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Approximations of delocalized eta invariants
by their finite analogues
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Abstract. For a given self-adjoint first order elliptic differential operator on a closed smooth
manifold, we prove a list of results on when the delocalized eta invariant associated to a regular
covering space can be approximated by the delocalized eta invariants associated to finite-sheeted
covering spaces. One of our main results is the following. Suppose M is a closed smooth
spin manifold and zM is a �-regular covering space of M . Let h˛i be the conjugacy class of
a non-identity element ˛ 2 � . Suppose ¹�i º is a sequence of finite-index normal subgroups
of � that distinguishes h˛i. Let ��i be the quotient map from � to �=�i and h��i .˛/i the
conjugacy class of ��i .˛/ in �=�i . If the scalar curvature onM is everywhere bounded below
by a sufficiently large positive number, then the delocalized eta invariant for the Dirac operator
of zM at the conjugacy class h˛i is equal to the limit of the delocalized eta invariants for the Dirac
operators of M�i at the conjugacy class h��i .˛/i, where M�i D zM=�i is the finite-sheeted
covering space of M determined by �i . In another main result of the paper, we prove that the
limit of the delocalized eta invariants for the Dirac operators of M�i at the conjugacy class
h��i .˛/i converges, under the assumption that the rational maximal Baum–Connes conjecture
holds for � .
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1. Introduction

The delocalized eta invariant for self-adjoint elliptic operators was first introduced
by Lott [22] as a natural extension of the classical eta invariant of Atiyah–Patodi–
Singer [1–3]. It is a fundamental invariant in the studies of higher index theory on
manifolds with boundary, positive scalar curvature metrics on spin manifolds and
rigidity problems in topology. More precisely, the delocalized eta invariant can be
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used to detect different connected components of the space of positive scalar curvature
metrics on a given closed spin manifold [9, 21]. Furthermore, it can be used to give an
estimate of the connected components of the moduli space of positive scalar curvature
metrics on a given closed spin manifold [34]. Here the moduli space is obtained by
taking the quotient of the space of positive scalar curvature metrics under the action of
self-diffeomorphisms of the underlying manifold. As for applications to topology, the
delocalized eta invariant can be applied to estimate the size of the structure group of a
given closed topological manifold [31]. The delocalized eta invariant is also closely
related to the Baum–Connes conjecture. The second and third authors showed that if the
Baum–Connes conjecture holds for a given group � , then1 the delocalized eta invariant
associated to any regular �-covering space is an algebraic number [36]. In particular,
if a delocalized eta invariant is transcendental, then it would lead to a counterexample
to the Baum–Connes conjecture. We refer the reader to [35] for a more detailed survey
of the delocalized eta invariant and its higher analogues.

The delocalized eta invariant, despite being defined in terms of an explicit integral
formula, is difficult to compute in general, due to its non-local nature. The main purpose
of this article is to study when the delocalized eta invariant associated to the universal
covering of a space can be approximated by the delocalized eta invariants associated
to finite-sheeted coverings, where the latter are easier to compute.

Let us first recall the definition of delocalized eta invariants. Let M be a closed
manifold and D a self-adjoint elliptic differential operator on M . Suppose � is a
discrete group and zM is a �-regular covering space of M . Denote by zD the lift of D
from M to zM . For any non-identity element ˛ 2 � , the delocalized eta invariant
�h˛i. zD/ of zD at the conjugacy class h˛i is defined to be

(1.1) �h˛i. zD/ WD
2
p
�

Z 1
0

X
2h˛i

Z
F

tr
�
Kt .x; x/

�
dx dt;

whereKt .x;y/ is the Schwartz kernel of the operator zDe�t2 zD2 and F is a fundamental
domain of M� under the action of � .

We point out that it is still open question whether the convergence of the integral
in line (1.1) holds in general. A list of cases where the convergence is known to hold is
given right after Definition 3.1. In particular, if � is finite, then the integral in line (1.1)
always converges.

Now we consider finite-sheeted cover ofM given by finite-index normal subgroups
of � .

1There is also an extra technical assumption that the conjugacy class h˛i used in the definition of the
delocalized eta invariant is required to have polynomial growth.
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Definition 1.1. Suppose that ¹�iº is a sequence of finite-index normal subgroups of � .
For any non-trivial conjugacy class h˛i of � , we say that ¹�iº distinguishes h˛i if, for
any finite set F in � , there exists k 2 NC such that

8ˇ 2 F; ˇ … h˛i H) ��i .ˇ/ … h��i .˛/i

for all i > k.

Let M�i D
zM=�i be the associated finite-sheeted covering space of M and D�i

the lift of D from M to M�i . The delocalized eta invariant �h��i .˛/i.D�i / of D�i is
defined similarly to line (1.1), where ��i is the canonical quotient map from � to �=�i .
Suppose ¹�iº distinguishes the conjugacy class h˛i of a non-identity element ˛ 2 � ,
which is necessary for the following discussions. We prove a list of results that answer
positively either one or both of the following questions.

(1) Does limi!1 �h��i .˛/i
.D�i / exist?

(2) If limi!1 �h��i .˛/i
.D�i / exists, is the limit equal to �h˛i. zD/?

For simplicity, we assume that M is a closed spin manifold equipped with a
Riemannian metric of positive scalar curvature throughout the paper. Positive scalar
curvature implies zD has a spectral gap. In fact, the majority of results2 in this paper
can be proved in the same way under the assumption that zD has a spectral gap or a
sufficiently large spectral gap.

Here is one of the main results of our paper.

Theorem 1.2. With the above notation, assume that zD is invertible and ¹�iº dis-
tinguishes the conjugacy class h˛i of a non-identity element ˛ 2 � . If the maximal
Baum–Connes assembly map for � is rationally an isomorphism, then the limit

lim
i!1

�h��i .˛/i
.D�i /

stabilizes, that is,

9k > 0 such that �h��i .˛/i.D�i / D �h��k .˛/i.D�k / for all i > k:

Here we say ¹�iº distinguishes the conjugacy class h˛i if for any finite set F in � ,
there exists k 2 NC such that

8ˇ 2 F; ˇ … h˛i H) ��i .ˇ/ … h��i .˛/i

for all i > k.
By a theorem of Higson and Kasparov [18, Theorem 1.1], the maximal Baum–

Connes assembly map is an isomorphism for all a-T-menable groups. We have the
following immediate corollary.

2Such as Theorem 1.2, Theorem 1.4, Theorem 5.8 and Proposition 6.3.
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Corollary 1.3. With the above notation, assume that zD is invertible and ¹�iº distin-
guishes the conjugacy class h˛i of a non-identity element ˛ 2 � . If � is a-T-menable,
then the limit

lim
i!1

�h��i .˛/i
.D�i /

stabilizes.

Note that Theorem 1.2 and its corollary above only addresses the first question, that
is, only the convergence of limi!1 �h��i .˛/i

.D�i /. On the other hand, if in addition
there exists a smooth dense subalgebra3 A of the reduced group C �-algebra C �r .�/
of � such that C� � A and the trace map4 trh˛iWC� ! C extends continuously to a
trace map trh˛iWA! C, then we have

lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/:

See the discussion at the end of Section 4 for more details.
Here is another main result of our paper.

Theorem 1.4. With the above notation, suppose ¹�iº distinguishes the conjugacy
class h˛i of a non-identity element ˛ 2 � . If the spectral gap of zD at zero is sufficiently
large, then we have

lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/:

Here “sufficiently larger spectral gap” means that the spectral gap of zD at zero is
greater than �� , where �� is the constant given in Definition 5.1. In particular, if the
group � has subexponential growth, then it follows from Definition 5.1 that �� D 0.
In this case, if zD has a spectral gap, then it is automatically sufficiently large, hence
the following immediate corollary.

Corollary 1.5. With the above notation, suppose ¹�iº distinguishes the conjugacy
class h˛i of a non-identity element ˛ 2 � . If � has subexponential growth and zD has
a spectral gap at zero, then we have

lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/:

There are other variants of Theorem 1.4 above. We refer the reader to Theorem 5.8
and Proposition 6.3 for details.

3A smooth dense subalgebra ofC�r .�/ is a dense subalgebra ofC�r .�/ that is closed under holomorphic
functional calculus.

4The trace map trh˛i is given by the formula:
P
ˇ2� aˇˇ 7!

P
ˇ2h˛i aˇ:
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The paper is organized as follows. In Section 2, we review some basic facts about
conjugacy separable groups and certain geometricC �-algebras. In Section 3, we review
some basics of delocalized eta invariants. In Section 4, we prove one of main results,
Theorem 1.2, and discuss some of its consequences. In Section 5 and 6, we prove
Theorem 1.4 and its variants.

We would like to thank the referees for helpful and constructive comments.

2. Preliminaries

In this section, we review some basic facts about conjugacy separable groups and
certain geometric C �-algebras.

2.1. Conjugacy separable groups. We will prove our main approximation results
for a particular class of groups, called conjugacy separable groups. In this subsection,
we review some basic properties of conjugacy separable groups. In the following, all
groups are assumed to be finitely generated, unless otherwise specified.

Definition 2.1. Let � be a finitely generated discrete group. We say that  2 � is
conjugacy distinguished if for any ˇ 2 � that is not conjugate to  , there exists a
finite-index normal subgroup � 0 of � such that the image of ˇ in �=� 0 is not conjugate
to  .

If every element in � is conjugacy distinguished, then we say that � is conjugacy
separable. In other words, we have the following definition of conjugacy separability.

Definition 2.2. A finitely generated group� is conjugacy separable if for any 1;2 2�
that are not conjugate, there exists a finite-index normal subgroup � 0 of � such that
the image of 1 and 2 in �=� 0 are not conjugate.

