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Some Kähler structures on products of 2 -spheres
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Abstract. We consider a family of Kähler structures on products of 2 -spheres, arising
from complex Bott manifolds. �ese are obtained via iterated P 1 -bundle constructions,
generalizing the classical Hirzebruch surfaces. To each such Kähler structure, we associate
a Bott diagram, which is a rooted forest with an edge labelling by positive integers. We
show that the Bott diagrams classify these Kähler structures up to biholomorphism.
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1. Introduction

In complex geometry, it is interesting to study the class of complex structures
(or Kähler structures) supported on a �xed smooth oriented manifold M . Since
the basic invariants of a complex manifold are the Chern classes, it is tempting to
try and use these to distinguish complex structures on M . In complex dimension
two, the Hirzebruch surfaces Fm are topologically either di�eomorphic to S2�S2
(if m is even), or to P2#P2 (if m is odd). Focusing on the Hirzebruch surfaces
di�eomorphic to S2 � S2 , a celebrated result of Hirzebruch [Hir1] shows that
all the F2k for k � 0 are distinct as complex manifolds, even though they have
identical Chern classes.

In the present paper, we extend Hirzebruch’s result, by considering Z -trivial
complex Bott manifolds. Bott manifolds �rst appeared in work of Bott and
Samelson [BS, Ch. III, Sections 3, 4, 5], though the terminology was introduced
by Grossberg and Karshon [GK, Section 2]. In complex dimension two, the
Z -trivial complex Bott manifolds are precisely the Hirzebruch surfaces F2k . In
complex dimension n , these are compact Kähler manifolds di�eomorphic to
S2 � � � � � S2 D .S2/n . To each n -dimensional Z -trivial complex Bott manifold
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M , we associate a Bott diagram, which is a rooted forest equipped with an edge
labelling by positive integers. Our main result is the following:

Main �eorem. Every n -vertex rooted forest equipped with an edge labelling
by positive integers arises as the Bott diagram of some n -dimensional Z -trivial
complex Bott manifold. A pair of n -dimensional Z -trivial complex Bott manifolds
M1;M2 , are biholomorphic if and only if their Bott diagrams are isomorphic.
Moreover, there is a di�eomorphism � W M1 ! M2 with the property that
��.c.M2// D c.M1/ , where c denotes the total Chern classes.

Our result provides a combinatorial classi�cation of a certain family of Kähler
structures on the products S2 � � � � � S2 D .S2/n . When n D 2 , the only Kähler
structures on S2�S2 are those arising from the Hirzebruch surfaces. When n � 3 ,
we do not know whether these products of 2 -spheres support any other Kähler
structures. Our result also shows that these Kähler structures are indistinguishable
as far as Chern classes are concerned.

Our paper is structured as follows. We review some background material in
Section 2, and prove our main theorem in Section 3. Our argument requires
a reconstruction result for labelled rooted forests, a combinatorial result which
is explained in the Appendix (Section A). Finally, in Section 4, we formulate
a generalization of a well-known problem of Hirzebruch (recently solved by
Kotschick [Kot1], [Kot2]), and explain how it led us to the results in this paper.

2. Background material

2.1. Bott manifolds. Recall that a Bott manifold M n is a complex n -manifold
that admits a Bott tower, namely, M n D Bn and

(2.1) Bn
�n
�! Bn�1

�n�1
���! � � �

�2
�! B1

�1
�! B0 D ¹a pointº

where for each 1 � j � n , Bj D P .O˚ Sj / is the projectivization of the direct
sum of the trivial line bundle O with a holomorphic line bundle Sj over Bj�1 ,
with �j the projection map.

