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On a linearization trick

Gilles Pisier

Abstract. In several situations, mainly involving a self-adjoint set of unitary generators of
a C� -algebra, we show that any matrix polynomial in the generators and the unit that is
in the open unit ball can be written as a product of matrix polynomials of degree 1 also
in the open unit ball.
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In random matrix theory, especially in connection with estimates of the edge
of the spectrum of a random matrix, a certain “linearization trick” has recently
played an important role. It was introduced in the Gaussian random matrix con-
text by Haagerup and �orbjørnsen [HT], who mention in [HT] that they were
inspired by a similar trick from the author’s [Pis1]. �e latter can be applied,
among other settings, to unitary random matrices, in problems about “strong
convergence” considered more recently by Collins and Male in [CM], and Borde-
nave and Collins in [BC]. Roughly, one wants to estimate the limit of the norm
of a “polynomial” P.x
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; : : :/ in large unitary random
N � N -matrices and their inverses when N ! 1 and to show that the limit
is equal to the norm of the same polynomial P.x11 ; x12 ; : : : I x11

�; x12
�; : : :/ but

with the random matrices replaced by certain unitary matrices .x11 ; x12 ; : : :/ that
play the role of a limiting object. In such situations, the main di�culty is to prove
limN!1 kP.x

.N /
1 ; x

.N /
2 ; : : :/k � kP.x11 ; x

1
2 ; : : :/k (say almost surely). By homo-

geneity, this reduces to kP.x11 ; x12 ; : : :/k < 1 ) limN kP.x
.N /
1 ; x

.N /
2 ; : : :/k < 1 .

Computing the norm of such a polynomial is usually an intractable problem, but
this is often more accessible for polynomials P of degree 1. �us if we had a
factorization of any P such that kP.x11 ; x12 ; : : :/k < 1 as a product of poly-
nomials of degree 1 satisfying the same bound, the problem would be reduced
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to a more tractable one. While the desired factorization seems hopeless with
scalar coe�cients, it turns out to be true if one allows generalized polynomials
with matrices as coe�cients, or equivalently matrices with polynomial entries,
the original polynomial being viewed as a matrix of size 1. In fact it is more
natural to try to factorize general polynomials with matrix coe�cients in the open
unit ball as products of polynomials of degree 1 in the same ball. �is is the
content of our �eorem 1 below, a rather simple factorization of matrix valued
polynomials that seems to be a basic fact, of interest in its own right.

�e “trick” in [Pis1] combines very simply facts and ideas commonly used
in operator space theory, involving completely bounded (or completely positive)
maps (see [ER, Pau, Pis3]).

�e recent survey [HMS] and the book [MS] mention several areas where an
analogous trick is known in some form (in some cases going back 50 years), but
do not mention the operator space connection. �ey describe a linearization due to
Anderson [And] in the form of a factorization of matrices with polynomial entries,
involving the “Schur complement”. However, it turns out that, when combined
with ideas due to Blecher and Paulsen [BP], the operator space viewpoint also
produces a very nice factorization theorem that seems to be of independent
interest. �is factorization highlights the fact that the operator space structure of
the linear span of the generators of an operator algebra in many cases determines
that of the whole operator algebra (see [Pis2] for more on this).

In short, the goal of the present note is to advocate the resulting operator
space version of the linearization trick.

�roughout this note let H be an arbitrary Hilbert space. Let .xj / be a �nite
family in the Banach algebra B.H/ of all bounded operator on H ; we denote
by 1 the unit in B.H/ . By a monomial in .xj ; x

�
j / we mean a product of terms

among the collection ¹1; xj ; x
�
j º . If the product has at most d terms we say

that the monomial has degree at most d . By a polynomial in .xj ; x
�
j / (resp. of

degree at most d ) we mean a linear combination of monomials (resp. of degree
at most d ). Let Mn;m denote the space of n �m complex matrices. We set as
usual Mn DMn;n . By a (rectangular or square) matrix valued polynomial (resp.
of degree at most d ) in .xj ; x

�
j / we mean a (rectangular or square) matrix with

entries that are polynomials in .xj ; x
�
j / (resp. of degree at most d ). �e norm

of an n�m matrix valued polynomial is the operator norm, i.e., the norm of the
associated matrix in Mn;m.B.H// .