For any normal subgroup � 0 of � , we denote by ��0 the quotient map from �

to �=� 0.

Definition 2.3. Suppose that ¹�iº is a sequence of finite-index normal subgroups of � .
For any non-trivial conjugacy class h˛i of � , we say that ¹�iº distinguishes h˛i, if for
any finite set F in � there exists k 2 NC such that

8ˇ 2 F; ˇ … h˛i H) ��i .ˇ/ … h��i .˛/i

for all i > k.

If ˛ 2 � is conjugacy distinguished, then such sequence always exists. More
generally, let N be the net of all normal subgroups of � with finite indices. If ˛ 2 G is
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conjugacy distinguished in the sense of Definition 2.1, then N distinguishes h˛i, that
is, for any finite set F � � , there exists a finite index normal subgroup �F of � such
that

8ˇ 2 F; ˇ … hi H) ��0.ˇ/ … h��0./i

for all � 0 2 N with � 0 � �F .
Let C� be the group algebra of � and `1.�/ be the `1-completion of C� . For

any normal subgroup � 0 of � , the quotient map ��0 W � ! �=� 0 naturally induces
an algebra homomorphism ��0 WC� ! C.�=� 0/, which extends to a Banach algebra
homomorphism ��0 W `

1.�/! `1.�=� 0/.
For any conjugacy class hi of � , let trhiWC� ! C be the trace map defined by

the formula: X
ˇ2�

aˇˇ 7!
X
ˇ2hi

aˇ :

The following lemma is obvious.

Lemma 2.4. If h˛i is a non-trivial conjugacy class of � and ¹�iº is a sequence of
finite-index normal subgroups that distinguishes h˛i, then

lim
i!1

trh��i .˛/i.��i .f // D trh˛i.f /

for all f 2 `1.�/. Moreover, if f 2 C� , then the limit on the left-hand side stabilizes,
that is,

9k > 0 such that trh��i .˛/i.��i .f // D trh˛i.f / for all i > k:

As we will mainly work with integral operators whose associated Schwartz kernels
are smooth, let us fix some notation further and restate the above lemma in the context of
integral operators. Let M be a closed manifold and zM be the universal covering space
ofM . Denote the fundamental group �1.M/ ofM by � . Suppose T is a �-equivariant
bounded smooth function on zM � zM , that is,

T .x; y/ D T .x; y/

for all x; y 2 zM and  2 � . We say that T has finite propagation if there exists a
constant d > 0 such that

dist.x; y/ > d H) T .x; y/ D 0;

where dist.x; y/ is the distance between x and y in zM . In this case, we define the
propagation of T to be the infimum of such d .
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Definition 2.5. A�-equivariant bounded function T on zM � zM is said to be `1-summ-
able if

kT k`1 WD sup
x;y2F

X
2�

jT .x; y/j <1;

where F is a fundamental domain of zM under the action of � . We shall call kT k`1
the `1-norm of T from now on.

Clearly, every T with finite propagation is `1-summable.
If a �-equivariant bounded smooth function T 2 C1. zM � zM/ is `1-summable,

then it defines a bounded operator on L2. zM/ by the formula

(2.1) f 7!

Z
zM

T .x; y/f .y/ dy

for all f 2 L2. zM/. For notational simplicity, we shall still denote this operator by T .
Now suppose that � 0 is a finite-index normal subgroup of � . Let M�0 D zM=� 0

be the quotient space of zM by the action of � 0. In particular, M�0 is a finite-sheeted
covering space of M with the deck transformation group being �=� 0. Let ��0 be
the quotient map from zM to M�0 . Any �-equivariant bounded smooth function T 2
C1. zM � zM/ that is `1-summable naturally descends to a smooth function ��0.T /
on M�0 �M�0 by the formula

��0.T /
�
��0.x/; ��0.y/

�
WD

X
2�0

T .x; y/

for all .��0.x/; ��0.y// 2M�0 �M�0 . Clearly, ��0.T / is a �=� 0-equivariant smooth
function onM�0 �M�0 and, similar to the formula in (2.1), defines a bounded operator
on L2.M�0/.

For any non-trivial conjugacy class h˛i of � , we define the following trace map:

trh˛i.T / D
X
2h˛i

Z
F

T .x; x/ dx;

for all �-equivariant `1-summable smooth function T 2 C1. zM � zM/, where F is a
fundamental domain of zM under the action of � . More generally, for each finite-index
normal subgroup � 0 of � , a similar trace map is defined for �=� 0-equivariant smooth
functions on M�0 �M�0 .

With the above notation, Lemma 2.4 can be restated as follows.

Lemma 2.6. Suppose h˛i is a non-trivial conjugacy class of � and ¹�iº is a sequence
of finite-index normal subgroups that distinguishes h˛i. Let T be a �-equivariant
`1-summable bounded smooth function on zM � zM . Then we have

lim
i!1

trh��i .˛/i
�
��i .T /

�
D trh˛i.T /:
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Moreover, if T has finite propagation, the limit on the left-hand side stabilizes, that is,

9k > 0 such that trh��i .˛/i.��i .T // D trh˛i.T / for all i > k:

2.2. Geometric C �-algebras. In this subsection, we review the definitions of some
geometric C �-algebras, cf. [33, 38] for more details.

LetX be a proper metric space, i.e. every closed ball inX is compact. AnX -module
is a separable Hilbert space equipped with a �-representation of C0.X/. An X -module
is called non-degenerated if the �-representation of C0.X/ is non-degenerated. An
X-module is called standard if no non-zero function in C0.X/ acts as a compact
operator.

In addition, we assume that a discrete group � acts onX properly and cocompactly
by isometries. AssumeHX is anX -module equipped with a covariant unitary represen-
tation of � . If we denote by ' and � the representations of C0.X/ and � respectively,
this means

�./.'.f /v/ D '.�f /.�./v/;

where f 2 C0.X/;  2 �; v 2 HX and �f .x/ D f .�1x/. In this case, we call
.HX ; �; '/ a covariant system.

Definition 2.7 ([39]). A covariant system .HX ; �; '/ is called admissible if

(1) HX is a non-degenerate and standard X -module;

(2) for each x 2 X , the stabilizer group �x acts regularly in the sense that the action
is isomorphic to the action of �x on l2.�x/˝H for some infinite-dimensional
Hilbert space H . Here �x acts on l2.�x/ by translations and acts on H trivially.

We remark that for each locally compact metric space X with a proper, cocompact
and isometric action of � , an admissible covariant system .HX ; �; '/ always exists. In
particular, if � acts on X freely, then the condition (2) above holds automatically.

Definition 2.8. Let .HX ; �; '/ be a covariant system and T a �-equivariant bounded
linear operator acting on HX .
� The propagation of T is defined to be

sup¹d.x; y/ W .x; y/ 2 supp.T /º;

where supp.T / is the complement (in X �X ) of points .x; y/ 2 X �X for which
there exists f; g 2 C0.X/ such that gTf D 0 and f .x/ ¤ 0; g.y/ ¤ 0;

� T is said to be locally compact if f T and Tf are compact for all f 2 C0.X/.
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Definition 2.9. Let X be a locally compact metric space with a proper and cocompact
isometric action of � . Let .HX ; �; '/ be an admissible covariant system. We denote
by CŒX�� the �-algebra of all �-equivariant locally compact bounded operators acting
on HX with finite propagations. We define the equivariant Roe algebra C �.X/� to be
the completion of CŒX�� under the operator norm.

Indeed, C �.X/� is isomorphic to C �r .�/˝K , the C �-algebraic tensor product
of the reduced group C �-algebra of � and the algebra of compact operators.

Definition 2.10. We define the localization algebra C �L.X/
� to be the C �-algebra

generated by all uniformly bounded and uniformly norm-continuous function

f W Œ0;1/! C �.X/�

such that the propagation of f .t/ goes to zero as t goes to infinity. Define C �L;0.X/
�

to be the kernel of the evaluation map

evWC �L.X/
�
! C �.X/; ev.f / D f .0/:

Now let us also review the construction of higher rho invariants for invertible differ-
ential operators. For simplicity, let us focus on the odd-dimensional case. Suppose M
is closed manifold of odd dimension. Let M� be the regular covering space of M
whose deck transformation group is � . Suppose D is a self-adjoint elliptic differential
operator on M and zD is the lift of D to M� . If zD is invertible, then its higher rho
invariant is defined as follows.

Definition 2.11. With the same notation as above, the higher rho invariant �. zD/ of an
invertible operator zD is defined to be

�. zD/ WD
�
e2�i.�.

zD=t/C1/=2
�
2 K1

�
C �L;0.M�/

�
�
;

where � (called a normalizing function) is a continuous odd function such that

lim
x!˙1

�.x/ D ˙1:

By definition, the higher rho invariant �. zD/ is a uniformly norm-continuous func-
tion from Œ0;1/ toC �.X/� . It is a secondary invariant that serves as an obstruction for
the higher index of zD to be both trivial and local (i.e. having small propagation) at the
same time, cf. [11]. More precisely, for each fixed t , the unitary e2�i.�. zD=t/C1/=2 is a
representative of the higher index class of zD. On one hand, since zD is invertible, zD has
a spectral gap near zero. It follows that e2�i.�. zD=t/C1/=2 converges in norm to the trivial
unitary 1, as t goes to zero. On the other hand, the propagation of e2�i.�. zD=t/C1/=2 goes
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to zero (up to operators with small norm)5, as t goes to infinity. For an invertible zD,
we can choose a representative of the higher index of zD to be either trivial or local
(i.e. having small propagation), but generally not both at the same time. In other words,
the higher rho invariant measures the tension between the triviality and locality of the
higher index of an invertible operator

The above discussion has an obvious maximal analogue (cf. [15, Lemma 3.4]).