Example. Let us consider the two dimensional Bott manifolds. Clearly B1 D P1 ,
and let us denote by OP1.m/ the line bundle over P1 with �rst Chern class
mŒP1� 2 H 2.P1IZ/ . �en B2 is the Hirzebruch surface Fm D P .O˚OP1.�m//

over P1 , where m is any integer. Since P .E/ is biholomorphic to P .E˝L/ for
any line bundle L , tensoring with the dual bundle .OP1.�m//� D OP1.m/ we
see that there are canonical biholomorphisms Fm Š F�m . �us when considering
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Hirzebruch surfaces as complex manifolds, it is su�cient to consider Fm with
m � 0 . Hirzebruch showed these are all distinct as complex manifolds [Hir1]. He
also showed that all F2k are di�eomorphic to F0 D P1 � P1 Š S2�S2 , while
all F2k�1 are di�eomorphic to F1 D P2#P2 , the one point blow up of P2 .

De�nition 2.1. A Bott manifold M n is called Z -trivial, if its integral cohomology
ring H�.M IZ/ is (graded) ring isomorphic to H�..P1/nIZ/ .

By the work of Masuda and Panov [MP, �eorem 5.1], a Bott manifold M n

is Z -trivial if and only if it is di�eomorphic to .P1/n . In fact, it follows from
Choi and Masuda [CM, Cor. 5.1] that every graded ring isomorphism between
the (integral) cohomology rings of two Z -trivial Bott manifolds is induced by a
di�eomorphism. �is can also be seen directly from the corresponding statement
for .S2/n .

2.2. Projectivization of vector bundles. Let us recall some general facts
concerning projectivizations of vector bundles.

Let E be a holomorphic vector bundle of rank r over a compact complex
manifold B , and let � WM D P .E/! B be the projectivization of E , where �
is the projection map. We adopt the algebro-geometric convention here, namely,
��1.x/ D P .Ex/ is the set of all the hyperplanes (instead of lines) through the
origin in the �ber Ex Š Cr . �en M is again a compact complex manifold, a
holomorphic �ber bundle with �ber P r�1 over B .

Denote by L the dual of the tautological line bundle, then we have the
following two short exact sequences of holomorphic vector bundles over M :

0! O! ��E� ˝ L! TM jB ! 0(2.2)
0! TM jB ! TM ! ��TB ! 0(2.3)

where TM jB is the relative tangent bundle, namely, the kernel of the di�erential
of � . �e �rst Chern class � D c1.L/ satis�es the Grothendieck equation

f .�/ WD �r � �r�1 � ��c1.E/C �
r�2
� ��c2.E/ � � � � C .�1/

r��cr .E/ D 0;

while the cohomology ring (or the Chow ring) of M is generated by the pullback
of that of B and � :

(2.4) H�.M;Z/ WD ��H�.B;Z/ Œ�� =
�
f .�/

�
:

Recall that a section of � is a complex submanifold Z � M such that
�jZ W Z ! B is a biholomorphism. Equivalently, a section of � is given
by a holomorphic map i W B !M such that � ı i D idB . In this case the image
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i.B/ is the submanifold in M biholomorphic to B . Note that the sections of �
correspond to quotient line bundles of E .

To see this, let Q be a holomorphic line bundle on B which is a quotient
bundle of E . As we are using the hyperplane convention for projectivizations,
so P .Q/ Š B is a submanifold of P .E/ D M , which gives a section of � .
Conversely, given a section i W B ! M of � , since the tautological line bundle
L� is a subbundle of ��E� on M , Q D i�L would be a quotient line bundle
of i���E D E on B .

Next, let us specialize to the situation when the vector bundle on B is
E D O ˚ S , the sum of the trivial line bundle with another line bundle S .
Writing s D ���c1.S/ , the above short exact sequences (2.2), (2.3), along with
the Grothendieck equation, gives us

(2.5) c1.TM jB/ D 2� C s; c.M/ D .1C 2� C s/ � ��c.B/; and �2 D �� � s

in the cohomology (or the Chow) ring H�.M;Z/ .