In its simplest form our main result is as follows:

�eorem 1. If the xj ’s are all unitary operators, any matrix valued polynomial
in .xj ; x

�
j / with norm < 1 can be written as a �nite product P1P2 � � �Pm of

matrix valued polynomials of degree at most 1 with kP`k < 1 for all 1 � ` � m .
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We complete the proof after Remark 8.
�e statement appearing below as Corollary 4 is already in [Pis3, p. 389]

(unfortunately the condition on the unit is missing there). �eorem 2 from
which it is deduced is implicit there. Both are but a slight generalization of
a fundamental factorization result due to Blecher and Paulsen [BP], itself based
on the Blecher–Ruan–Sinclair [BRS] characterization of operator algebras. �e
interest of �eorem 1 lies in the fact that it is valid for general unitary operators,
in particular in the reduced C � -algebra of a group; the results of [BP] are stated
for maximal or universal operator algebras, and while one could try a lifting
argument to deduce �eorem 1 from them we do not see how to do this.

For any pair H1;H2 of Hilbert spaces we denote by H1 ˝2 H2 the Hilbert
space tensor product. For any t 2 B.H1/ ˝ B.H2/ (algebraic tensor product)
we denote simply by ktkmin , or more often simply by ktk , the norm induced
on B.H1/ ˝ B.H2/ by B.H1 ˝2 H2/ . By de�nition, an operator space is
a linear subspace E � B.H/ . �roughout this paper, the space Mn.E/ of
n � n matrices with entries in E is always equipped with the norm induced
by Mn.B.H// D B.H ˚ � � � ˚ H/ (with H repeated n -times). We refer to
[ER, Pis3, Pau] for more information on operator space theory. We just recall
that a linear map u W E1 ! E2 between operator spaces E1 � B.H1/ and
E2 � B.H2/ is called completely bounded (c.b. in short) if supn kunk <1 where
un WMn.E1/!Mn.E2/ is the map taking Œaij � 2Mn.E1/ to Œu.aij /� 2Mn.E2/ ,
and the corresponding norm is de�ned by kukcb D supn kunk .

Let A � B.H/ be a unital subalgebra. �roughout we identify Mn.A/ with
Mn ˝ A . We will identify as usual Mn.A/ with a subset of MnC1.A/ (by
completing a matrix with zero entries). �en we can think of [nMn.A/ as a
subalgebra of B.`2.H// . We equip [nMn.A/ with its natural operator norm, i.e.,
the norm induced on it by B.`2.H// .

For simplicity of notation, we set

K0 D [nMn � B.`2/;

and we always equip K0 ˝ B.H/ with the norm induced by B
�
`2.H/

�
.

We will use the identi�cation (as algebras)

[nMn.A/ ' K0 ˝A:

Note K0˝A is a subalgebra of B.`2.H// , generated by .K0˝ 1A/[ .e11˝A/ .
We denote by IdE the identity map on a set E .

�eorem 2. Let c > 0 be a constant (our main case of interest is c D 1 ).
Let A � B.H/ be a unital operator algebra. Let S be a subset of the unit

ball of K0 ˝A D [nMn.A/ . We assume that

(1) e11 ˝ 1A 2 S
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and moreover that K0 ˝A is the algebra generated by .K0 ˝ 1A/ [ S .
Fix an element x 2 K0 ˝A . �en, the following are equivalent:

(i) For any H and any unital homomorphism u W A! B.H/

sups2S kŒIdK0
˝ u�.s/k � 1) kŒIdK0

˝ u�.x/k < c:

(ii) For some m there is a factorization of the form x D ˛0D1˛1 : : :Dm˛m

where ˛0; : : : ; ˛m are in K0˝ 1 with
Qm

0 k˛`k < c and where D1; : : : ;Dm

are elements of [nMn.A/ D K0˝A represented by block diagonal matrices
of the form

(2) D` D

0BBBBBBBB@

y1.`/ 


y2.`/

: : :

: : :


 yN`
.`/

1CCCCCCCCA
with yk.`/ 2 S for all k and ` .

