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Basic matrix perturbation theory

Benjamin Texier

Abstract. In this expository note, we give proofs of several results in �nite-dimensional
matrix perturbation theory: continuity of the spectrum, regularity of the total eigenprojectors,
existence and computation of one-sided directional derivatives of semi-simple eigenvalues,
and Puiseux expansions of coalescing eigenvalues. �ese results are all classical, at least in
the case of one-dimensional, analytical perturbations; a standard reference is the treatise of
T. Kato, Perturbation theory for linear operators (Springer, 1980). In contrast with Kato,
we consider perturbations which are not necessarily smooth, in arbitrary �nite dimension,
and for coalescing eigenvalues we do not use the notion of multi-valued function. �e
proofs use Rouché’s theorem, representations of projectors as contour integrals, and the
description of conjugacy classes of connected covering maps of the punctured disk.
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Consider a family of matrices M de�ned over an open set � � Rd :

(1) M W x 2 �!M.x/ 2 CN�N :

We denote spM.x/ the spectrum of matrix M.x/: �e eigenspace associated with
� 2 spM.x/ is the non-trivial kernel kerM.x/��Id: �e generalized eigenspace
associated with � 2 spM.x/ is the largest space in the (strictly increasing until
stationary) sequence ker.M.x/� �Id/k , k � 1: �e index of an eigenvalue � of
M.x/ is the smallest k such that ker.M.x/��Id/k is maximal. An eigenvalue is
said to be semi-simple if the generalized eigenspace coincides with the eigenspace.
In particular, the index of a semi-simple eigenvalue is equal to 1.
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1. Continuity of the eigenvalues

Proposition 1.1. If x ! M.x/ is continuous, then the spectrum of M is
continuous, in the following sense: given x0 2 � , given �0 2 spM.x0/ with
multiplicity m as a root of the characteristic polynomial of M.x0/ , for any small
enough r > 0 , there exists a neighborhood U of x0 in � , such that for all
x 2 U , the matrix M.x/ has m eigenvalues (counting multiplicities) in B.�0; r/ .

Proof. �is is a consequence of Rouché’s theorem (see for instance the Corollary
to �eorem 20 in Chapter 4 of [Ahl]), which states that if f; g are holomorphic
in NB.�0; r/ � C , and if jf � gj < jgj in @B.�0; r/ , then f and g have the
same number of zeros (counting multiplicities) in the open ball B.�0; r/ .

Let ….�; x/ D det.� �M.x// , holomorphic in � and continuous in x: By
�niteness of the spectrum, if r > 0 is small enough, then ….�; x0/ has only one
zero in the closed ball NB.�0; r/ , with multiplicity m: In particular, j….�; x0/j > 0
on the boundary @B.�0; r/ , and the inequality

(2) h.x/ D max
@B.�0;r/

j….�; x/ �….�; x0/j � j….�; x0/j < 0

holds at x D x0: Inequality (2) still holds in a neighborhood of x0: Indeed, by
continuity of … in .�; x/ , for all � 2 @B.�0; r/ , there can be found ˛� > 0 , such
that j….�; x/ �….�; x0/j < j….�; x0/j for jx � x0j < ˛� and j� � �j < ˛� with
� 2 @B.�0; r/: �e family of open sets ¹� 2 @B.�0; r/; j� � �j < ˛�º , indexed
by � 2 @B.�0; r/ , covers the compact boundary @B.�0; r/: A �nite subcover is
indexed by i 2 I: �e minimum ˛ D mini ˛�i

is positive. �en, for all x such
that jx � x0j < ˛ , we have h.x/ < 0: �us, by Rouché’s theorem, applied with
f D ….�; x/ and g D ….�; x0/ , with x �xed in U D B.x0; ˛/ , the function ….�; x/
has the same number of zeros as ….�; x0/ in B.�0; r/ , counting multiplicities.
�is means that M.x/ has exactly m eigenvalues in B.�0; r/ , for any x 2 U ,
which concludes the proof.

