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A sixteen-relator presentation of
an in�nite hyperbolic Kazhdan group

Pierre-Emmanuel Caprace

Abstract. We provide an explicit presentation of an in�nite hyperbolic Kazhdan group with
4 generators and 16 relators of length at most 73 . �at group acts properly and cocompactly
on a hyperbolic triangle building of type .3; 4; 4/ . We also point out a variation of the
construction that yields examples of lattices in QA2 -buildings admitting non-Desarguesian
residues of arbitrary prime power order.
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1. Hyperbolic Kazhdan groups

�e existence of in�nite Gromov hyperbolic groups enjoying Kazhdan’s
property (T) has been known since the origin of the theory of hyperbolic groups,
as a combination of the following results.

� Every simple Lie group possesses a cocompact lattice, by [Bor];

� the rank one simple Lie groups Sp.n; 1/ (with n � 2 ) and F �204 have (T),
by [Kos] (see also [BdlHV, §3.3]);

� if a locally compact group G has Property (T), then so does every lattice
� in G by [Kaz] (see also [BdlHV, �eorem 1.7.1]);

� a cocompact lattice in a rank one simple Lie group is Gromov hyperbolic,
since it is virtually the fundamental group of a closed Riemannian manifold
of negative sectional curvature, see [Gro].

�ose results imply in particular the existence of a negatively curved closed
manifold M of dimension 8 whose fundamental group �1.M/ has Kazhdan’s
property (T) (namely M is covered by the symmetric space of Sp.2; 1/). I am
not aware of any known explicit presentation of the fundamental group �1.M/



266 P.-E. Caprace

in that case. �is is a very interesting and natural problem. It is also natural to
ask whether the fundamental group of a negatively curved closed manifold M

of dimension < 8 can have property (T). If M has dimension 2 or 3 , then
the Hyperbolization �eorem (see [AFW, �eorem 1.7.5] and references therein)
ensures that the fundamental group �1.M/ is a lattice in O.2; 1/ or O.3; 1/ .
�erefore it cannot be a Kazhdan group by [BdlHV, �eorem 2.7.2] (see also
[Fuj] for a more general result on the failure of Property (T) for 3 -manifold
groups). It is currently unknown whether a negatively curved closed manifold of
dimension 4; 5; 6 or 7 can have a Kazhdan fundamental group. Misha Kapovich
pointed out to me that the related problem of �nding objects of either of the
following kinds, is also open:

� a nonpositively curved closed manifold, not homeomorphic to a locally
symmetric space, and with a Kazhdan fundamental group;

� a Kazhdan Poincaré duality group not isomorphic to a lattice in a connected
Lie group.

�e possibility to write down an explicit presentation of an in�nite hyperbolic
Kazhdan group was �rst realized in [BS, Corollary 2], where the geometric
approach to Property (T) via the spectral gap of �nite graphs is exploited (see
[BdlHV, Chapter 5] for an exposition of that approach including a historical
account). �e graphs used in [BS] are certain Cayley graphs of SL2.Z=nZ/ ,
which satisfy the required spectral gap condition for n su�ciently large. An
alternative source of �nite Cayley graphs that enjoy the required spectral condition
is suggested by Alain Valette in his review of [BS], but I am not aware of any
reference where that suggestion was incarnated into an explicit presentation of
a hyperbolic Kazhdan group. A di�erent construction is highlighted by Marc
Bourdon in [Bou, §1.5.3]. It gives rise to cocompact lattices in certain Gromov
hyperbolic triangle buildings, and also relies on the geometric approach to
Property (T). �e advantage is that the �nite graphs on which the spectral gap
condition is tested are �nite generalized polygons, and the eigenvalues of their
incidence matrix is explicitly known by classical results from [FH]. Nevertheless,
the corresponding group presentations one obtains from that construction take
several hundreds relations. �e variations on Bourdon’s construction described in
[Świ] also seem to require a rather large number of relators. Other examples of
in�nite hyperbolic Kazhdan groups are studied in [LMW], but no explicit short
presentation is recorded there.

Cornelia Druţu asked me whether it was possible to use buildings in order
to construct an explicit short presentation of an in�nite hyperbolic group with
Kazhdan’s Property (T). As explained in [DK, Section 19.8]: “while ‘generic’
�nitely presented groups are in�nite and satisfy Property (T), �nding explicit and



A small hyperbolic Kazhdan group 267

reasonably short presentations presents a bit of a challenge”. In that context,
targeting hyperbolic buildings is especially natural in view of the fact that
there exist 5 -relator presentations of in�nite Kazhdan groups acting properly and
cocompactly on buildings of type QA2 , see [Ess, Examples following �eorem 5.8].
Note that those groups cannot be hyperbolic since they are quasi-isometric to
a 2 -dimensional Euclidean building. �e shortest presentation I could �nd in
attempting to answer Cornelia Druţu’s question is the following.

