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Moser’s shadow problem

Je�rey C. Lagarias, Yusheng Luo and Arnau Padrol

Abstract. Moser’s shadow problem asks to estimate the shadow function sb.n/ , which
is the largest number such that for each bounded convex polyhedron P with n vertices
in 3 -space there is some direction v (depending on P ) such that, when illuminated by
parallel light rays from in�nity in direction v , the polyhedron casts a shadow having
at least sb.n/ vertices. A general version of the problem allows unbounded polyhedra
as well, and has associated shadow function su.n/ . �is paper presents correct order
of magnitude asymptotic bounds on these functions. �e bounded shadow problem has
answer sb.n/ D ‚

�
log.n/=.log.log.n//

�
: �e unbounded shadow problem is shown to

have the di�erent asymptotic growth rate su.n/ D ‚
�
1
�
. Results on the bounded shadow

problem follow from 1989 work of Chazelle, Edelsbrunner and Guibas on the (bounded)
silhouette span number s�

b
.n/ , de�ned analogously but with arbitrary light sources. We

complete the picture by showing that the unbounded silhouette span number s�
u.n/ grows

as ‚
�
log.n/=.log.log.n//

�
.
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1. Introduction

�is paper gives complete answers to several variants of a problem raised
in 1966 by Leo Moser [Mo] in an in�uential list of problems in discrete and
combinatorial geometry, later reprinted in 1991 [Mos]. Problem 35 of Moser’s list
is as follows.1

1We have changed the original notation f to s in stating Problems 1 and 2.
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Problem 1. Estimate the largest s D s.n/ such that every convex polyhedron of
n vertices has an orthogonal projection onto the plane with s.n/ vertices on the
‘outside’.

A nearly equivalent problem was formulated in a 1968 paper of G. C. Shep-
hard [She2, Problem VIII].

Problem 2. Find a function s.v/ such that every convex polyhedron with v

vertices possesses a projection which is an n -gon with n � s.v/ .

�is problem has been called Moser’s shadow problem ([CEG, p. 140], [CFG,
Problem B10]), because such projections can be viewed as the shadow of the
polyhedron cast by parallel light rays coming from a light source “at in�nity”.

�e problem can be formulated in two variants, depending on whether or not
unbounded polyhedra are allowed. Shephard’s version of the problem [She1, She2]
de�nitely restricts to bounded polyhedra since he treats polyhedra that are the
convex hull of a �nite set of points. Moser’s original problem statement does
not explicitly indicate whether polyhedra are required to be bounded, though he
probably had bounded polyhedra in mind. In any case the unbounded version of
the problem is of interest because polyhedra de�ned as intersections of half-spaces
naturally arise in linear programming, and certain linear programming algorithms
have an interpretation in terms of shadows.

In this paper we consider both the bounded and unbounded case. To distinguish
the bounded case from the general (unbounded) case we let sb.n/ denote the
minimal value over bounded polyhedra (i.e., 3 -polytopes) having n vertices,
and su.n/ denote the minimal value allowing unbounded polyhedra with n vertices
as well (counting only bounded vertices). We call Moser’s shadow problem the
problem of determining the growth rate of sb.n/ . We also formulate in analogy
Moser’s unbounded shadow problem, which concerns the growth rate of su.n/ .

A related problem, the silhouette span problem, was formulated by Chazelle,
Edelsbrunner and Guibas in 1989 [CEG]. It is a variant of the shadow problem
that allows more freedom in the location of the light source from which the
shadow is cast. It considers shadows cast by point light sources at �nite distance
from the polytope. �e corresponding bounded silhouette span number s�

b
.n/ is

de�ned analogously as the shadow number, maximizing over all �nite locations
of the light source. It is also possible to de�ne the unbounded silhouette span
number, s�u.n/ . Its formal de�nition is a little subtle, and is given in Section 2.

Chazelle, Edelsbrunner and Guibas [CEG, �eorem 4] determined the exact
asymptotics of the bounded silhouette span function s�

b
.n/ .
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�eorem 1 (Chazelle–Edelsbrunner–Guibas). �e bounded n -vertex silhouette
span number s�

b
.n/ for 3 -dimensional convex polytopes satis�es

s�b.n/ D ‚

 
log.n/

log
�
log.n/

�! :
In this paper, our object is to determine the asymptotic growth rates of the

other three functions sb.n/ , su.n/ and s�u.n/ , as n ! 1 . In particular, the
original Moser shadow problem corresponds to sb.n/ .

Our �rst result puts on record a complete solution to Moser’s shadow problem
in the bounded polyhedron case.