Remark 3. Observe that any D` as above is the product of N` factors of the
same form but with all diagonal coe�cients but one equal to 1 . Moreover, we
can insert additional ˛ factors in order to rearrange the diagonal terms by means
of a conjugation by a permutation matrix. We then obtain, for a possibly larger
length m , a factorization as in (ii) above such that whenever N` > 1 we have
y2.`/ D � � � D yN`

.`/ D Œ1� (matrix of size 1 � 1 ).

Proof. We start by some preliminaries. Let F denote the set of x 2 K0˝A that
admit a factorization x D ˛0D1˛1 : : :Dm˛m with ˛` 2 K0˝ 1 and D` as in (2).
We claim that F D K0 ˝A . It is easy to check that if x; y 2 F then 

x 0

0 y

!
also belongs to F if x; y admit factorizations with the same m . Since we may
add diagonal factors with entries equal to 1A (which by (1) are of the form
(2)) to equalize the m ’s if necessary, this last condition can always be assumed.
Moreover, it is obvious that x 2 F implies ˛0x˛1 2 F for any ˛0; ˛1 2 K0 .
�erefore, if x; y 2 F then

x C y D .1 1/

 
x 0

0 y

! 
1

1

!
2 F :
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Now since the assumption that S and K0 ˝ 1 jointly generate K0 ˝ A implies
that any x 2 K0 ˝A is a �nite sum of elements of F , the claim follows.

We will now equip A with an operator space (and actually operator algebra)
structure. We introduce on K0 ˝ A D [Mn.A/ the norm kxk� D inf

Qm
0 k˛`k

where the in�mum runs over all factorizations as in (ii). �e preceding claim
guarantees that kxk� <1 for any x 2 K0 ˝A . Obviously (using the preceding
equalization of the m ’s)

(3) 8x; y 2 K0 ˝A







 
x 0

0 y

!





�

D max¹kxk�; kyk�º and kxyk� � kxk�kyk�:

For any x 2Mn ˝A DMn.A/ , let kxkn D kxk� . �en we have

(4) kxkMn.A/ � kxkn:

By Ruan’s theorem [Rua] (see also [Pau, Pis3]), the sequence of norms .k:kn/
de�nes an operator space structure on A . �e case n D 1 de�nes a norm on A for
which by (4) and our assumption (1) on the unit we have kŒ1�k1 D ke11˝1Ak� D 1 .
By (3), for any x; y 2 Mn.A/ , we have kx ˇ ykn � kxknkykn where ˇ
is the natural product in the algebra Mn.A/ , namely Œx ˇ y�ij D

P
k xikykj .

After completion, by the Blecher–Ruan–Sinclair �eorem [BRS] (see also [Pau,
Pis3, BLM]), A becomes a unital operator algebra B embedded completely
isometrically as a unital subalgebra in B.H / for some H (see also [Pis3, p.109]).
Let U W A! B.H / be the resulting unital homomorphism. �en

8y 2Mn.A/ kykn D kyk� D kŒIdMn
˝ U �.y/kMn.B.H//:

Equivalently
8y 2 K0 ˝A kyk� D kŒIdK0

˝ U �.y/k:

Let s 2 S , obviously ksk� � 1 . �erefore sups2S kŒIK0
˝ U �.s/k � 1 .

Now let us �x x and assume (i). �en taking u D U we �nd kxk� D
kŒIdK0

˝ U �.x/k < c . By de�nition of k:k� , (ii) follows. �us (i) implies (ii).
�e converse is obvious.

