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braid closure is determined by the linking graph associated with that braid.
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1. Introduction

Braid groups play an important role at the interface between geometry, topology
and algebra. While being special cases of mapping class groups, braid groups
allow for a complete formulation of knot theory, via their geometric realisation in
the 3-sphere [Bir]. Our main objects of interest are positive braids, which form
a monoid that captures the essence of braids while being relatively small. It is
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Figure 1
A positive braid, its brick diagram and linking graph. Regions are coloured
black/white to indicate clockwise/anticlockwise orientation of the boundary cycle.

big in that every braid can be written as a product of a central element with
a positive braid, e.g., by the Garside form [Gar]. It is small in that closures of
positive braids – positive braid links – share very special features with algebraic
links, which they include [EN]. One of these features is that positive braid links
bound canonical genus-minimising Seifert surfaces [Sta], which happen to be
�bre surfaces in the case of non-split braids. �ese surfaces can be constructed
as unions of discs and twisted ribbons by the well-known Seifert algorithm [Sei].
�ey serve as a starting point for a graph theoretical model for positive braid
links, which is the main topic of this article, and which we now describe in a
slightly informal way.

A positive braid can be encoded in a plane graph with vertical lines and
horizontal edges, called brick diagram, see Figure 1. �e number of bricks, i.e.,
innermost rectangles, equals the �rst Betti number of the Seifert surface. Since
all crossings are positive, we can reconstruct a braid word from its brick diagram.
�e linking graph of a brick diagram is a subgraph of its dual graph, where all
edges corresponding to non-linked bricks are deleted. Here a pair of adjacent
bricks is non-linked if their intersection is contained in the interior of a side of
one of the bricks, see again Figure 1.

Linking graphs come with a natural orientation consistent with a checkerboard
colouring (see Section 2 and Figures 1 and 2). �roughout this paper, the term
linking graph refers to the embedded linking graph together with its orientation.
�e isotopy type of the linking graph does not determine the original braid word,
as demonstrated by the pair of positive braids �31 and �1�2�1�2 , whose linking
graph is a single edge. However, these two braids have isotopic closures: the
positive trefoil knot. �is is a special case of our main result.

�eorem 1. �e linking graph of a prime positive braid word ˇ determines the
oriented link type of the closure of ˇ .

It is worth noting that the two standard braid representatives of the torus link
T .p; q/ , .�1�2 : : : �p�1/q and .�1�2 : : : �q�1/

p , have very similar linking graphs:
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Figure 2
An alternative diagram of T .4; 5/

one is the mirror of the other. What is more intriguing, both graphs are realised
by precisely one more braid word:

.�p�pC1 � � � �pCq�1/.�p�1�p � � � �pCq�2/ � � � .�1�2 � � � �q/;

.�q�qC1 � � � �qCp�1/.�q�1�q � � � �qCp�2/ � � � .�1�2 � � � �p/:

�e former is depicted in Figure 2 for .p; q/ D .4; 5/ . It is not too di�cult to
check that these braid words indeed represent the same torus link. In fact, some
linking graphs are realised by many di�erent braid words, for example trees.

�e way of proving �eorem 1 is by reconstructing the monodromy of a prime
positive braid link from its linking graph. With a connected linking graph, we will
associate an abstract surface † with boundary together with a homeomorphism
' W †! † . Such a pair .†; '/ is called an open book and determines a �bred link
in a 3-manifold. Our description makes crucial use of the bipartite nature of the
dual graphs of linking graphs. As we will see, the construction of the open book
.†; '/ extends to all connected checkerboard graphs, i.e., �nite simple connected
plane oriented graphs whose bounded regions carry a checkerboard colouring.
�e orientation of an induced boundary cycle of a black or white face is required
to be in the clockwise or anticlockwise sense, respectively. Furthermore, we
need an additional technical assumption, which is discussed in Section 2. As a
consequence, we obtain a natural extension of the class of prime positive braid
links.

�eorem 2. Every connected checkerboard graph � determines a unique open
book .†; '/ of a strongly quasipositive �bred link L in S3 . If � is the linking
graph of a positive braid word ˇ , then L is isotopic to the closure of ˇ .

Here a strongly quasipositive �bred link is a �bred link whose corresponding
open book supports the unique tight contact structure on S3 [Hed]. �e class of
links associated with connected checkerboard graphs also includes the class of
weight two arborescent links, i.e., links arising as the boundary of a plumbing
of positive Hopf bands along plane trees. Indeed, we will see that for � a plane
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tree with a certain orientation, the corresponding �bred link L coincides with
the �bred arborescent link obtained by plumbing positive Hopf bands along the
tree, as described in [BS].

�e next section makes the de�nition of checkerboard graphs and their relation
to positive braids precise. In order to associate an open book with connected
checkerboard graphs, we need to single out a conjugacy class of Coxeter elements
in certain Artin groups. �is is done in Section 3 and is based on an extension
of Steinberg’s Lemma for trees to checkerboard graphs [Ste]. �e construction
of open books is then carried out in Section 4, and Section 5 contains the core
of the proof of �eorem 2. We observe that �eorem 2 implies �eorem 1.
Section 6 discusses the signi�cance of the orientation of checkerboard graphs, in
particular for trees. In Section 7, we exhibit an example of a checkerboard graph
whose associated knot is neither the closure of a positive braid, nor a weight two
arborescent knot. For this purpose, we discuss how to recover the Seifert matrix
of a knot from its checkerboard graph, and we present a list of all weight two
arborescent knots and positive braid knots of genus �ve or less. �e paper closes
with a list of problems and questions in Section 8.

