L’Enseignement Mathématique (2) 64 (2018), 327-351 DOI 10.4171/LEM/64-3/4-6

An elementary and unified proof
of Grothendieck’s inequality
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Abstract. We present an elementary, self-contained proof of Grothendieck’s inequality
that unifies the real and complex cases and yields both the Krivine and Haagerup
bounds, the current best-known explicit bounds for the real and complex Grothendieck
constants respectively. This article is intended to be pedagogical, combining and streamlining
known ideas of Lindenstrauss—Pelczyniski, Krivine, and Haagerup into a proof that need
only univariate calculus, basic complex variables, and a modicum of linear algebra as
prerequisites.
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1. Introduction

We will let F =R or C throughout this article. In 1953, Grothendieck proved
a powerful result that he called “the fundamental theorem in the metric theory
of tensor products” [Gro]; he showed that there exists a finite constant K > 0
such that for every /,m,n € N and every matrix M = (M;;) € F™",

m n m n
DO Miplxiy)| <K max YN Myed;
i=1j=1 ‘

e |=18;]=1
ler| =15 1=1] = &

e))

max
llxi =Ny ll=1

where (-,-) is the standard inner product in F’, the maximum on the left is
taken over all x;,y; € F! of unit 2-norm, and the maximum on the right is
taken over all ¢;,5; € F of unit absolute value (i.e., & = £1, §; = £1 over
R; & = €%, §; = ¢! over C). The inequality (1) has since been christened
Grothendieck’s inequality and the smallest possible constant K Grothendieck’s
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constant. The value of Grothendieck’s constant depends on the choice of F and
we will denote it by Kg.

Over the last 65 years, there have been many attempts to improve and simplify
the proof of Grothendieck’s inequality, and also to obtain better bounds for the
Grothendieck constant Kg, whose exact value remains unknown. The following
are some major milestones:

@

(ii)

(iii)

@iv)

v)

The central result of Grothendieck’s original paper [Gro] is that his
eponymous inequality holds with 7/2 < K® < sinh(r/2) ~ 2.301 and
1273 =~ 4/ < Kg. Grothendieck relied on the sign function for the real
case and obtained the complex case from the real case via a complexification
argument.

The power of Grothendieck’s inequality was not generally recognized until the
work of Lindenstrauss and Petczynski [LP] 15 years later, which connected the
inequality to absolutely p-summing operators. They elucidated and improved
Grothendieck’s proof in the real case by computing expectations of sign
functions and using Taylor expansions, although they did not get better
bounds for K§.

Rietz [Rie] obtained a slightly smaller bound Kg < 2.261 in 1974 by
averaging over R” with normalized Gaussian measure and using a variational
argument to determine an optimal scalar map corresponding to the sign
function.

Our current best known upper bounds for K% and Kg are due to Krivine
[Kri], who in 1979 used Banach space theory and ideas in [LP] to get

T
¢ S E—
¢ = 2log(1 + v2)

and Haagerup [Haa], who in 1987 extended Krivine’s ideas to C to get
co_ 8
w(xo + 1)

~ 1.78221;

~ 1.40491,

where xg € [0, 1] is the unique solution to:

/2 cos? ¢

0  ~1—x2sin%¢

x m:%u+u

Our current best known lower bounds for Kg and Kg are due to Davie
[Davl, Dav2], who in 1984 used spherical integrals to get
1—
KR > PO 1.676%,

ceon max (p(x). £(x))
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where
2 2 8 [
p(x) = \/jxe_xz/z, fx) = Lo + ,O(x)|:1 — \/jf e 1?2 dt:|;
T T T Jx
and
1—06(x)
KE > sup ————2 ~ 1.33807,
NG PTES)
where
1 o0
O(x) = —|:1 —e™ 4 x/ e’ dl],
2 x

00 2
g(x) = [%(1—e—x2)+[ e_tzdt} +9(x)[1—%(1—e—x2)}.

(vi) Progress on improving the aforementioned bounds halted for many years.
Believing that Krivine’s bound is the exact value of KR some were spurred
to find matrices that yield it as the lower bound of K§ [Konl]. The belief
was dispelled in 2011 in a landmark paper [Bra], which demonstrated the
existence of a positive constant ¢ such that K& < 7/(2log(1 + v/2)) —¢ but
the authors did not provide an explicit better bound. To date, Krivine’s and
Haagerup’s bounds remain the best known explicit upper bounds for Kg
and Kg respectively.

(vii) There have also been many alternate proofs of Grothendieck’s inequality
employing a variety of techniques, among them factorization of Hilbert spaces
[Mau, Jam, Pisl], absolutely summing operators [DJT, LP, Pis2], geometry
of Banach spaces [AK, LT], metric theory of tensor product [DFS], basic
probability theory [Ble], bilinear forms on C*-algebra [Kai].

In this article, we will present a proof of Grothendieck’s inequality that unifies
both the (a) real and (b) complex cases; and yields both the (c) Krivine and (d)
Haagerup bounds [Kri, Haa]. It is also elementary in that it requires little more
than standard college mathematics. Our proof will rely on Lemma 2.1, which is
a variation of known ideas in [LP, Haa, Jam]. In particular, the idea of using the
sign function to establish (1) in the real case was due to Grothendieck himself
[Gro] and later also appeared in [LP, Kri]; whereas the use of the sign function
in the complex case first appeared in [Haa]. To be clear, all the key ideas in our
proof were originally due to Lindenstrauss—Pefczynski, Krivine, Haagerup, and
Konig [LP, Kri, Haa, Kon2], our only contribution is pedagogical — combining,
simplifying, and streamlining their ideas into what we feel is a more palatable
proof. To understand the proof, readers need only know univariate calculus, basic
complex variables, and a small amount of linear algebra. We will use some
basic Hilbert space theory and tensor product constructions in Section 4 but both
notions will be explained in a self-contained and elementary way.
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2. Gaussian integral of sign function

Throughout this article, our inner product over C will be sesquilinear in the
second argument, i.e.,

(x,y):=y*x for all x,y € C".
For z e F =R or C, the sign function is

z/|z| ifz #0,

2 =
@ gn(z) {0 ifz=0;

and for z € F", the Gaussian function is

@r) "2 exp(—|z[3/2) ifF =R,

GE(z) =
n () {n_”exp(—||z||§) if F =C.