2.3. Cohomology ring of Bott manifolds. Now let us apply these formula to
the j -th stage �j W Bj ! Bj�1 , which is the projectivization of the splitting rank
2 vector bundle O˚ Sj on Bj�1 . We get the following:

H�.Bj ;Z/ D �
�
j H

�.Bj�1;Z/Œ�j �=.�
2
j C �j sj /

c.Bj / D .1C 2�j C sj / � �
�
j c.Bj�1/;

where �sj and �j are the �rst Chern class of ��j Sj and Lj D OBj
.1/ , the dual

of the tautological line bundle on Bj .
Given a Bott manifold M n with Bott tower (2.1), let us write

xj D .�jC1 ı � � � ı �n/
��j

hj D .�jC1 ı � � � ı �n/
�sj

for each 1 � j � n . Note that x1 is the �rst Chern class of the pull back to
M of OP1.1/ on B1 , and h1 D 0 . By an inductive argument, we obtain the
following:

H�.M;Z/ D ZŒx1; : : : ; xn�=.x
2
1 ; x

2
2 C x2h2; : : : ; x

2
n C xnhn/(2.6)

c.M/ D .1C 2x1/.1C 2x2 C h2/ � � � .1C 2xn C hn/(2.7)

where x1; : : : ; xn is a set of generators for H 2.M;Z/ Š Zn , and each hj satis�es

(2.8) hj D aj1x1 C aj2x2 C � � � C aj;j�1xj�1

where all ajk are integers.
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Example. In the special case where all the line bundles Sj are trivial, we get
the product P D .P1/n of n -copies of the complex projective line P1 . In this
case, all hj D 0 and we will denote the corresponding xj by yj . �e above
computations give us:

H�.P;Z/ D ZŒy1; : : : ; yn�=.y
2
1 ; : : : ; y

2
n/(2.9)

c.P / D .1C 2y1/ � � � .1C 2yn/:(2.10)

3. Proof of the Main �eorem

�is entire section is devoted to the proof of the Main �eorem. �roughout
this section, all Bott manifolds will be Z -trivial.

3.1. �e structure of Z -trivial Bott manifolds. We start by analyzing how the
Z -triviality condition a�ects the cohomology elements hj .

For a given a Bott tower on M n , assume that 2 j hj and h2j D 0 for all j .
Write zj D xj C 1

2
hj . Since h1 D 0 , and for each 2 � j � n the corresponding

hj is generated by x1; : : : ; xj�1 , it follows that ¹z1; : : : ; znº generates H�.M;Z/ .
Also, each z2j D 0 by the Grothendieck equation. So de�ning �.yj / D zj

gives a graded ring isomorphism � W H�.P IZ/ ! H�.M nIZ/ , and M n is
Z -trivial. By the result of Choi and Masuda [CM], there is a di�eomorphism
ˆ W M n ! P Š .S2/n , which induces ˆ� D � . Moreover, by the Chern class
formula, we see that �.c.P // D c.M/ .

Conversely, if there exists an isomorphism � W H�.P;Z/ ! H�.M;Z/ , then
we claim that 2 j hj and h2j D 0 for all j . To see this, let us write �.yj / D zj .
We have

H�.M;Z/ D ZŒz1; : : : ; zn�=.z
2
1 ; : : : ; z

2
n/:

For each 1 � k � n , the group H 2k.M;Z/ is a free abelian group generated
by products zI D zi1 � � � zik for all multi-indices I D .i1 � � � ik/ of length k ,
where 1 � i1 < i2 < � � � < ik � n . Note that for any integer linear combination
z D a1z1C � � � C anzn , if z2 D 0 , then aiaj D 0 for all i ¤ j . �us at most one
of these ai could be non-zero.

Now we proceed to show that 2 j hj and h2j D 0 , by induction on j , where
j 2 A WD ¹1; 2; : : : ; nº . First we have h1 D 0 . For j D 2 , since x21 D 0 , we
know that there must be a unique i1 2 A such that x1 D "1zi1 , where "1 D ˙1
since x1 is a primitive element in H 2.M;Z/ . Write x2 D azi1 C z , where z is
a linear combination of zj for j 2 A n ¹i1º . We have h2 D bzi1 since h2 is a
multiple of x1 . Since x2.x2 C h2/ D 0 , we have

.2aC b/zi1z C z
2
D 0:
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Since H 4.M;Z/ is a free abelian group with generators zizj for 1 � i < j � n ,
we conclude from the above equality that 2a C b D 0 and z2 D 0 . So 2 j h2 ,
h22 D 0 , and z D x2 C