2. Brick diagrams, linking and checkerboard graphs

A positive braid word is a �nite product of positive generators �1 , �2; : : : ; �n�1
of the braid group Bn on n strands. We may think of a positive braid word
(up to commuting non-adjacent braid generators) as a brick diagram, i.e., a plane
graph with n vertical lines connected by horizontal arcs, one for each crossing.
Brick diagrams are special cases of fence diagrams for strongly quasi-positive
braids, as introduced by Rudolph [Rud1]. �ey naturally embed as retracts into
the canonical Seifert surface associated with the closure of positive braids. �e
bricks thereby correspond to embedded positive Hopf bands, whose core curves
form a basis for the �rst homology group of the Seifert surface. We call two
bricks linked if the intersection number of their core curves is non-zero. �is
happens precisely if they are arranged in the same pattern as the two bricks of
the braids �3i , �i�iC1�i�iC1 , �iC1�i�iC1�i . �e linking graph associated with a
positive braid word is a subgraph of the plane dual graph of the brick diagram,
with one vertex for each brick and one edge for each pair of linked bricks, see
Figures 1, 2 and 3. �is can be seen as a generalisation of Dynkin diagrams for
links of plane curve singularities, compare [Lön, Ex. 1].

As mentioned in the introduction, the plane isotopy type of the linking graph
does not determine the original braid word. If the linking graph is not connected,
it does not even determine the link type of the positive braid’s closure. For
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Figure 3
An intersection tree

example, the two braid words �1�2�2�1 2 B3 , �1�1�3�3 2 B4 de�ne two non-
isotopic positive braid links (one of which is split) with the same linking graph:
two points. Restricting oneself to non-split positive braids does not alleviate this,
since, e.g., �41�22�23 and �21�

4
2�

2
3 de�ne two non-isotopic non-split positive braid

links, but have the same linking graph (a disjoint union of two isolated vertices
and a path of length two). We will therefore only deal with positive braid words
whose closure is prime. �ese are precisely those positive braid words with a
connected linking graph, since positive braids are visually prime [Cro]. By a
theorem of Stallings [Sta], this condition guarantees that the canonical Seifert
surface of the braid closure is a �bre surface.

An important feature of linking graphs is that they come with a checkerboard
colouring, i.e., a black-and-white colouring of their bounded regions, with
alternating colours at all internal edges. Indeed, all regions of a linking graph are
bounded by cycles that look like triangles with a distinguished vertex on the left
or right. We colour these black and white, respectively. Triangles sharing an edge
are of di�erent type, compare Figures 1 and 2. �ere are three types of edges in
a linking graph: vertical edges, edges with positive slope and edges with negative
slope. We orient vertical edges downwards, and the other two types upwards
(see Figure 3): in this way, the boundary cycles of black and white regions are
oriented in the clockwise and anticlockwise sense, respectively. Moreover, an edge
corresponds to a non-trivial intersection of the two homology classes associated
with its endpoints – and this orientation re�ects the sign of that intersection. �is
will be more fully discussed in Sections 4 and 5.

Linking graphs are the motivation for the following de�nition of checkerboard
graphs.

De�nition. A checkerboard graph is a �nite simple oriented plane graph satisfying
two conditions:

� Every bounded region has a coherently oriented induced cycle as boundary.

� �ere exists a set of edges that contains exactly one edge out of the boundary
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of every bounded region, and contains at least one, but not all, edges out of
any oriented cycle.

Some comments on this de�nition are in order. �e set of edges in the second
condition is not part of the data – its existence is required, but no choice of a
speci�c set is made. Note that the second part of the second condition is equivalent
to the requirement that reversing the orientation of the selected edges yields an
acyclic graph. �e �rst condition leaves the orientation of bridges free; on all
other edges, the �rst condition means precisely that the orientation is induced
by a checkerboard colouring of the bounded regions, where the boundaries of
black and white regions are oriented in the clockwise and anticlockwise sense,
respectively.

A linking graph satis�es both conditions, and is thus a special case of a
checkerboard graph. For the second condition, one may select, e.g., all edges
with positive slope. Each of the triangle-shaped regions contains exactly one of
those edges, and reversing the orientation of all those edges means that every
non-vertical edge is oriented towards the left – so there can be no oriented cycles.

Another special case of a checkerboard graph is an embedded tree. It satis�es
both conditions, no matter how the edges are oriented, and so we call oriented
plane trees checkerboard trees. Some plane trees arise as linking graphs of positive
braid words (for example a star with four edges, obtained from �22�1�3�

2
2�1�3 ,

see Figure 3), but not all (for example a star with �ve or more edges). In any
case, the degree of a vertex of a linking graph cannot exceed six.

In the next two sections, we will associate an open book with any connected
checkerboard graph.