Corollary 4. Let c � 1 be a constant (our main case of interest is c D 1 ). Let
A � B.H/ be a unital operator algebra. Let S be a subset of the unit ball of
[nMn.A/ . We assume (1) and again that K0 ˝ A is the algebra generated by
.K0 ˝ 1A/ [ S . �en, the following are equivalent:

(i) Any unital homomorphism u W A! B.H/ such that supx2S kŒIK0
˝u�.x/k �

1 is c.b. and satis�es kukcb � c .
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(ii) For any n , any x in Mn.A/ with kxkMn.A/ < 1 admits (for some
m D m.n; x/) a factorization of the form x D ˛0D1˛1 : : :Dm˛m where
˛0; : : : ; ˛m are in K0 ˝ 1 with

Q
k˛`k < c and where D1; : : : ;Dm are

elements of K0 ˝A of the form (2).

Remark 5. Assume (this is the main case of interest for us) that c D 1 , and
that S is stable by taking block diagonal sums of the form (2) with diagonal
coe�cients in S . �en the factorization in the preceding Corollary 4 can be
stated just like this:

Any x 2Mn.A/ with kxk < 1 can be written as a product

(5) x D ˛0D1˛1 : : :Dm˛m

with all D` in S (of varying sizes) where the ˛` ’s are rectangular matrices (of
suitable sizes for the product to make sense, see below) and k˛`k < 1 for all ` .
�e last point can be adjusted by homogeneity.

For the product in (5) to make sense, we set N0 D NmC1 D n and we
implicitly assume that D` is of size N`�N` and ˛` of size N`�N`C1 . Assume
0 2 S which is harmless. �en we may add zero entries to the D` ’s in order to
achieve N1 D � � � D Nm . Once this is done ˛0 and ˛m will be the only remaining
possibly still rectangular factors.

Remark 6. Assume moreover that, whenever it makes sense, the product ˛0D˛1

is in S for any D 2 S and any pair of matrices ˛0; ˛1 with scalar entries in
the open unit ball. �en the conclusion can be simpli�ed: any x 2 Mn.A/ with
kxk < 1 can be written as a product

(6) x D P1 : : : Pm

with P` 2 S for all ` .

Corollary 7. �e factorization described in (5) holds in the following cases:

(i) Let A be a unital C � -algebra generated by a family of unitaries .xj /j�1 .
Let A be the unital � -algebra generated by .xj /j�1 . Let S be the set of
all x 2 [Mn.A/ with kxk � 1 of the form either

(7) x D a0 ˝ 1C
X

j�1
aj ˝ xj

or
x D a0 ˝ 1C

X
j�1

aj ˝ x
�
j

where, for some n , j 7! aj (j � 0 ) is �nitely supported with values in Mn .
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(ii) Let A be a unital C � -algebra generated by a family .xj /j�1 with only
�nitely many non-zero elements. Let A be the unital � -algebra generated
by .xj /j�1 . Let S be the set of all x 2 [Mn.A/ with kxk � 1 of the form

(8) x D a0 ˝ 1C
X

j�1
aj ˝ xj C

X
j�1

bj ˝ x
�
j C b ˝ .

X
x�j xj C xjx

�
j /

where, for some n , we have a0; aj ; bj ; b 2Mn .
(iii) In the same situation as (ii), let S be the set of all x 2 [Mn.A/ such that

x D x� with kxk � 1 of the form (8).
(iv) In the same situation as (ii), let S be the set of all x 2 [Mn.A/ such that

x D x� with kxk � 1 of the form

(9) x D a0 ˝ 1C
X

aj ˝ xj C

X
bj ˝ x

�
j C b ˝ .

X
x�j xj C xjx

�
j /;

where, for some n , we have a0; aj ; bj ; b 2Mn such that a0 D a
�
0 , bj D a

�
j

for all j � 1 , and b D b� .
(v) Let A be a unital C � -algebra generated by a family of unitaries .xj /j�1 .