�eorem 2. �e bounded n -vertex shadow number sb.n/ for 3 -dimensional
convex polytopes satis�es

sb.n/ D ‚

 
log.n/

log
�
log.n/

�! :
As we shall explain below, this result should be attributed to Chazelle,

Edelsbrunner and Guibas, in the sense that all the ingredients for a proof are
present in their 1989 paper [CEG]. However, although they mentioned the shadow
problem, they did not point out that their results implied a solution. In Section 3
we provide the missing steps for the proof of �eorem 2.

�e remainder of the paper is devoted to the unbounded polyhedron versions
of the shadow and silhouette span problems. In Section 4 we prove that the
unbounded shadow function su.n/ is eventually constant.

�eorem 3. �e unbounded n -vertex shadow number su.n/ for 3 -dimensional
convex polyhedra satis�es

su.n/ D ‚.1/:

In fact su.n/ D 3 for all n � 3 (and su.1/ D 1 and su.2/ D 2 ).

Finally, in Section 5 we treat the unbounded version of the silhouette span
problem. �ere is a subtlety in generalizing the de�nition of silhouette span to
unbounded polyhedra. Certain edges visible in the shadow may not correspond
to an edge of the unbounded polyhedron itself. Our de�nition, which in the
bounded polyhedron case is equivalent to that used in [CEG, Sect. 5.3], allows
as potentially visible edges corresponding to the recession directions of the
unbounded polyhedron. See Section 2. We obtain the following result, which
shows the order of magnitude of the silhouette span number does not decrease
when one allows unbounded polyhedra.
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�eorem 4. �e unbounded n -vertex silhouette span number s�u.n/ for 3 -
dimensional convex polyhedra satis�es

s�u.n/ D ‚

 
log.n/

log
�
log.n/

�! :
�is result is proved by reduction to the bounded silhouette span case. Notice

that our results show that the shadow and silhouette span problems have di�erent
growth rates in the unbounded case (in contrast with the bounded case, where
both coincide).

1.1. Related work. After Moser’s original formulation in 1966, the problem was
restated several times [CFG, Mo, Mos, She2]. �e problem book of Croft, Falconer
and Guy [CFG, Problem B10] reports that Moser conjectured sb.n/ D O

�
log.n/

�
and it sketches the construction of a polytope whose shadow number is of this
order of magnitude. Shephard [She2, Problem VIII] did not conjecture a value
for sb.n/ . However, in the dual formulation terms of sections [She2, Problem VI],
he proposed a lower bound for the silhouette span problem of the form n˛ for
some constant 0 < ˛ < 1 .

�e 1989 paper of Chazelle, Edelsbrunner and Guibas [CEG] treated a diverse
set of problems concerning the combinatorial and computational complexity of
diverse stabbing problems in dimensions two and three, among which the silhouette
span problem. �eir approach to the silhouette span problem (in the bounded case)
exploited the polarity operation, and was shown to be equivalent to the cross-
section span problem: �nding the maximal number of facets of the polar polytope
which can be intersected with a plane. �is problem is actually another of the
problems in Shephard’s list [She2, Problem VI]. Both problems are solved and
shown to be of order ‚

�
log.n/= log

�
log.n/

��
.

�e fact that s�
b
.n/ � sb.n/ , yielding an upper bound for sb.n/ , was noted

in [CEG, pp. 174–175]. As we remarked above, [CEG] also contains ingredients
su�cing to prove a lower bound for sb.n/ . Indeed, under polarity the shadow
problem can be seen to correspond to maximizing the number of facets that can
be intersected with a plane that goes through the origin. Although in [CEG] the
authors only claim results for the silhouette span problem and the cross-section
span problem, their lower bound proof for cross-section span only uses planes
through the origin [CEG, Lemma 5.1], and hence is also valid for Moser’s shadow
problem. �us �eorem 2 follows from the results in [CEG]. However, the relevant
bound in Lemma 5.1 is stated for an unnamed function c�

d
.n/ and their paper

did not remark on its consequences for the shadow problem, which has been
considered open until now.
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Glisse et al. [GLMP] studied the expected shadow number of a random 3 -
polytope obtained by a Poisson point process on the sphere and showed it to be
of order ‚.

p
n/ .

1.2. Higher-dimensional generalized shadow problems. Shadow problems
can be generalized to higher dimensions by considering k -dimensional shad-
ows/silhouettes of d -dimensional polytopes.