3. Coxeter elements for checkerboard graphs

Let � be a checkerboard graph. We consider the right-angled Artin group
A.�/ de�ned by � , i.e., the group given by the following presentation. �ere is
one generator for every vertex of � , and two generators commute if and only
if there is no edge connecting the corresponding vertices in � . �ere are no
other relations. We are interested in elements of A.�/ which are represented
by words in which every generator appears exactly once (and to the power 1 ).
Such elements have been widely studied in the context of Coxeter groups, and are
called Coxeter elements. We will call the corresponding words Coxeter words. �e
remainder of this section is devoted to the proof of the following lemma, which
associates a unique conjugacy class of Coxeter elements with each checkerboard
graph.
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Lemma 3. �ere is an enumeration v1; : : : ; vn of the vertices of a given
checkerboard graph � that traverses the vertices on the boundary cycle of any
black (or white) region of � in clockwise (or anticlockwise) order. �e graph �

determines the Coxeter element v1v2 � � � vn 2 A.�/ uniquely, up to conjugation.

As we will see, this enumeration is re�ected in the product order of positive
Dehn twists in a positive braid monodromy.

Proof. �e main tool for the proof is a one-to-one correspondence (due to
Shi [Shi]) between acyclic orientations on � (not to be confused with the given
checkerboard orientation on � ) and enumerations v1; : : : ; vn of the vertices of
� , up to shu�ing, i.e., switching the indices of vi and viC1 , if there is no edge
between them. �e correspondence is de�ned as follows: given an enumeration,
we orient an edge towards its endpoint of higher index. Note that this does give
an acyclic orientation, and shu�ing the enumeration does not change the resulting
orientation. Conversely, with an acyclic orientation, we associate the following
enumeration: start the enumeration with all sources, in any order. Remove the
sources, and continue inductively with the sources of the remaining graph. Here,
we use that any acyclicly oriented �nite graph has at least one source. Note that
at any stage, no two sources are connected by an edge; so enumerating them in
a di�erent order just gives a shu�ed enumeration. One easily checks that these
two assignments are mutually inverse.

Now, let us prove the existence of the enumeration as claimed. By the second
condition of the de�nition of a checkerboard graph, we may select a set of
edges containing exactly one edge out of the boundary of every bounded region
and at least one, but not all edges of every oriented cycle. �en, starting from
the checkerboard orientation of � , one can reverse the orientation of every
selected edge. �is yields an acyclic orientation, and we claim that the associated
enumeration of vertices has the desired property. To see this, consider a region
of � . Its boundary is an induced cycle C . �e acyclic orientation disagrees with
the checkerboard orientation of � for exactly one of the edges in C , so that
C has one sink, and one source. �e source must come �rst in the enumeration
of vertices; then all the other vertices must follow in clockwise or anticlockwise

Figure 4
Pushing down a maximal vertex in an acyclic
orientation yields another acyclic orientation
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order, for a black or white region, respectively. �is is precisely the condition
imposed on the enumeration.

Finally, let us show that all such enumerations de�ne the same Coxeter element
v1v2 � � � vn 2 A.�/ , up to conjugation. Note that the associated acyclic orientation
o gives the enumeration back, up to shu�ing. Moreover, shu�ed enumerations
de�ne the same Coxeter element. In this way, we can associate Coxeter elements
with acyclic orientations. Suppose we are given another enumeration satisfying
the condition of the lemma, and denote its associated acyclic orientation by p .
We now have to show that the Coxeter elements associated with o and p are
conjugate.

For this purpose, we consider a local move transforming one acyclic orientation
of � into another, called pushing down a maximal vertex. By this, we mean
reversing all the edge orientations around a maximal vertex, i.e., a sink, see
Figure 4. Suppose o0 is obtained from o by pushing down v . Since v is a sink,
we may assume after shu�ing that the enumeration v1; : : : ; vn associated with o

satis�es v D vn . �en vn; v1; : : : ; vn�1 is an enumeration associated with o0 . So
the Coxeter elements associated with o and o0 are conjugate.

�us it remains to prove that o and p are related by a sequence of pushing
down maximal vertices. For that, it is su�cient that o and p have the same �ow
di�erence, as proven by Pretzel [Pre]. Here, the �ow di�erence of an orientation
assigns to each oriented cycle in � the number of edges traversed in the positive
sense (with respect to the orientation) minus the number of edges traversed in
the negative sense (with respect to the orientation). Note that due to its linearity
properties, the �ow di�erence is determined by its values on a cycle basis of � .
A natural cycle basis is given by the boundary cycles of the bounded regions,
and the condition the enumerations satisfy immediately implies that they have the
same �ow di�erences: each clockwise or anticlockwise boundary cycle around
a black or white region, respectively, has �ow di�erence equal to its length
minus 2.

4. Checkerboard open books

�e goal of this section is to associate an open book with each connected
checkerboard graph. Furthermore, if we start with the linking graph of a positive
braid, we wish to obtain the open book associated with the �bre structure of the
complement of its closure.

4.1. Constructing the surface and the twist curves. Let � be a connected
checkerboard graph. For each vertex vi of � , let Ai be an oriented annulus
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Figure 5
�e embedding into the plane determines a circular ordering of edges
around a vertex, which is the circular order in which the annuli are glued.

and let i � Ai be a core curve of Ai , oriented in the anticlockwise sense. We
construct the surface † by suitably gluing the annuli Ai .