Definition 2.12. For an operator T 2 CŒX�� , its maximal norm is

kT kmax WD sup
'

®
k'.T /k W 'WCŒX�� ! B.H/ is a �-representation

¯
:

The maximal equivariant Roe algebra C �max.X/
� is defined to be the completion

of CŒX�� with respect to k � kmax. Similarly, we define

(1) the maximal localization algebra C �L;max.X/
� to be the C �-algebra generated by

all uniformly bounded and uniformly norm-continuous function f W Œ0;1/ !
C �max.X/

� such that the propagation of f .t/ goes to zero as t goes to infinity;

(2) C �L;0;max.X/
� to be the kernel of the evaluation map

evWC �L;max.X/
�
! C �max.X/; ev.f / D f .0/:

Now suppose M is a closed spin manifold. Assume that M is endowed with a
Riemannian metric g of positive scalar curvature. Let M� be the regular covering
space of M whose deck transformation group is � . Suppose D is the associated Dirac
operator on M and zD is the lift of D to M� . In this case, we can define the maximal
higher rho invariant of zD as follows.

Definition 2.13. The maximal higher rho invariant �max. zD/ of zD is defined to be

�max. zD/ WD
�
e2�i.�.

zD=t/C1/=2
�
2 K1

�
C �L;0;max.M�/

�
�
;

Here� is again a normalizing function, but the functional calculus for defining�.t�1 zD/
is performed under the maximal norm instead. See, for example, [16, Section 3] for a
discussion of such a functional calculus.

5To be precise, one needs to use a normalizing function � whose distributional Fourier transform has
compact support, and furthermore approximate the function e2�ix by an appropriate polynomial.
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3. Delocalized eta invariants and their approximations

In this section, we review the definition of delocalized eta invariants and formulate
the main question of this article.

We assume that M is a closed spin manifold equipped with a Riemannian metric
of positive scalar curvature throughout the paper. Let � be a finitely generated discrete
group and zM a �-regular covering space of M . Suppose D is the associated Dirac
operator on M and zD is the lift of D to zM .

Positive scalar curvature implies zD has a spectral gap. In fact, the majority of
results6 in this paper also hold true under the assumption that zD has a spectral gap or a
sufficiently large spectral gap. For simplicity, we shall only discuss the case whereM is
a closed spin manifold equipped with a Riemannian metric of positive scalar curvature.

Definition 3.1 ([22]). For any conjugacy class h˛i of� , Lott’s delocalized eta invariant
�h˛i. zD/ of zD is defined to be

(3.1) �h˛i. zD/ WD
2
p
�

Z 1
0

trh˛i
�
zDe�t

2 zD2
�
dt;

whenever the integral converges. Here

trh˛i. zDe�t
2 zD2/ D

X
2h˛i

Z
F

tr
�
kt .x; x/

�
dx;

where kt .x; y/ is the corresponding Schwartz kernel of the operator zDe�t2 zD2 and F

is a fundamental domain of zM under the action of � .

It is known that the integral formula (3.1) for �h˛i. zD/ converges if zD is invertible
and any one of the following conditions is satisfied.

(1) The scalar curvature of M is sufficiently large (see [12, Definition 3.2] for the
precise definition of “sufficiently large”).

(2) There exists a smooth dense subalgebra of C �r .�/ onto which the trace map trh˛i
extends continuously (cf. [22, Section 4]). For example, when � is a Gromov’s
hyperbolic group, Puschnigg’s smooth dense subalgebra [25] is such an subalgebra
which admits a continuous extension of the trace map trh˛i for all conjugacy
classes hhi.

(3) h˛i has subexponential growth (cf. [12, Corollary 3.4]).

6Such as Theorem 1.2, Theorem 1.4, Theorem 5.8 and Proposition 6.3.
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In general, it is still an open question when the integral in (3.1) converges for invertible
operators.

Now suppose that � 0 is a finite-index normal subgroup of � . As before, let M�0 D

zM=� 0 be the associated finite-sheeted covering space of M . Similarly, let D�0 be the
lift of D to M�0 , and define the delocalized eta invariant �h��0 .˛/i.D�0/ of D�0 to be

(3.2) �h��0 .˛/i.D�0/ WD
2
p
�

Z 1
0

trh��0 .˛/i
�
D�0e

�t2D2
�0
�
dt;

where ˛ 2 � and h��0.˛/i is conjugacy class of ��0.˛/ in �=� 0. As M�0 is compact,
it is not difficult to verify that the integral in (3.2) always converges absolutely.

The above discussion naturally leads to the following questions.

Question 3.2. Given a non-identity element ˛ 2 � , suppose ¹�iº is a sequence of
finite-index normal subgroups that distinguishes the conjugacy class h˛i.

(I) When does limi!1 �h��i .˛/i
.D�i / exist?

(II) If �h˛i. zD/ is well-defined and limi!1 �h��i .˛/i
.D�i / exists, when do we have

(3.3) lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/ ‹

4. Maximal higher rho invariants and their functoriality

In this section, we use the functoriality of higher rho invariants to give some
sufficient conditions under which the answer to part (I) of Question 3.2 is positive.

Before we get into the technical details, here is a special case which showcases the
main results of this section.

Proposition 4.1. With the same notation as in Question 3.2, if � is a-T-menable
and ¹�iº is a sequence of finite-index normal subgroups that distinguishes the conjugacy
class h˛i for a non-identity element ˛ 2 � , then the limit

lim
i!1

�h��i .˛/i
.D�i /

stabilizes, that is,

9k > 0 such that �h��i .˛/i.D�i / D �h��k .˛/i.D�k / for all i > k:

In particular, limi!1 �h��i .˛/i
.D�i / exists.

Proof. This is a consequence of Theorem 4.3 below and a theorem of Higson and
Kasparov [18, Theorem 1.1].
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Given a finitely presented discrete group � , let E� be the universal �-space for
proper �-actions. The Baum–Connes conjecture [4] can be stated as follows.

Conjecture 4.2 (Baum–Connes conjecture). The following map

ev�WKi
�
C �L.E�/

�
�
! Ki

�
C �.E�/�

�
is an isomorphism. Here

Ki
�
C �L.E�/

�
�
WD lim
�!
Y

Ki
�
C �L.Y /

�
�
;

Ki
�
C �.E�/�

�
WD lim
�!
Y

Ki
�
C �.Y /�

�
;

where the limit is taken over all � cocompact spaces Y .

Although this was not how the Baum–Connes conjecture was originally stated, the
above formulation is equivalent to the original Baum–Connes conjecture, after one
makes the following natural identifications:

Ki
�
C �L.E�/

�
�
Š K�i .E�/ and Ki

�
C �.E�/�

�
Š Ki

�
C �r .�/

�
:

Under this notation, we usually write the map

ev�WKi
�
C �L.E�/

�
�
! Ki

�
C �.E�/�

�
as follows:

�WK�i .E�/! Ki
�
C �r .�/

�
and call it the Baum–Connes assembly map. Similarly, there is a maximal version of
the Baum–Connes assembly map:

�maxWK
�
i .E�/! Ki

�
C �max.�/

�
:

The maximal Baum–Connes assembly map �max is not an isomorphism in general. For
example, �max fails to be surjective for non-finite property (T) groups.

Before we discuss the functoriality of higher rho invariants, let us recall the functo-
riality of higher indices. More precisely, let D be a Dirac-type operator on a closed
n-dimensional manifold X . Consider the following commutative diagram

B�1

B'

��

X

f2
&&

f1 88

B�2



J. Wang, Z. Xie and G. Yu 64

where f1, f2 are continuous maps and B' is a continuous map from B�1 to B�1
induced by a group homomorphism 'W �1 ! �2. Let X�1 (resp. X�2) be the �1
(resp. �2) regular covering space of X induced by the map f1 (resp. f2), and DX�1
(resp. DX�2 ) be the lift of D to X�1 (resp. X�2). We have the following functoriality
of the higher indices:

'�
�
Indmax.DX�1 /

�
D Indmax.DX�2 / in Kn

�
C �max.�2/

�
;

where C �max.�i / is the maximal group C �-algebra of �i , the notation Indmax stands for
higher index in the maximal group C �-algebra, and

'�WKn
�
C �max.�1/

�
! Kn

�
C �max.�2/

�
is the morphism naturally induced by '.

Now let us consider the functoriality of higher rho invariants. Following the same
notation from above, in addition, assume X is a closed spin manifold endowed with
a Riemannian metric of positive scalar curvature. In this case, the maximal higher
rho invariants �max.DX�1 / of DX�2 and �max.DX�1 / of DX�2 are defined. Let E�1
(resp. E�2) be universal �1-space (resp. �2-space ) for free �1-actions (resp. �2-
actions). Denote byˆ the equivariant mapX�1 ! X�2 induced by 'W�1! �2, which
in turn induces a morphism

ˆ�WKn
�
C �L;0;max.X�1/

�1
�
! Kn

�
C �L;0;max.X�2/

�2
�
:

By [17], the maximal higher rho invariants are functorial:

ˆ�
�
�max.DX�1 /

�
D �max.DX�2 /

in Kn.C �L;0;max.X�2/
�2/.

Now suppose M is an odd-dimensional closed spin manifold endowed with a
positive scalar curvature metric and � is a finitely generated discrete group. Let zM be
a �-regular covering space ofM and zD be the Dirac operator lifted fromM . For each
finite-index normal subgroup � 0 of � , letM�0 D zM=� 0 be the associated finite-sheeted
covering space of M . Denote by D�0 the Dirac operator on M�0 lifted from M .