We assume continuity of M in the following. In particular, Proposition 1.1
applies. Let

S WD
[
x2�

spM.x/ � ¹xº D
°
.�; x/ 2 C ��; det

�
� �M.x/

�
D 0

±
be the spectrum of the family of matrices M , and let the projection

(3) � W .�; x/ 2 S �! x 2 �;

so that the spectrum of matrix M.x/ is the �ber ��1.¹xº/ .
�e multiplicity of a point .�; x/ 2 S is the algebraic multiplicity of � in

spM.x/ , that is the order of � as a root of the characteristic polynomial of M.x/ .
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A point .�0; x0/ 2 S is said to have constant multiplicity if locally around
.�0; x0/ , there exists only one eigenvalue of M.x/ , not counting multiplicity.

Corollary 1.2. Around a point of constant multiplicity, the projection � is a
local homeomorphism. If the whole spectrum of M.x0/ has constant multiplicity,
then � is a covering map at x0 , and the number of sheets is equal to the number
of distinct eigenvalues around x0:

Proof. If .�0; x0/ has constant multiplicity, the continuous branch of eigenvalues �
given by Proposition 1.1 is a continuous section of the projection � , such that
�.x0/ D �0: �us in restriction to a neighborhood of .�0; x0/ , the projection �

is a homeomorphism. If the whole spectrum ¹�1; : : : ; �pº of M.x0/ has constant
multiplicity, then in addition the �bers have constant cardinality, equal to p ,
around x0: �us � is a covering map.

If a point in S does not have constant multiplicity, it is said to be a coalescing
point in the spectrum. �e associated multiplicity is strictly greater than one.

Coalescing points in the spectrum are not necessarily isolated, even if M is
smooth. Consider for instance the case � D R; and let F be a closed set in R:

�ere exists a smooth a � 0 such that F D a�1.¹0º/: �en for 
0 1

a.x/ 0

!
every point in ¹0º � F is a coalescing point in the spectrum.

Proposition 1.3. If � � R , or if � is an open subset of C , and if M.x/ is a
polynomial in x 2 � , then the spectrum has a �nite number of coalescing points.

Proof. We may work with irreducible components …j of the characteristic
polynomial … (a polynomial in two variables, � and x ). For every such
component, …j and @�…j are relatively prime. In particular (see for instance
�eorem 3 in chapter 8 of [Ahl]), there are a �nite number of x such that …j .�; x/
and @�…j .�; x/ have a common root �.x/: �ese common roots

�
x; �.x/

�
are

precisely the coalescing points in the spectrum.

We say that .�; x/ is a isolated coalescing point in the spectrum (of the family
of matrices M introduced in (1)) there exists a neighborhood U of .�; x/ in
C�� such that

�
U n ¹.�; x/º

�
\S comprises only points of constant multiplicity.

Corollary 1.4. If .�0; x0/ is an isolated coalescing point in the spectrum, then if
" > 0 is small enough, the restriction of the projection � W S\��1.B.x0; "/�/!
B.x0; "/

� is a covering map. Here ��1.B.x0; "/
�/ is the inverse image of the

punctured ball B.x0; "/�:
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Proof. Identical to the proof of Corollary 1.2, since the �bers above the (connected)
punctured ball have constant cardinality.

At a coalescing point in the spectrum, eigenvalues may fail to be di�erentiable,
even if M is smooth. �e canonical example is

(4)
 
0 1

x 0

!
; x � 0:

Regularity issues for the eigenvalues are examined in Sections 3 and 4.

2. Cauchy formulas

We use notation S for the spectrum of the continuous family of matrices M ,
as de�ned in Section 1.

Proposition 2.1 (Cauchy formula for total eigenprojectors). Let .�0; x0/ 2 S , and

 a closed, positively oriented curve in C , which does not intersect spM.x0/ ,
and the interior of which intersects spM.x0/ at �0 only. �en for x close to x0 ,

(5) P.x/ D
1

2i�

Z



�
� �M.x/

��1
d�

is the sum of the projectors onto the generalized eigenspaces associated with
eigenvalues of M.x/ which lie in the interior of 
: In particular, the projector
P is as regular as M:

Above and below, projectors onto generalized eigenspaces (equivalently,
generalized eigenprojectors) are implicitly parallel to the direct sum of the other
generalized eigenspaces.