�eorem 1. �e group

E D hx; y; z; t; r j x7; y7; Œx; y�z�1; Œx; z�; Œy; z�;

t2; r73; t rt r;

Œx2yz�1; t �; Œxyz3; t r�; Œx3yz2; t r17�;

Œx; t r�34�; Œy; t r�32�; Œz; t r�29�;

Œx�2yz; t r�25�; Œx�1yz�3; t r�19�; Œx�3yz�2; t r�11�i

is an in�nite Gromov hyperbolic group enjoying Kazhdan’s Property (T). It
is virtually torsion-free, and acts faithfully, properly, cocompactly (not type-
preservingly) on a thick hyperbolic triangle building of type .3; 4; 4/ . In particular
E is quasi-isometrically rigid by [Xie].

In view of the relation Œx; y� D z , the generator z is redundant, and the
presentation of E given in �eorem 1 is equivalent to a presentation with
4 generators and 16 relators. �is modi�cation increases the length of some
of the relators, but one checks that the maximal length of a relator in that
16 -relator presentation of E remains equal to 73 .

To prove that E is in�nite and hyperbolic, we identify E as the fundamental
group of a simple complex E.Y/ of �nite groups, in the sense of [BH,
Chapter II.12]. �e complex in question is described in Section 2. In verifying
that this complex is developable, we provide a complete description of the link of
every vertex. All of them happen to be incidence graphs of generalized polygons,
i.e., bipartite graphs whose diameter is equal to half of the girth. Since the
spectrum of the Laplace operator on such graphs is known by the work of Feit–
Higman [FH], we may invoke a criterion due to Izhar Oppenheim [Opp] in order
to establish that E has Property (T). �e proof of �eorem 1 is completed in
Section 7.

A local characterization of buildings due to Jacques Tits [Tit] ensures that
the global development of the complex E.Y/ , which is a simply connected 2 -
dimensional simplicial complex that we denote by D.Y/ , is a non-thick hyperbolic
triangle building of type .2; 4; 6/ . A canonical procedure, described in Section 7
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and consisting in discarding the edges contained in exactly two 2 -simplices,
allows us to view D.Y/ as a thick hyperbolic triangle building of type .3; 4; 4/ .
�is enables us to invoke a result of Xiangdong Xie [Xie] ensuring that E is
quasi-isometrically rigid.

�e �nal section of the paper records several variations of the construction giv-
ing numerous additional examples of in�nite hyperbolic Kazhdan groups, as well
as groups acting properly cocompactly on QA2 -buildings with non-Desarguesian
residue planes. It also contains an in�nite hyperbolic group, denoted by E3 , ad-
mitting a presentation much shorter than the presentation of E from �eorem 1;
the question whether E3 satis�es Property (T) is open (see Question 13).

�e paper has been written in such a way that it should be accessible to a
reader without any prior knowledge of the theory of buildings. Buildings appear
in Section 6, whose purpose is to clarify the connection between this paper and
the work of Jan Essert [Ess]. However, the proof of �eorem 1 does not rely on
that section. �e only prerequisite needed for the proof of �eorem 1 is some
familiarity with the theory of non-positively curved simple complexes of �nite
groups, developed in [BH, Chapter II.12].

2. A simple complex of �nite groups

We assume that the reader is familiar with the terminology and notation from
[BH, Chapter II.12]. Let � be a geodesic triangle with angles �=6; �=4; �=2 in
the real hyperbolic plane. Let Y be the 2 -dimensional simplicial complex on 11
vertices, denoted by a; b; c1; : : : ; c9 , obtained by glueing 9 isometric copies of �
along their hypothenuse Œa; b� , as depicted in Figure 1. Hence Y is a piecewise
hyperbolic complex. In each triangular face abci , the angle at a is �=6 and the
angle at b is �=4 .
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Figure 1
�e complex Y
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Figure 2
�e vertex and edge groups in E.Y/

Next we construct a simple complex of groups E.Y/ . First we de�ne the
local groups as follows (see Figure 2).

