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A relative Sierpiński theorem: Erratum to
“Nonhyperbolic Coxeter groups with Menger boundary”

Matthew Haulmark, G. Christopher Hruska and Bakul Sathaye

Abstract. �e purpose of this erratum is to correct the proof of Proposition 2.3 of [HHS].
A classical theorem of Sierpiński states that every subspace of dimension at most one in
the 2 -dimensional disc D2 can be topologically embedded in the Sierpiński carpet. �e
proof of Proposition 2.3 of [HHS] implicitly provides a relative version of Sierpiński’s
theorem. Unfortunately the proof of Proposition 2.3 given in [HHS] is incorrect.

We provide two brief proofs that each �ll this gap. One is a self-contained argument
suited speci�cally for the needs of [HHS], and in the other we explicitly prove a
relative embedding theorem that produces embeddings in the Sierpiński carpet with certain
prescribed boundary values.
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1. Introduction

�e k -pointed star Ek is the graph obtained as the cone of a discrete set
of k points p1; : : : ; pk . Let e1; : : : ; ek be the edges of Ek , which we think of
as embeddings of Œ0; 1� into Ek parametrized such that ei .0/ D ej .0/ for all
i; j 2 ¹1; : : : ; kº . Proposition 2.3 of [HHS] states the following:

Proposition 1.1 ([HHS], Prop. 2.3). Let P1; : : : ; Pk 2 P be distinct peripheral
circles in the Sierpiński carpet S , and �x points pi 2 Pi . �ere is a topological
embedding h W Ek ,! S such that h ı ei .1/ D pi for each i 2 ¹1; : : : ; kº .
Furthermore the image of Ek intersects the union of all peripheral circles precisely
in the given points p1; : : : ; pk .

�e result claimed in this proposition is correct, but the proof given in [HHS]
contains an error. �e purpose of this erratum is to explain the nature of this
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error and how to correct it. As explained in [HHS, Prop. 2.3], in order to prove
Proposition 1.1, it su�ces to prove the following.

Proposition 1.2. Let Q be a compact surface of genus zero with boundary
circles P1; : : : ; Pk , and �x points pi 2 Pi . Let T be a countable subset of the
interior of Q . �en there exists a topological embedding h W Ek ,! Q � T such
that h ı ei .1/ D pi for each i and such that the image of Ek intersects the
boundary @Q precisely in the given points p1; : : : ; pk .

�e proof of Proposition 1.2 given in [HHS] involves applying the Baire
Category �eorem to the space of embeddings E of Ek into Q . Unfortunately,
this proof is incorrect since the space E is not complete. �us one may not apply
the Baire Category �eorem in this context.

2. Correcting Proposition 1.2

�is section contains two di�erent proofs of Proposition 1.2. �e �rst proof
uses a simple cardinality argument. �is proof applies only to star graphs, but
is completely elementary and self-contained. �e second proof is much more
general; it extends a proof of Sierpiński’s embedding theorem for 1 -dimensional
planar sets to give a relative embedding theorem. �e extension of Sierpiński’s
result from the original setting to the relative case takes inspiration from Hatcher’s
exposition of Kirby’s torus trick in [Hat].

In the �rst proof of Proposition 1.2, we focus on just the special case of k D 4 .
�is case is all that is required for the main results of [HHS]. �e general case
follows by essentially the same reasoning.

Proof of Proposition 1.2. Let Q be a compact surface of genus zero with
boundary components P1; P2; P3; P4 , and let T be a countable set in the
interior of Q . Choose an embedding f of Q in the Euclidean plane such
that f .Q/ � D2 , the image f .P4/ is the boundary circle S1 , and the peripheral
circles Pi (for i D 1; 2; 3 ) are mapped onto the circles with radius 1