For every vertex v of � , the planar embedding of � determines a circular
ordering of the incident edges. We glue two annuli Ai and Aj along a rectangle
Rk if their corresponding vertices vi and vj , respectively, are connected by an
edge ek in � . �e rectangle Rk is taken so that its four edges alternatingly belong
to the boundary of Ai and Aj . Furthermore, we want our gluing to respect the
circular orderings induced by the planar embedding of � . More precisely, let
vi be a vertex of degree ` and let ek1

ek2
� � � ek`

be the circular ordering of the
incident edges. �en, the circular ordering of the gluing rectangles on Ai should
read Rk1

Rk2
� � �Rk`

, see Figure 5 for an example.
A priori, there are two possibilities for two annuli Ai and Aj to be glued

together along a rectangle Rk . Either the intersection of the corresponding core
curves i and j is positively or negatively oriented. In order to determine how
we glue, we make use of the orientation of � . If ek is an oriented edge starting
at vi and ending at vj , we choose the core curve i to intersect the core curve
j positively, as shown in Figure 6.

Figure 6
�e orientation of an edge determines in which
of the two possible ways two annuli are glued.
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Figure 7
A checkerboard graph � and the corresponding abstract
surface † . Discs are glued in along the red (�ne dashed)
and the blue (coarse dashed) boundary components.

As a last step, for each coloured region of � , we glue one disc along the
boundary of the surface we obtained so far. More precisely, for a white region, we
glue a disc along the inner boundary of the annuli corresponding to the vertices
on the boundary of the region, for a black region, we glue a disc along the outer
boundary. �is is shown for an example in Figure 7.

4.2. Choosing the twist order. So far we have constructed a surface † and a
collection of simple closed curves i from a connected checkerboard graph � .
In order to de�ne an open book, we also have to specify a mapping class (up to
conjugation) on † . We want to de�ne the mapping class as a product of positive
Dehn twists along the curves i such that every curve gets twisted along exactly
once. What we have to do is choose a product order, i.e., enumerate the vertices
of � . Note that the two twists along i ; j commute if the corresponding vertices
are not connected by an edge. �erefore, the subgroup of the mapping class group
of † generated by Dehn twists along the i is a quotient of the Artin group
A.�/ . Applying �eorem 3 now gives a mapping class of † , uniquely de�ned
up to conjugation. We call this conjugacy class the checkerboard monodromy
associated with the connected checkerboard graph � . Recalling �eorem 3, one
sees that the checkerboard monodromy comes from a product order v1 � � � vn in
which the vertices on the boundary of a bounded region of � occur in cyclic
order – clockwise for a black region, and anticlockwise for a white region.
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Remark. Our construction of an open book can be generalised in several ways. �e
orientation of a checkerboard graph simultaneously determines the intersection of
the core curves of the annuli and the twist order of the monodromy. But of course
one can specify these two parameters in a di�erent fashion, and independently
from each other. More generally, one can allow di�erent types of graphs or even
negative Dehn twists, cf. constructions of Hironaka [Hir1, Hir2]. Our focus is to
capture the features of open books associated with positive braids.

5. Proof of �eorem 1 and �eorem 2

�is section is devoted to the proof of �eorem 2. We �rst deal with the
case where � is the linking graph of a positive braid word. We show that the
checkerboard monodromy de�ned in Section 4 equals the monodromy of the
�bred link de�ned by the closure of the positive braid.

Let †ˇ be the canonical Seifert surface associated with a prime positive braid
word ˇ . By a theorem of Stallings, the closure of ˇ is a �bred link and †ˇ is
a �bre surface [Sta]. Furthermore, the monodromy is a product of positive Dehn
twists along certain curves ˛i corresponding to bricks in the brick diagram.
�e canonical Seifert surface and the twist curves are depicted for the braid
ˇ D �2�1�3�2�1�2�3�2 in Figure 8. More precisely, the canonical Seifert surface
is obtained by successive positive Hopf plumbing via adding hook-like handles
from bottom to top within every column, proceeding from the rightmost column
to the leftmost. Every added handle after the �rst within a column describes a
positive Hopf plumbing, with the core curve passing through the added handle
and the one just below, compare with Figure 8. �is leads to a Hopf band Hi

with core curve ˛i per brick of the brick diagram of ˇ . By de�nition, two core
curves ˛i and j̨ intersect if and only if their corresponding bricks are linked. In
particular, there is a one-to-one correspondence between vertices of the linking
graph � and Hopf bands Hi with core curves ˛i in the plumbing construction
of the canonical Seifert surface of ˇ .

�e monodromy of a single positive Hopf band is a positive Dehn twist along
its core curve. �erefore, the monodromy of a positive braid is a product of positive
Dehn twists along the core curves of the Hopf bands in the plumbing construction,
since the monodromy of a plumbing is the product of the monodromies of the
plumbing summands [Gab, Sta]. We remark that in the cyclic order of this Dehn
twist product, the twists corresponding to a boundary cycle around a black or
white region appear in a clockwise or anticlockwise order, respectively.