� �e vertex group Ea D ht; r j t
2; r73; t rt ri is the dihedral group of order

146 .

� �e vertex group Eb D hx; y; z j x
7; y7; Œx; y�z�1; Œx; z�; Œy; z�i is the

Heisenberg group over F7 , of order 343 . Notice that the relation z7 D 1

follows from the others in the group Eb .

� �e vertex group Eci
D hwi j w

14
i i is the cyclic group of order 14 for

i D 1; : : : ; 9 .

� �e edge groups Eaci
(resp. Ebci

) are cyclic of order 2 (resp. 7 ).

� �e edge group Eab and the face groups Eabci
are trivial.

�e glueing homomorphisms are de�ned as follows.

� For i D 1; : : : ; 9 , we identify Eaci
with hw7i i � Eci

and Ebci
with

hw2i i � Eci
.

� For i D 1; : : : ; 9 , the homomorphism Eaci
! Ea maps w7i to t; t r; t r17;

t r�34; t r�32; t r�29; t r�25; t r�19 and t r�11 respectively.

� For i D 1; : : : ; 9 , the homomorphism Ebci
! Eb maps w2i to x2yz�1; xyz3;

x3yz2; x; y; z , x�2yz; x�1yz�3 and x�3yz�2 respectively.

It follows from [BH, §II.12.12] that the fundamental group 1E.Y/ admits the
following presentation:
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1E.Y/ D ˝x; y;z; t; r; w1; : : : ; w9 j x7; y7; Œx; y�z�1; Œx; z�; Œy; z�;
t2; r73; t rt r;

w141 ; w
14
2 ; : : : ; w

14
9 ;

t D w71 ; t r D w72 ; t r17 D w73 ;

t r�34 D w74 ; t r�32 D w75 ; t r�29 D w76 ;

t r�25 D w77 ; t r�19 D w78 ; t r�11 D w79 ;

x2yz�1 D w21 ; xyz3 D w22 ; x3yz2 D w23 ;

x D w24 ; y D w25 ; z D w26 ;

x�2yz D w27 ; x�1yz�3 D w28 ; x�3yz�2 D w29
˛
:

It is straightforward to check that the group E from �eorem 1 is isomorphic to
1E.Y/ by observing the existence of natural homomorphisms 1E.Y/ ! E and
E ! 1E.Y/ that are inverse of one another.

In order to prove that E is in�nite hyperbolic, we will rely on �eorem II.12.28
from [BH], which will ensure that the complex E.Y/ is developable. To verify
the hypotheses of that result, we need to understand the shape of the local
developments of that complex at every vertex (see [BH, §II.12.24] for the de�nition
of the local development). To that end, the following terminology will be useful.

Given a group G and a collection ¹Pi j i 2 I º of subgroups of G , the
bipartite coset graph of G with respect to ¹Pi j i 2 I º is the bipartite graph
whose vertex set is the disjoint union of G with

F
i2I G=Pi , and where the

element g 2 G forms an edge with the coset hPi if and only if g 2 hPi . �at
graph is connected if and only if G is generated by the set

S
i2I Pi .

�e following observation follows directly from the de�nitions.

Lemma 2. In the complex E.Y/ , the link at a in the local development around
a is isomorphic, as a simplicial graph, to the bipartite coset graph of the �nite
group Ea D ht; r j t

2; r73; t rt ri with respect to the 9 cyclic subgroups generated
by generated by t; t r , t r17 , t r�34 , t r�32 , t r�29 , t r�25 , t r�19 and t r�11 .

Similarly, the link at b in the local development around b is iso-
morphic, as a simplicial graph, to the bipartite coset graph of Eb D

hx; y; z j x7; y7; Œx; y�z�1; Œx; z�; Œy; z�i with respect to the 9 cyclic subgroups
generated by x2yz�1 , xyz3 , x3yz2 , x; y; z , x�2yz , x�1yz�3 and x�3yz�2 .

We now investigate those graphs in more detail.

3. Projective planes and dihedral groups

We review some basic notions from the theory of projective planes. For a
comprehensive account, we refer to the book [HP].
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A generalized triangle is a bipartite graph with diameter 3 and girth 6 . �e
incidence graph of every projective plane of order q is a generalized triangle
all of whose vertices have degree q C 1 ; conversely, every generalized triangle
whose vertex degrees are all q C 1 , with q � 2 , is the incidence graph of a
unique projective plane of order q .