Proof. If .�0; x0/ has constant multiplicity, or if it is an isolated coalescing point
in the spectrum, then there is a constant number of distinct eigenvalues near �0
for x close to x0: In general, however, for x close to x0; the number of distinct
eigenvalues of M.x/ near �0 may depend on x . Let j.x/ be this number, and
J.x/ be the total number of distinct eigenvalues of M.x/ . �us for x close to
x0; the eigenvalues �1.x/; : : : ; �j.x/.x/ belong to the interior of 
; while the
other eigenvalues �j.x/C1.x/; : : : ; �J.x/.x/ do not.

�e spectral decomposition of M.x/ is

(6) M.x/ D
X

1�j�J.x/

�
�j .x/CNj .x/

�
Pj .x/;
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where the Pj are projectors onto generalized eigenspaces, such that

(7) Id D
X

1�j�J.x/

Pj .x/; Pi .x/Pj .x/ D 0 if i ¤ j;

and the Nj are the associated nilpotent components, such that
Nj .x/Pj .x/ D Pj .x/Nj .x/; and Ni .x/Pj .x/ D 0 if i ¤ j:

By (6) and (7), for x 2 U and � … spM.x/; we have

(8)
�
� �M.x/

��1
D

X
1�j�J.x/

�
� � �j .x/ �Nj .x/

��1
Pj .x/;

which we may rewrite, the matrix Id � �Nj being invertible for all � W�
� �M.x/

��1
D

X
1�j�J.x/

�
� � �j .x/

��1�Id � �� � �j .x/��1Nj .x/��1Pj .x/;
and, expanding in inverse powers of � � �j .x/;

(9)
�
� �M.x/

��1
D

X
1�j�J.x/

��
� � �j .x/

��1
C

X
1�k�rj .x/�1

�
� � �j .x/

��.kC1/
Nj .x/

k
�
Pj .x/;

where rj .x/ � 2 is the index of the nilpotent matrix Nj .x/; that is the smallest
integer k such that Nj .x/k D 0 . We now compute residues:

1

2i�

Z



�
� � �j .x/

��1
Pj .x/ d� D Pj .x/; 1 � j � j.x/;Z




�
� � �j .x/

��1
Pj .x/ d� D 0; j.x/C 1 � j � J.x/;Z




�
� � �j .x/

��.kC1/
Nj .x/

kPj .x/ d� D 0; for all j and all k � 1:

�us P.x/ D
P
1�j�j.x/ Pj .x/ satis�es representation (5) for x close to, and

di�erent from, x0 . �e above also shows that at x D x0; the right-hand side of (5)
is the eigenprojector onto the generalized eigenspace associated with �0 .

Corollary 2.2. Around a point .�0; x0/ of constant multiplicity in the spectrum,
the associated eigenvalue and generalized eigenprojector are as regular as M;
and we have

(10)
�
�.x/CN.x/

�
P.x/ D

1

2i�

Z



�
�
� �M.x/

��1
d�;

where x ! �.x/ is the local branch of eigenvalues such that �.x0/ D �0; P is
the associated projector, and N the associated nilpotent.
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Note that in the case of simple roots of the characteristic polynomial of M; the
regularity of the eigenvalues follows directly from the implicit function theorem.

Proof. �e constant multiplicity hypothesis implies that the total eigenprojec-
tor P.x/ from Proposition 2.1 is the generalized eigenprojector onto the unique
eigenvalue �.x/ of M.x/ near �0 . �us, by representation (5), the eigenprojec-
tor P is as regular as M .

Next we use a spectral decomposition of M.x/ in order to express �.� �

M.x//�1; for � 2 C; as a sum of projectors, as we did for .��M.x//�1 in (8)
in the proof of Proposition 2.1:

�
�
��M.x/

��1
D �

�
���.x/�N.x/

��1
P.x/C

X
2�j�J.x/

�
�
���j .x/�Nj .x/

��1
Pj .x/;

where �.x/ is the eigenvalue of M.x/ which is equal to �0 at x0; and the
�j .x/; for 2 � j � J.x/ are the other eigenvalues of M.x/ . For x close to x0;

the eigenvalues �j .x/ are far from �0 . Computing residues as in the proof of
Proposition 2.1, we �nd that if the interior of 
 contains �0 and is small enough:

(11)
1

2i�

Z



�
�
� �M.x/

��1
d� D

1

2i�

Z



�
�
� � �.x/ �N.x/

��1
P.x/ d�:

We now expand in powers of .� � �.x//�1 W

�
�
� � �.x/ �N.x/

��1
D �

�
� � �.x/

��1
C

X
1�k�r.x/�1

�
�
� � �.x/

��.kC1/
N.x/k;

where r.x/ is the (possibly x -dependent) index of N.x/; for x close to x0; and
then again compute residues:

1

2i�

Z



�
�
� � �.x/

��1
P.x/ d� D �.x/P.x/;

1

2i�

Z



�
�
� � �.x/

��.kC1/
N.x/kP.x/ d� D N.x/P.x/; k � 1:

With (11), this implies representation (10), from which we deduce that the map
x !

�
�.x/ C N.x/

�
P.x/ is as regular as M . Taking the trace, we �nd that

x ! m�.x/ is as regular as M; where m � 1 is the multiplicity of � .

Corollary 2.3. If .�0; x0/ is an isolated coalescing point in the spectrum, with
multiplicity m > 1; we have

(12)
X

1�j�m0

�
�j .x/CNj .x/

�
Pj .x/ D

1

2i�

Z



�
�
� �M.x/

��1
d�;

where x ! �j .x/; for 1 � j � m0; are the distinct branches of eigenvalues such
that �j .x0/ D �0; for some m0 � m; and the matrices Pj are the associated
projectors, and Nj the associated nilpotents.
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Proof. For all x 2 U n ¹x0º; where U is some neighborhood of x0; the matrix
M.x/ has the same number of distinct eigenvalues in a neighborhood of �0 .
Let m0 be this number, less than or equal to m; the multiplicity of �0 . Let
�1; : : : ; �m0 be these eigenvalues. It su�ces to reproduce the computations of the
proof of Corollary 2.2, where each �j plays the same role as � in the proof of
Corollary 2.2, to arrive at (12).

3. Hölder estimates

Proposition 3.1. If M is di�erentiable at x0; then for any local branch � of
eigenvalues of M around x0; we have the bound

(13) j�.x/ � �.x0/j � C.M/jx � x0j
1=m;

locally around x0; with C.M/ > 0; where m is the index of .�.x0/; x0/; as
de�ned in the introduction.

If .�.x0/; x0/ has constant multiplicity and M is locally Lipschitz, then by
Corollary 2.2 the eigenvalues are actually Lipschitz, locally around x0; which
of course is much better than (13) in the case m > 1 . Estimate (13) however
accurately describes the eigenvalue behavior in the canonical coalescing case (4),
for which m D 2 .

Proof. Let 
 be a path around �.x0/ and P be the associated total eigenpro-
jector, as in Proposition 2.1. �en P is di�erentiable at x0; just like M; by
Proposition 2.1. For x close to x0; let u.x/ be a unitary eigenvector associated
with �.x/ . We have no information on the regularity of u . For x close to x0;

we have �
M.x/ � �.x0/

�m
P.x/u.x/ D

�
�.x/ � �.x0/

�m
u.x/:

Taking norms, this givesˇ̌
�.x/ � �.x0/

ˇ̌m
D
ˇ̌�
M.x/ � �.x0/

�m
P.x/

ˇ̌
:

Since m is the index of .�.x0/; x0/; we have .M.x0/ � �.x0/mP.x0/ D 0 . �us
we may write the above asˇ̌

�.x/ � �.x0/
ˇ̌m
D
ˇ̌�
M.x/ � �.x0/

�m
P.x/ �

�
M.x0/ � �.x0/

�m
P.x0/

ˇ̌
;

and we conclude by di�erentiability of x ! .M.x/ � �
�
x0/
�m
P.x/ .
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Remark 3.2. Without appealing to the Cauchy formula of Proposition 2.1, we can
show that � satis�es j�.x/��.x0/j � C.M/jx�x0j