Lemma 2.1 below is based on [Jam, Haa]; the complex version in particular
is a slight variation of [Haa, Lemma 3.2]. It plays an important role in our
proof because the right side of (3) depends only on the inner product (u,v)
and not (explicitly) on the dimension n. In addition, the functions on the right
are homeomorphisms and admit Taylor expansions, making it possible to expand
them in powers (u,v)?, which will come in useful when we prove Theorem 4.1.

Lemma 2.1. Let u,v € F" with ||ulz = ||v|l2 = 1. Then

3) /]F" sgn{u, z) sgn(z, v)G,IzF (z)dz

2
— arcsin(u, v) if F=R,
b
= /2 2t
(u,v)/ o8 — dt if F=C.
o (1=, v)|?sin*1)1/2

Proof. Case I. F = R. Let arccos{u,v) = 6, so that § € [0,7] and
arcsin{u,v) = /2 — 0. Choose «, 8 such that 0 < f§ —« < 7 and define

E(a,B) ={(rcosf,rsin®,xs,...,x,) :r = 0,0 <6 < B}.

The Gaussian measure of a measurable set A is the integral of G,]?(x) over A.
Upon integrating with respect to xs, ..., x,, the following term remains:

1

10,2,.2 1 B o 1,2
— e 201X iy dxy = _/ d0/ re 2" dr = (f—a)/27.
21 E(.p) 21 Jo 0
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Hence the Gaussian measure of E(«, ) is (8—a)/2x. Since there is an isometry
T of R” such that Tu = ¢; and Tv = (cosf,sin6,0,...,0), the left side of
(3) may be expressed as

/ sgn(Tu, x) sgn(x, Tv)fo(x) dx.

The set of x where (Tu,x) >0 and (Tv,x) >0 is E(0 — /2, 7/2), which
has Gaussian measure (7w — 6)/2m; ditto for (Tu,x) <0 and (Tv,x) < 0. The
set of x where (Tu,x) <0 and (Tv,x) >0 is E(x/2,0 + 7/2), which has
Gaussian measure 6/27; ditto for (Tu,x) > 0 and (Tv,x) < 0. The set of x
where (Tu,x) =0 has zero Gaussian measure. Hence the value of this integral
is (m—0)/2x + (x —0)/2n — 0/2x — 0/2x = 2arcsin(u, v)/m.

Case II: F = C. We define vectors «,f € R?" with a1 = Re(u;),
ap; = Im(u;), B2i—1 = Re(vi), B2i = Im(v;), i = 1,...,n. Then o and B
are unit vectors in R2”. For any z = (zq,...,z,) € C*, we write

x = (Re(z1).Im(z1). ... ,Re(z,),Im(z,)) € R*".
Then,

n

Re ((u,z)) = ZRe(u,Ei) = Z(Re(ui)Re(zi) + Im(u;) Im(z;))
i=1

i=1

= (a.x) = (x, ),

and likewise Re((z,v)) = (x, ). By a change-of-variables and Case I, we have
/ sgn(Re(u, z)) sgn(Re(z, v)) Gy (z) dz = / sen(x, o) sgn(x, B)GR (x) dx
n R2n

“4)

It is easy to verify that for any z € C,

2 2
= arcsin(a, B) = = arcsin (Re(u, v)).
s T

1 2n . .
©) sgn(z) = Z/ sgn (Re(e%z))e’? a6.
0

By (4), (5), and Fubini’s theorem,

f sen(u, z) sgn(z, v)GE (2) dz
cn

= % 027[ /OM/" sgn(Re ((e‘ieu,z)))

sgn (Re ((z, e—_"‘#’1))))e"(9+"’)G,(1c (z)dzdOde

1 2w 2w ) . .
=5 / arcsin(Re ((e_’gu,e”"v)))e’(eJr"’) dfde
T Jo 0
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Cask II(a): (u,v) € R. The integral above becomes

1 2n [ p2m .
= / arcsin (cos(f + ¢)(u, v))e @19 d@} do
LSO

87 Jo
1 2n

r r2n+e )
= / arcsin ((u, v) cosz)e’’ dti| de
87( 0 Lo

1 2w

r r2m
= / arcsin ({(u, v) cos t)e! dt} de
| Jo

8 Jo

1 [? .
6 = Z/ arcsin ((u, v) cost)e'’ dr.
0

Since arcsin ((u, v) cos t) is an even function with period 2,

2
/ arcsin ((u, v) cost) sins dt = 0,
0

the last integral in (6) becomes

1 27
4_1/ arcsin ((u, v) cos ) cosz dt,
0

and as arcsin ((u, v) cosz) coss is an even function with period 7, it becomes

/2 /2
/ arcsin ((u, v) cos ) cosr dt = / arcsin ((u, v) sint) sinz dt,
0 0
which, upon integrating by parts, becomes
/2 cos?t
@) (u,v)/ 72 dt.
0 (1—|{u,v)[?sin®r)

Case II(b): (u,v) ¢ R. This reduces to Case Il(a) by setting ¢ € C of unit
modulus so that c(u,v) = |{u,v)| and {(cu,v) € R, then by (7),

/ sgn(u, z) sgn(z, v)GE(Z) dz = E/
Cn

C

/2 2
= ¢{cu,v) cos dt
. 1/2
0 (1—|{cu,v)?sin’r)

/2 cos? ¢
= (u,v)/ 72 dt.
o (1-[

u, v)|?sin 1)

sgn{cu, z) sgn(z, v)GE (z)dz
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We will make a simple but useful observation! about the quantities in (1) that
we will need for the proof of Corollary 2.3 later.