A di�erence set in a group G is a subset D of G such that every non-trivial
element g of G can be written in a unique way as g D ��1� with �; � 2 D .
Notice that G must have order q2 C q C 1 where q D jD j � 1 . �e following
special instance is directly related to the group E :

Example 3. �e set

D D ¹0; 1; 17; 39; 41; 44; 48; 54; 62º

D ¹0; 1; 17;�34;�32;�29;�25;�19;�11º

is a di�erence set in the cyclic group Z=73Z .

Di�erence sets in groups are tightly connected with projective planes. Details
may be consulted in [HP, § XIII.5] or in [Dem, pp. 105–106]. For our purposes,
we need the following result, showing that a di�erence set in a cyclic group
of order n D q2 C q C 1 allows us to associate a projective plane of order q
to the dihedral group of order 2n . Such a connection was �rst highlighted by
Ivanov–Io�nova in [II, Lemma 3.2].

Proposition 4. Let q � 2 be an integer and let n D q2 C q C 1 . Let
D2n D hr; t j r

n; t2; t rt ri be the dihedral group of order 2n , and let D be
a di�erence set in the cyclic group Z=nZ . �en:

(i) �e Cayley graph of D2n with respect to the set ¹t r� j � 2 Dº is the
incidence graph of a projective plane of order q .

(ii) �e bipartite coset graph of D2n with respect to the subgroups ¹ht r� i j � 2
Dº is the �rst barycentric subdivision of the incidence graph of a projective
plane of order q .

Proof. Since any re�ection in D2n has non-trivial image in the quotient D2n=hri ,
it follows that any loop in the Cayley graph G of D2n with respect to the set
¹t r� j � 2 Dº has even length. In particular G is bipartite. If G contains a
loop of length 4 through the identity, then there exist �1; : : : ; �4 2 D with
1 D t r�1 t r�2 t r�3 t r�4 . Hence r��1C�2r��3C�4 D 1 . Since D is a di�erence set,
we must have �1 D �4 and �2 D �3 , so that the loop was a backtracking path.
�us G has girth at least 6 . Observing that G is a vertex-transitive bipartite graph
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of degree q C 1 , we infer that the total number of vertices at distance exactly 2

from the identity vertex in G is q.q C 1/ . Since the total number of vertices of
G is 2.q2 C q C 1/ and since G is bipartite, we deduce that G has diameter 3
and girth 6 . �is proves assertion (i). Assertion (ii) follows from (i) since the
bipartite coset graph in question is the �rst barycentric subdivision of G .

Corollary 5. �e link at the vertex a in the local development of the complex
E.Y/ around a is isomorphic, as a simplicial graph, to the �rst barycentric
subdivision of a generalized triangle of order 8 . In particular it has diameter 6
and girth 12 .

Proof. �is follows directly from Lemma 2 and Proposition 4.

Remark 6. It is a famous open problem to determine the integers n > 3 such
that the cyclic group of order n contains a di�erence set. Clearly n must be of
the form n D q2C qC 1 for some integer q � 2 . A su�cient condition is that q
be a prime power: see the Corollary to �eorem 2.64, together with Lemma 13.12,
in [HP]. �e Prime Power Conjecture predicts that this su�cient condition is also
necessary.

4. Generalized quadrangles and Heisenberg groups

We recall that a graph is the incidence graph of a generalized quadrangle
if and only if it is bipartite, has diameter 4 and girth 8 . �e order of a �nite
generalized quadrangle is the pair .s; t/ such that the vertex degrees of the
incidence graph of the quadrangle are s C 1 and t C 1 .

�e following observation is closely related to a result of W. Kantor [Kan1,
�eorem 2]. It allows one to recognize when a bipartite coset graph (which is
indeed a bipartite graph) is the incidence graph of a generalized quadrangle.

Proposition 7. Let G be the bipartite coset graph of a group G with respect to
a collection ¹Pi j i 2 I º of subgroups. Assume that jI j � 2 and that Pi ¤ ¹eº
for all i 2 I .

(i) If Pi \ Pj D ¹1º for all distinct i; j 2 I , then G has girth � 6 .

(ii) If PiPj \ Pk D ¹1º for all distinct i; j; k 2 I , then G has girth � 8 .

(iii) Let t D jI j � 1 and suppose that s D jPi j � 1 for all i 2 I . If the condition
(ii) holds and if in addition G is �nite of order jGj D .1C s/.1C st/ , then
G is the incidence graph of a generalized quadrangle of order .s; t/ .
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Proof. �e proof is a direct computation similar to the proof of Proposition 4.