Theorem 4.3. With the above notation, given a non-identity element ˛ 2 � , sup-
pose ¹�iº is a sequence of finite-index normal subgroups that distinguishes the con-
jugacy class h˛i. If the maximal Baum–Connes assembly map for � is rationally an
isomorphism, then

lim
i!1

�h��i .˛/i
.D�i /

stabilizes, that is,

9k > 0 such that �h��i .˛/i.D�i / D �h��k .˛/i.D�k / for all i > k:
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Proof. We have the short exact sequence of C �-algebras:

0! C �L;0;max.E�/
�
! C �L;max.E�/

�
! C �max.E�/

�
! 0;

which induces the following long exact sequence in K-theory:

(4.1)

K0
�
C�L;0;max.E�/

�
�
˝Q //

�
C�L;max.E�/

�
�
˝Q

�0 // K0
�
C�max.�/

�
˝Q

@

��

K1
�
C�max.�/

�
˝Q

OO

K1
�
C�L;max.E�/

�
�
˝Q

�1oo K1
�
C�L;0;max.E�/

�
�
˝Qoo

Note that Ki .C �L;max.E�/
�/ is naturally isomorphic to K�i .E�/. Similarly, we

have
Ki
�
C �L;max.E�/

�
�
Š K�i .E�/:

The morphism K�i .E�/! K�i .E�/ induced by the inclusion from E� to E� is
rationally injective (cf. [5, Section 7]). It follows that if the rational maximal Baum–
Connes conjecture holds for � , that is, the maximal Baum–Connes assembly map

�maxWKi
�
C �L;max.E�/

�
�
˝Q! Ki

�
C �max.�/

�
˝Q

is an isomorphism, then the maps �i in the above commutative diagram are injective
and the map @ is surjective. In particular, for the higher rho invariant �. zD/ of zD, there
exists

Œp� 2 K0
�
C �max.E�/

�
�
Š K0

�
C �max.�/

�
such that @Œp� D �. zD/ rationally, that is, @Œp� D � � �. zD/ for some � 2 Q.

By the surjectivity of the Baum–Connes assembly map

�maxWKi
�
C �L;max.E�/

�
�
˝Q! Ki

�
C �max.�/

�
˝Q;

we can assume p is an idempotent with finite propagation in K ˝C� . Indeed, let Œq�
be an element in

K0
�
C �L;max.E�/

�
�
˝Q Š K�0 .E�/˝Q

such that�max.Œq�/D Œp�. It follows from the Baum–Douglas model of K-homology [6]
that Œq� is the K-homology class of a twisted spinc Dirac operator and Œp� is its higher
index. More precisely, there is an even-dimensional spinc �-manifold X together with
a �-equivariant vector bundle E such that rationally Œp� equals the �-index of the
twisted Dirac operator =DE onX . For the convenience of the reader, we shall review the
construction of this index. Recall that a function � on R is called a normalizing func-
tion if �WR! Œ�1; 1� is an odd continuous function such that �.x/ > 0 when x > 0,
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and �.x/!˙1 as x !˙1. Let f be a smooth normalizing function whose distri-
butional Fourier transform has compact support. Let us denote f . =DE / D

�
0 FC
F� 0

�
.

Using the formula

f . =D/ D
1

2�

Z
R

yf .s/eisD ds

and the fact that eisD has propagation less than or equal to jsj, it follows that f . =D/ has
finite propagation, since the Fourier transform yf has compact support. Now we define

w D

 
1 FC

0 1

! 
1 0

�F� 1

! 
1 FC

0 1

! 
0 �1

1 0

!
:

Note that

w�1 D

 
0 1

�1 0

! 
1 �FC

0 1

! 
1 0

F� 1

! 
1 �FC

0 1

!
:

The higher index of =D is given as the following formal difference of idempotents:"
w

 
1 0

0 0

!
w�1

#
�

" 
1 0

0 0

!#
:

By construction, we have

w

 
1 0

0 0

!
w�1 �

 
1 0

0 0

!
2 � ˝C�;

where � is the algebra of trace class operators on a Hilbert space. In particular, we see
that the element Œp� 2 K0.C �max.�// from above can be (rationally) represented by a
formal difference of idempotents with finite propagation.

Let ‰i be the canonical quotient map from zM to M�i D
zM=�i and

.‰i /�WK1
�
C �L;0;max.

zM/�
�
! K1

�
C �L;0;max.M�i /

�=�i
�

the corresponding morphism induced by ‰i . By [17, Theorem 1.1], we have

.‰i /�
�
�max. zD/

�
D �.D�i / in K1

�
C �L;0;max.M�i /

�=�i
�
:

By passing to the universal spaces, we have

.‰i /�
�
�max. zD/

�
D �.D�i / in K1

�
C �L;0;max.E.�=�i //

�=�i
�
:
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Consider the following commutative diagram of long exact sequences7:
(4.2)

K0
�
C�L;max.E�/

�
�
˝Q

��

// K0
�
C�max.�/

�
˝Q

@ //

.��i /�

��

K1
�
C�L;0;max.E�/

�
�
˝Q

.‰i /�

��

K0
�
C�L.E.�=�i //

�=�i
�
˝Q // K0

�
C�r .�=�i /

�
˝Q

@ // K1
�
C�L;0.E.�=�i //

�=�i
�
˝Q;

where
.��i /�WK0

�
C �max.�/

�
! K0

�
C �r .�=�i /

�
is the natural morphism induced by the canonical quotient map ��i W� ! �=�i . Let
us denote .��i /�.p/ by pi . It follows from the commutative diagram above that

(4.3) @.pi / D �.D�i /:

By [36, Lemma 3.9 and Theorem 4.3], for each �i , there exists a determinant map

�i WK1
�
C �L;0.E.�=�i //

�=�i
�
! C

such that
1

2
�h��i .˛/i

.D�i / D ��i
�
�.D�i /

�
D trh��i .˛/i.pi /:

Since the idempotent p has finite propagation, it follows from Lemma 2.4 that

lim
i!1

�h��i .˛/i
.D�i / D 2 lim

i!1
trh��i .˛/i.pi / D 2 trh˛i.p/;

and the limit stabilizes.

Remark 4.4. (1) In Theorem 4.3 above, instead of the assumption that ¹�iº is a
sequence of finite-index normal subgroups that distinguishes the conjugacy class h˛i,
we assume that ¹�iº is a decreasing sequence8 of finite-index normal subgroups of � .
The same proof shows that if the maximal Baum–Connes assembly map for � is
rationally an isomorphism, then

lim
i!1

�h��i .˛/i
.D�i /

stabilizes. On the other hand, to eventually relate the limit limi!1 �h��i .˛/i
.D�i /

to �h˛i. zD/, if the latter exists, one will likely have to assume the condition that ¹�iº
distinguishes h˛i.

7Since �=�i is finite, we have C�L;0;max.E.�=�i //
�=�i Š C�L;0.E.�=�i //

�=�i .
8We say ¹�iº is a decreasing sequence of finite-index normal subgroups of � if �i � �iC1 for all i .
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(2) Note that Theorem 4.3 only answers part (I) of Question 3.2. Part (II) of Ques-
tion 3.2 is still open, even under the assumption that the maximal Baum–Connes
conjecture holds for � .

(3) Although Theorem 4.3 assumes that the maximal Baum–Connes conjecture holds
for � , it is clear from the proof that it suffices to assume �max. zD/ is rationally in the
image of the composition of the following maps:

K�0 .E�/! K0
�
C �max.�/

� @
�! K1

�
C �L;0;max.E�/

�
�
:

By a theorem of Higson and Kasparov [18, Theorem 1.1], the maximal Baum–
Connes conjecture holds for all a-T-menable groups. Together with Theorem 4.3 above,
this proves Proposition 4.1 at the beginning of the section.

As mentioned above, the maximal Baum–Connes assembly map �max fails to be
an isomorphism in general. For example, �max fails to be surjective for non-finite
property (T) groups. On the contrary, there is no counterexample to the Baum–Connes
conjecture, at the time of writing. In particular, the Baum–Connes conjecture is known
to hold for all hyperbolic groups [20,23], many of which have property (T). For this
reason, we shall now investigate Question 3.2, in particular, the convergence of

lim
i!1

�h��i .˛/i
.D�i /

when the group � satisfies the Baum–Connes conjecture.
One of the first difficulties we face is that reduced group C �-algebras are not

functorial with respect to group homomorphisms in general. As a result, the functoriality
of higher rho invariants is, a priori, lost in the reduced C �-algebra setting. Note that a
key step (cf. equation (4.3)) in the proof of Theorem 4.3 is the existence of a “universal”
idempotent p 2 � ˝C� such that

@.pi / D �.D�i /;

where pi D .��i /�.p/. In the maximal setting, the existence of such a universal
idempotent follows if the rational maximal Baum–Connes conjecture holds for � .
In the following, we shall discuss some geometric conditions that are sufficient for
deriving an analogue of Theorem 4.3 in the reduced setting. How these geometric
conditions are related to the (reduced) Baum–Connes conjecture will be explained in
Appendix Appendix A.

Recall that M is a closed spin manifold equipped with a Riemannian metric h of
positive scalar curvature. Let 'WM ! B� be the classifying map for the covering
zM !M , that is, the pullback of E� by ' is zM . In the following, we denote by B the

Bott manifold, a simply connected spin manifold of dimension 8 with yA.B/ D 1. This
manifold is not unique, but any choice will work for the following discussion.



Approximations of delocalized eta invariants 69

Definition 4.5. We say a multiple of .M;';h/ stably bounds with respect toB� if there
exists a compact spin manifoldW and a map ˆWW ! B� such that @W D

F`
iD1M

0

andˆj@W D
F`
iD1 '

0, where .M 0; '0; h0/ is the direct product of .M;';h/with finitely
many copies of B and

F`
iD1M

0 is the disjoint union of ` copies of M 0.