1
2
h2 satis�es z2 D 0 , thus equals to "2zi2 for some

i2 ¤ i1 , and "2 D ˙1 .
Now assume that for a �xed 2 � k < n , we already have 2 j hj , h2j D 0 for

each j � k , and x0j WD xj C
1
2
hj D "j zij where i1 , ..., ik are all distinct in A

and "j D ˙1 . Since hkC1 is a linear combination of x01; : : : ; x0k , we can write

hkC1 D b1zi1 C � � � C bkzik

Also, let us write xkC1 D a1zi1 C � � � C akzik C z , where z is a combination of
those zj for j in A n ¹i1; : : : ; ikº . Now by applying the Grothendieck equation,
namely, xkC1.xkC1 C hkC1/ D 0 , we get the equation

kX
jD1

.2aj C bj /zij z C z
2
C

kX
j;lD1

al .aj C bj /zij zil D 0:

Since z cannot be zero, we know that bj D �2aj for each j � k , so 2 j hkC1
and h2

kC1
D 0 . Furthermore, x0

kC1
D z is a square zero primitive element, thus

must be of the form ˙zikC1
for some ikC1 in A n ¹i1; : : : ; ikº .

To summarize, we have established the following (also independently obtained
by J. H. Kim [Kim]):

Lemma 3.1. If M n is a Bott manifold and � is an isomorphism between the
integral cohomology rings of P D .P1/n and M , then for any Bott tower (2.1)
with M D Bn , we have 2 j hj and h2j D 0 for each j , and �.c.P // D c.M/ .

Note that for any holomorphic line bundle Q on B , the projectivizations P .E/

and P .E ˝Q/ are isomorphic to each other. In particular, for Bj D P .O˚ Sj /
over Bj�1 , one can replace Sj by its dual S�j , as

O˚ Sj Š .S�j ˚O/˝ Sj :

�is replacement will not change Bj , but will a�ect the choice of sections Lj
thus a�ecting xj , while hj is replaced by �hj .

By the proof of the lemma above, we know that for any Z -trivial Bott manifold
M n and any Bott tower (2.1) on M , if we write zj D xj C 1

2
hj , then ¹z1; : : : ; znº

is a set of generators for the cohomology ring, with z2j D 0 for each j . For
any 2 � j � n , since h2j D 0 , we know that either hj D 0 , or hj D 2qj z�.j /
for some positive integer qj and �.j / < j . Here we used the fact that we can
replace Sj by S�j without changing the Bott tower to ensure that these qj be
positive (compare with the Example in Section 2.1). From now on, we will make
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these choices, so qj > 0 whenever hj ¤ 0 . �at is, under our choices of these
Sj , each xj is represented by the central sections of �j , and each zj D xj C 1

2
hj

is represented by an e�ective divisor.
Next let us notice that xj as a hypersurface is represented by an .n � 1/ -

dimensional Z -trivial Bott manifold. Indeed, we have that xj is represented by the
hypersurface f �1�j , the preimage of the central section �j of �j W Bj ! Bj�1 , via
the composition f D �nı� � �ı�jC1 . We thus obtain a Bott tower B 0n�1 ! : : :! B 00
for this hypersurface, by setting

(1) B 0i D Bi for i < j � 1 ,

(2) B 0j�1 D �j Š Bj�1 , and

(3) B 0
k
D ��1

kC1
.B 0
k�1

/ � BkC1 for j � k � n � 1 .

To see this Bott tower is Z -trivial, we recall from our discussion above that
this property is characterized in terms of the elements h0i associated to the Bott
tower – it is necessary and su�cient that 2 j h0i and .h0i /2 D 0 (for all i ). When
i � j � 1 , the elements h0i for this Bott tower B 0 coincide with the elements hi
of the original Bott tower B . On the other hand, when k � j , the elements h0

k

for the Bott tower C are the pull-backs, via the inclusion maps B 0
k
� BkC1 , of

the elements hkC1 of the original B . In either case, the condition 2 j h0i and
.h0i /

2 is inherited by the Bott tower B 0 , giving us the desired Z -triviality. We
summarize our discussion so far in the following Lemma.