Let A be the unital � -algebra generated by .xj /j�1 . Let S be the set of
all x 2 [Mn.A/ with kxk � 1 of the form

(10) x D a0 ˝ 1C
X

aj ˝ xj C

X
bj ˝ x

�
j ;

where, for some n , we have a0; aj ; bj 2 Mn such that a0 D a�0 , bj D a�j
for all j � 1 and j 7! aj 2Mn is �nitely supported.

Proof. We �rst observe that in case (ii) the assumption in Remark 5 holds. As
for case (i) we may observe that any matrix D of the form

D D

 
y1 0

0 y2

!
can be written as

D D

 
y1 0

0 1

! 
1 0

0 y2

!
and hence since 1Mn

˝ 1 2 S for all n � 1 we may still factorize with factors in
S even though S contains terms of two types.
(i) We use here the “linearization trick” from [Pis1]. Let E D spanŒ1; ¹xj j

j � 1º� . Let u W A ! B.H/ be a unital homomorphism such that
sups2S kŒIK0

˝u�.s/k D 1 . We have clearly kujEkcb D 1 . A fortiori of course
ku.xj /k � 1 and since xj unitary, we have u.x�j / D u.x�1

j / D u.xj /
�1 , and

hence (since x�j 2 S ) ku.xj /
�1k � 1 , so that u.xj / is unitary for all j . By

Arveson’s extension theorem, u admits an extension eu W A ! B.H/ with
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keu kcb D 1 , and eu .1/ D 1 implies that eu is completely positive (c.p. in
short), see [Pau, Pis3]. �erefore, we have an embedding H � cH and a
� -homomorphism � W A ! B.cH / such that eu .a/ D PH�.a/jH (a 2 A ).
Writing cH D H ˚K and

�.a/ D

 eu.a/ �12.a/

�21.a/ �22.a/

!
it is easy to deduce from the fact that eu .xj / and �.xj / are both unitary
that �12.xj / D �21.xj / D 0 for all j . In other words, �.xj / commutes with
PH . Since ¹xj º generates A , H is invariant under �.A/ . �erefore eu is
a homomorphism (and even a � -homomorphism) which must coincide with
u . �us we conclude kukcb D 1 and we apply Corollary 4.

(ii) By decomposing them into real and imaginary parts, it is easy to reduce to
the case when the xj ’s are self-adjoint, so we assume that xj D x

�
j for all

j . Let E be the linear span of ¹1; xj ;
P
x2

j º . Let u W A! B.H/ be a unital
homomorphism such that sups2S kŒIK0

˝ u�.s/k D 1 . Again kujEkcb D 1 ,
and u admits a c.p. extension eu W A! B.H/ , which can again be written
as before as eu .a/ D PH�.a/jH (a 2 A ). With the same notation as earlier,
but now following [HT], we have for any self-adjoint a 2 E

�.a/ D

 
u.a/ �12.a/

�12.a/
� �22.a/

!
and applying that for each xj as well as for

P
x2

j (on which eu D u ) we
�nd

�.xj / D

 
u.xj / �12.xj /

�12.xj /
� �22.xj /

!
and also

�.
X

x2
j / D

 
u.
P
x2

j / �

� �

!
:

But then the equalities �.
P
x2

j / D
P
�.xj /

2 and u.
P
x2

j / D
P
u.xj /

2

force
P
�12.xj /�12.xj /

� D 0 , and hence �12.xj / D 0 for all j . Again, we
conclude that eu is a � -homomorphism equal to u , that kukcb D 1 and we
apply Corollary 4.

(iii) Let S3 be as in (iii). Let S2 be the corresponding class in (ii). For any
y 2 S2 we have  

0 y

y� 0

!
2 S3;

and hence
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y D .1 0/

 
0 y

y� 0

! 
0

1

!
:

�is shows that a factorization of the form (5) with S2 can be transformed
into one with S3 .

(iv) Same argument as for (iii).
(v) It is easy to reduce to a �nite family of unitaries, then this is a particular

case of (iv).