Definition 4.6. Let zh be the metric on zM lifted from h. We say a multiple of . zM; zh/

positively stably bounds with respect to E� if there exists a spin cocompact �-
manifold9 zV equipped with a �-equivariant positive scalar curvature metric g zV such
that @ zV D

F`
iD1
zM 0 (as �-manifolds) and g zV has product structure near @ zV , where

. zM 0; zh0/ is the direct product of . zM; zh/ with finitely many copies of B.

The following proposition is an analogue of Theorem 4.3 in the reduced setting,
under the assumptions that a multiple of .M; '; h/ stably bounds with respect to B�
and a multiple of . zM; zh/ positively stably bounds with respect to E� . For example,
ifM is a lens space equipped with the metric inherited from the standard round metric
on Sn and � D �1.M/, then both of these assumptions are satisfied. In general, the
validity of these two assumptions is closely related to the reduced Baum–Connes
conjecture and the Stolz conjecture on positive scalar curvature metrics. We refer the
reader to Appendix Appendix A for more details.

Proposition 4.7. LetM be a closed spin manifold equipped with a Riemannian metric h
of positive scalar curvature. Given a non-identity element ˛ 2 � , suppose ¹�iº is
a sequence of finite-index normal subgroups of � that distinguishes the conjugacy
class h˛i. If a multiple of .M; '; h/ stably bounds with respect to B� and a multiple
of . zM; zh/ positively stably bounds with respect to E� , then

lim
i!1

�h��i .˛/i
.D�i /

stabilizes, that is,

9k > 0 such that �h��i .˛/i.D�i / D �h��k .˛/i.D�k / for all i > k.

Proof. For notational simplicity, let us assume .M; '; h/ itself bounds with respect
to B� , that is, there exists a compact spin manifold W and a map ˆWW ! B� such
that @W DM and ˆj@W D '. Similarly, let us assume . zM; zh/ itself positively stably
bounds with respect to E� , that is, there exists a cocompact �-spin manifold zV with
@ zV D

F`
iD1
zM 0 (as �-manifolds) and zV is equipped with a �-equivariant positive

scalar curvature metric that has product structure near @ zV . The general case can be
proved in exactly the same way.

9Here a �-manifold is a Riemannian manifold equipped with a proper isometric action of � .
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EndowW with a Riemannian metric g which has product structure near @W DM
and whose restriction on @W is the positive scalar curvature metric h. Let zW be
the covering space of W induced by the map ˆWW ! B� and zg be the lift of g
from W to zW . Due to the positive scalar curvature of zg near the boundary of zW , the
corresponding Dirac operatorD zW on zW with respect to the metric zg has a well-defined
higher index Ind.D zW ; zg/ in KOnC1.C �r .�IR//:

Now for each normal subgroup �i of � , let M�i D
zM=�i , W�i D zW =�i and gi

be the lift of g toW�i . Similarly, the corresponding Dirac operatorDW�i onW�i with
respect to the metric gi has a well-defined higher index

Ind.DW�i ; gi / in KOnC1
�
C �r .�=�i IR/

�
:

Moreover, we have

@
�
Ind.DW�i ; gi /

�
D �.DM�i

/ in KOn
�
C �L;0.E.�=�i /IR/

�=�i
�
;

cf. [24, Theorem 1.14] and [33, Theorem A].
By [36, Lemma 3.9 and Theorem 4.3], for each �i , there exists a determinant map

�i WK1
�
C �L;0;max.E.�=�i //

�=�i
�
! C

such that

1

2
�h��i .˛/i

.DM�i
/ D ��i

�
�.DM�i

/
�
D trh��i .˛/i

�
Ind.DW�i ; gi /

�
:

Therefore, to prove the proposition, it suffices to show that there exists

Œp� 2 KOnC1
�
C �max.�IR/

�
such that Œp� is represented by a formal difference of idempotents in � ˝C� and

.��i /�
�
Œp�
�
D Ind.DW�i ; gi /

for all k, where .��i /�WC
�
max.�IR/! C �r .�=�i IR/ is the morphism induced by the

quotient homomorphism��i W�! �=�i . The existence of such a “universal”K-theory
element with finite propagation can be seen as follows.

Let Y be the spin �-manifold obtained by gluing zV and zW along their common
boundary zM . Since the scalar curvature on zV is uniformly bounded below by a positive
number, it follows from the relative index theorem [10,32] that

Indmax.DY / D Indmax.D zW ; zg/ in KOnC1
�
C �max.�IR/

�
:
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Let p D Indmax.DY /. By the discussion in the proof of Theorem 4.3, the index class
Indmax.DY / can be represented by a formal difference of idempotents in � ˝C� . On
the other hand, we have

.��i /�
�
Indmax.D zW ; zg/

�
D Ind.DW�i ; gi /

for all i . To summarize, we have

.��i /�
�
Œp�
�
D .��i /�

�
Indmax.D zW ; zg/

�
D Ind.DW�i ; gi /:

This finishes the proof.

In Theorem 4.3 and Proposition 4.7, we have mainly focused on the part (I) of
Question 3.2. In the following, we shall try to answer part (II) of Question 3.2 in
some special cases. Note that, a key ingredient of the proofs for Theorem 4.3 and
Proposition 4.7 is the existence of aK-theory element10 Œpmax� 2KnC1.C

�
max.�/˝K/

that is represented by a formal difference of idempotents in � ˝C� such that

@.pmax/ D �max. zD/;

where
@WKnC1

�
C �max.�/

�
! KOn

�
C �L;0;max.E�/

�
�

is the usual boundary map in the corresponding K-theory long exact sequence. We
shall assume the existence of such a K-theory element pmax throughout the rest of the
section.

In addition, suppose there exists a smooth dense subalgebra A of C �r .�/ such that
A � C� and the trace map trh˛iWC� ! C extends to a trace map A! C. In this
case, trh˛iWA! C induces a trace map

trh˛iWK0
�
C �r .�// Š K0.A/! C

and a determinant map (cf. [36])

�˛WK1
�
C �L;0.E�/

�
�
! C

such that the following diagram commutes:

K0
�
C �r .�/

� @ //

� trh˛i
��

K1
�
C �L;0.E�/

�
�

�˛

��

C
D // C:

10In the case of Proposition 4.7, we mapKO-theory toK-theory.
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Such a smooth dense subalgebra indeed exists if h˛i has polynomial growth (cf. [13,36])
or � is word hyperbolic (cf. [12, 25]).

Note that the canonical morphism

K1
�
C �L;0;max.E�/

�
�
! K1

�
C �L;0.E�/

�
�

maps �max. zD/ to �. zD/. Let pr be the image of pmax under the canonical morphism

K0
�
C �max.�/

�
! K0

�
C �r .�/

�
:

The same argument from the proof of Theorem 4.3 shows that @.pr/ D �. zD/ and

1

2
�h˛i. zD/ D ��˛

�
�. zD/

�
D trh˛i.pr/:

Similarly, for each finite-index normal subgroup �i � � , let

.��i /�WK0
�
C �max.�/

�
! K0

�
C �r .�=�i /

�
be the natural morphism induced by the quotient map ��i W� ! �=�i . Let us denote
pi WD .��i /�.p/. We have @.pi / D �.D�i / and

1

2
�h��i .˛/i

.D�i / D ��i
�
�.D�i /

�
D trh��i .˛/i.pi /;

where
�i WK1

�
C �L;0.E.�=�i //

�=�i
�
! C

is a determinant map induced by the trace map trh��i .˛/i, cf. [36, Lemma 3.9 and
Theorem 4.3]. Since pmax is a formal difference of idempotents in � ˝C� , it follows
that the limit limi!1 trh��i .˛/i.pi / stabilizes and is equal to trh˛i.pr/. Thus, the limit

lim
i!1

�h��i .˛/i
.D�i /

stabilizes and is equal to �h˛i. zD/.
In particular, as a consequence of the above discussion and Theorem 4.3, we have

the following theorem

Theorem 4.8. If � is both a-T-menable and word hyperbolic11, then

lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/:

11For example, if � is a virtually free group, then it is both a-T-menable and word hyperbolic.
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5. Scalar curvature and `1-summability

In this section, we show that the answers to both part (I) and part (II) of Question 3.2
are positive when the scalar curvature of the given spin manifold M is bounded below
by a sufficiently large positive number.

Throughout this section, assume M is an odd-dimensional closed spin manifold
endowed with a positive scalar curvature metric and � is a finitely generated discrete
group. Let zM be a regular �-covering space of M and zD be the Dirac operator lifted
from M . For each finite-index normal subgroup � 0 of � , let M�0 D zM=� 0 be the
associated finite-sheeted covering space of M . Denote by D�0 the Dirac operator
on M�0 lifted from M .

Let S be a symmetric finite generating set of � and ` be the associated word length
function on � . There exist C > 0 and B > 0 such that

(5.1) #¹ 2 � W `.g/ 6 nº 6 CeB �n

for all n � 0. Let K� be the infimum of all such numbers B .
Furthermore, there exist �0; �1; c0; c1 > 0 such that

(5.2) �0 � `.ˇ/ � c0 6 dist.x; ˇx/ 6 �1 � `.ˇ/C c1

for all x 2 F and ˇ 2 � , where F is a fundamental domain of zM under the action
of � . In particular, we may define �0 as follows:

(5.3) �0 D lim inf
`.ˇ/!1

�
inf
x2F

dist.x; ˇx/
`.ˇ/

�
:

Definition 5.1. With the above notation, let us define

�� WD
2K�

�0
:

The following theorem answers both part (I) and part (II) of Question 3.2 positively,
under the condition that the spectral gap of zD at zero is sufficiently large.