�e special higher-dimensional case of 2 -dimensional projections of d -
dimensional polyhedra has been studied in connection with linear programming
algorithms. �e shadow vertex simplex algorithm is a parametric version of the
simplex algorithm in linear programming introduced by Gass and Saaty [GS] in
1955. �e analysis of this algorithm leads to the study of 2 -dimensional shadows
of d -dimensional polyhedra. A variant of the algorithm was studied in detail by
Borgwardt [Bor1, Bor2, Bor3, Bor4]. Later Spielman and Teng [ST] and Kelman
and Spielman [KS] studied the shadow vertex simplex algorithm in connection
with average-case analysis of linear programming problems.

Several di�erent types of higher-dimensional shadow problems can be consid-
ered:

(1) Worst case problems concern the problem of maximizing shadow numbers
for a �xed number of vertices. �e worst case behavior of the shadow vertex
method is related to polyhedra having large shadows, For dimension d D 3

it is easily seen that for all n � 4 there are polyhedra having all vertices
visible in a shadow: one may take a suitable oblique cone over a base that
is an .n� 1/ -gon. Amenta and Ziegler [AZ] and Gärtner, Helbling, Ota and
Takahashi [GHOT] (see also [GJM]) present constructions of bad examples
of 2 -dimensional shadows in all higher dimensions d .

(2) Average case problems concern the average size of k -dimensional shadows
taken with respect to some measure on the set of directions. Such problems
for 2 -dimensional shadows arose from the average case analysis of the
shadow vertex algorithm. In the 1980’s Borgwardt [Bor1, Bor2, Bor3, Bor4]
developed a polynomial time average case analysis of the variant of the
simplex method for linear programming that uses the shadow vertex pivot
rule. �e shadow vertex simplex algorithm later provided the fundamental
example used in Spielman and Teng’s [ST] theory of smoothed analysis of
algorithms. �eir analysis requires obtaining some control on the (average)
size of shadows, as a function of the numbers of variables and constraints in
the linear program. Further developments of smoothed analysis are given in
Deshpande and Spielman [DS], Kelner and Spielman [KS], Vershynin [Var],
and Dadush and Huiberts [DH].
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(3) Minimax case problems for 2 -dimensional shadows in dimensions d � 4

generalize the shadow problem treated in this paper. Tóth [Tot] has studied
line stabbing numbers of convex subdivisions in all dimensions, extending
the analysis of Chazelle et al. [CEG]. His lower bounds induce lower bounds
for 2 -dimensional shadow numbers of d -polyhedra, however his examples
for upper bounds are not face-to-face, and hence do not arise from convex
polytopes.

�e general minimax problem for k -dimensional shadows is:

Problem 3. Estimate the growth rate of the maximal number sb.n; d; k/ (resp.
s�
b
.n; d; k/ ) such that every d -polytope with n vertices has a k -dimensional

shadow (resp. silhouette) with sb.n; d; k/ (resp. s�
b
.n; d; k/ ) vertices. Do the

same for maximizing over all d -polyhedra su.n; d; k/ (resp. s�u.n; d; k/ .)

To our knowledge all these minimax problems are open in dimensions d � 4 ;
and so are the analogue silhouette span questions.

2. De�nitions

We follow the terminology for convex polytopes in Ziegler [Zie, pp. 4–5], and
de�ne a polyhedron in Rd to be a �nite intersection of closed half-spaces, which
may be unbounded, and a polytope in Rd to be the convex hull of a �nite set
of points; that is, a bounded polyhedron. Faces of dimensions 0 , 1 and d � 1 of
a d -dimensional polyhedron are called vertices, edges, and facets, respectively.
We say that a polyhedron is pointed if it does not contain a full line. �is paper
exclusively considers the 3 -dimensional case R3 .

A shadow of a (possibly unbounded) polyhedron P in R3 is the image of P
under an a�ne projection �V W R3 ! V onto a two-dimensional a�ne �at V .
�e shadow number s.P / of P is the maximum number of vertices on the
boundary of one of its shadows. In this de�nition we may restrict �V to be
orthogonal projections onto a linear subspace V perpendicular to a given unit
vector v 2 S2 , which we de�ne to be the shadow in direction v . Alternatively,
the shadow number s.P / of P can also be interpreted as the maximal number of
1 -dimensional faces of the “cylinder” resulting from the Minkowski sum P CRv ,
varying over all directions v .

�e n -vertex bounded shadow number sb.n/ and the n -vertex unbounded
shadow number su.n/ are given by

sb.n/ WD min
®
s.P / W P is a bounded 3-polyhedron with n vertices

¯
;

su.n/ WD min
®
s.P / W P is a 3-polyhedron with n (bounded) vertices

¯
:
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Figure 2.1
A shadow and a silhouette of a polytope

�e de�nition of silhouette span of a bounded polyhedron P given in [CEG,
Section 5.3, p. 174], is an intrinsic de�nition as a subset of the boundary of P .
Here we use an alternative de�nition, equivalent as far as the bounded silhouette
span is concerned, that parallels the “cylinder” de�nition of shadow numbers and
is better suited for unbounded polyhedra.