Lemma 2.2. Let F =R or C and d,m,n € N. For any M € F™" we have

(8) max Z Z M;jeidj| = max ZZMUS’
leil<1, |3j|51 1= |€i|=\3j|=1 1=t
and for any Xi,...,Xm,V1,---»Vn e F4,
m n
) max Mij (xi:Yj> = Mlj xlvyj
I l<t, 1y, <1 ;; =y, =1 Z

Proof. We will start with (8). Suppose there exists M € F™*" such that the left-
hand side of (8) exceeds the right-hand side. Let the maximum of the left-hand

side be attained by e7,...,ey, and 67,...,6,. By our assumption, at least one
&; or §7 must be less than 1 in absolute value and so let |¢7| <1 without loss
of generality. Fix ¢; = ¢, i =2,...,m and §; = J’.‘, j=1,...,n, but let &

vary with |e;] < 1 and consider the maximum of the left hand-side over ;.
Since max{|ae; + b| : |e1| < 1} is always attained on the boundary |e;| = 1 for
any a,b € IF, this contradicts our assumption. The proof for (9) is similar with
norm in place of absolute value. L

In the corollary below, the inequality on the left is the “original Grothendieck
inequality”, i.e., as first stated by Grothendieck? in [Gro], and the inequality on
the right is due to Haagerup [Haa].

Corollary 2.3. Let F =R or C and d,m,n € N. For any M € F™" with

(10) ZZMl,el <1,
Iel\—\tsl 1
any Xi,...,XmsV1s---,¥n € F4 of unit 2-norm, we have
m n T
ZZM’J arcsin{x;, y;}| < ) if F=R,

i=1j=1

ZZMUH(WJJ-))‘ <1 if F=C,

i=1j=1

where H denotes the function on the right side of (3) for F = C.

!'This of course follows from other well-known results but we would like to keep our exposition
self-contained.
2The better known modern version (1) is in fact due to Lindenstrauss and Petczynski in [LP].
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Proof. The condition (10) implies that

ZZM,, sgn(x;, x) sgn(y;, x)GX(z)| < GR(2),
i=1j=1
m n
D My sgn(z.%)sgn(z.5;)GS (2)| < GF (2).

i=1j=1

for any x € R?, z € C¢ respectively. Integrating over R¢ or C¢ respectively
and applying Lemma 2.1 give the required results. Note that we have implicitly
relied on (8) in Lemma 2.2 as the sgn function is not always of absolute value
one and may be zero. O

Corollary 2.3 already looks a lot like the Grothendieck inequality (1) but the
nonlinear functions arcsin and H are in the way. To obtain the Grothendieck
inequality, we linearize them: First by using Taylor series to replace these functions
by polynomials; and then using a ‘tensor trick’ to express the polynomials as
linear functions on a larger space. This is the gist of the proof in Section 4.

3. Haagerup function

We will need to make a few observations regarding the functions on the right
side of (3) for the proof of Grothendieck’s inequality. Let the complex Haagerup
function of a complex variable z be

/2 cos?t
H(z) :=Z/ 72 dt, |z| <1,
o (1—|z|>sin®7)

and the real Haagerup function h as the restriction of H to [—1,1] € R. Observe
that & : [—1,1] — [—1,1] and is a strictly increasing continuous bijection. Since
[—1,1] is compact, & is a homeomorphism of [—1, 1] onto itself. By the Taylor
expansion

2k — 1!
(l—x sin t) 1/2 Z( (Zk)”) x?2 sm2kt, x| <1,0<t<mn/2,

and

/2 2k — D!
2 sin*rdr = — = i
/0 cosism dk+1) 2N

thus we get

X7 2k — DT ey
(11) h(x)_]§)4(k+l)[ o i|x . xe[-11].
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Since h is analytic at x = 0 and h’(0) # 0, its inverse function A™! :
[-1,1] = [-1,1] can be expanded in a power series in some neighborhood of 0

o0
(12) B0 = Y baex
k=0

One may in principle determine the coeflicients using the Lagrange inversion
formula:
1 dzk ¢ 2k+1
b - li — .
24T k1) z1—r>1(1)|:dt2k (h(t)) }
For example,

et el e e

But determining b, explicitly becomes difficult as k gets larger. A key step
in Haagerup’s proof [Haa] requires the nonpositivity of the coefficients beyond
the first:

(13) boes1 <0,  for allk > L.

This step is in our view the most technical part of [Haa]. We have no insights on
how it may be avoided but we simplified Haagerup’s proof of (13) in Section 5
to keep to our promise of an elementary proof — using only calculus and basic
complex variables.