Theorem 5.2. With the same notation as above, suppose ¹�iº is a sequence of finite-
index normal subgroups that distinguishes the conjugacy class h˛i of a non-identity
element ˛ 2 � . If the spectral gap of zD at zero is greater than �� , then

lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/:
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Proof. It suffices to find a function of t that is a dominating function for all the following
functions:

trh˛i
�
zDe�t

2 zD2
�
D

X
2h˛i

Z
F

tr
�
Kt .x; x/

�
dx;

trh��i .˛/i
�
D�i e

�t2D2
�i

�
D

X
!2h��i .˛/i

Z
F

tr
�
.Ki /t .x; !x/

�
dx;

and show that trh��i .˛/i.D�i e
�t2D2

�i / converges to trh˛i. zDe�t
2 zD2/ as i ! 1, for

each t . Indeed, the theorem then follows by the dominated convergence theorem.
Recall that Kt .x; y/ (resp. .Ki /t .x; y/) is the Schwartz kernel of zDe�t2 zD2

(resp. D�i e
�t2D2

�i ). We have the following estimates (cf. [12, Section 3]).

(1) By [12, Lemma 3.8], for any � > 1 and r > 0, there exists a constant c�;r > 0
such that

(5.4) kKt .x; y/k 6 c�;r � Ft

�
dist.x; y/

�

�
for 8x;y 2 zM with dist.x; y/ > r . Here kKt .x; y/k is the operator norm of the matrix
Kt .x; y/, and the function Ft is defined by

Ft .s/ WD sup
n6 32 dimMC3

Z
j�j>s

ˇ̌̌̌
dn

d�n
yft .�/

ˇ̌̌̌
d�;

where yft is the Fourier transform of ft .x/ D xe�t
2x2 . It follows that for � > 1 and

r > 0, there exist c�;r > 0; n1 > 0 and m1 > 0 such that

(5.5) kKt .x; y/k 6 c�;r
.1C dist.x; y//n1

tm1
exp

�
� dist.x; y/2

4�t2

�
;

for all t > 0 and for all x; y 2 zM with dist.x; y/ > r .

(2) By [12, Lemma 3.5], there exists c2 > 0 such that

(5.6) sup
x;y2M

kKt .x; y/k 6 c2 � sup
kCj6 32 dimMC3

k zDk. zDe�t
2 zD2/ zDj

kop;

for all x; y 2 zM , where k � kop stands for the operator norm. It follows that there exist
positive numbers c2, m2 and ı such that

(5.7) kKt .x; y/k 6 c2
1

tm2
exp

�
�.�� C ı/

2
� t2
�
;

for all t > 0 and all x; y 2 zM .
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In fact, since the manifolds zM and M�i have uniformly bounded geometry, the
constants c�;r , n1, m1, c2, m2 and ı from above can be chosen so that for all i � 1,
we have

(5.8) k.Ki /t.x; y/k 6 c�;r
.1C dist.x; y//n1

tm1
exp

�
� dist.x; y/2

4�t2

�
;

for all t > 0 and for all x; y 2M�i with dist.x; y/ > r ; and

(5.9) k.Ki /t .x; y/k 6 c2
1

tm2
exp

�
�.�� C ı/

2
� t2
�

for all t > 0 and all x; y 2M�i .
For the rest of the proof, let us fix r > 0. Note that we have

dist.x; y/ � dist.x; x/C dist.x; y/
D dist.x; x/C dist.x; y/

for all x; y 2 zM and  2 � . Similarly, we have

dist.x; x/ � dist.x; y/ � dist.x; y/:

By line (5.2), we have

�0 � `./ � c0 � dist.x; y/ 6 dist.x; y/
6 �1 � `./C c1 C dist.x; y/

for all x; y 2 zM and  2 � . In particular, there exist c00 > 0 and c01 > 0 such that

(5.10) �0 � `./ � c
0
0 6 dist.x; y/ 6 �1 � `./C c

0
1

for all x; y 2 F and  2 � , where F is a precompact fundamental domain of zM under
the action of � . Let us define

F WD ¹ˇ 2 � j dist.x; ˇy/ � r for some x; y 2 F º:

Clearly, F is a finite subset of � .
For any given t > 0, it follows from line (5.1), (5.5) and (5.10) that the Schwartz

kernel Kt is `1-summable (cf. Definition 2.5).
Now approximate ft .x/D xe�t

2x2 by smooth functions ¹'j º whose Fourier trans-
forms are compactly supported. By applying the estimates in line (5.4) and (5.6) to
the Schwartz kernel K'j . zD/ (resp. K'j .D�i /) of the operator 'j . zD/ (resp. 'j .D�i /),
it is not difficult to see that K'j . zD/ (resp. K'j .D�i /) converges to Kt (resp. .Ki /t ) in
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`1-norm (defined in Definition 2.5). Note that 'j . zD/ has finite propagation. Since zD
locally coincides with D�i , it follows from finite propagation estimates of wave opera-
tors that (cf. [17]):

K'j .D�i /
�
��i .x/; ��i .y/

�
D

X
ˇ2�i

K'j . zD/
.x; ˇy/

for all x; y 2 zM . As a consequence of the above discussion, we have

(5.11) .Ki /t
�
��i .x/; ��i .y/

�
D

X
ˇ2�i

Kt .x; ˇy/:

for all x; y 2 zM and for all t > 0. Furthermore, by Lemma 2.6, we have the following
convergence:

trh��i .˛/i
�
D�i e

�t2D2
�i

�
! trh˛i

�
zDe�t

2 zD2
�

as j !1;

for each t > 0, since ¹�iº distinguishes the conjugacy class h˛i.
By line (5.5) and (5.7), there exists a positive number c3 such that

kKt .x; y/k
2
� c3

.1C dist.x; y//n1

tm1Cm2
exp

�
� dist.x; y/2

4�t2

�
e�.��C"/

2�t2e�"
2t2

� c3
.1C dist.x; y//n1

tm1Cm2
exp

�
� dist.x; y/ � .�� C "/

�

�
e�"

2t2 ;

for all x; y 2 zM with dist.x; y/ > r , where " D ı=2. By choosing � > 1 sufficiently
close to 1, we see that there exist c4 > 0 and � > 1 such that

kKt .x; y/k � c4
e�"

2t2

t .m1Cm2/=2
exp

�
�
�

2
� �� � dist.x; y/

�
for all x; y 2 zM with dist.x; y/ > r . It follows that there exist c5 > 0 and m > 0 such
thatX
2�

kKt .x; y/k 6
X
2F

c2
e�.��Cı/

2�t2

tm2
C c4

e�"
2t2

t .m1Cm2/=2

X
…F

e���K� �.`./�c
0
0
��1
0
/

6 c2 � jF j �
e�"

2t2

tm2
C c4

e�"
2t2

t .m1Cm2/=2

1X
nD0

eK� �ne���K� �.n�c
0
0
��1
0
/

<
c5

tm
e�"

2t2

for all t > 0. In particular, we haveX
2h˛i

j trKt .x; y/j <
c5

tm
e�"

2t2
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for all x; y 2 zM and all t > 0. By the same argument, we also haveX
!2h��i .˛/i

j tr.Ki /t .x0; !y0/j <
c5

tm
e�"

2t2

for all x0; y0 2M�i and all t > 0. Therefore, the functionsˇ̌
trh˛i

�
zDe�t

2 zD2
�ˇ̌

and
ˇ̌
trh��i .˛/i

�
D�i e

�t2D2
�i

�ˇ̌
are all bounded by the function

c5 � t
�me�"

2t2 :

The latter is clearly absolutely integrable on Œ1;1/.
We have found above an appropriate dominating function on the interval Œ1;1/.

Now let us find the dominating function on .0; 1�. Since � acts on zM freely and
cocompactly, it follows that there exists "0 > 0 such that

dist.x; x/ > "0

for all x 2 zM and all  ¤ e 2 � . By applying line (5.5), a similar calculation as above
shows that there exist "1 > 0 and c6 > 0 such thatX

2�

kKt .x; x/k <
c6

tm1
e�"1�t

�2

for all x 2 F and all t � 1. The same estimate also holds for .Ki /t . Therefore, on the
interval .0; 1�, the functionsˇ̌

trh˛i
�
zDe�t

2 zD2
�ˇ̌

and
ˇ̌
trh��i .˛/i

�
D�i e

�t2D2
�i

�ˇ̌
are all bounded by the function

c6 � t
�m1e�"1�t

�2

:

The latter is absolutely integrable on .0; 1�. This finishes the proof.

If the group � has subexponential growth, then it follows from Definition 5.1 that
�� D 0. In this case, if zD has a spectral gap, then it is automatically sufficiently large,
hence the following immediate corollary.

Corollary 5.3. With the above notation, suppose ¹�iº distinguishes the conjugacy
class h˛i of a non-identity element ˛ 2 � . If � has subexponential growth and zD has
a spectral gap at zero , then we have

lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/:
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Remark 5.4. Recall that if � has subexponential growth, then � is amenable and thus
a-T-menable [8]. So the convergence of the limit

lim
i!1

�h��i .˛/i
.D�i /

also follows from Proposition 4.1. In fact, Proposition 4.1 implies that the above limit
stabilizes. On the other hand, Corollary 5.3 above answers positively both part (I) and
part (II) of Question 3.2.

Remark 5.5. In this remark, we shall briefly comment on the condition that the
spectral gap of zD at zero is greater than �� in Theorem 5.2. Here is a class of natural
examples such that the spectral gap of zD at zero is greater than �� and the higher rho
invariant12 �. zD/ is non-zero.