For a (possibly unbounded) polyhedron P � R3 and a point p 2 R3

outside P , let
Cp.P / D ¹p C �v W v 2 P � p; � � 0º

be the closure of the cone with apex p spanned by P . A silhouette of P with
respect to p is a section of Cp.P / with a transversal plane (for example, a plane
separating p from P ). �e size of a silhouette is its number of vertices (in
bijection with the rays of the cone), and the silhouette span s�.P / is the size of
the largest silhouette of P .

In [CEG], Chazelle et al. de�ne the silhouette of a bounded polytope P with
respect to a point p outside P as the collection of faces F of P that allow
a supporting plane H of P such that p lies in H and F is in the relative
interior of P \ H ; and measure its size as its number of vertices. To avoid
confusion, we may call this the pre-silhouette of P with respect to p (such
complexes are sometimes referred to as the shadow-boundary of P from p ,
see for example [She3]). When p is not coplanar with any facet of P , the
pre-silhouette is a collection of edges and vertices in the boundary of P (but
otherwise it might also contains facets). In this case, central projection from p

maps the pre-silhouette bijectively to the boundary of the silhouette. Note that if
there is a 2 -dimensional face in the pre-silhouette, at most two of its vertices can
be in the pre-silhouette (by the relative interior condition), and these remain in the
pre-silhouette even after a small perturbation of the point p . Hence, silhouettes
of maximal size can always be attained from points p that do not lie in any plane
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Figure 2.2
A 2 -dimensional unbounded polyhedron P as seen from a point p .
�e cone with apex p spanned by P is not closed, one boundary edge
(dotted lines) is missing. Any transversal section of the closure of
this cone gives a silhouette, one example is the highlighted segment.

supporting a facet of P , and both de�nitions give exactly the same silhouette
spans.

However, this de�nition of pre-silhouettes is not well adapted for unbounded
polyhedra. If P is unbounded, we wish to consider also as part of the silhouette
those faces of the recession cone that are visible from p at in�nity. Indeed,
silhouettes can be interpreted by projecting onto a canvas that separates P from
a viewer placed at p . Unbounded facets are seen as half-open polytopes, in
which part of the boundary may be missing, as it corresponds to limit directions
at in�nity. An example with missing boundary is sketched in Figure 2.2 for the
planar case.

Our de�nition includes this extra boundary (this is why the closure is needed in
the de�nition of Cp.P / ). In order to reformulate the de�nition of pre-silhouettes
to this set-up, one should consider also some extra unbounded edges of P in
the directions of the recession cone. To each such unbounded edge it adds a
“vertex at in�nity”. �e silhouette size of P viewed from p would now count
the additional “vertices at in�nity” included this way.

We now de�ne the bounded silhouette span function as a min-max quantity.
�e n -vertex bounded silhouette span number s�

b
.n/ and the n -vertex unbounded

silhouette span number s�u.n/ are given by

s�b.n/ WD min¹s�.P / W P is a bounded 3-polyhedron with n verticesº;
s�u.n/ WD min¹s�.P / W P is a is a 3-polyhedron with n (bounded) verticesº:

�ese four functions satisfy the following inequalities,
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s�
b
.n/ � s�u.n/

� �

sb.n/ � su.n/.

�e two horizontal inequalities hold because the unbounded numbers minimize
over a larger set than the bounded numbers, for both the shadow problem and
the silhouette span problem. �e vertical inequality between silhouette span
numbers and shadow numbers holds because silhouettes from light sources that
are su�ciently far away in the direction of a parallel projection have at least as
many vertices as shadows obtained by that parallel projection (see [CEG, pp. 174–
175] for the bounded case; a similar argument holds for unbounded shadows and
silhouettes).

3. Moser’s (bounded) shadow problem

As discussed in Section 2, the shadow number is bounded from above
by the silhouette span number, and hence the upper bound sb.n/ � s�

b
.n/ D

O
�
log.n/=log

�
log.n/

��
follows from the upper bound for the silhouette span

problem implied by �eorem 1 (originally from [CEG, Lemma 5.15]):

Corollary 3.1. �e bounded n -vertex shadow number sb.n/ for 3 -dimensional
polytopes satis�es

sb.n/ D O

 
log.n/

log
�
log.n/

�! :
For the proof in [CEG, Lemma 5.15], Chazelle et al. construct a polytope

with n vertices whose silhouette from each point of view has size at most
O
�
log.n/= log

�
log.n/

��
. Since shadows can be regarded as a special kind of

silhouettes, this is also an upper bound for the shadow number. However the
construction in [CEG, Section 5.2] is very involved, requiring some quite technical
steps. Constructing upper bound examples for the shadow number problem is
actually simpler. For completeness, in Appendix A we present an alternative
direct construction that establishes this upper bound.