Let †� and i be the surface and the twist curves, respectively, obtained
by the construction described in Section 4 applied to the linking graph � of
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Figure 8
�e canonical Seifert surface of the positive braid
�2�1�3�2�1�2�3�2 is the �bre surface. �e monodromy
is a product of positive Dehn twists along the grey curves.

ˇ . By �eorem 3, we are done if we can show that abstractly, the surface †ˇ
and the core curves ˛i agree with the surface and the twist curves obtained by
the construction discussed in Section 4 applied to the connected checkerboard
graph � associated with ˇ . Here we orient the core curves ˛i so that they run
anticlockwise when drawn as in Figure 8.

Claim. �ere exists a homeomorphism from †ˇ to †� , sending the oriented
core curves ˛i to the oriented twist curves i .

De�ne a bijection f from the intersection points of the core curves ˛i to
the intersection points of the twist curves i . Such a bijection exists, since by
construction, both sets of intersection points are in a natural bijection with the
set of edges of � . �is bijection f can be extended to a homeomorphism
F W

S
˛i !

S
i , respecting the orientations of the curves ˛i and i . �is

extension is possible since the cyclic order in which a core curve ˛i intersects
other core curves j̨ equals the cyclic order of the edges incident to the vertex
corresponding to ˛i . By construction, the same holds for the curves i .

Note that the unions
S
˛i and

S
i �ll the surfaces †ˇ and †� , respectively,

i.e., the complement consists of discs and boundary-parallel annuli. To prove the
claim, it therefore su�ces to show that a boundary cycle of †ˇ n

S
˛i bounds
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a disc if and only if its image under F bounds a disc in †� . �is is indeed
the case, since both

S
˛i and

S
i bound exactly one disc for every bounded

region of the complement of the checkerboard graph � . Furthermore, in both
cases, the disc lies to the right or to the left of the curves depending on whether
the region is coloured black or white, respectively, compare with Figures 7 and 8.
�is proves the claim and hence the part of �eorem 2 concerning positive braids
and their linking graphs.

We still need to prove that open books associated with arbitrary connected
checkerboard graphs de�ne strongly quasipositive �bred links in S3 . For this,
we use that a positive stabilisation of an open book does not change the type
of the resulting contact 3-manifold (see, e.g., [Etn, Section 2]), and preserves
strong quasipositivity [Hed, Rud2]. We claim that the open book associated with
a connected checkerboard graph with n vertices is obtained from the trivial open
book .D2; Id/ by n times iterated positive stabilisations. Indeed, every connected
checkerboard graph � � R2 contains a vertex v adjacent to the unbounded
region such that � n v is still a connected checkerboard graph. By construction,
the surface †� is obtained from †�nv by adding several 1-handles and 2-handles.
By cancellation, one may equivalently add a single 1-handle. �e monodromy of
†� is given (up to conjugation) by composing the monodromy of †�nv with a
Dehn twist along a curve that runs once through that 1-handle. �is is precisely
a positive stabilisation. �erefore, we are done by induction on the number of
vertices.

6. Orientation, invertibility and mutants

In this section, we discuss the e�ect a change of orientation or of the embedding
of a checkerboard graph has on the associated link. Let us �rst focus on bridges.
�roughout this section, let � be a connected checkerboard graph with a bridge
e and let �1; �2 be the connected components of � ne , which are also connected
checkerboard graphs.

Lemma 4. �e �bre surface †� is a plumbing of †�1
and †�2

.

Proof. �e edge e determines a square on each of †�1
and †�2

, as indicated
in Figure 5. �ose squares lie on the annuli corresponding to the endpoints of
e . Note that there are two ways to plumb †�1

; †�2
in an orientation-preserving

way along those squares. �ose two ways are distinguished by the sign of the
intersection of the core curves of the two annuli corresponding to the endpoints of
e . Consider the plumbing surface for which that sign conforms with the orientation
of the edge e in the sense of Figure 6. �is plumbing surface is a �bre surface in
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S3 whose monodromy is the product of the monodromies of †�1
; †�2

[Sta]. It
is canonically homeomorphic to †� , and the order in which Dehn twists appear
in the product of the monodromies respects the condition of Section 4.2. �us
the product of monodromies equals the checkerboard monodromy. �is concludes
the proof, since the monodromy uniquely determines the isotopy type of the �bre
surface.

Proposition 5. Reversing the orientation of e yields a checkerboard graph � 0

whose associated link L0 is a positive mutant of L .

Proof. By �eorem 4, the �bre surfaces †� ; †�0 arise as the two di�erent possible
plumbings of †�1

; †�2
along the squares given by e . �ere is a ball in S3 whose

intersection with †� is one of those plumbed �bre surfaces. �e boundary of
this ball intersects †� in the plumbing square, and L in four points; cutting
the ball out, rotating it by 180ı and regluing it yields †�0 . So L and L0 are
mutants, and since the mutation was performed without reversing the orientation
of the tangle contained in the ball, they are positive mutants.

Next, let us consider �� , the checkerboard graph obtained from � by reversing
the orientation of all edges. Denote by �L the inverse of L , i.e., the link obtained
by reversing the orientation of all components of L .

Proposition 6. �e link associated with �� is �L .