Suppose that N is a closed spin manifold equipped with a positive scalar curvature
metric gN , whose fundamental group F D �1.N / is finite and its higher rho invari-
ant �. zDN / is non-trivial. Here zDN is the Dirac operator on the universal covering zN
of N . For instance, let N to be a lens space, that is, the quotient of the 3-dimensional
sphere by a free action of a finite cyclic group. In this case, the classical equivariant
Atiyah–Patodi–Singer index theorem implies that the delocalized higher rho invariant
of N is non-trivial, cf. [14].

Now letX be an even-dimensional closed spin manifold, whose Dirac operatorDX
has non-trivial higher index inK0.C �r .�//, where � D �1.X/. In particular, it follows
that DX defines a non-zero element in the equivariant K-homology K0.C �L.E�/

�/

of the universal space E� for free � actions. Consider the product spaceM D V �N
equipped with a metric gM D gX C " � gN , where gX is an arbitrary Riemannian metric
on X and the metric gN on N is scaled by a positive number ". Denote the Dirac
operator on the universal covering zM ofM by zDM . The spectral gap of zDM at zero can
always be made sufficiently large, as long as we choose " to be sufficiently small. To see
that �. zDM / is non-zero in K1.C �L;0.E.� � F //

��F /, we apply the product formula
for secondary invariants (cf. [33, Claim 2.19] and [40, Corollary 4.15]), which states
that the higher rho invariant �. zDM / is the product of theK-homology class ofDX and
the higher rho invariant �. zDN /. It follows from the above construction that the higher
rho invariant �. zDM / is non-zero in K1.C �L;0.E.� � F //

��F /. In fact, if the Baum–
Connes conjecture holds for � , then the K-theory group K1.C �L;0.E.� � F //

��F /

is (at least rationally) generated by the higher rho invariants of the above examples,
cf. [37, Theorem 3.7 and Corollary 3.16].

12As we have seen in the proofs of Theorem 4.1 and Theorem 4.8, the delocalized eta invariant �h˛i. zD/
is essentially the pairing between the higher rho invariant �. zD/ and the delocalized trace trh˛i, cf. [36,
Theorem 4.3].
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On the other hand, we also would like to point out that for the operator zDM
from the above examples, a straightforward calculation shows the delocalized eta
invariant �h˛i. zDM / could be non-zero only in the case when ˛ D .1; a/ 2 � � F

with a being a non-identity element of F D �1.N /. This essentially reduces the
computation of �h˛i. zDM / to the case of finite fundamental groups. Consequently,
Question 3.2 has a positive answer for the above examples but for trivial reasons.

By the proof of Theorem 5.2 above, in order to bound the functionˇ̌
trh˛i

�
zDe�t

2 zD2
�ˇ̌
;

it suffices to assume the spectral gap of zD at zero to be greater than

�h˛i WD
2 �Kh˛i

�0
;

where �0 is the constant from line (5.3) and Kh˛i is non-negative constant such that
there exists some constant C > 0 satisfying

(5.12) #¹ 2 h˛i W `./ 6 nº 6 CeKh˛i�n

for all n. In fact, if we have a uniform control of the spectral gap of D�i at zero and
the growth rate of the conjugacy class ¹h��i .˛/iº for all i � 1, a notion to be made
precise in the following, then the same proof above also implies that

lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/

in this case.
Recall that S a symmetric finite generating set of � . For each normal subgroup �i

of � , the map ��i W � ! �=�i is the canonical quotient map. The set ��i .S/ is a
symmetric generating set for �=�i , hence induces a word length function `�i on �=�i .
More explicitly, we have

(5.13) `�i .!/ WD inf¹`.ˇ/ W ˇ 2 ��1�i .!/º

for all ! 2 �=�i .

Definition 5.6. For a given conjugacy class h˛i of � , we say that h˛i has uniform
exponential growth with respect to a family of normal subgroups ¹�iº, if there exist
C > 0 and A � 0 such that

(5.14) #¹! 2 h��i .˛/i W `�i .!/ 6 nº 6 CeA�n:

for all i � 1 and all n � 0. In this case, we define Ku to be the infimum of all such
numbers A.



J. Wang, Z. Xie and G. Yu 80

Definition 5.7. With the above notation, we define

�u WD
2 �Ku

�0
;

where �0 is the constant from line (5.3).

The same argument from the proof of Theorem 5.2 can be used to prove the
following.

Theorem 5.8. With the same notation as in Theorem 5.2, suppose ¹�iº is a sequence
of finite-index normal subgroups that distinguishes the conjugacy class h˛i of a non-
identity element ˛ 2 � . Assume h˛i has uniform exponential growth with respect
to ¹�iº. If there exists " > 0 such that the spectral gap of D�i at zero is greater than
�u C " for sufficiently large i � 1, then

lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/:

Remark 5.9. Here is a geometric condition on M that guarantees the spectral gap
of D�i at zero to be greater than �u C " for all i � 1. If the scalar curvature of M is
strictly bounded below13 by 4 � �2u , then it follows from the Lichnerowicz formula that
there exists " > 0 such that the spectral gap of D�i at zero is greater than �u C " for
all i � 1.

6. Separation rates of conjugacy classes

In this section, we introduce a notion of separation rate for how fast a sequence
of normal subgroups ¹�iº of � distinguishes a conjugacy class h˛i of � and use it to
answer Question 3.2 in some cases.

Definition 6.1. For each normal subgroup � 0 of � , let ��0 W� ! �=� 0 be the quotient
map from � to �=� 0. Given a conjugacy class h˛i of � , we define the injective radius
of ��0 with respect to h˛i to be

(6.1) r.� 0/ WD max¹n j if  … h˛i and `./ � n; then ��0./ … h��0.˛/iº:

Definition 6.2. Suppose that ¹�iº is a sequence of finite-index normal subgroups of �
that distinguishes h˛i. We say that ¹�iº distinguishes h˛i sufficiently fast if there exist
C > 0 and R > 0 such that

(6.2) jh��i .˛/ij 6 CeR�r.�i /:

In this case, we define the separation rate Rh˛i;¹�i º of h˛i with respect to ¹�iº to be
the infimum of all such numbers R.

13The scalar curvature function �.x/ ofM satisfies that �.x/ > 4 � �2u for all x 2M .
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We have the following proposition.

Proposition 6.3. Let h˛i be the conjugacy class of a non-identity element ˛ 2 � .
Suppose ¹�iº is a sequence of finite-index normal subgroups that distinguishes h˛i
sufficiently fast with separation rate R D Rh˛i;¹�i º. If �h˛i. zD/ is finite14 and there
exists " > 0 such that the spectral gap of D�i at zero is greater than15 �R C " for all
sufficiently large i � 1, where

�R WD
2.K� �R/

1=2

�0
;

then we have
lim
i!1

�h��i .˛/i
.D�i / D �h˛i.

zD/:

Proof. By assumption, the integral

�h˛i. zD/ WD
2
p
�

Z 1
0

trh˛i
�
zDe�t

2 zD2
�
dt

converges. To prove the proposition, it suffices to show that there exists a sequence of
positive real numbers ¹siº such that si !1 as i !1, and

lim
i!1

Z si

0

�
trh��i .˛/i

�
D�i e

�t2D2
�i

�
� trh˛i

�
zDe�t

2 zD2
��
dt D 0;(6.3)

lim
i!1

Z 1
si

trh��i .˛/i
�
D�i e

�t2D2
�i

�
dt D 0:(6.4)

Let Kt .x; y/ (resp. .Ki /t .x; y/) be the Schwartz kernel of zDe�t2 zD2 (resp.
D�i e

�t2D2
�i ). Recall that we have (cf. line (5.11))

.Ki /t
�
��i .x/; ��i .y/

�
D

X
ˇ2�i

Kt .x; ˇy/

for all x; y 2 zM . It follows thatˇ̌
trh��i .˛/i

�
D�i e

�t2D2
�i

�
� trh˛i

�
zDe�t

2 zD2
�ˇ̌

6
X

2��1
�i
h��i .˛/i

but …h˛i

Z
x2F

kKt .x; x/k dx:

14To be precise, �h˛i. zD/ is finite if the integral in line (3.1) converges. In particular, the integral in
line (3.1) does not necessarily absolutely converge.

15For example, if the spectral gap of zD at zero is greater than �R C " for some positive number ", then
the spectral gap ofD�i at zero to be greater than �R C " for all i � 1, cf. Remark 5.9.
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By the definition of r.�i / in line (6.1), we see that

¹ 2 � j  2 ��1�i h��i .˛/i but  … h˛iº � ¹ 2 � j `./ > r.�i /º:

From line (5.5), we haveX
`./>r.�i /

Z
x2F

kKt .x; x/k dx 6 c�;r

1X
mDr.�i /

e�.�0�m�c0/
2=4�t2eK� �m:

Note thatZ si

0

1X
mDr.�i /

e�.�0�m�c0/
2=4�t2eK� �m dt 6 si

1X
mDr.�i /

e�..�0�m�c0/
2=4�s2

i
/CK� �m:

The right-hand side goes to zero as si !1, as long as there exists �1 > 1 such that

(6.5)
.�0 � r.�i / � c0/

2

4�s2i
> �1 �K� � r.�i /

for all sufficiently large i � 1. Since ¹�iº distinguishes h˛i, we have that r.�i /!1,
as i !1. So the condition in line (6.5) is equivalent to

s2i <
�20 � r.�i /

4� � �1 �K�

for sufficiently large i � 1.
On the other hand, by the inequality from line (5.9), there exist c > 0 and " > 0

such that ˇ̌̌̌Z 1
si

trh��i .˛/i
�
D�i e

�t2D2
�i

�
dt

ˇ̌̌̌
6 c � e�.�RC"/

2�s2
i � jh��i .˛/ij

for all sufficiently large i � 1. Note that the right-hand side goes to zero as si !1,
as long as there exists �2 > 1 such that

(6.6) .�R C "/
2
� s2i > �2 �R � r.�i /:

for all sufficiently large j � 1. Combining the two inequalities in line (6.5) and (6.6)
together, we can choose a sequence of real numbers ¹siº that satisfies the limits in both
line (6.3) and (6.4), as long as there exists �3 > 1 such that

(6.7)
�20 � r.�i /

4� � �1 �K�
> �3

R � r.�i /

.�R C "/2

for all sufficiently large i � 1. By choosing � sufficiently close to 1, the inequality in
line (6.7) follows from the definition of �R. This finishes the proof.
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We finish this section with the following calculation of the separation rates of
conjugacy classes of SL2.Z/. The group SL2.Z/ is a conjugacy separable group [28].
It has a presentation:

hx; y j x4 D 1; x2 D y3i;

where x D
�
0 �1
1 0

�
and y D

�
0 �1
1 1

�
. In particular, it follows that SL2.Z/ is an amal-

gamated free product of a cyclic group of order 4 and a cyclic group of order 6. We
now show that for any finite order element ˛ 2 SL2.Z/, there exists a sequence of
finite-index normal subgroups ¹�iº of SL2.Z/ that distinguishes h˛i such that the
corresponding separation rate Rh˛i;¹�i º D 0.