It follows from (13) that f}\z’(z) = b1z — h™!(z) has nonnnegative Taylor
coefficients. Pringsheim’s theorem implies that if the radius of convergence of
the Taylor series of ﬁ(z) is r, then 7{(2), and thus h~!(z), has a singular
point at z =r. As h'(t) >0 on (0,1) and A(1) = 1, we must have r > 1. It
also follows from (13) that A~l(¢) < Z,ICV:O bak41t2k+1 for any t € (0,1) and
N €N.So Y| |byks1 |21 < byt —h~'(r) for any 7 € (0,1) and N € N. So
lecvzl |bok+1] <by—1 forany N € N and we have Y 22 |bok+1| <2b1—1. As
h=1(1) =1 we deduce that Y 22, bax+1 = h~1(1) = 1, and therefore

o0
(14) > lbokgr| =261 — 1.

k=0
We now turn our attention back to the complex Haagerup function. Observe that
|H(z)| = h(|z|]) for all z € D :={z € C: |z| < 1} and arg(H(z)) = arg(z)
for 0 #ze€ D. So H: D — D is a homeomorphism of D onto itself. Let
H™':D — D be its inverse function. Since H(z) = sgn(z)h(|z|), we get

(15) H™'\(z) = sgn(z)h ™" (|2]) = sgn(z) ) bag |21
k=0
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Dini’s theorem shows that the function ¢(x) = Y 5o |baks1]|x* 1 is a strictly

increasing and continuous on [0, 1], with ¢(0) =0 and ¢(1) = > 72, |bok+1]| >
by = 4/m > 1; note that ¢(1) is finite by (14). Thus there exists a unique
¢o € (0,1) such that ¢(co) = 1. So

o
1= pleo) = Y baknaled ™ = ~ o~ co),

k=0
where the last equality follows from b; = 4/x and (13). Therefore we
obtain h71'(cy) = 8co/m — 1, and if we let xo := h~'(co) € (0,1), then
h(xp) — w(xp + 1)/8 = 0. From the Taylor expansion of #h(x), the function
X+ h(x) —m(x + 1)/8 is increasing and continuous on [0, 1]. Hence xq is the
unique solution in [0, 1] to

(16) h(x)—%(x+ 1)=0

and ¢ = w(xo + 1)/8.

As Corollary 2.3 indicates, the Haagerup function H plays the analogue of
arcsin in the complex case. Unlike arcsin, H is a completely obscure function,3
and any of its properties that we require will have to be established from scratch.
The goal of this section is essentially to establish (11)-(16), which we will need
later.

4. A unified proof of Grothendieck’s inequality

In this section we will need the notions of (i) tensor product and (ii) Hilbert
space, but just enough to make sense of 7 (F") = @, (F")®* where F =R or
C. In keeping to our promise of an elementary proof, we will briefly introduce
these notions in a simple manner. For our purpose, it suffices to regard the tensor
product of k copies of F”, denoted

FH®F=F"® - @F",
N———
k copies
as the I -vector space of k-dimensional hypermatrices,
(F")®* = {[ay, iy ]t @iyeiy €F, in,..oip €41, 0}},

where scalar multiplication and vector addition of hypermatrices are defined
coordinatewise. Also, we let (F")®° :=F. For k vectors x,y,...,z € F*, their
tensor product is the k-dimensional hypermatrix given by

3We are unaware of any other occurrence of H outside its use in Haagerup’s proof of his bound
in [Haa].
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X®Y® - ®z:=[x; Vi, "'Zik]:'zl,iz _____ iv=1€ (]Fn)®k.

We write

k copies

If (-,-) is an inner product on F", then defining
(17) (x®y®--®z,x®y ® -®z) = (x,x)y,y)(z,7)

and extending bilinearly (if F = R) or sesquilinearly (if F = C) to all of (F”)®*
yields an inner product on the k-dimensional hypermatrices. In particular we
have

(xFy®) = (v

If {e1,...,e,} is the standard orthonormal basis of F”", then
(18) lei, ® - ®ei € F®F iy, . ix € {1,....n}}

is an orthonormal basis of (F")®*. For more information about hypermatrices
see [Lim] and for a more formal definition of tensor products see [FA].

If an F-vector space H is equipped with an inner product (-,-) such that
every Cauchy sequence in # converges with respect to the induced norm
[v]| = [(v,v)|'/?, we call H a Hilbert space. Hilbert spaces need not be finite-
dimensional; we call H separable if there is a countable set of orthonormal
vectors {e; € H: j € J}, i.e., J is a countable index set, such that every v € X
satisfies

(19) > =) [{v.e))]

jeJ

Let (-,-)x be the inner product on (F")®* as defined in (17), | -||x be its induced
norm, and Bj be the orthonormal basis in (18). Let n € N. The tensor algebra
of F” is the I -vector space*

(20)

TE") = @DE = {0, v1.v2) v € B, T g < o)

k=0
equipped with the inner product

1) Z Uk, Uk )i

It is a separable Hilbert space since | g, Bx is a countable set of orthonormal
vectors satisfying (19). We write |- ||« for the norm induced by (21).

4The direct sum in (20) is a Hilbert space direct sum, i.e., it is the closure of the vector space
direct sum.
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Theorem 4.1 (Grothendieck inequality with Krivine and Haagerup bounds). Let
F=R or Cand l,m,n e N. For any M € F™"  any x1,...,Xm, V1,+-.,Vn €
! of unit 2-norm, we have

(22) max ZZM’J xi, ;)| < K¥  max ZZMUS, il
lxilI=1y;ll=1 =1 lei =18, =1 —1j=1
where o
R 7 C
e — and K= ———
2log(1 + v/2) m(xo+ 1)

are Krivine’s and Haagerup’s bounds respectively. Recall that xq is as defined
in (16).

Proof. As we described at the end of Section 2, we will ‘linearize’ the nonlinear
functions arcsin and H in Corollary 2.3 by using Taylor series to replace these
functions by polynomials, followed by a ‘tensor trick’ [Jam, Kri] to express
polynomials as linear functions on an infinite-dimensional space.