Proof. Let ' be the checkerboard monodromy of †� . Reversing the orientation
of †� yields a Seifert surface �†� for �L , which is a �bre surface with
monodromy '�1 . Indeed, one easily sees that the mapping torus of .�†� ; '�1/
is homeomorphic to the mapping torus of .†� ; '/ . �us it su�ces to check that
the open book associated with �� is equivalent to .�†� ; '

�1/ . To this end, we
�rst observe that the surface associated with �� di�ers from †� merely by the
intersections of core curves of annuli – all of them are of opposite sign. So the
surface associated with �� is indeed canonically homeomorphic to �†� . Next,
we note that the monodromy ' is de�ned as a product T1T2 � � �Tn of Dehn twists
in a certain order. From the construction of checkerboard open books it is evident
that taking the reverse order yields the monodromy of the surface associated with
�� . Moreover, if we identify that surface with �†� , each individual twist is
the inverse of the corresponding twist on †� , because all Dehn twists on †�

as well as on �†� are positive. Hence the monodromy associated with �� is
T �1n � � �T

�1
2 T �11 D '�1 . �is concludes the proof.

�e two previous propositions immediately yield the following.
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�13n300

¤
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Figure 9
�e �rst row shows the invertibility of the weight two arborescent
knot 13n241 , using its checkerboard tree. In the second row, an
attempt to show the invertibility of 13n300 (a mutant of 13n241 )
in a similar fashion fails – and indeed, 13n300 is not invertible.

Corollary 7. A weight two arborescent link is a positive mutant of its inverse.

Note that every knot is a mutant of its inverse, but not necessarily a positive
one. To wit, positive mutants have S-equivalent Seifert forms [KLi], whereas
general mutants need only have algebraically concordant Seifert forms [KL]; so a
knot such as the P.7; 3; 19/ pretzel knot, whose Seifert form is not S-equivalent
to its transpose [Tro], is not a positive mutant of its inverse.

Let us now come to the relevance of the embedding of a checkerboard graph
� . As a �rst observation, we claim that the open books associated with � and
the mirror image of � in the plane are equivalent. Indeed, re�ecting � has the
e�ect of reversing for all vertices the cyclic orders of incident edges. �e same
e�ect is achieved by reversing the orientations of all core curves, which does not
change the open book.

Re�ecting only part of � , however, may change the open book. Take a bridge
e , and denote as before the connected components of � n e as �1; �2 . One may
attach �1 along e to a mirror image of �2 , forming a connected checkerboard
graph � 00 . �e surface †�2

is unchanged by re�ecting �2 , but †�1
and †�2
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are plumbed di�erently in � 00 . So the link associated with � 00 equals the link
associated with � 0 (the graph obtained from � by reversing the orientation of e ).

Corollary 8. Reversing the orientation of e , and taking the mirror image of one
of the connected components of � ne yields a connected checkerboard graph e� .
�e links associated with � and e� are isotopic.

In particular, if �1 or �2 is symmetric under re�ection, the orientation of e
does not matter for the link type of L . In those cases, we omit the orientation
of e from drawings of � . Figure 9 shows example applications of �eorem 6
and �eorem 8.

Corollary 9. Let � be a checkerboard tree. Let V be a subset of the vertices,
containing exactly one endpoint of each edge. Reversing the cyclic orderings
of edges around all vertices in V yields a checkerboard tree with associated
link �L .

Proof. Apply �eorem 8 successively to every edge e of � , obtaining a graphe� with associated link L . At every step, half of � is re�ected, and the cyclic
ordering of edges around vertices in that half changes. If this happens an even
number of times for some vertex – so the cyclic ordering around that vertex has
not changed in total – then it must have happened an odd number of times for
all adjacent vertices. So the cyclic ordering is reversed for precisely the vertices
in V (or precisely for those not in V , in which case we replace e� by its mirror
image). Finally, reversing the orientations of all edges of e� yields the graph
given in the statement, and so the associated link is �L by �eorem 6.

Aside from �eorem 5, there are other moves on checkerboard graphs that
yield mutants. Namely, let � be a connected checkerboard graph with a cut-vertex
v . Let �1; : : : ; �n be the connected components of � n v , and �i the subgraph
of � induced by �i [ ¹vº . One may glue together the �i along their copies of
the vertex v , in any cyclic order around v . In this way one obtains a family
of .n � 1/Š connected checkerboard graphs, whose associated links are positive
mutants. Up to re�ection, at most .n�1/Š=2 of these graphs are di�erent, so this
will yield non-isotopic mutants only for vertices of degree 4 or higher. One may
also reverse the orientations of the �i , which will result in mutants which are
generally not positive.

Finally, let us compare the oriented links associated with checkerboard
trees with Bonahon–Siebenmann’s unoriented arborescent links [BS], which are
associated with plane unoriented weighted trees. First o�, since the weights give
the self-linking of the plumbed bands, we will set all weights equal to C2 , so all
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bands are positive Hopf bands. With this restriction on the weights, Bonahon and
Siebenmann associate links with unoriented plane trees ‚ . �e bands are plumbed
in such a way that the core curve of any �xed band intersects the core curves
of all adjacent bands with the same sign. We choose an orientation of ‚ that
makes every vertex a sink or a source, and denote the tree with this orientation by
� . �ere are precisely two such orientations for ‚ . Our construction associates
with � an oriented link – and forgetting its orientation gives the unoriented link
the Bonahon–Siebenmann construction associates with ‚ . Conversely, given an
oriented plane tree � , one may simultaneously change its embedding and its
orientation using �eorem 8, without changing the associated link. By a repeated
application of this move, one obtains an oriented plane tree � 0 , all whose vertices
are sinks and sources. Forgetting the orientation gives an unoriented tree ‚ with
which Bonahon and Siebenmann associate a link of the same unoriented type as
the link we associate with � .