�e following consequence allows one to recover a family of �nite generalized
quadrangles that is well-known to the experts; it was �rst discovered by S. Payne
[Pay]. �e right choice of p C 2 cyclic subgroups was recorded in [Ess,
�eorem 3.10].

Corollary 8. Let p be an odd prime and H.Fp/ D hx; y; z j xp; yp; Œx; y�z�1;
Œx; z�; Œy; z�i be the Heisenberg group over Fp . �en the bipartite coset graph of
H.Fp/ with respect to the collection ¹hxi; hziº [ ¹hxayz� a

2 i j a D 0; : : : p � 1º

of p C 2 cyclic subgroups of order p is the incidence graph of a generalized
quadrangle of order .p � 1; p C 1/ .

Proof. For all integers a; b; n 2 Z , we have

.xayb/n D xnaynbz�
.n�1/nab

2 :

In particular
.xaybz�ab=2/n D xnaynbz�

n2ab
2 :

It follows that the cyclic group hxaybz�ab=2i depends only on the point of the
projective line over Fp whose homogeneous coordinates are Œa W b� . Letting Œa W b�
run over the pC1 points of that projective line, we obtain pC1 cyclic subgroups
of H.Fp/ , namely ¹hxiº[¹hxayz� a

2 i j a D 0; : : : p�1º . Together with the center
of H.Fp/ , namely the cyclic group hzi , we obtain a family of p C 2 cyclic
subgroups. Routine calculations show that the conditions from Proposition 7 are
satis�ed with s D p � 1 and t D p C 1 .

Specializing to the case p D 7 , we obtain:

Corollary 9. �e link at the vertex b in the local development of the complex
E.Y/ around a is isomorphic, as a simplicial graph, to the incidence graph of
a generalized quadrangle of order .6; 8/ . In particular it has diameter 4 and
girth 8 .

Proof. �is follows directly from Lemma 2 and Corollary 8.

5. Developability of E.Y/

We are now able to complete the proof that the group E Š 1E.Y/ is in�nite
hyperbolic.
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Proposition 10. �e group E is in�nite hyperbolic; it acts properly cocompactly
by isometric automorphisms on the global development jD.Y/j , which is a
CAT(�1 ) space. �at space is geodesically complete: every geodesic segment
can be extended to a geodesic line. Furthermore, every �nite subgroup of E is
conjugate to a subgroup of Ea , Eb or Eci

for some i , and E is virtually
torsion-free.

Proof. Since the a�ne realization jYj is simply connected and endowed the
structure of a �nite piecewise real hyperbolic triangle complex, all we must do to
prove that E.Y/ is developable is to show that the link of every vertex � 2 Y in the
local development of E.Y/ around � , is CAT(1) (see [BH, Remark II.12.27(2)]).
�is is the so called Link Condition. Since Y is 2 -dimensional, it su�ces to prove
that every injective loop in the link has length at least 2� (see [BH, §II.5.24]).
We consider the vertices a , b and ci successively.

� �e angle at a in � is �=6 . Moreover, by Corollary 5, the link at a in the
local development of E.Y/ around a has girth 12 . We conclude that every
injective loop in that link has length at least 2� , as required.

� �e angle at b in � is �=4 . Moreover, by Corollary 9, the link at b in
the local development of E.Y/ around b has girth 8 . We conclude that the
Link Condition is also satis�ed at b .

� �e link at ci is the complete bipartite graph K2;7 , its girth is 4 , so the
Link Condition is satis�ed at ci for every i .

�e developability of E.Y/ therefore follows from [BH, �eorem II.12.28], which
also ensures that jD.Y/j is a CAT(�1 ) space. Since E acts properly and
cocompactly on jD.Y/j , it follows that E is Gromov hyperbolic.

Observe that the link of every vertex in the local developments of E.Y/
has the following property: given a point p in that link, there is a point q at
distance � from p . �is implies that every geodesic segment in the development
jD.Y/j can be prolonged locally beyond its extremities. It follows that jD.Y/j is
geodesically complete. In particular it is unbounded. Hence E is in�nite.