4
and centers

at .�1
2
; 0/ and .0;˙1

2
/ . We also choose f so that for i D 1; 2; 3 , the point f .pi /

is the point on the circle f .Pi / closest to .0; 0/ and so that f .p4/ D .1; 0/ . Such
an embedding is illustrated in Figure 1. For the sake of simplicity, we identify Q

with its image f .Q/ in the plane.
We wish to �nd an embedding of E4 in Q � T � D2 that maps ei .1/

to pi for each i 2 ¹1; 2; 3; 4º . Consider the uncountable family of embeddings
gt W E4 ! Q , for t 2 Œ�1

8
; 1

8
� , de�ned as follows and shown in Figure 1. For

each i 2 ¹1; 2; 3; 4º , let gt .ei / be the straight line segment from the point
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�
ei .0/

�
gt .E4/p1

p2

p3

p4

Figure 1
Finding an embedding of E4 in Q � T

gt

�
ei .0/

�
D .t;�t / to the point gt

�
ei .1/

�
D pi . Since T is countable and the

sets gt .E4/ are pairwise disjoint except at the endpoints pi , there are at most
countably many values of t such that the image of gt intersects T . Choose
t0 such that gt0.Ek/ is disjoint from T . �en gt0 is the desired embedding
E4 ! Q � T .

�e proof above depends on the existence of a 1 -parameter family of pairwise
disjoint embeddings of Ek in Q . As such the proof does not appear to easily
generalize to embeddings of other planar graphs. Below we discuss a di�erent,
more elaborate proof of Proposition 1.2 that holds for embeddings of a much
broader family of 1 -dimensional spaces.

In the rest of this erratum, the dimension of a normal topological space X

is its covering dimension, i.e., the supremum of all integers n such that every
�nite open cover of X admits a �nite open re�nement of order at most n . (See
Engelking [Eng] for details.)

Proposition 2.1. Let A be any topological space of dimension at most n�1 that
embeds in the closed disc Dn . Let T be a countable set in the interior of Dn .
�en for any embedding f W A! Dn there exists an embedding g W A! Dn�T

such that f �1.Sn�1/ D g�1.Sn�1/ and f and g are equal on the preimage
of Sn�1 .
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Proof. Let f W A! Dn be an embedding of a space of dimension at most n� 1

in the closed disc of radius 1 . Since f .A/ does not contain an n -dimensional
disc, the image of A has empty interior in Dn . Let C be the intersection of f .A/

with the interior of Dn , and let T be any countable set in the interior of Dn .
We identify the interior of Dn with Rn via a radial reparametrization.

In his text on dimension theory, Engelking gives a proof of Sierpiński’s em-
bedding theorem that depends on the following key result (see [Eng, �m. 1.8.9]).
For each subset C of Rn with empty interior and each countable subset T

of Rn , there exists an embedding h W C ! Rn such that h.C / is disjoint from T

and the map h is bounded in the sense that the Euclidean distance d
�
h.c/; c

�
is

less than a �xed constant for all c 2 C .
�us, we get an embedding of C into the interior of Dn that misses the

countable set T . As in [Hat], due to the boundedness condition, this embedding
extends via the identity on @Dn to an embedding h W f .A/ ! Dn . �e desired
embedding g W A! Dn � T is given by the composition g D h ı f .

�e argument above applies to an embedding in a disc relative to its boundary.
Now we show how to modify an embedding of A in a compact manifold to avoid
a countable set T , while not moving the part of A that lies in the boundary of
the manifold. �e following result gives an alternative proof of Proposition 1.2.

�eorem 2.2. If A is a space of dimension at most n � 1 with an embedding
f W A!M in a compact n -manifold M with boundary, and T is a countable
set in the interior of M , then there exists an embedding g W A ! M � T with
g D f on A \ @M .

Proof. Cover the compact manifold M with a �nite collection of closed n -
discs ¹Diº whose interiors cover the interior of M . �en apply the result of
Proposition 2.1 to each of the discs Di to push A o� of the part of T contained
in the interior of that disc by a move that equals the identity outside of that
disc. Since the cover is �nite, the composition of this sequence of moves gives
an embedding with the desired properties.
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