Remark 8. �e preceding argument for (i) shows that the factorization (2)
holds even if S is the set of x ’s with kxk � 1 of the form either (7) or
x D x�j . Indeed, using x D x�j su�ces to prove that u.xj / is unitary when
supx2S kŒIK0

˝ u�.x/k D 1 .

Proof of �eorem 1. Just note that in case (i) (and also in case (ii)) we are in
the situation described in Remark 6.

Remark 9. Let .Ai /i2I be a family of unital C � -subalgebras of a unital C � -
algebra A . Assume that [i2IAi generates A . Let Pd denote the linear span of
all the products of d elements in [i2IAi . �en any x 2Mn.Pd / with kxk < 1
can be written as a product x D P1 � � �Pm of (possibly rectangular) matrices with
entries in P1 such that kPj k < 1 for all j . �is follows by the argument used
to prove (i) in Corollary 7 with S D [nMn.P1/ .

Remark 10. Let .Xj / be a family of non-commuting formal variables (or
indeterminates). By a � -polynomial P.Xj ; X

�
j / in .Xj / we mean a linear

combination of (non-commuting) products (including the empty product denoted
by 1) of terms taken from ¹Xj ; X

�
j º .

Let A;B be unital C � -algebras. Let .aj /j2I (resp. .bj /j2I ) be a family in
A (resp. B ). We say that .bj / satis�es the relations satis�ed by .aj / if, for any
� -polynomial P.Xj ; X

�
j / , the implication P.aj ; a

�
j / D 0) P.bj ; b

�
j / D 0 holds.

When dealing with random matrices, it is formally more general to consider
the following “almost sure variant”: let .XN

j /j2I be a system of random matrices
of common size dN , we say that .XN

j /j2I satis�es a.s. the relations satis�ed
by .aj / if for any � -polynomial P.Xj ; X

�
j / such that P.aj ; a

�
j / D 0 we have

P.XN
j ; XN

j

�
/ D 0 almost surely.

To illustrate the use of the factorization, we recover the following known facts
(implicit in [Pis1]).
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Corollary 11. Let .xj /j2I be a family of unitary operators in a unital C � -algebra
A . Let .XN

j /j2I be a system of random unitary matrices of common size dN .
We assume that .XN

j /j2I satis�es a.s. the relations satis�ed by .xj / and that
for any n and any �nitely supported family j 7! aj 2Mn (j 2 I ) we have

lim sup
N!1




X a0 ˝ 1C aj ˝X
N
j




 � 


X a0 ˝ 1C aj ˝ xj




 a:s:

then for any n , any �nite set .ak/ in Mn and any family of � -polynomials
Pk.Xj ; X

�
j / we have

lim sup
N!1




X ak ˝ Pk.X
.N /
j ; X

.N /
j

�

/



 � 


X ak ˝ Pk.xj ; x

�
j /



 a:s:

Proof. Let x D
P
ak ˝ Pk.xj ; x

�
j / and x.N / D

P
ak ˝ Pk.X

.N /
j ; X

.N /
j

�

/ . By
homogeneity we may assume kxk < 1 . By Corollary 7 we have a factorization
x D ˛0D1˛1 : : :Dm˛m with all factors D0;D1; : : : such that either D or D�
is of the form a0 ˝ 1 C

P
aj ˝ xj with kDk � 1 as in Remark 5. By our

assumption on the relations satis�ed by .XN
j /j2I (applied to each entry of the

matrix x � ˛0D1˛1 : : :Dm˛m ) we have almost surely

x.N /
D ˛0D

.N /
1 ˛1 : : :D

.N /
m ˛m

where D
.N /
j is obtained from Dj by replacing xj (resp. x�j ) by X

.N /
j (resp.

X
.N /
j

�

) wherever it appears. �is implies

kx.N /
k < .max

`
kD

.N /

`
k/m:

�e conclusion is now immediate.