�at every �nite subgroup of E is conjugate to a subgroup of a vertex group
also follows from [BH, �eorem II.12.28]. In order to prove that E is virtually
torsion-free, we observe from the presentation of E that this group has two
retractions E ! Ea and E ! Eb . �eir product � W E ! Ea �Eb yields a �nite
quotient isomorphic to D146�H.F7/ ; moreover, for each i , the vertex group Eci

splits as a direct product Eci
Š Eaci

� Ebci
. �erefore, any non-trivial element

of a vertex group has a non-trivial image under � W E ! Ea �Eb . It follows that
Ker.�/ is a �nite index torsion-free subgroup of E .
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6. A hyperbolic triangle building

A hyperbolic triangle building of type .p; q; r/ is a 2 -dimensional building
whose type is given by the hyperbolic Coxeter group generated by the re�ections
across the sides of a geodesic triangle with angles �=p , �=q and �=r in the
hyperbolic plane. Our next goal is to observe that the global development D.Y/
is a hyperbolic triangle building of type .2; 4; 6/ .

What we did so far provides a detailed description of the link of every vertex
in the global development D.Y/ . Indeed, we have seen that every such link is
a copy of the complete bipartite graph K2;7 (for the vertices in the orbit of
ci for some i ), or the �rst barycentric subdivision of the incidence graph of
a projective plane (for vertices in the orbit of a ), or the incidence graph of a
generalized quadrangle. All these graphs are special instances of 1 -dimensional
spherical buildings. We are thus in a position to invoke a theorem of Jacques
Tits, providing a local characterization of buildings (see [Dav, Chapter 18] for
generalities on geometric realizations of buildings).

Proposition 11. �e global development D.Y/ is a hyperbolic triangle building
of type .2; 4; 6/ . �e natural E -action on that building is type-preserving.

Proof. Given the shape of the link of every vertex, described by Lemma 2 and
Corollaries 5 and 9, the required conclusion follows from [Tit, �eorem 1].

In the building on which E acts naturally, the edges covering ab form a
single E -orbit; since the edge group Eab is trivial, the action of E on that orbit
is moreover free. �us, by construction, the E -action on the associated building is
sharply transitive on the panels of a certain type. A study of ‘short presentations’
for groups acting sharply transitively on panels of one type in 2 -dimensional
Euclidean buildings was performed by Jan Essert in [Ess]; in some sense, the
present paper provides a hyperbolic analogue of that study. For that reason, the
group appearing in �eorem 1 is denoted by the letter E .

7. �e spectral criterion for Property (T)

Our �nal task to complete the proof of �eorem 1 consists in checking that
E has Kazhdan’s property (T). To that end, we rely on a result due to Izhar
Oppenheim from [Opp]. It provides a su�cient condition for a group acting on a
2 -dimensional simplicial complex X to enjoy Kazhdan’s property (T), provided
the smallest eigenvalue of the Laplace operator on the links of vertices of X
satisfy a suitable condition. In the case of the complex D.Y/ , we already know
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the shape of the link of every vertex: it is a complete bipartite graph, or the
�rst barycentric subdivision of the indicidence graph of a projective plane of
order 8 , or the incidence graph of a generalized quadrangle of order .6; 8/ . For
each of these graphs, the full spectrum of the Laplace operator is known: it can
be extracted from the work of Feit–Higman [FH]. However, a calculation shows
that the hypotheses of [Opp, �eorem 1] are not satis�ed by the complex D.Y/ .

In order to overcome that di�culty, we use the following trick. In the simplicial
complex D.Y/ , the edges in the E -orbit of Œaci � for some i are characterized
by the property that they are the only edges contained in exactly two 2 -simplices.
Such edges are called thin. Let Œ Na Nci � be such an edge. Let also Nb and Nb0 the
only two vertices (both in the E -orbit of b ) such that Na Nb Nci and Na Nb0 Nci are
both the vertex sets of a 2 -simplex. For all thin edges of the form Œ Na Nci � , we
replace the subcomplex spanned by Na; Nb; Nb0; Nci by a subcomplex containing a
single 2 -simplex, spanned by Na; Nb; Nb0 (see Figure 3). �e new complex obtained
in this way is denoted by X . �e operation of replacing D.Y/ by X is purely
combinatorial, it does not a�ect the metric on jD.Y/j . Moreover the E -action
on D.Y/ canonically determines an action on X by isometric automorphisms.
Every 2 -simplex in the metric realization jX j is now isometric to a geodesic
triangle with angles �=3; �=4; �=4 in the real hyperbolic plane.

�e operation of replacing D.Y/ by X does not modify the shape of the
links at vertices Nb 2 X in the E -orbit of b . On the other hand, if Na is a vertex

π/3 π/4

c̄i

ā b̄

b̄′

π/4

1

Figure 3
Discarding the thin edges
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in the E -orbit of a , then the link of X at Na is now the incidence graph of a
projective plane of order 8 and no longer its �rst barycentric subdivision. Indeed,
the vertices of degree 2 in that subdivision are discarded, since they correspond
to the thin edges in D.Y/ .