Case I: F =R. Let ¢ := arcsinh(1) = log(1 + +/2). Taylor expansion gives

2k+1

(23) sin (¢ (x;, y;)) kX:(_ )km( xi. )2+
2k+1

oo
¢
_ 1 k—< ®(k+1), ®(2k+1)>
;;( Gkt Vi k

For any / € N, let 7(R?) be as in (20), and S, T : R’ — 7(R’) be nonlinear
maps defined by

c2k+1

S@) = (Sk()eZgr  Sak(¥) =0, Sapepa(x) = (=1 W @D,

| c2k+1
T(x) = (Tk(x))ltios Top(x) =0, Topt1(x) = k1 ! L ®CkED

for any x € R’. To justify that S and T are indeed maps into 7(R!), we need
to demonstrate that ||.S(x) T(x)|l« < oo but this follows from

o |

IS)II2 = Znsk(x)nk Z e 1,|| x[PCEHD = ZuTk(x)nk 17113
k=0 + ) k=0
and
2k+1
x| 2@¥+D = sinh (c]|x[|?) < 0o

Z < (2k + 1!
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for all x € R!. Note that
o 2k+1

(SCO.T()s = g(—l)kmw,yﬁk“ = sin (c(x. ).
which is the essence of the ‘tensor trick’. Hence (23) becomes:
sin(c(xi, y;)) = (S(a). T(y))x  or  cxi, ;) = aresin{S(x;), T(y;))x.
Moreover, since x; and y; are unit vectors in R!, we get
IS(xi)|* = sinh(c[lx; ) =1 and || (y;)]* = sinh(elly;|?) = 1.

As the m + n vectors S(x1).....S(xm), T(y1),....T(yn) in T(R?) span a
subspace § < T(Rl) of dimension d < m + n; and since any two finite-
dimensional inner product spaces are isometric, S is isometric to R? with the
standard inner product. So we may apply Corollary 2.3 to obtain

DD Mij{xi,yy)

i=1j=1

which is Krivine’s bound since 7/2¢ = r/(2log(l + +/2)) = K®.

Z Z M;; arcsin(S(x;), T(yj))«| < i,

_1
e 2c

i=1j=1

Case II: F = C. Let ¢o € (0,1) be the unique constant defined in (16)

such that ¢(cp) = 1. By the Taylor expansion in (15) and noting that
sgn(z)|z|2k+1 — Ekzk-i-l’
- 2k+1
(24)  H '(co(xi, yj)) = sgn (co(xi, y;)) szk—i-l‘CO(xi»)’j)’
k=0
> —k
=Y baksrcg T (xin ) (xiy)E T
k=0
o0
=D basrcg HEL V) (i )
k=0
- k k
= 3 [P @ 52,58 g 24

~
Il

0

For any [ € N, let D; = {x € C! : ||x|| < 1} be the unit ball, let 7(C’) be as
in (20), and let S, T : D; — T(C') be nonlinear maps defined by

S(x) = (Sk(x)) oy Sak(x) := 0,

Sok+1(x) = sgn(bag11) |bzk+1|C§k+1 300 @ x®Uk+D)

T(x) = (Te(x)) 0y Tok(x) =0,

Tﬂ+ﬂx):=¢@;:]2§Iig®@)®x®w+n
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for any x € D;. Then S and T are maps into 7(C’) since

o0
IS = Z ISk ()7 = Z|b2k+1|c2"+‘||x||2<2k+” =Y 1T}

k=0
= IIT(X)Ili
and, as by > 0 and byg4y <0 for all £k > 1 by (13),
o0
Z|b2k+1|cok“||x||2<2"+“ = 2bicollx[* — H™" (collx[1?) < o0.

As in Case I, the ‘tensor trick’ allows us to rewrite (24) as

H ™ (co(xi. y7)) = (S(xi). T(v))), or  co(xi,y;) = H{(S(x:). T(yj))x).

Moreover, since x; and y; are unit vectors in C! , we get

oo

ISGI” = baks1leg* ™' = (o) = 1.
k=0

and similarly ||7(y;)|| = 1. So we may apply Corollary 2.3 to get

ZZM’/ xhy]

i=1j=1

i), T(YJ)) ) =—,

ij

ll]l

which is Haagerup’s bound since 1/co = 8/m(xo + 1) = KC. O

5. Nonpositivity of bax4+1

To make the proof in this article entirely self-contained, we present Haagerup’s
proof of the nonpositivity of b,;4; that we used earlier in (13). While the main
ideas are all due to Haagerup, our small contribution here is that we avoided
the use of any known results of elliptic integrals in order to stay faithful to our
claim of an elementary proof, i.e., one that uses only calculus and basic complex
variables. To be clear, while the functions

/2 /2

(25) K(x) ::/ (1—x%sin®7)"Y2 d1, E(x) ::/ (1 —x%sin®1)Y? dt
0 0

do make a brief appearance in the proof of Lemma 5.1, the reader does not

need to know that they are the complete elliptic integrals of the first and second
kinds respectively. Haagerup had relied liberally on properties of K and E that
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require substantial effort to establish [Haa]. We will only use trivialities that
follow immediately from definitions.

Our point of departure from Haagerup’s proof is the following lemma about
two functions h; and h,, which we will see in Lemma 5.2 arise respectively
from the real and imaginary parts of the analytic extension of the real Haagerup
function 4 : [-1,1] — [—1,1] to the upper half plane.

Lemma 5.1. Let hq,hy : [1,00) —> R be defined by

/2
hi(x) = / V1 —x"2sin?t dt,
0

sin? ¢

— (1 —x72)sin*¢

)

/2
ha(x) = (1 — x_z)/o 7

which are clearly strictly increasing functions on [1,00) with
hi(l) =1, xli)rgohl(x) =m/2, ha(1) =0, xli)rrgohz(x) = 00.
Then
26)  w1(x) = x(h () (x) — Ky (X)ha(x)) = g forx > 1,
QN 0200 = x (I )+ ha(DH(0) = 20 (VDa(VD) > T
forl1 <x < V2.