To prove �eorem 2, it su�ces hence to provide a matching lower bound
for the shadow number. To this end, we use a lower bound result for minimal
line span proved by Chazelle et al. [CEG, Lemma 3.2]. Although they used it to
prove a lower bound for the silhouette span number, it actually serves to prove a
stronger result, a lower bound for the shadow number.
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Proposition 3.2. �e bounded n -vertex shadow number sb.n/ for 3 -dimensional
polytopes satis�es

sb.n/ D �

 
log.n/

log
�
log.n/

�! :
Proof. Let P be a bounded polytope in R3 with n vertices. �e intersection
of the normal fan of P with the unit 2 -sphere S2 is a spherical polyhedral
subdivision D of Sd into n regions (see [Zie, Section 7]).

Now, consider the central (gnomonic) projection  W S2� �! H that maps the
open lower hemisphere S2� WD S2 \ ¹.x1; x2; x3/ W x3 < 0º bijectively to the plane
H WD ¹.x1; x2; x3/ W x3 D �1º , by mapping v 2 S2� to the unique intersection
point of the line through 0 and v with H .

By rotating P if needed, we may assume that the lower hemisphere S2�
intersects at least dn=2e regions of D . In this case, the central projection of
the lower hemisphere induces a polyhedral subdivision of the plane into has
at least dn=2e regions. By [CEG, Lemma 3.2], there is a line ` that stabs
�
�
log.n/=log

�
log.n/

��
cells of this subdivision. Let Hv be the linear plane

that contains its preimage �1.`/ . By construction, Hv intersects the interior of
�
�
log.n/=log

�
log.n/

��
cells of D .

Let v be a normal vector to Hv , and �v the orthogonal projection along v .
�en regions of D whose interior is intersected by Hv give rise to vertices
of �v.P / , the shadow of P in direction v . �is follows essentially from [Zie,
Lemma 7.11], which shows that the normal fan of �v.P / coincides with the
restriction of the normal fan of P to Hv .

�us P has a shadow with at least �
�
log.n/=log

�
log.n/

��
vertices. Since

this can be done for each bounded 3 -polytope with n vertices, we conclude

sb.n/ D min
P

s.P / D �

 
log.n/

log
�
log.n/

�! :
4. Moser’s unbounded shadow problem

In this section, we will determine the shadow number for unbounded polyhedra.
�ere are two results. In Proposition 4.1 we give a lower bound showing s.Pn/ � 3

for n � 3 . In Proposition 4.2 we will construct a sequence of unbounded polyhedra
Pn , for all n � 4 , having n vertices and n faces and whose shadow number is
s.Pn/ D 3 , giving an upper bound for su.n/ . 2 Both results together establish
�eorem 3.

2We are grateful to an anonymous reviewer who suggested this example to improve our original
O.1/ upper bound from 5 to 3 .
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4.1. Unbounded shadow problem: Lower bound. �e following proposition
gives a lower bound for the unbounded shadow number function.

Proposition 4.1. �e unbounded n -vertex shadow number su.n/ for 3 -dimensional
convex polyhedra satis�es

su.n/ � 3

for all n � 3 (and su.1/ D 1 and su.2/ D 2 ).

Proof. Let P be an unbounded polyhedron with at least 3 vertices. Let p1 and
p2 be two vertices of P connected by an edge e , and p3 a third vertex. We
consider a vector u normal to a supporting plane for e , and a vector w normal
to a supporting plane for p3 that is not orthogonal to e . Finally, we take a vector
v orthogonal to u and w .

Recall that a face F of P is preserved under the orthogonal projection �v
along the vector v if one of the supporting planes for F has an outer normal
vector orthogonal to v (by preserved we mean that �v.F / is a face of �v.P / ).

Hence, e is preserved, and therefore so are p1 and p2 . Moreover the images
of p1 and p2 under �v are di�erent since v is not parallel to e . Moreover,
p3 is also preserved by construction. We conclude that the orthogonal projection
�v.P / has at least three vertices.

For n D 1 and n D 2 , the proof is straightforward.

4.2. Unbounded shadow problem: Upper bound. �e following construction
gives an upper bound for unbounded shadow number function.