Remark 12. Let .xj /j2I be a family of free Haar unitaries in the sense of [VDN].
If a � -polynomial satis�es P.xj ; x

�
j / D 0 then P.yj ; y

�
j / D 0 for any family

.yj / of unitaries in a C � -algebra, in particular for any family of unitary matrices.
�us the assumption on the relations in the preceding corollary is automatically
satis�ed if we assume that .XN

j /j2I is formed of unitary matrices.

Remark 13. A similar statement is valid if we replace a.s. convergence by
convergence in probability. More explicitly, if we assume that for any " > 0 and
any aj we have

limN!1 P
�°

a0 ˝ 1C

X
aj ˝X

N
j



 > 

a0 ˝ 1C
X

aj ˝ xj



C "±� D 0
then the same argument shows that for any " > 0 , any n , any �nite set .ak/ in
Mn and any family of � -polynomials Pk.Xj ; X

�
j / we have

limN!1 P
�°

X aj ˝ Pj .X

.N /
j ; X

.N /
j

�

/


 > 

X aj ˝ Pj .xj ; x

�
j /


C "±� D 0:
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Corollary 14. In the situation of the preceding Corollary, Assume that for any
n , any self-adjoint a0 2Mn and any �nite family .aj / in Mn we have

lim sup
N!1




a0 ˝ 1C
X

aj ˝X
N
j C

X
a�j ˝X

N
j

�





�




a0 ˝ 1C
X

aj ˝ xj C

X
a�j ˝ xj

�




 a:s:
then for any n , any �nite set .ak/ in Mn and any family of � -polynomials
Pk.Xj ; X

�
j / we have

lim sup
N!1




X ak ˝ Pk.X
.N /
j ; X

.N /
j

�

/



 � 


X ak ˝ Pk.xj ; x

�
j /



 a:s:

A similar statement holds for convergence in probability as in Remark 13.

Remark 15. Similar statements hold for the cases (ii), (iii), and (iv) of Corollary 7.
�is can be applied in particular when .xj / is a free semi-circular (or circular)
family in the sense of [VDN].

Questions. One major drawback of the method to prove factorizations such as (5)
is the lack of an algorithm allowing one to construct the factors out of the data
that we wish to factorize. Perhaps a di�erent approach may yield this.

Another natural question would be the quest for quantitative estimates of
the length of the factorization. For instance, given a family of unitaries .xj /

(generating a unital � -algebra A ) and taking S formed of degree 1 polynomials
as in part (i) or part (v) of Corollary 7, one can ask for estimates (upper
and lower) for the smallest number m D m.d; n/ (resp. m D m.d; n; "/ for
" > 0 �xed) satisfying the following: any matricial polynomial P 2Mn.A/ with
kP k < 1 of degree at most d can be written as a product P D P1 : : : Pm of m
matricial polynomials of degree at most 1 with kP`k < 1 for all ` (resp. withQm

1 kP`k < 1C " ).

References

[And] G. Anderson, Convergence of the largest singular value of a polynomial in inde-
pendent Wigner matrices. Ann. Prob. 41 (2013), 2103–2181. Zbl 1282.60007
MR3098069

[BC] C. Bordenave and B. Collins, Eigenvalues of random lifts and polynomial of
random permutations matrices. arXiv:1801.00876, Jan. 2018.

[BLM] D. Blecher and C. Le Merdy, Operator Algebras and �eir Modules – An
Operator Space Approach. Clarendon Press, Oxford, 2004. Zbl 1061.47002
MR2111973

http://zbmath.org/?q=an:1282.60007
http://www.ams.org/mathscinet-getitem?mr=3098069
http://arxiv.org/abs/1801.00876
http://zbmath.org/?q=an:1061.47002
http://www.ams.org/mathscinet-getitem?mr=2111973


326 G. Pisier

[BP] D. Blecher and V. Paulsen, Explicit constructions of universal operator algebras
and applications to polynomial factorization. Proc. Amer. Math. Soc. 112
(1991), 839–850. Zbl 0767.46037 MR 1049839