Proof. We start by observing some properties of i} and 7). As

/2 i 2 /2 )
sin” ¢ 1 sin“ ¢
——dt = — dt,
1 —x"2sin%¢ x“Jo  A/x2—sin?t
hy is strictly decreasing on (1,00). As 0”/2 cosTlrdr = oo, lim,_ 1+ h)(x) =
oo. Clearly limy_,o /}(x) = 0. Furthermore, when x > I, since v'x2 — sin?¢ >
vx2 —1, we have

T
(28) 0<h,(x) < ———— for x > 1.
100 4x2/x2 -1

It is straightforward to see that the functions £ and K in (25) have derivatives
given by

, 1
hy(x) = F

1 1
29) E'(y)=—(E(y)-K(»)), K'()=——(EQ»)—(1-y>)K()).
29) E'(y) y( (») = K()) ) y(l—yz)( (») = A= y)K(»))

Clearly, hy(x) = K(y) — E(y), where y = y(x) = v/1 —x72. So by chain rule,
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d 1 /2
hlz(x) = y’(x)E(K — E)(y(x)) = ;/(; (1 —(1 _x—z) sin2 t)l/z dr.

Hence £/, is strictly decreasing on [1,00), h5(1) = /2, and limy_, o A5(x) = 0.
To show (26), observe that

hi(x) = E(1/x), xhi(x) = K(1/x) — E(1/x),
ha(x) = K(y) = E(y), xh3(x) = E(y).
where again y = +/1 —x~2. Hence
wi(x) = E(1/x)E(y) — [K(1/x) — E(1/0)][K(y) — E(y)]
= E(1/x)K(y) + K(1/x)E(y) — K(1/x)K(y).

Computing ], we see from (29) that w] = 0. So w; is a constant function. By
(28), limyn g 7} (x)(1—x72) = 0, and so limy\; w1 (x) = 7/2. Thus w;(x) = 7/2
for all x > 1 and we may set w;(1) = n/2.

We now show (27) following Haagerup’s arguments. Note that

w2(x) = E(1/x)(K(1/x) = E(1/x)) + E()(K(y) — E(7)).

Let g(x) == E(v/X)(K(v/x)— E(y/x)). A straightforward calculation using (29)
shows that

g"(x)

21 1—x X

2
=1[15(@_K(ﬁ)—E(ﬁ)] 0. xelo.1]

So g is convex on [0,1]. Hence g(1 — x) is also convex on [0,1]. Let
f(x) = g(x) + g(1 —x). Then f is convex on [0,1] and f’(1/2) = O.
Therefore f(x) > f(1/2) > 2g(1/2). This yields the first inequality in (27):
w2 (x) > 2h1 (V2)ha(V/2) for x €[1,/2].

The Taylor expansions of /#; and h, may be obtained as that in (11),

N
(30) hl(x)—gkg(:)[zzk(kgy} 1—2k
S @k T 2%
31) hZ(X):%kX_(:)[zz(k(k)!)z] 2k_l(l_x—z)k.

Approximate numerical values of /; and h, at x = +/2 and 4 are calculateds
to be:
5 For example, using www.wolframalpha.com, which is freely available. Such numerical calculations

cannot be completely avoided — Haagerup’s proof implicitly contains them as he used tabulated values
of elliptic integrals.


http://www.wolframalpha.com
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(32) hi(v/2) ~ 1.3506438, ha(v/2) ~ 0.5034307,
hi(4) ~ 1.5459572, ha(4) ~ 1.7289033.

The second inequality in (27) then follows from 241 (v/2)h2(+/2) & 2 % 1.35064 x
0.50343 > /4. O

In the next two lemmas and their proofs, Arg will denote principal argument.

Lemma 5.2. Let h : [-1,1] — [—1, 1] be the real Haagerup function as defined in
Section 3. Then h can be extended to a function hy : H — C that is continuous
on the closed upper half-plane H = {z € C : Im(z) > 0} and analytic on the
upper half-plane H = {z € C : Im(z) > 0}. In addition, hy has the following
properties:

() Im (h4(2)) = Im (he(|2])) for all z€e HN{z € C:|z| = 1} and hy(z) #0
for all z € H\{0}.

(i) For x €1, 00),

Re (h4(x)) = hi(x), Im(hy(x)) = ha(x),
where hy,hy are as defined in Lemma 5.1.

(iii) For all k € N and all real a > 1,

2 o _
(33) bkt = T3 /1 Im((h+(x)) (2k+1))dx+rk(a)
where

(34) |ri(e)] =

o —(2k+1)

2% + 1 (1m (@) '

Proof. Integrating by parts, we obtain
/2 /2

h(x) = / cost - d(arcsin(x sint)) = / sint arcsin(x sint) dt, x € [-1,1].
0 0

The analytic function sinz is a bijection of [—/2,7/2] x [0,00) onto H and
it maps the line segment {t +ia : —n/2 <t < m/2} onto the half ellipsoid
{zeH:|z—1|4+|z+ 1] = 2cosha}. Let arcsin; be the inverse of this mapping.
Then arcsiny is continuous in H and analytic in H. In addition, we have:

. arcsin x if xe[-1,1],
arcsing x =
7 sgnx + i arccosh [x| if x € (o0, —1) U (1, 00),

1 —
Im(arcsiny z) = arccosh<§(|z 1|+ |z + 1|)), z € H.
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If we define
/2 o
hi(z) = / sint arcsing (z sint) dt, z € H,
0

then s is a continuous extension of s to H and is analytic in H.