Proposition 4.2. �e unbounded n -vertex shadow number su.n/ for 3 -dimensional
convex polyhedra satis�es

su.n/ � 3

for all n .

Proof. It su�ces to show, for each n � 4 , that there is an unbounded pointed
convex polyhedron with n vertices Pn whose shadow number s.Pn/ is 3 . For
n � 4 , consider the convex polyhedral cone

Qn WD
®
x 2 R3 W hx;wki � 0; for 0 � k � n � 1

¯
;

where wk WD
�
cos

�
2�k
n�1

�
; sin

�
2�k
n�1

�
;�1

�
and h�; �i denotes the standard scalar

product. �is is a cone over a regular .n � 1/ -gon. It has a single vertex at the
origin and n � 1 (unbounded) facets. Now we stack a vertex on top of each of
these n � 1 facets. �at is, for each facet we add a point that is slightly beyond
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Figure 4.1
An instance of Pn , for n D 9

it and beneath the planes de�ning the remaining facets, and take the convex
hull. We obtain an unbounded polyhedron with n vertices (the origin plus n� 1
stacking points), and 3.n � 1/ (unbounded) facets (see Figure 4.1). One explicit
realization is the following polyhedron Pn :

Pn WD
®
x 2 R3 W hx;wki � 1 and hx; 2

3
wk C

1
3
wk˙1i � 0I for 0 � k � n � 1

¯
:

�e shadow number of Pn is at most 3 . Indeed, let � W R3 ! R2 be a linear
projection. If �.Qn/ does not cover the whole plane then it is a two-dimensional
cone pointed at the origin and bounded by the image of two of the rays of Qn ,
which are also rays of Pn . Besides the origin, only the vertices of Pn stacked
to facets incident to these rays can appear as vertices of the shadow �.Pn/ .
Moreover, for each of the two sides, only one of the two neighboring stacked
vertices can be visible: �ey cannot lie both outside the shadow of Qn , as the
segment between both intersects the interior of Qn (because each ray of Qn is
preserved by the stacking operation).

5. �e unbounded silhouette span problem

In this �nal section, we consider silhouettes of possibly unbounded polyhedra,
and determine the asymptotics of the unbounded silhouette span function s�u.n/ .
We will show that the asymptotic growth rate of s.n/ and s�

b
.n/ are of the same

order by reducing the unbounded case to the bounded case using a projective
transformation.

As before, the proof of �eorem 4 will be split in two parts, by providing
matching upper and lower bounds. �e upper bound follows from the trivial
inequality s�u.n/ � s�

b
.n/ and Corollary 3.1:



Moser’s shadow problem 489

Corollary 5.1. �e unbounded n -vertex silhouette span number s�u.n/ for 3 -
dimensional convex polyhedra satis�es

s�u.n/ D O

 
log.n/

log
�
log.n/

�! :
Proposition 5.2. �e unbounded n -vertex silhouette span number s�u.n/ for 3 -
dimensional convex polyhedra satis�es

s�u.n/ D �

 
log.n/

log
�
log.n/

�! :
Proof. �is lower bound holds for polytopes by Proposition 3.2, so we concentrate
on unbounded polyhedra.

Let P be an unbounded polyhedron with n > 0 vertices (which is therefore
pointed). After a suitable rotation, we might assume that all its facets have a
normal vector with a negative third coordinate, and hence for M 2 R large
enough the plane H�M , de�ned by H�M D ¹.x; y; z/ W z D �M º , avoids P .
We will take some very large M � 0 with H�M \ P D ¿ and consider the
projective transformation

� W R3 XH�M ! R3 XHM

.x; y; z/ 7!
.x; y; z/

1C z
M

:

sending H�M to in�nity (see [Zie, Appendix 2.6] for a brief introduction to
projective transformations in the context of polyhedra).

It maps bijectively R3 XH�M to R3 XHM . �e closure of the image of the
polyhedron P is the (bounded) polytope Q bounded by the inequalities inherited
from P via � together with the new inequality z � M , which supports a face
F of Q . F is the image of the “face at in�nity” of P , and �.P / D Q n F .

By Proposition 3.2 we can �nd a direction v D .v1; v2; v3/ such that the
shadow of Q in direction v has at least �

�
log.n/=log

�
log.n/

��
vertices. Since

small perturbations do not decrease the shadow number, we can assume that
v3 ¤ 0 .