Hence our and Bonahon–Siebenmann’s construction give the same set of
(unoriented) links. Still, the orientation of edges is crucial for the purpose of
recovering positive braid links from their linking graph. Indeed, there exist pairs
of positive braid words (see, e.g., Figure 10) whose linking graphs are trees that
are isotopic as unoriented plane graphs – but not as oriented plane graphs. �e
associated links must then be mutant, but they may be of di�erent unoriented
link types. Consequently, one cannot recover the unoriented link type of a prime
positive braid link from its linking graph deprived of its orientation.

13n241 :
�3

1�
2
2�

2
1�2�3�

3
2�3

�13n300 :
�3

1�
2
2�

2
1�3�2�4�

3
3�4

Figure 10
Two positive braid words with the same unoriented checker-
board graph, and closures of di�erent unoriented knot type
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7. Positive braids of small genus

�is section is devoted to an example of a connected checkerboard graph whose
associated link is neither a positive braid link, nor a weight two arborescent link.
A linking graph has maximal degree at most 6; so it is easy enough to come
up with checkerboard graphs � that are neither linking graphs nor trees. But the
link associated with such a � could nevertheless be isotopic to one associated
with a linking graph or a checkerboard tree.

More concretely, let us consider the checkerboard graph shown in Figure 11.
Splitting along the bridge that is drawn thick, one can see that the associated knot
K is a plumbing of the trefoil and the knot 13n5016 . In general, it is di�cult to
show that a given �bred positive knot such as K is not the closure of a positive
braid. Moreover, our construction does not directly give a knot diagram of K .
Fortunately, it is possible to compute the Seifert matrix and hence the Alexander
polynomial of K from � , see �eorem 10 below. �ere are only �nitely many
positive braid knots of any �xed genus g , and one can list them (see below
for details). It turns out that no positive braid knot of genus 6 has the same
Alexander polynomial as K – and so K is not the closure of a positive braid.

Proposition 10. Let � be a connected checkerboard graph. Fix an enumeration
v1; : : : ; vn of its vertices as in �eorem 3. �e corresponding core curves 1; : : : ; n
of Hopf bands give a basis of the �rst homology group of the associated �bre
surface † (cf. Section 4). With respect to this basis, one �nds the following
matrices:

� �e intersection form of † has the antisymmetric Gram matrix B given
by Bij D 1 if there is an edge vi ! vj , and Bij D 0 if there is no edge
between vi and vj .

� �e Dehn twist along k acts on H1.†/ by the matrix Sk with Skij equal
to 1 if i D j , equal to Bij for i D k ¤ j , and equal to 0 otherwise.

� �e monodromy acts on H1.†/ by the matrix S D Sn � : : : � S1 .

Figure 11
A connected checkerboard graph whose associated knot is
neither weight two arborescent, nor a positive braid knot
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� If .S � 1/ is invertible (e.g., for a knot), then † � S3 has Seifert matrix
A D B � .S � 1/�1 .

Proof. �e formulae for the matrix of the intersection form and of the monodromy
are evident from the construction of †� . For the matrices of Dehn twists, note
that a twist along i changes precisely the homology classes of those j that
intersect i non-trivially. �e formula for the matrix of the Seifert form is taken
from [Lev]; it follows from the well-known relationships B D A> � A and
S D A�1A> .

To exclude that the knot is associated with a checkerboard tree, one could use
a similar brute-force argument. However, we have a more conceptual obstruction
at our disposal: the signature of the knot is 8, and we claim that a weight
two arborescent knot of genus 6 has signature 10 or 12. Indeed, let � 0 be a
checkerboard tree. Let .v1; v2/ be an edge of � 0 and denote the components of
� 0 n .v1; v2/ by � 01; �

0
2 with vi 2 �

0
i . Suppose neither � 01 nor � 02 has signature

defect, i.e., the symmetrised Seifert form restricted to the subspace of homology
generated by � 0i is positive de�nite. �en � 0 has signature at least 10. �e case
remains that at least one of � 01; � 02 has defect, w.l.o.g. take � 01 . Trees with �ve or
less vertices have no defect, and there are precisely two trees with six vertices and
defect (cf. [Baa]). So if � 02 has defect, too, then � 01 and � 02 must both be equal
to one of two possible trees with six vertices; but those trees correspond to links
with three and �ve components, respectively, and their plumbing cannot yield a
knot. So � 02 cannot have defect. Now assume that .v1; v2/ has been chosen such
that � 01 has the minimal number of vertices. �en � 01 n v1 has no defect, and so
� 0 n v1 does not have defect, either. �us � n v has signature at least 10 .