Lemma 3.2. For any Bott tower (2.1) we can choose the generator sets
¹x1; : : : ; xnº and ¹z1; : : : ; znº so that (i) each z2j D 0 , (ii) each zj is represented
by an e�ective divisor, and (iii) each xj is represented by a smooth hypersurface,
which is itself a Z -trivial Bott manifold of dimension n � 1 .

Obviously, for a given Bott manifold M n , there are many Bott towers on
it. So to sort out all distinct complex structures on P D .S2/n given by the
Bott manifolds, we need to �nd canonical representatives for the Z -trivial Bott
manifolds. �is is the goal of the next section.

3.2. Bott diagrams for Z -trivial Bott manifolds. Let us denote by A D

¹1; 2; : : : ; nº and write A0 D ¹j 2 A j hj D 0º . When A0 ¤ A , we have a
map � W A n A0 ! A satisfying �.j / < j , given by the equation hj D 2qj z�.j / .
Let us denote by A1 D ��1.A0/ , A2 D ��1.A1/ , and so on. It is easy to see
that there exists some positive integer r such that A is the disjoint union of
non-empty sets A0 , A1 , . . . , Ar .

We will say that the level of j 2 A is k if j 2 Ak . It takes � exactly k

times to send a level k element into A0 .
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De�nition 3.3. For a given Bott tower (2.1), we de�ne its Bott diagram to be
the following data: each element of A gives a vertex, each j 2 A n A0 gives a
vertical edge from j to �.j / , marked with a positive integer qj .

In other words, a Bott diagram G in dimension n is a disjoint union
A D A0 [ A1 [ � � � [ Ar into r C 1 nonempty subsets, along with maps
Ar ! Ar�1 ! � � � ! A1 ! A0 and a map q W A n A0 ! ZC . Here A is
the set of n elements and r � 0 .

Two Bott diagrams are considered isomorphic, if there is a bijection from A

to A which commutes with the partition of A and the maps.
We can arrange all the dots in Ak at the same height, and will refer to that

(imagined) horizontal line the level k line (when k D 0 we will also call it
the base line). �e diagram is a graph, with �nitely many connected components
which are trees. Each tree has a distinguished vertex, lying in A0 , which is the
root of the tree. �us from a combinatorial viewpoint, a Bott diagram is a rooted
forest. Clearly, the Bott manifold is a product of lower dimensional ones, with
each factor corresponding to a connected component of the Bott diagram. So M n

is irreducible (in the sense that it is not the product of lower dimensional Bott
manifolds) if and only if the Bott diagram is connected, which occurs if and only
if A0 contains only one element.

Example. To illustrate how these diagrams work, let us �rst consider the case
n D 2 . In this case we have only two possibilities for the Bott diagram: the �rst
one just has two dots lying horizontally, with no edges, representing the surface
P1 � P1 ; and the second one is two dots with a vertical edge connecting them,
marked by a positive integer q . �is corresponds to the Hirzebruch surface F2q .

Example. For n D 3 , we have three horizontal dots, corresponding to P1 �P1 �

P1 ; two dots on the base line, the third dot on top of the left one with a vertical
edge marked q , corresponding to F2q � P1 ; one dot on the base line, two dots
on the level 1 line joining the base point by edges marked with q and p , which
corresponds to the �ber product F2p �P1 F2q ; and �nally, we have three dots
lined up in a vertical line, with two edges marked with p and q (with p on
top). In this case the threefold is M 3 D P .OB ˚ OB.�2p.C0 C qF /// , where
B D F2q is the Hirzebruch surface with F the ruling and C0 the central section
(so C 20 D �2q ). See Figure 1 for an illustration of the possible Bott diagrams.

3.3. Determining biholomorphism type of Z -trivial Bott manifolds. Our goal
here is to complete the proof of our main theorem, by showing the following:
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P1 � P1 � P1 F2q � P1

q

F2p �P1 F2q

p q

P .OB ˚OB.�2p.C0 C qF ///

p

q

Figure 1
Bott diagrams for 3 -dimensional Z -trivial Bott manifolds

�eorem 3.4. Two Z -trivial Bott manifolds of dimension n are biholomorphic
to each other if and only if they have isomorphic Bott diagrams.