1=p , where p is the multiplicity
of .�.x0/; x0/; as follows. We denote �0 D �.x0/ . �e characteristic polynomial
….�; x/ D det

�
� �M.x/

�
factorizes into … D …0…1; where …1.�0; x0/ ¤ 0;

and …0.�; x0/ D .� � �0/
p . �e degree of …0 is equal to p; the multiplicity

of .�0; x0/; and …0 is unitary. We may focus on …0 in the following. Let �
be a branch of eigenvalues such that �.x0/ D �0 . Expanding …0 in powers of
�.x/ � �0; we �nd, since @j

�
…0.�0; x0/ D 0 for 0 � j � p � 1 W

…0

�
�.x/; x0

�
D .pŠ/�1

�
�.x/ � �0

�m
CO

�
j�.x/ � �0j

�pC1
:

Besides, the matrices M being di�erentiable at x0; the characteristic polynomial
… is di�erentiable in x at x0; and so is …0 W

…0

�
�.x/; x

�
D …0

�
�.x/; x0

�
CO

�
jx � x0j

�
� 0:

�us
.pŠ/�1

�
�.x/ � �0

�p
CO

�
j�.x/ � �0j

�pC1
D O

�
jx � x0j

�
;

which implies (13), with p instead of m . We have m � p; and the inequality
may of course be strict, so that the bound of Proposition 3.1 is stronger than the
one proved here in this Remark.

�e estimate of Proposition 3.1 is much improved in the semi-simple case:

Proposition 3.3. If M is di�erentiable at x0; and if .�0; x0/ is an isolated
coalescing point such that �0 is a semi-simple eigenvalue of M.x0/; any local
branch � of eigenvalues of M such that �.x0/ D �0 has a one-sided directional
derivative in every direction, and, for all Ee 2 Rd ;

lim
t!0
t>0

�.x0 C t Ee / � �.x0/

t
2 spP.�0; x0/M 0.x0/ � Ee P.�0; x0/;

where P.�0; x0/ is the generalized eigenprojector onto the generalized eigenspace
at .�0; x0/; and parallel to the direct sum of the other generalized eigenspaces.
In particular, the eigenvalues are Lipschitz:ˇ̌

�.x/ � �.x0/
ˇ̌
� C.M/jx � x0j;

locally around x0; with C.M/ > 0 .

See Corollary 3.6 below for an improvement on Proposition 3.3.
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Proof. Let m be the multiplicity of �0; and �1; : : : ; �m0 ; 2 � m0 � m; the
distinct eigenvalues that coalesce at x0 with value �0 . By Corollary 2.3,Z




�
�
� �M.x0 C h/

��1
d� D

X
1�j�m0

�
�j .x0 C h/CNj .x0 C h/

�
Pj .x0 C h/;

where h 2 Rd is small and 
 is a suitable curve in C . Above, Nj and Pj are
the nilpotent and projector associated with �j . By Proposition 2.1,Z




�
� �M.x0 C h/

��1
d� D P.x0 C h/ WD

X
1�j�m0

Pj .x0 C h/:

�us

(14)
Z



.� � �0/
�
� �M.x0 C h/

��1
d�

D

X
1�j�m0

�
�j .x0 C h/ � �0 CNj .x0 C h/

�
Pj .x0 C h/;

By di�erentiability of M at x0 W�
��M.x0Ch/

��1
D
�
��M.x0/

��1
C
�
��M.x0/

��1
M 0.x0/�h

�
��M.x0/

��1
Co.h/:

Since �0 is semi-simple, the spectral decomposition at x0 is

M.x0/ D �0P.�0; x0/CM.x0/
�
Id � P.�0; x0/

�
;

where P.�0; x0/ is the generalized eigenprojector. �us�
� �M.x0/

��1
D .� � �0/

�1P.�0; x0/C
�
� �M.x0/

��1�Id � P.�0; x0/�;
so that

.� � �0/
�
� �M.x0 C h/

��1
D P.�0; x0/

C .� � �0/
�
� �M.x0/

��1�Id � P.�0; x0/�
C P.�0; x0/M

0.x0/ � h.� �M.x0//
�1

C .� � �0/
�
� �M.x0/

��1�Id � P.�0; x0/�M 0.x0/ � h�� �M.x0/��1
C o.h/:

We now compute residues. First, by choice of 
; de�nition of P.�0; x0/ and
Proposition 2.1,

1

2i�

Z



�
� �M.x0/

��1
d� D P.�0; x0/:



258 B. Texier

Second, Z



.� � �0/
�
� �M.x0/

��1
d� D 0;

and Z



.� � �0/
�
� �M.x0/

��1�Id � P.�0; x0/� d� D 0;
andZ




.� � �0/
�
� �M.x0/

��1�Id � P.�0; x0/�M 0.x0/ � h�� �M.x0/��1 d� D 0;
since in all three cases the integrands do not have poles in the interior of 
 .
From (14) and the above, we deduce

(15)
X

1�j�m0

�
�j .x0 C h/ � �0 CNj .x0 C h/

jhj

�
Pj .x0 C h/

D P.�0; x0/M
0.x0/ �

h

jhj
P.�0; x0/C o.1/:

Equating spectra, evaluating at h D t Ee; for t > 0; and taking the limit t ! 0 (as
we may by Proposition 1.1), we arrive at the result.

Remark 3.4. If .�0; x0/ has constant multiplicity, then by Corollary 2.2,
the branch of eigenvalues � and the associated eigenprojector P are as
smooth as M . If M is di�erentiable, the proof of Proposition 3.3 shows that
�0.x0/ � hP.�0; x0/ D P.�0; x0/M

0.x0/ � hP.�0; x0/ . A shortcut here consists in
di�erentiating the identity M.x/P.x/ D �.x/P.x/; for x close to x0; which
gives

M 0.x/P.x/CM.x/P 0.x/ D �0.x/P.x/C �.x/P 0.x/;

and then, since PP 0P � 0 (simply because P is a projector), by applying P to
the left and the right of the above identity, we �nd PM 0P D �0P .

Lemma 3.5. Given .�0; x0/ in the spectrum of M; with index m; if M is q � 1
times di�erentiable at x0; denote M0 the Taylor expansion of M at x0 :

(16) M.x/ DM0.x/C jx � x0j
qR.x0; x/;

where M0 is a degree-q polynomial in x � x0; and R.x0; x/! 0 as x ! x0 .
�en, for any branch � of eigenvalues of M such that �.x0/ D �0; for some
branch � of eigenvalues of M0; we have

(17) �.x/ D �.x/C o.jx � x0j
q=m/:
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Proof. Let
M.x; y/ DM0.x/C y; y 2 CN2

:

�en, M.x0; 0/ D M0.x0/ D M.x0/ . In particular, the point .�0; x0; 0/ has
multiplicity m in the spectrum of M . Let � be a local branch of eigenvalues of
M such that �.x0; 0/ D �0 . By Proposition 3.1, where the variable y 2 CN2 is
seen as a real variable y 2 R2N

2
; we have

(18) �.x; y/ � �.x; 0/ D O.jyj1=m/; for smalljyjandxnearx0:

Specializing to y D jx � x0j
qR.x0; x/ for x near x0 , we observe that, given �

a branch of eigenvalues of M such that �.x0/ D �0 , we have

�.x/ D �
�
x; jx � x0j

qR.x0; x/
�
:

Since �.�; 0/ is a branch of eigenvalues of M0; we deduce (17) from (18) and
the fact that R.x0; x/! 0 as x ! x0 .

With the help of Lemma 3.5, we may remove, in the statement of Propo-
sition 3.3, the assumption that .�0; x0/ is an isolated coalescing point in the
spectrum:

Corollary 3.6. If M is di�erentiable at x0; and if .�0; x0/ is a coalescing
point such that �0 is a semi-simple eigenvalue of M.x0/ , then the conclusion
of Proposition 3.3 holds. �at is, the assumption that .�0; x0/ is an isolated
coalescing point in the spectrum can be removed in Proposition 3.3.