We now state a criterion for Property (T) which follows easily from the main
result of [Opp].

Proposition 12. Let X be a 2 -dimensional simplicial complex and � be a
discrete group acting properly, cocompactly on X . Let p � 3 be an integer.
Assume that in every 2 -simplex of X , the link of one vertex in X is isomorphic
to the incidence graph of a projective plane of order p C 1 , and the link of
the other two vertices is isomorphic to the incidence graph of a generalized
quadrangle of order .p�1; pC1/ . If p � 6 , then � has Kazdhan’s Property (T).

Proof. We need to know the smallest positive eigenvalue of the Laplace operator
on the incidence graph of a projective plane of order q (resp. a generalized
quadrangle of order .s; t/). �e spectrum of that operator can be extracted from
the computations made in [FH, Lemmas 3.3 and 5.1], but the corresponding result
is not stated explicitly in that reference. An explicit computation of the spectrum
is done in [Gar, Prop. 7.10] under the extra hypothesis that the generalized polygon
is associated to a group with a BN -pair. However, that extra hypothesis is not
needed (see for example [BdlHV, Proposition 5.7.6] for the case of projective
planes). �e result is that the smallest positive eigenvalue of the Laplacian of the
incidence graph of a projective plane of order q (resp. a generalized quadrangle
of order .s; t/) is 1 �

p
q

qC1
(resp. 1 �

q
sCt

.1Cs/.1Ct/
). Taking q D p C 1 (resp.

.s; t/ D .p � 1; p C 1/ ), we �nd �P D 1 �
p
pC1

pC2
(resp. �Q D 1 �

q
2

pC2
). By

[Opp, �eorem 1], the group � has Property (T) provided that the following two
conditions hold:

� �P C 2�Q > 3=2 ,

� .�P C �Q � 1/
2 C 2.�P C �Q � 1/.2�Q � 1/ > 0 .

A straightforward computation shows that the �rst condition holds for all integer
p � 5 , while the second holds for all p � 6 .

End of the proof of �eorem 1. �at E is in�nite hyperbolic and virtually torsion-
free follows from Proposition 10. �e discussion at the beginning of the present
section shows that the 2 -complex D.Y/ can be replaced, in a canonical way, by
a 2 -complex X satisfying the hypotheses of Proposition 12. �e latter shows that
E has Property (T).
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Invoking [Tit, �eorem 1], we infer that the simplicial complex X is a
hyperbolic triangle building of type .3; 4; 4/ which is thick (i.e., it contains
no thin edge). �is is global feature of X allows us to invoke [Xie], which
ensures that E is quasi-isometrically rigid.

8. Variations on the same theme

�ere is a certain amount of �exibility in the construction of the group E

which can be exploited to provide many more in�nite hyperbolic Kazhdan groups
similar to E . �e vertex groups Eci

need not be cyclic: they could also be
chosen to be the dihedral group D14 of order 14 . One could also permute the
edge groups Eaci

arbitrarily without changing Ebci
. �e speci�c choice for the

group E in �eorem 1 was made in order to minimize the maximal length of a
relation.

Let us note that one can also obtain larger siblings of E as follows. For
any Mersenne prime p , de�ne a simple complex of groups consisting of p C 2
hyperbolic triangles of type .2; 4; 6/ glued along their hypothenuse. �e two acute
vertex groups are a Heisenberg group over Fp and a dihedral group D2n of order
2n , where n D .pC 1/2CpC 2 , respectively. �e other pC 2 vertex groups are
cyclic or dihedral of order 2p . �e edge groups are chosen using Proposition 4
and Corollary 8 so that the Link Condition is satis�ed at every vertex. We need
p to be a Mersenne prime since p C 1 must be a prime power to guarantee
that the hypotheses of Proposition 4 are ful�lled, see Remark 6. �e fundamental
group of that complex is always hyperbolic, and it has Property (T) for all p � 7
by Proposition 12.