Since one can build up a Bott tower from the data of a Bott diagram, we just
need to prove the “only if” part of the statement, namely, if f W M 0 ! M is a
biholomorphism between Z -trivial Bott manifolds, then M 0 and M must have
isomorphic Bott diagrams.

Let us �x a Bott tower on M . By our previous discussion, we know that each
xj is represented by a smooth hypersurface Xj in the sense that xj D c1.Xj / ,
where the divisor Xj is identi�ed with the line bundle associated with it, and
each zj is represented by an e�ective divisor. To be more precise, for any j 2 A0
of level 0 , Zj D Xj is irreducible. For any j 2 A1 , Zj D Xj C qjX�.j / . For
any j 2 A2 , we have

Zj D Xj C qj .Xl C qlX�.l//; where l D �.j / 2 A1:

Note that each Xj is itself a Bott manifold of dimension n� 1 , and the support
of each Zj is a normal crossing divisor.

In the case of a Bott tower, X1 is a �ber of the composition map
� D �2 ı �3 ı � � � ı �n from M n to P1 , and M is covered by the pencil
of the divisor X1 . Given a Bott diagram, for any j 2 A0 , we can choose a Bott
tower on M so that j corresponds to the bottom layer, so we know that M is
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covered by a pencil jXj j of the smooth hypersurface Xj , which we denote by
Yt for t 2 P1 . �ese Yt do not intersect with each other.

We claim that, if D is any e�ective divisor in M homologous to Xj ,
then D 2 jXj j , namely, D is a member of the pencil. To see this, �rst
consider the special case when D is irreducible. If D is not in jXj j , we
may choose a member Y in the pencil so that D \ Y ¤ � . �is codimension
2 subvariety is homologous to 0 , since D � Xj and x2j D 0 , which is a
contradiction since M is projective. �e same argument works when D is just
e�ective.

Now suppose f W M 0 ! M is a biholomorphism. It induces a graded
isomorphism � D f � between the cohomology rings. We want to show that
f induces an isomorphism between the Bott diagrams as well. First we claim
that f induces a bijection between A00 and A0 , the set of level 0 vertices.
Let ¹z1; : : : ; znº and ¹z01; : : : ; z0nº be generators on M and M 0 as before. �en
�.zj / D z

0
�.j /

for some permutation � on A (the sign is positive since zj , z0j are
all represented by non-trivial e�ective divisors). If j 2 A0 , then M is covered
by the pencil Xj D Zj of non-intersecting divisors. Consider the e�ective divisor
D D f .Z0

�.j /
/ in M . D represents zj , thus is homologous to Zj . By the claim

above, we know that D must be irreducible and is a member of the pencil jXj j .
�is means that �.j / lies in A00 . So the level 0 sets of M and M 0 are bijective
to each other.

Note that in the above argument, we furthermore obtained the fact that
f .X 0

�.j /
/ D Xj for j 2 A0 . For j 2 A0 , the smooth hypersurface Xj is itself

an .n � 1/ -dimensional Bott manifold. Its Bott diagram is obtained from that of
M n by deleting the vertex corresponding to j , and pulling down one level in
the tree above this vertex, while keeping everything else unchanged. We will call
this new Bott diagram the card at vertex j . Now since f .X 0

�.j /
/ D Xj , the two

Bott .n� 1/ -manifolds X 0
�.j /

and Xj are biholomorphic, so by induction on the
dimension of the Bott manifolds, we see that the card of the Bott diagram G0

at vertex �.j / must be isomorphic to the card of the Bott diagram G at the
vertex j .

When A0 has more than one elements, we have at least two cards, and we
can use the set of cards to reconstruct the Bott diagram, see Proposition A.3 and
Remark A.4. �is implies that G and G0 must be isomorphic to each other. When
A0 has only one element, the Bott diagrams agree as graphs, but we additionally
need to show that the marking numbers qj for j 2 A1 should match those on
M 0 (see Remark A.4).

