the notation ch.Ep/ D

P
�2‰p

e� .
� F� – the Fourier transform/multiplicity function of the formal character �
of T .
� ‚Œˆ " Y � – formal character associated with the list of weights ˆ and
oriented by the vector Y (cf. (12)).
� ıŒˆ"Y; T � – formal quasi-polynomial character, whose multiplicity function
coincides with that of ‚Œˆ"Y � on the tope T (cf. Lemma 18).
� ��ŒE ; a� – the asymptotic character associated to E and � (cf. De�nition 22).
� GS ; gS – connected component of generic stabilizer group of the subset S
of a G -space, and its Lie algebra. In particular, TC and tC stand for the
connected component of the generic stabilizer group of the subset C � M
under the action of the maximal torus.
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� R.ˆ/ – set of linear subspaces spanned by subsets of the list ˆ ; for
S 2 R.ˆ/ and 
 2 t� , denote by 
S the projection of 
 onto S and by
YS;
 the vector in t corresponding to 
S � 
 under the the isomorphism
t Š t� (cf diagram after Remark 35).

� CompT .M/ – set of connected components of �xed point sets of M

with respect to the actions of a subtorus group of the maximal torus T

(De�nition 38).

� For C 2 CompT .M/ , denote by AC the a�ne subspace �.p/C t?C � t� ,
where p 2 C \F (cf. (20)); for 
 2 t� , let 
C be the projection of 
 onto
AC , and let YC 2 t be the vector corresponding to 
C � 
 (cf. diagram
after De�nition 39). Finally, we denote by TermC Œ�; E ; 
� the contribution
of C to the expression of �E in Proposition 40.
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