Proof. Let (16) be the Taylor expansion of M at x0; with q D 1 . �e
eigenvalue �0 of M.x0/ is also a semi-simple eigenvalue of M0.x0/ . Consider
one-dimensional perturbations x D x0 C t Ee; where Ee is given in Rd , and
t 2 R . Proposition 1.3 applies to the family of matrix polynomials in one variable
t ! M0.x0 C t Ee/ . In particular, the coalescing point .�0; 0/ is isolated in the
spectrum of t !M0.x0C t Ee/ . We may thus apply Proposition 3.3: for any branch
t ! �.t/ of eigenvalues of t !M0.x0 C t Ee/ , we have

(19) lim
t!0
t>0

�.t/ � �.0/

t
2 spP.�0; x0/M 0.x0/ � Ee P.�0; x0/:

Here we used M.x0/ D M0.x0/ , so that the relevant generalized eigenprojector
for M0 at .�0; x0/ coincides with the projector for M , and M 0.x0/ DM

0
0.x0/ .

Now given � a branch of eigenvalues of M such that �.x0/ D �0 , by
Lemma 3.5 with q D m D 1 we have

�.x0 C t Ee/ � �.t/ D o.t/;
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for some branch � of eigenvalues of t !M0.x0C t Ee/ . �us, with (19), we have

�.x0 C t Ee/ D �.x0/C ˛t C o.t/; t > 0;

where ˛ is in the spectrum of P.�0; x0/M 0.x0/ � Ee P.�0; x0/ . �is is precisely
the conclusion of Proposition 3.3.

4. Puiseux expansions

We describe eigenvalues around a coalescing point, following the approach of
[Tex].

Consider a point .�0; x0/ 2 S , and suppose that M is q � 1 times
di�erentiable at x0 , so that the Taylor expansion (16) holds. We reproduce
(16) here:

M.x/ DM0.x/C jx � x0j
qR.x0; x/; R.x0; x/! 0 as x ! x0:

�e entries of matrix M0 are polynomials of degree q in x � x0 2 Rd . In
particular, M0 has an extension to Cd . Let Ee 2 Rd be a �xed spatial direction,
and consider

S0 WD
°
.�; z/ 2 C � B.0; "/; det

�
M0.x0 C zEe/ � �Id

�
D 0

±
;

where B.0; "/ � C is the open disk centered at 0 and with radius " > 0 in the
complex plane. We denote �0 the projection

�0 W .�; z/ 2 S0 �! z 2 B.0; "/:

By Proposition 1.3, if " is small enough then S0 has only .�0; 0/ as a coalescing
point. �us by Corollary 1.4, the restriction of �0 to S0 \ ��10 .B.0; "/�/ is a
covering of B.0; "/� if " is small enough. Let V be a connected component of
S0 \ ��10 .B.0; "/�/ . Since B.0; "/� is connected and locally path-connected, the
restriction Q�0 of �0 to V is a covering map with base B.0; "/� W

Q�0 W .�; z/ 2 V �! z 2 B.0; "/�:

Lemma 4.1. �e covering map Q�0 is conjugated to the covering p W z ! zm
0 of

B.0; "/� for some m0 2 N� that is at most equal to the multiplicity of .�0; x0/ .
�at is, there exists a homeomorphism  such that the following diagram is
commutative:

V - p�1
�
B.0; "/�

�
?

Q�0

B.0; "/�

�
�
�	

p
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Proof. Let �1.x0CzEe/; : : : ; �m0.x0CzEe/ be the distinct eigenvalues of M0 which
takes values in V for z 2 B.0; "/� . �e number of these eigenvalues is constant
over B.0; "/� , and at most equal to the multiplicity of .�0; x0/ . In particular,
Q�0 is an m0 -sheeted covering of B.0; "/� . Connected coverings of a punctured
ball in C are determined, up to isomorphism, by their numbers of sheets (see
for instance [Mas, Chapter V, �eorem 6.6]). �us Q�0 is conjugated to p , by a
homeomorphism  .

Based on Lemma 4.1, we may give Puiseux expansions of eigenvalues around
a coalescing point:

Proposition 4.2. If .�0; x0/ is a coalescing point in the spectrum of M , with
index m , and if M is q � 1 times di�erentiable at x0 , then for any local branch
� of eigenvalues of M which coalesce at x0 with value �0 , any Ee 2 Rd , there
exists a smooth map � de�ned in Œ0; t0� , for some t0 > 0 , and a positive integer
m0 that is at most equal to the multiplicity of .�0; x0/ , such that

(20) �.x0 C t Ee / D �.t
1=m0

/C o.tq=m/;

for 0 � t � t0 .