When v3 ¤ 0 , lines in direction v are mapped by ��1 to lines through
the point p D .�Mv1

v3
; �Mv2

v3
;�M/ . Consequently, lines in direction v through a

point of �.P / D Q n F are mapped by ��1 bijectively to lines through p and
a point in P . In fact, �.Cp.P / X p/ is easily seen to be the one-sided cylinder
.Q C vR/ \ ¹z � M º . Hence, the shadow of Q in direction v has the same
number of vertices as the silhouettes of P from p . �is can be seen explicitly
by noting than the image of the silhouette Cp.P / \H�M

2
under the projective
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transformation � is the polygon .Q C vR/ \H�M , together with the fact that
(admissible) projective transformations do not change the combinatorial type.

�us, the silhouette span of P is �
�

log.n/
log
�
log.n/

�� .
A. On the upper bound for Moser’s bounded shadow problem

�is appendix is devoted to an alternative direct proof of Corollary 3.1, much
simpler than the one in [CEG, Section 5.2], but that applies only to the shadow
problem and not to the silhouette span problem. �e proof will be based on a
construction that will be given in terms of polygonal subdivisions. A polyhedral
subdivision E of Rd is a �nite set of d -polyhedra (called regions), whose union
is Rd and such that the intersection of any two is a common face.

An important point in the proof is to be able to certify that the subdivisions
we use arise from a 3 -dimensional polytope, which is the polytope we seek to
construct, in a way that reverses the procedure used in the proof of Proposition 3.2.

De�nition 5. We say that a polyhedral subdivision E with n regions is liftable
if it can be obtained from a polytope P with n vertices, by intersecting the
normal fan of P with the unit 2 -sphere S2 and centrally projecting the open
lower hemisphere to the plane.

We will repeatedly use three operations. �e �rst pair are classical, based on
Steinitz’s ��Y operations, and correspond to the polytope operations of stacking
and truncating; the third is a combination of both these operations.

Figure A.1
Examples of truncating, stacking and unzipping. �e shadowed
regions form the spine of the unzipping, which is of length 4 .
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De�nition 6. Let E be polyhedral subdivision of R2 .
(1) Let v be a degree-3 vertex with neighbors v1; v2; v3 . Truncating v consists in

choosing a point v0i in the interior of each of the edges .v; vi / and adding
to E the triangle with vertices v01; v

0
2; v
0
3 (and intersecting the remaining

regions with the closure of its complement).
(2) Let T be a triangular region with vertices v1; v2; v3 . Stacking onto T

corresponds to adding a vertex v in the interior of T and substituting T

by the three triangles obtained by joining v with an edge of T .
(3) Let T be a triangular region with vertices v1; v2; v3 . Unzipping T towards

vi is an operation that consists in �rst stacking onto T and then successively
truncating the newly created vertex that is connected to vi . Its length is the
number of truncations, and the regions created with the truncations are the
spine.

See Figure A.1 for an example.

Lemma A.1. Truncating and stacking, and hence also unzipping, preserve
liftability.

Proof. �is is well known and we omit its proof, see [Zie, Section 4.2].

�e whole construction will consist in successively applying these operations
in such a way that at each iteration the new cells are so small that their intersection
pattern with lines can be controlled.

We call a set of planar points in general position if no three are collinear.

Lemma A.2. Let S be a subset of the vertices of a subdivision of R2 that are
in general position. �en the vertices of S can be truncated in such a way that
no line intersects three of the newly created regions.

Proof. From the general position assumption there is some ı > 0 such that any
line through two points in S stays at distance at least ı from any third point.
Hence, there exists an " > 0 such that any line that goes through two points, each
at distance at most " from a di�erent point of S , stays at distance at least " from
the remaining points of S . �e claim follows from the fact that the truncation
regions can be arbitrarily small around the truncated points.

Lemma A.3. Let T be a triangular region of a subdivision, ` a line through
one of its vertices v that intersects the interior of T , and " > 0 a real. �en T

can be unzipped towards v in such a way that for every line `0 that intersects
at least three regions of the spine, the angle between ` and `0 is at most " .
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�is can be done even when one forces the new vertices to be in general
position with respect to a given point con�guration.

Proof. Start by stacking with a point v0 on ` . Notice that the truncations can
be made with very thin triangles, in such a way that the spine is su�ciently
close to the edge .v; v0/ in Hausdor� distance. If the pieces have a long enough
diameter with respect to the distance of the spine to the edge, then any vector
whose endpoints belong two non-consecutive pieces of the spine will form a very
small angle with .v; v0/ . In particular, the line spanned by these points can be
forced to be arbitrarily close to the line ` .

�e last claim follows from the freedom in the choice of the truncation points
(the starting line ` might have to be perturbed before starting if the con�guration
has points on it).

We are ready for the proof of Corollary 3.1.