(i) Since arccosh is increasing on [1,00), we have

. 1 arccosh |z| if |z| > 1,
Im(arcsing z) = arccosh(§(|z 1]+ |z + 1|)) > 0 i [2] <1
if |z] <1.

Therefore for z e HN{z € C :|z| > 1},
/2
Im (h4(2)) = / sin7 - Im (arcsing. (z sint)) dt
0

/2
> / sint arccosh (|z|sint) dt = Im (h4(|z])).
arcsin(1/|z])

As Im(arcsing z) > 0 on H, we have Im (h+(z)) > 0 on H. For x € [-1,1],
hi(x) = h(x) is zero only at x = 0. For x € (—oo,—1) U (1,00),
/2

Im (hy(x)) = / sinz arccosh (|x|sint) dt > 0.

arcsin(1/]x|)

Hence /4 has no zero in H\{0}.

(i) Let x € (1,00). Integrating by parts followed by a change-of-variables
sinu = xsint in the next-to-last equality gives us:

arcsin(1/x) T /2
Re (hy(x)) = / sint arcsin(x sint) dt + — / sint dt
0 arcsin(1/x)
arcsin(1/x) 0082 ¢ /2
=x/ —dtz/ V1 —x"2sin®>udu
0 V1 —x2sin’¢ 0
=h 1 (X) .
A change-of-variables sinv = (1 —x~2)"/2cos¢ in the next-to-last equality
gives us:
/2 /2 cos2 ¢
Im (hy(x)) = / sint arccosh(x sint) dt = x / — _dt
arcsin(1/x) arcsin(1/x) vV x2 SiIl2 t—1

/2 )
= (1 —x‘z)/ 7 Y dv = hy(x).
0

— (1 =x2)sin%v
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(iii) The power series (11) shows that /# defines an analytic function A(z) in the
open unit disk that is identically equal to s, (z) on {z € C : |z| < 1} N H.
Since h(0) =0 and A’(0) # 0, we can find some &y € (0, 1] such that &(z)
has an analytic inverse function (12) in {z € C : |z| < §p}. For 0 < § < &y,
let Cs be a counterclockwise orientated circle with radius §. It follows that
h(Cs) is a simple closed curve with winding number +1. Integrating by
parts with a change-of-variables, we have

1 h_l(z)

bopry = —
k1= o0 h(Cs) 22k+2 2m/ h(z)ZkJr2

Note that byg4; € R and

zh'(2) 1 . d z _
o [ i+ [, e = [ iz e 4 =0

Then we get

——— W (z)dz.

1
212k + 1) Je
1

— I h —(2k+1) d
22k + 1) Je, m ((z) )dz

bos1 = h(z)" kD gz
Fy

2
=——" | Im(h(z)"®**tY) 4z
where Cj is the quarter circle (8¢ : 0 < 0 < m/2}. Since h(z)
identically equals %4(z) on Cg and hy(z) has no zeros in the set
{zeC:§<|z| <o, 0 < Argz < m/2} by (i), Cauchy’s integral formula
yields
2

o
b R h —(2k+1) d / h —(2k+1) d
st = o ] [ @ Oz [ @z

o

i§
+ / hy(z)”@k+D dz].
i

Moreover, since h4(z) is real on [§,1] and its real part vanishes on the
imaginary axis, we are left with

2 o
- [ —@k+1)
bak+1 20k T 1)/; m(h4(z) )dz

2
I (2k+1) )
+ —(2k D m[/&th(z) dz

By (i), h1(z) > Im (h4(2)) > Im (k4 (|z])) . Thus

—(2k+1)

/;& hy(z)~@k+D dz‘ < ?(Im (h+(a))) . O
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The integral expression of byx4; in (33) will be an important ingredient in
the proof that b1 <0 for kK > 1. We establish some further approximations
for this integral in the next and final lemma.

Lemma 5.3. Let o = 4 throughout.® Let 0(x) := Arg(h4+(x)) for x € [1,00).

Then 0 : [1,00) — [0,2n] is strictly increasing on for x > 1, 6(1) = 0, and

limy_, o 8(x) = /2. In addition, we have the following:

(i) Let p:= 12k + DHO(a)/7]. Let
2 0(x)=nr/k+1) k4 1)
I, = ———— |hy(x)|” sin ((2k + 1)0(x))| dx
72k + 1) Joey=n-vycesn [sin )
for r =1,2,...,p, and

2 o

S — h —(2k+1)| o: 2% 1o dx.
TZ @k Joommpronsn [ sin ((2k + DO(x))| dx
Then
m/lm (hy(x)~ (2k+1))dx——11+12_ P 4 ()P

(ii) Let k> 4. Then p>2 and Iy > 1 >---> 1, > J.

(iii) Let k > 4 and ¢ = |h4(V2)[e ®YD/2 Then I, > 0.57¢=@k+D /(2k + 1)2
and 12 < 08511

Proof. Since 6(x) = arctan (h»(x)/h1(x)), by (26), we get

df(x) _ hi(x)h)(x) — k' (x)ha(x)
dx lhy (X)|?

(35) >0, x>1.

So 6(x) is strictly increasing on for x > 1. Itis clear that (1) = 0. By Lemma 5.1,
limy— 00 h1(x) = /2 and limy_.o h2(x) = 400, 0 limy_ o O(x) = /2.