By Proposition 3.1, we also know that j�.x0 C t Ee / � �.x0/j D O.t1=m/ . In
particular, �.0/ D �0 , and, if m0 > m , then the �rst derivative or derivatives of
� are equal to 0 at t D 0 W �.k/.0/ D 0 for 0 < k < m0=m .

Proof. Given " > 0 and V as in the discussion preceding Lemma 4.1, let � be
a local section of Q�0 , that is a branch of eigenvalues of M0.x0 C zEe/ . We have
Q�0.�/ � Id , hence, by Lemma 4.1, p ı �1 ı� � Id . �us  �1 ı� is a section
of p , meaning an m0 -th root of unity:

(21) �.z/ D �.!z1=m
0

/;

where � is the �rst component of  , and ! is a given m0 -th root of unity.
We now specialize to a local section � which is de�ned at some t0 > 0 ,

so that
�
t0; �.t0/

�
2 V . �en, the set ¹

�
t; �.t/

�
; 0 < t � t0º is connected in

S0\��10
�
B.0; "/�

�
, by continuity of � , hence included in the connected component

V . �us equality (21) holds for small enough t > 0 . In particular,

�.tm
0

/ D �.!t/; for 0 < t � t0;

implying that t ! �.!t/ is as regular as � , hence analytical (by Corollary 2.2,
since only 0 is a coalescing point and M0 is analytical). �us, t ! �.!t/ , being
analytical in 0 < t � t0 and bounded around t D 0 , is analytical in Œ0; t0� , so
that (21) holds for all 0 � t � t0 , with �.0/ D �.0/ .
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Let �nally � be a branch of eigenvalues of M such that �.x0/ D �0 . By
Lemma 3.5, for some branch � of eigenvalues of M0 , we have

�.x0 C t Ee / D �.t/C o.t
q=m/:

Together with (21), this implies (20), with a slight change of notation for �:

Bibliographical note. �e Cauchy formula of Proposition 2.1 is found in Equa-
tion (1.16), Paragraph 1.4, Chapter 2, in Kato [Kat]. �e proof of Proposition 3.1
is borrowed from Saad ([Saa, Proposition 3.3 in Section 3.1.5]). �e existence of
directional derivatives (Proposition 3.3) is found in �eorem 2.3, Paragraph 2.3,
Chapter 2, in [Kat]. Kato refers to Knopp [Kno], without proof, for details on
Puiseux expansions (see [Kat, Chapter 2, Paragraph 1.2]). So do Reed and Simon
([RS, XII.1]). Knopp’s discussion is limited to polynomials in two variables, the
roots of which are described as multi-valued analytical functions; here eigenval-
ues around a coalescing point are seen as perturbations of sections of a rami�ed
covering of a disk in the complex plane.

Remark 4.3 (On hyperbolic polynomials). If the spectrum of M.x/ is real for
all x 2 � , then the family M is said to be hyperbolic. �e eigenvalues are then
locally Lipschitz; see Brohnstein [Bro], or Kurdyka and Paunescu [KP]. In one
space dimension, Rellich’s theorem [Rel] states that analytic families of Hermitian
matrices have analytic eigenvalues and eigenvectors.

Remark 4.4 (On geometric optics). An important consequence of Proposition 3.3
is that the amplitude of a wave-packet is transported by a hyperbolic system at
group velocity; this is a crucial step in the derivation of amplitude equations in
geometric optics, see [Tex] and references therein.

Similar formulas exist for higher derivatives (see [Tex, Proposition 2.6 and
Remark 2.7] and Kato [Kat, Paragraphs 2.1 and 2.2, Chapter 2]). �e corresponding
identity for second-order derivatives describes the Schrödinger correction to the
transport along rays for distances of propagation equal to the inverse of the
wavelength.

Acknowledgement. �e author is grateful to the reviewer, who made a number
of interesting comments, and pointed out Saad’s book.
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