Without loss of generality, let us assume that A0 D ¹1º D A00 . We already know
that f .X 01/ D X1 , and the card of the Bott graph G at vertex 1 is isomorphic to
the card of the Bott graph G0 at vertex 1 . So f gives a bijection between A1
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and A01 . Again without loss of generality, let us assume that �.z2/ D z02 , where
2 2 A1 and 2 2 A01 . We have

Z2 D X2 C q2X1; Z02 D X
0
2 C q

0
2X
0
1:

Consider the irreducible divisor D D f .X 02/ . We have DCq02X1 � X2Cq2X1 . If
D ¤ X2 , then D \X2 is an e�ective cycle of codimension 2 (could be trivial),
and the intersection

DX2 C q
0
2X1X2 � Z2X2 � Z2.Z2 � q2X1/ � �q2Z2X1 � �q2X2X1;

so the non-trivial e�ective cycle D\X2C.q2Cq02/X1\X2 would be homologous
to 0 – which is impossible since M is projective. So D must be equal to X2 ,
forcing q02 D q2 . So the Bott diagrams of M and M 0 are indeed isomorphic to
each other. �is completes the proof of the theorem.

4. Concluding remarks

Recall that the rational Pontrjagin classes of a smooth manifold are de�ned
using the smooth structure. A celebrated result of Novikov [Nov] shows however
that these classes in fact only depend on the underlying topological structure
(other proofs were given in [Gro], [Ran], [RY], and [RW]). More precisely, if one
has a pair of homeomorphic smooth manifolds, then the homeomorphism can be
chosen to take the total rational Pontrjagin class to the total rational Pontrjagin
class. In the complex setting, the natural analogue to ask is the following:

Question. Which rational polynomials in the Chern classes are smooth invariants
on the class of n -dimensional closed complex manifolds?

Note that we are not assuming the degree of the polynomial equals the
dimension of the manifold. Indeed, in the top degree case, this question was a well-
known conjecture of Hirzebruch – that the only rational linear combinations of the
Chern numbers that are (oriented) smooth invariants are the linear combinations
of the Euler number and Pontrjagin numbers. �is conjecture was con�rmed
by Kotschick (see [Kot1], [Kot2]). Kotschick’s result was recently extended by
Schreider and Tasin [ST], who analyzed, within the class of smooth projective
varieties, which Chern numbers are determined up to �nite ambiguity by the
underlying smooth manifold.

�e situation for lower degrees seems a lot less clear. In lower degree, the
di�eomorphism group of the manifold can act non-trivially on cohomology, so
invariance means up to the action of Di�.M/ on H�.M/ . Borel and Hirzebruch
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[BH, §13.9] (see also [Hir1]) constructed examples of 5 -dimensional complex
�ag manifolds that are di�eomorphic, but have distinct c1 . One can also use
Kotschick’s result to argue that certain homogenous polynomials, whose degree
divides the dimension of the manifolds, cannot give smooth invariants.

Part of the di�culty in addressing this question is the lack of examples. Indeed,
several classes of manifolds are known to support unique Kähler structures – see,
for instance, the rigidity results of Hirzebruch-Kodaira [HK], Yau [Yau] and
Siu [Siu]. In contrast, there are relatively few smooth manifolds that are known
to support multiple distinct Kähler structures. �is motivated our interest in
distinguishing Kähler structures on products of S2 , leading us to complex Bott
manifolds. Note that the space K of Kähler structures on .S2/n D S2 � � � � � S2

remains rather mysterious when n � 3 . For example, we do not know whether
the Kähler structures discussed in this paper lie in distinct connected components
of K (since they all have the same total Chern class).

A. Appendix: Reconstruction of rooted forests

A famous open problem in graph theory is the reconstruction conjecture. �is
conjecture asserts that �nite graphs with at least three vertices are completely
determined by their collection of vertex deleted graphs, see [Har], [BH], [Man]. In
this short appendix, we formulate and prove the analogous conjecture for rooted
forests.