Proof of Corollary 3.1. We will start by constructing a polyhedral subdivi-
sion of the plane with n regions such that no line can intersect more than
O
�
log.n/=log

�
log.n/

��
of them. A sketch of the construction is depicted in

Figure A.2.
�e starting point of the construction is a regular simplex, inscribed on the unit

sphere with one vertex at the south pole .0; 0;�1/ . We consider the subdivision
E0 obtained by centrally projecting the lower hemisphere of the intersection of
its normal fan with S2 . It consists of a bounded triangular region T0 and three

Figure A.2
A schema of the construction in the proof of Corollary 3.1, with
` D 7 and k D 2 . Numbers indicate the level of the regions
(unnumbered regions are at level 2 ), and spine regions are shadowed.
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unbounded regions. We say that these 4 regions are at level 0 . Note that E0 is
a liftable subdivision.

�e triangle T0 will be unzipped at length t � 3 , for some t � 5 that will be
de�ned later, in such a way that all the points are in general position. �en we
will truncate t of the 2t � 5 newly created vertices on the spine, in such a way
that that no line intersects three of the newly created regions, using Lemma A.2.
�e new regions are at level 1 and T0 is their predecessor.

For i from 1 to k (k will also be de�ned later), we will repeat this operation
on all the triangles at level i (there are t of them for each triangle at level i�1 ).
�is is done as follows. We process the triangles at level i one by one. First
we select a line through one of its vertices whose direction forms an angle of
at least 2" with all the lines chosen until now (in this and previous levels). �is
can be done by choosing a set of well-separated candidate directions beforehand,
one for each region that will have to be unzipped, and setting " accordingly. We
apply then Lemma A.3 to unzip this triangle at length t � 3 in such a way that
any line through two of its non-consecutive spine regions must form an angle of
at most " with its line (and hence cannot intersect two non-consecutive spine
regions of one of the previous spines); while keeping all new vertices in general
position.

Except for the last iteration i D k , once this is done we choose t among
the new spine vertices in each triangle, and we truncate them in such a way that
no line intersects three of these newly created regions, using Lemma A.2. �ese
new triangular regions are at level i C 1 and their predecessor is the triangle at
level i that contained them.

Observe that, when unzipping, each triangle at level i is replaced by t new
regions at level i C 1 ( t � 3 of which are spine regions and 3 are non-spine).
�en we create t triangles at level i C 1 by truncating the spine vertices (when
i < k ). �is way, the number of regions at level i is 3 for i D 0 and t i for
1 � i � k . �at is, the total number of regions is

n D 2C
tkC1 � 1

t � 1
;

and therefore k � logt .n/ .
We compute now the maximal number of regions that can be intersected by

a line. By construction, if a line intersects more than 2 regions of a spine, then
it cannot intersect more than two regions from any other spine. Hence, except
for maybe one spine where it can go through at most t � 3 D O.t/ regions, it
intersects at most 2 regions from the remaining spines. We count these O.t/
separately and continue counting as if no line could intersect more than 2 regions
of any spine.
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Hence, for a triangle at level i , a line can intersect at most 3 non-spine
regions and 2 spine regions at level i C 1 . �us, for each triangle, there are at
most 5 regions that have it as predecessor that intersect any given line. For each
level i � 1 , no line can intersect more than two triangles at level i (because we
used Lemma A.2). Since there are k levels � 1 , this amounts for at most 10 � k
regions intersected by any single line. And there are at most 3 regions at level
0 . �ese are O.k/ regions that can be intersected in addition to the at most O.t/
regions in a single spine. Hence, a line crosses at most O.tCk/ D O

�
tC logt .n/

�
regions.

Taking t D

�
log.n/

log
�
log.n/

�� gives that at most

O

 
log.n/

log
�
log.n/

�!
regions are intersected by any line. Note that any large enough value of n

can be attained by this construction just by taking t D
�
log.n/=log

�
log.n/

�˘
,

k D dlogt .n/e , and adjusting the length at which the triangles are unzipped at
the last iteration.

We are ready to reverse the steps in the proof of Proposition 3.2 to construct
a polytope from the resulting subdivision Ek . Indeed, since all the operations
were liftable by Lemma A.1, we can lift Ek to the sphere to obtain the lower
hemisphere of the normal fan of a 3 -polytope with n vertices. �ere are only
three regions of the normal fan of P intersecting the upper hemisphere, from
the original simplex, and intersecting cells of the lower hemisphere with linear
planes is equivalent to intersecting Ek with lines. Hence, no plane through the
origin can intersect more than O

�
log.n/=log

�
log.n/

��
regions of the normal fan

of P , and hence the shadow number of P is at most

s.P / D O

 
log.n/

log
�
log.n/

�! :
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