(i) This follows from dividing the interval of the integral [l,«] into p + 1
subsets:

(2k+1)
n(2k D / Im(h4(x)~ )dx

= m/ g ()7 D sin (2k + 1)0(x)) dx

=-I+L—...+ )P+ ()P,

6 To avoid confusion, we write ‘a’ for the upper limit of our integrals instead of ‘4’ as the same
number will also appear in an unrelated context ‘k > 4.
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We write x = x(0), 6 € [0,7/2), for the inverse function of 6 = 0(x).
By (35), we have

I 4 /m/(ml) 6)|h4 (x (@) | sin (2K + 1)6)| d6
r = T oA i~ i + )
w22k + 1) n(r—l)/(2k+1)x( e lx - )
4 8 —2k+1 .
J=—1—" x(0)|hy(x(0))] | sin ((2k + 1)6)| d6.

722k + 1) Jap/r+1)

By Lemma 5.1, h;(x) and h,(x) are strictly increasing function of x €
[1,00), therefore, so is |hy(x)|?> = hi(x)? + ha(x)?. With this, we deduce
that x|hy(x)|72%*1 is strictly decreasing on [l,«] for k >4 as

d -
(el (075

d
= [hs ()] e o) e o
= [0 (h (0" = @k = Dx (I (O () + ha () ()
= [ (o] T (@ - @k =17

< |h+(x)y‘2"‘1(Vz+(a)y2 - 77”) ~ —0.1187 < 0,

_ —2k + Dx Cok—
2k+1+( . ) |2k1

where we have used the fact that |hy(x)|? is increasing on [1,a] in the
next-to-last inequality and the numerical value is calculated from those of
h1(4) and hp(4) in (32). Since |sin((2k + 1)0)| is periodic with period
w/(2k + 1), we obtain I; > I, > ... > I,. In addition,

7= ;/m xX(0)|h4 (x(©))| >+ sin ((2k + 1)6)| 46
w22k + 1) Jrp/k+1) "
4 0(a)—n/(2k+1)

|—2k+1

xX(0)|h+ (x(6)) | sin ((2k + 1)6)| d6

T 722k + 1) Jp-1yn/@k+1)
< Ip.
Finally, we have 6(«) = arctan (hy()/h2(er)) ~ 0.8412 > 7/4 = arctan(1),
and so p = |2k + D)O(a)/7] = |99(a)/7| =2 for k > 4.
Since x(6) > 1 for 0 € [0,7/2), we have
4 7/ (2k+1)
he oo [ X @l (xO)

Recall that 8 = 6(x) and x = x(f) are inverse functions of one another.
For 0 € [0,0(v/2)],

T sin (2K + 1)6)] 6.
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d 1d do
5 log I (x(6))| =——10g|h+(x)| ( x)
hy(x)hy (x) + ha(X)hy(x)  wr(x) 1
h1(x)hy(x) — By ()ha(x) — o1(x) ~ 2
for x € [1,«/5], where we have used (26), (27), and the fact that 6(x)

is strictly increasing for x > 1. Hence log|h4(x(0))| < log|h4+(¥/2)| —
(6(¥/2) — 0)/2 which is equivalent to

|hs (x(0))] < ce??, 6 €[0,6(v2)]
where ¢ = |hy(v/2)]e” —0(v2)/2 ,1.2059 and 6(v/2) > /9, using values of
h1(v/2) and hy(+/2) in (32).

It follows that for k > 4, we have

7/ (2k+1)
(cef2)=2k+1gin ((2k + 1)0) d6

>
12712(2k+1)/0

4C_2k+1

4
_ —(k=1/2)6/2k+1) o

4C_2k+1 T o)
> m/o e sin 6 do

2e\21 4 e 7/2  —@k+D 0.57¢—Ck+1)
=( ) T+ 1/4 @kt 12 @kt

Since 4 log |hy(x(0))] = 1/2, we get
—2k
‘h+<x(9 + 7 /(2k + 1)))‘ i < e—(k—l/Z)n/(Zk-H)|h+(x(9))}—2k+1

Moreover, since 8(5/+/3) > 27/9, we know that x(#) < 5/+/3 on [0,27/9].
Hence for k > 4, it follows from the above results that

4 5 27/ (2k+1) _
a5 ). *(O)|hs (x(0) !

L f”mkﬂ) x(@)‘h+(x(9 )k + 1))))_2

722k + 1) /3 Jo
sin ((2k + 1)0) d6

4 5 /(2k+1) okl
o4 5 kRt 9 -
RN Lo some)

T

I, = | sin ((2k + 1)0)| d6

7/(@2k+1)

sin ((2k + 1)0) d6

5 _
< el 781 < 0.851.
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The fact that x|k (x)|72k*! is strictly decreasing on [1,4] for k > 4,
established in the proof of (ii) above, is a crucial observation for establishing the
nonpositivity of bog4; for k > 4. Observe that since |k (x)| is strictly increasing
for x > 1, it is enough to show that x| (x)|”7 is strictly decreasing on [1,4],
which is what we did. Note that for a fixed k > 1, x|hy(x)|"2*T! is increasing
for large enough x, as |h4+(x)| behaves like Clogx for x > 1.

Theorem 5.4. Let the Taylor expansion of h™'(x) be as in (12). Then by, <0
for k> 1.

Proof. Let k >4 and let Iy,1>,...,1,,J be as defined in Lemma 5.3. By (33)
with ¢« = 4 and Lemma 5.3(i) and (ii), we have

~bykrr =l — L+ ...+ (DP T, + (=1DPT — i1 (5V2)
>0 -1, — 72k+1(5\/§).

By (34) and Lemma 5.3(iii) with ¢ &~ 1.2059 (established in its proof), we get

0.0855
L — I > ———(1.206)"@k+D, 4)| < 1.728)"@k+D,
1 2 (2k+1)2( ) [rak+1(4)] < 2k+1( )
Since —byxy1 > 11 — I — rap11(4), we get bypy; < 0 for k > 9. Direct
computation using the Lagrange inversion formula gives us b3, bs,...,b17 <0,
proving nonpositivity for k < 8. L
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