De�nition A.1. A contractible connected graph is called a tree. If such a graph
is marked with a distinguished vertex (the root), we call it a rooted tree. If every
connected component of a graph is a (rooted) tree, then we call the graph a
(rooted) forest.

Given a rooted tree T with n vertices, we can form an associated rooted
forest with n � 1 vertices by deleting the root v of T (and all incident edges).
�is leaves a forest with connected components T1; : : : ; Tk , and we can pick a
root on each tree Ti to be the unique vertex vi of Ti that was incident to v .
We denote this rooted forest by bT , and call its individual trees the children of
the original tree T .

De�nition A.2. Let F be a rooted forest, with connected components the rooted
trees T1; : : : ; Tk . Given a component Ti , we de�ne the associated card to be the
rooted forest with components T1; : : : ; Ti�1; bT i ; TiC1; : : : ; Tk , i.e. we replace the
rooted tree Ti by its collection of children. �e forest F has k associated cards,
each of which is a rooted forest.
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A graph is �nite if it has �nitely many vertices. We can now establish the
reconstruction conjecture for rooted forests.

Proposition A.3. Let F be a �nite rooted forest. �en the set of cards of F
uniquely determines the forest F .

In other words, if one has a pair of forests F1; F2 , and a bijection between the
set of cards of F1 and those of F2 , which has the property that corresponding
cards are isomorphic (as rooted forests), then the original forests have to be
isomorphic.

Proof. We prove the statement using mathematical induction on the number of
cards. Note that the number of cards coincides with the number of roots (and
hence the number of connected components) in the original rooted forest F .

Base case: When there is only one card, we know that there is only one tree T
in the original forest F . �e individual trees in the single card are the children
of T . We can thus reconstruct T by taking a root vertex v , and for each of the
children of T , connecting its root to the vertex v . �e resulting rooted tree is
the single tree in the forest F .

Inductive step: Let there be n � 2 cards in total. We run through the n cards
and locate a maximal tree (i.e., with the maximal number of vertices) among all
the trees appearing on all the cards. Of course there could be more than one
such tree, but we pick one of them. Let us call this chosen maximal tree T . Our
claim is that T must be a rooted tree present in the original forest. If not, then
T appeared on the card after eliminating the root of one of the original trees
Ti of the forest. �is means that T is a proper subgraph of Ti , and that Ti
contains more vertices than T (as the root vi of Ti is not in T ). Since n � 2 ,
there is at least one other card, arising from the deletion of another root vj . �e
corresponding card contains Ti as a rooted tree, contradicting the fact that T
was a maximal tree from all the cards. Note that this argument also shows that
T is not a child of any of the rooted trees in the original rooted forest.

Now that we have established T is one of the original trees in the forest we
are trying to rebuild, let us try and identify the multiplicity with which it occurs
in the forest. Assume the forest consists of n rooted trees, and that r of them
are isomorphic to T (where 1 � r � k ). �en there are precisely r cards that
contain r � 1 copies of T , and n � r cards that contain r copies of T . �us,
we may compute the integer r from the set of cards.

Let F 0 denote the forest obtained from the original forest F by removing
the r copies of T . If we can reconstruct F 0 , then by adding in r copies of
T , we will have reconstructed F . But note that the cards of F 0 are easy to
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identify: just take the n� r cards of F that contain exactly r copies of T , and
remove from each of these cards the r copies of T . �e resulting n� r rooted
forests are the cards of F 0 . Since r � 1 , the rooted forest F 0 has n � r < n

cards, so by the inductive hypothesis, F 0 can be reconstructed from its cards.
Adding in r disjoint copies of T then produces F , and completes the proof of
the Proposition.

Remark A.4. Note that the proof of the proposition also holds for labelled rooted
forests, where the cards are equipped with the natural induced labelling. In this
setting, you need to additionally assume that the number of cards is n � 2 (i.e.,
this is the base case of the induction, and is argued exactly like the inductive
step above). When n D 1 , the only indeterminacy lies in the labels for the edges
in the rooted tree which are connected to the root vertex. �ese are obviously
not recoverable from the single corresponding card. �is is the reason for the
additional argument at the end of the proof of �eorem 3.4.
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