For the Mersenne prime p D 3 , using the di�erence set D D ¹0; 1; 4; 14; 16º D

¹0; 1; 4;�7;�5º in the cyclic group Z=21Z , we obtain the following group
presentation:

E3 D
˝
x; y; z; t; r j x3; y3; Œx; y�z�1; Œx; z�; Œy; z�;

t2; r21; t rt r;

Œxyz; t �; Œx�1yz�1; t r�;

Œx; t r4�; Œy; t r�7�; Œz; t r�5�
˛
:

After substituting z D Œx; y� , we obtain a 12 -relator presentation for E3 in which
all relators have length � 21 . �e same arguments as for E show that E3 is
in�nite, hyperbolic, virtually torsion-free and that it acts geometrically on a thick
hyperbolic triangle building of type .3; 4; 4/ . However, the spectral criterion for
Property (T) from Proposition 12 does not apply, and the following question
remains open:
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Question 13. Does the group E3 have Kazhdan’s property (T)?

�at question might be approached using similar methods as in [KNO].
We �nish this note by recording another observation that follows from

combining Proposition 4 with Marc Bourdon’s construction from [Bou, §1.5.3]
and its extension due to Jacek Światkowski [Świ].

Proposition 14. Let L be the incidence graph of a �nite generalized n -gon of
order .s; t/ with n � 3 (i.e., a bipartite graph of diameter n and girth 2n

such that every vertex has degree s C 1 or t C 1 ). Assume that t is a prime
power.

�en there is a group � acting faithfully, properly and cocompactly (but not
type preservingly) on a thick locally �nite triangle building X of type .3; n; n/

admitting L as the link of a vertex.

Proof. We follow the construction described in [Świ, §5.3] in order to build �

as the fundamental group of a simple complex of �nite groups � D 1G.Y/ . �e
underlying complex Y is the simplicial cone over the graph L . Let V D V1[V2
be the bipartition of the vertex set of L , so that every edge in L joins a
vertex in V1 to a vertex in V2 , every vertex in V1 has degree s C 1 and
every vertex in V2 has degree t C 1 . To each vertex v in V2 , we de�ne
the vertex group Gv as a dihedral group of order 2.t2 C t C 1/ . To each
edge e belonging to the set EL.v/ of edges of L emanating from v , we
de�ne Ge as a cyclic group of order 2 . For all e 2 EL.v/ we de�ne the
inclusion of Ge into Gv in such a way that the bipartite coset graph of Gv
with respect to ¹Ge j e 2 EL.v/º is the �rst barycentric subdivision of the
incidence graph of the Desarguesian projective plane of order t . Such a choice
is possible in view of Proposition 4 and Remark 6; this is where we use the
hypothesis that t is a prime power. For v 2 V1 we de�ne the vertex group
Gv to be cyclic of order 2 , and identify Gv with all edge groups Ge with
e 2 EL.v/ . �e groups attached to all the other simplices of Y are trivial. By
[BH, �eorem II.12.28], the simple complex of groups G.Y/ de�ned in this
way is developable. By [Tit, �eorem 1], the development D.Y/ is a non-thick
triangle building of type .2; 6; n/ . Upon discarding the edges of D.Y/ that cover
edges of L , we may view D.Y/ is a thick triangle building of type .3; n; n/

on which � D 1G.Y/ acts faithfully, properly and cocompactly, but not type-
preservingly.

�e di�erence between Bourdon’s construction [Bou, §1.5.3] and Proposition 14
is that the former yields triangle buildings of type .2; n; n/ .
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Remark 15. Proposition 14 comes close to a solution of a problem posed by
W. Kantor [Kan2, Problem C.6.7]. It notably implies that all �nite projective
planes satisfying the Prime Power Conjecture appear as residue planes in QA2 -
buildings admitting a discrete cocompact group of automorphisms. In particular, all
known non-Desarguesian �nite projective planes do. �is provides a construction
of an in�nite family of cocompact lattices in exotic QA2 -buildings of arbitrarily
large thickness, where exotic means non-isomorphic to the Bruhat–Tits building
of a simple algebraic group over a local �eld. In particular, the main result
of [BCL] applies to those lattices, which ensures that they do not admit any
�nite-dimensional representation with in�nite image over any �eld. �e �rst
construction of an in�nite family of cocompact lattices in exotic QA2 -buildings
was obtained in [BCL, §10]; since then another source of cocompact lattices in
exotic QA2 -buildings of arbitrarily large thickness has been identi�ed by N. Radu
[Rad1]. �e �rst example of a cocompact lattice in an QA2 -building admitting
non-Desarguesian residue planes is due to him [Rad2]. �at example remains the
only known QA2 -building with a cocompact lattice where all residue planes are
non-Desarguesian.
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