[BRS] D. Blecher, Z. J. Ruan and A. Sinclair, A characterization of operator algebras.
J. Funct. Anal. 89 (1990), 188–201. Zbl 0714.46043 MR 1040962

[CM] B. Collins and C. Male, �e strong asymptotic freeness of Haar and determinis-
tic matrices, Ann. Sci. Éc. Norm. Supèr. 47 (2014), 147–163. Zbl 1303.15043
MR3205602

[ER] E. Effros and Z. J. Ruan, Operator Spaces. Oxford Univ. Press, Oxford, 2000.
Zbl 0969.46002 MR 1793753

[HMS] J.W. Helton, T. Mai, and R. Speicher, Applications of realizations (aka
linearizations) to free probability. Preprint. arXiv:1511.05330, 2017.

[HT] U. Haagerup and S. Thorbjørnsen, A new application of random matrices:
Ext

�
C�
red.F2/

�
is not a group. Ann. Math. (2) 162 (2005), 711–775.

Zbl 1103.46032 MR2183281
[MS] J. Mingo and R. Speicher, Free Probability and Random Matrices, Springer,

2017. Zbl 1387.60005 MR3585560
[Pau] V. Paulsen, Completely Bounded Maps and Operator Algebras. Cambridge Univ.

Press, Cambridge, 2002. Zbl 1029.47003 MR 1976867
[Pis1] G. Pisier, A simple proof of a theorem of Kirchberg and related results on C� -

norms. J. Operator �eory 35 (1996), 317–335. Zbl 0858.46045 MR 1401692
[Pis2] �e similarity degree of an operator algebra. St. Petersb. Math. J. 10 (1999),

103–146. Zbl 0911.47038 MR 1618400
[Pis3] Introduction to Operator Space �eory. Cambridge Univ. Press, Cambridge,

2003. Zbl 1093.46001 MR2006539
[Rua] Z. J. Ruan, Subspaces of C� -algebras. J. Funct. Anal. 76 (1988), 217–230.

Zbl 0646.46055 MR0923053
[VDN] D. Voiculescu, K. Dykema, and A. Nica, Free Random Variables. CRM

Monograph Series, Amer. Math. Soc., Providence 1992. Zbl 0795.46049
MR 1217253

(Reçu le 24 mars 2018)

Gilles Pisier, Department of Mathematics, Mailstop 3368,
Texas A&M University, College Station, TX 77843, USA

e-mail: pisier@math.tamu.edu

© Fondation L’Enseignement Mathématique

http://zbmath.org/?q=an:0767.46037
http://www.ams.org/mathscinet-getitem?mr=1049839
http://zbmath.org/?q=an:0714.46043
http://www.ams.org/mathscinet-getitem?mr=1040962
http://zbmath.org/?q=an:1303.15043
http://www.ams.org/mathscinet-getitem?mr=3205602
http://zbmath.org/?q=an:0969.46002
http://www.ams.org/mathscinet-getitem?mr=1793753
http://arxiv.org/abs/1511.05330
http://zbmath.org/?q=an:1103.46032
http://www.ams.org/mathscinet-getitem?mr=2183281
http://zbmath.org/?q=an:1387.60005
http://www.ams.org/mathscinet-getitem?mr=3585560
http://zbmath.org/?q=an:1029.47003
http://www.ams.org/mathscinet-getitem?mr=1976867
http://zbmath.org/?q=an:0858.46045
http://www.ams.org/mathscinet-getitem?mr=1401692
http://zbmath.org/?q=an:0911.47038
http://www.ams.org/mathscinet-getitem?mr=1618400
http://zbmath.org/?q=an:1093.46001
http://www.ams.org/mathscinet-getitem?mr=2006539
http://zbmath.org/?q=an:0646.46055
http://www.ams.org/mathscinet-getitem?mr=0923053
http://zbmath.org/?q=an:0795.46049
http://www.ams.org/mathscinet-getitem?mr=1217253
mailto:pisier@math.tamu.edu

	References