Figure 12 shows all positive braid knots and all weight two arborescent knots
(for that class, such a list is much easier to compile than for braids) with genus
up to 5. Let us give some details on how it was obtained. A positive braid knot
K of genus g can be written as the closure of a positive braid word on n strands
for some n , with the property that all generators �1; : : : ; �n�1 appear at least
twice. It follows that n � 2g , which means that there is only a �nite number of
braid words one has to consider to �nd all braid knots of a �xed genus. Using a
computer, one may iterate through all these words, and use knotscape to identify
the knots. To save time, one may restrict oneself to a smaller set of braid words,
e.g., using conjugation, one may suppose that every word begins with �1 . We
compiled a list of prime positive braid knots of genus 6 or less, which will
be made available on the second author’s homepage. Such a list has also been
compiled by Stoimenow. �e two lists are in complete agreement.1

1 Personal communication, June 22, 2017.
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g D 1; 2; 3 W
31

T.2; 3/

51

T.2; 5/

71

T.2; 7/

819

T.3; 4/

g D 4 W
91

T.2; 9/

10124

T.3; 5/
10139 10152 11n77

g D 5 W
11a367

T.2; 11/

12n242 12n472 12n574 12n679 �12n679

12n688 �12n688 12n725 12n888 13n241 13n300 �13n300 13n604

13n981 13n1104 �13n1104 13n1176 13n1291 13n1320 13n2405

13n4587 13n5016

14n5644

Figure 12
All positive braid knots and all weight two arborescent knots with genus
�ve or less, including all such knots with twelve or fewer crossings.
Only the edge orientations which matter for the knot type are drawn.
All knots on this page except the last three are both positive braids
and weight two arborescent. Boxes contain groups of mutant knots.
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8. Perspectives

�e classi�cation of arborescent links allows for a complete understanding of
when two plane trees de�ne the same link [BS] (see also [Ger]). Namely, two
unoriented trees give the same positive �bred link if and only if they are related
by the move described in �eorem 9. We are looking for a re�ned move in the
oriented setting to distinguish oriented isotopy classes of checkerboard tree links.

Problem 11. Are any two checkerboard trees with isotopic associated oriented
links related by the reverse-and-re�ect move of �eorem 8?

One may check on the basis of Figure 12 that this does indeed hold for
checkerboard trees whose associated links are knots of genus 5 or less. If it
did hold in general, as a consequence one could decide the invertibility of a
weight two arborescent link, and more generally �nd and distinguish its weight
two arborescent mutants, just by considering the combinatorics of its checkerboard
tree. Stoimenow [Sto], on the other hand, has found mutant positive braid knots,
such that the mutation cannot be seen directly from a positive braid representation.
However, these knots (16n93564 and 16n179454 ) are also weight two arborescent,
and the mutation is indeed visible from their checkerboard trees. �is is a case
in point that some properties of positive braid knots are more easily visible from
their linking graphs than from their braid representations.

�e situation is more complicated for connected checkerboard graphs which
are not trees – there are pairs of checkerboard graphs that are di�erent, even
disregarding orientation and embedding, with isotopic links. One reason for that
is braid conjugation, which has a somewhat mysterious e�ect on linking graphs,
but does not change the link type. For example, the linking graph associated
with the two conjugate braids �1�2�n1 �2�1 and �21�2�

n
1 �2 is a cycle and a tree

of Dynkin type DnC2 , respectively. On the other hand, a Markov move has no
e�ect on the linking graph of a positive braid.

Problem 12. Find a complete set of moves relating connected checkerboard graphs
with equivalent links.

�e description of checkerboard graph links being not very explicit, it is hard
to localise them in knot tables. Nevertheless, one can say that many of them
admit diagrams with positive crossings only, e.g., the ones associated with plane
trees and positive braid links. We do not know to what extent the classes of
checkerboard graph links and positive �bred links coincide.

Problem 13. Construct natural diagrams for checkerboard graph links. Are they
all positive?
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Positive braid links and weight two arborescent links have a variety of common
features. Some of these are likely to extend to checkerboard graph links, e.g.,
positivity of the signature invariant. In view of Boileau, Boyer and Gordon’s
work on L-space knots, it is interesting to classify checkerboard graph links
with positive de�nite Seifert form [BBG]. For positive braid links, this boils
down to the classi�cation of simply laced Dynkin diagrams [Baa]. In the case
of positive braid knots, the maximality of the signature invariant is equivalent to
the maximality of the topological 4-genus [Lie].

Problem 14. Classify checkerboard graph links with maximal signature invariant
(� D 2g ) and maximal topological 4-genus (g4 D g ). Do we recover the simply
laced Dynkin diagrams, i.e., trees of type A;D;E ?

Baker’s recent result on concordance of positive braid links extends to
checkerboard graph links, since their �bre surfaces are plumbings of positive
Hopf bands [Bak]. In particular, the existence of two non-isotopic, concordant
checkerboard graph links would give a counterexample to the Slice-Ribbon
conjecture. Our last problem is therefore mildly provocative.

Problem 15. Find a pair of smoothly concordant, non-isotopic checkerboard graph
links.

Acknowledgements. We thank Filip Misev for explaining us the �bre surface
of a cycle, Peter Feller for confusing us with fake cycles, Francis Bonahon for
discussing the symmetries of trees, and Pierre Dehornoy for pointing out that
linking graphs admit a checkerboard colouring.
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