Since SL2.Z/ is an amalgamated free product of a cyclic group of order 4 and a
cyclic group of order 6, every finite order element in SL2.Z/ is conjugate to an element
in one of the factors. It follows that every finite order element of SL2.Z/ is conjugate
to a power of x and y. Let  WSL2.Z/! Z=12Z be the group homomorphism defined
by  .x/ D 3 and  .y/ D 2. In particular, we have

 .e/ D 0;  .x/ D 3;  .x2/ D  .y3/ D 6;  .x3/ D 9;

 .y/ D 2;  .y2/ D 4;  .y4/ D 8;  .y5/ D 10:

It follows that any finite order elements 1 and 2 of SL2.Z/ are conjugate in SL2.Z/
if and only if  .1/ D  .2/.

Now given any finite-index normal subgroup N of SL2.Z/, the group

N1 D N \ ker. /

is a finite-index normal subgroup of SL2.Z/. By the discussion above, we see that any
finite order elements 1 and 2 of SL2.Z/ are conjugate in SL2.Z/ if and only if they
are conjugate in SL2.Z/=N1. In other words, the set ¹N1º consisting of a single finite-
index normal subgroup distinguishes the conjugacy class h˛i of any finite order element
˛ 2 SL2.Z/. Moreover, the injective radius r.N1/ of�N1 WSL2.Z/! SL2.Z/=N1 with
respect to h˛i is infinity. It follows that the separation rate Rh˛i;¹N1º D 0 in this case.

Remark 6.4. Since SL2.Z/ is hyperbolic, Puschnigg’s smooth dense subalgebra A

of C �r .SL2.Z// admits a continuous extension of the trace map trh˛i for any conjugacy
class h˛i of SL2.Z/ (cf. [25]). In this case, for any element ˛ ¤ e 2 � , the delocalized
eta invariant �h˛i. zD/ is finite16 (cf. [22, Section 4] and [12, Section 6]). Hence, we can
apply Proposition 6.3 to answer positively both part (I) and (II) of Question 3.2 for the
group SL2.Z/, when ˛ is a finite order element.

16For any hyperbolic group and the conjugacy class of any non-identity element, the integral in line (3.1)
absolutely converges.
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On other hand, since SL2.Z/ is also a-T-menable, we can equally apply Proposi-
tion 4.1 to answer positively both part (I) and (II) of Question 3.2 for the group SL2.Z/
(cf. the discussion at the end of Section 4).

Appendix A. Positive scalar curvature and the Stolz conjecture

In this appendix, we shall explain how the geometric conditions given in Defini-
tions 4.5 and 4.6 are related to the reduced Baum–Connes conjecture and the Stolz
conjecture on positive scalar curvature metrics.

Definition A.1. Given a topological space Y , let Rspin
n .Y / be the following bordism

group of triples .L;f;h/, whereL is an n-dimensional compact spin manifold (possibly
with boundary), f WL! Y is a continuous map, and h is a positive scalar curvature
metric on the boundary @M . Two triples .L1; f1; h1/ and .L2; f2; h2/ are bordant if

(a) there is a bordism .V;F;H/ between .@L1; f1; h1/ and .@L2; f2; h2/ such thatH
is a positive scalar curvature metric on V with product structure near @Li and
H j@Li D hi , and the restriction of the map F WV ! Y on @Li is fi ;

(b) and the closed spin manifold L1 [@L1 V [@L2 L2 (obtained by gluing L1, V;
and L2 along their common boundaries) is the boundary of a spin manifold W
with a map EWW ! Y such that EjLi D fi and EjV D F .

The above definition has the following obvious analogue for the case of proper
actions.

Definition A.2. LetX be a proper metric space equipped with a proper and cocompact
isometric action of a discrete group � . We denote by Rspin

n .X/� the set of bordism
classes of pairs .L;f;h/, whereL is an n-dimensional complete spin manifold equipped
with a proper and cocompact isometric action of � , the map f W L ! X is a �-
equivariant continuous map and h is a �-invariant positive scalar curvature metric
on @L. Here the bordism equivalence relation is defined similarly to the non-equivariant
case above.

If the action of � on X is free and proper, then it follows by definition that

Rspin
n .X/� Š Rspin

n .X=�/:

Suppose .L;f;h/ is an element inRspin
n .E�/� ŠR

spin
n .B�/, whereB� DE�=�

is the classifying space for free�-actions. LetL� be the�-covering space ofM induced
by the map f WL! B� andDL� be the associated Dirac operator. Due to the positive
scalar curvature metric h on @L, the �-equivariant operator DL� has a well-defined
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higher index class Ind.DL� / in Kn.C �r .�//, cf. [26, Proposition 3.11] and [27]. By
the relative higher index theorem [10,32], we have the following well-defined index
map

IndWRspin
n .B�/! KOn

�
C �r .�IR/

�
; .L; f; h/ 7! Ind.DL� /;

whereC �r .�IR/ is the reduced groupC �-algebra of � with real coefficients. Now let B

be the Bott manifold, a simply connected spin manifold of dimension 8 with yA.B/D 1.
This manifold is not unique, but any choice will work for the following discussion. To
make the discussion below more transparent, let us choose a B that is equipped with a
scalar flat curvature metric. The fact that such a choice exists follows for example from
the work of Joyce [19, Section 6].

Let .L;f;h/ be an elementRspin
n .B�/, that is,L is an n-dimensional spin manifold

whose boundary @L carries a positive scalar curvature metric h, together with a map
f WL!B� . Taking direct product with k copies of B produces an element .L0; f 0; h0/
in Rspin

nC8k
.B�/, where L0 D L �B � � � � �B, f 0 D f ı p with the map p being the

projection from L0 to L, and h0 is the product metric of h with the Riemannian metric
on B. By our choice of B above, the Riemannian metric h0 also has positive scalar
curvature since h does. Define Rspin

n .B�/ŒB�1� to be the direct limit of the following
directed system:

Rspin
n .B�/

�B
��! R

spin
nC8.B�/

�B
��! R

spin
nC16.B�/! � � � :

Since the higher index class Ind.DL� / associated to .L; f; h/ is invariant under taking
direct product with B, it follows that the above index map induces the following
well-defined index map:

� WRspin
n .B�/ŒB�1�! KOn

�
C �r .�IR/

�
; .L; f; h/ 7! Ind.DL� /:

Conjecture A.3 (Stolz conjecture [29, 30]). The index map

� WRspin
n .B�/ŒB�1�! KOn

�
C �r .�IR/

�
is an isomorphism.

Similarly, if one works with the universal space E� for proper �-actions instead,
then the same argument from above also produces a similar index map

‚WRspin
n .E�/� ŒB�1�! KOn

�
C �r .�IR/

�
;

where Rspin
n .E�/� ŒB�1� is the direct limit of the following directed system:

Rspin
n .E�/�

�B
��! R

spin
nC8.E�/

� �B
��! R

spin
nC16.E�/

�
! � � � :

One has the following analogue of the Stolz conjecture above, which will be called the
generalized Stolz conjecture from now on.
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Conjecture A.4 (Generalized Stolz conjecture). The index map

‚WRspin
n .E�/� ŒB�1�! KOn

�
C �r .�IR/

�
is an isomorphism.

If � is torsion-free, then clearly the generalized Stolz conjecture coincides with
the original Stolz conjecture. By definition, the surjectivity of the Stolz map � in
Conjecture A.3 implies the surjectivity the generalized Stolz map‚ in Conjecture A.4.
On the other hand, the surjectivity of the Stolz map � follows from the surjectivity of
the Baum–Connes assembly map

�RWKO
�
� .E�/! KO�

�
C �r .�IR/

�
cf. [37, Corollary 3.15]. At the time of writing of this paper, the injectivity of the Stolz
map � or generalized Stolz map ‚ is wild open, and it is not even known in the case
where � is the trivial group.

Similarly, one could also formulate the maximal version of the (generalized) Stolz
conjecture by considering the index maps

�maxWR
spin
n .B�/ŒB�1�! KOn

�
C �max.�IR/

�
;

‚maxWR
spin
n .E�/� ŒB�1�! KOn

�
C �max.�IR/

�
;

respectively. Again, the surjectivity of �max, hence that of ‚max, follows from the
surjectivity of the maximal Baum–Connes assembly map

�RWKO
�
� .E�/! KO�

�
C �max.�IR/

�
:

A.1. Stable bounding with respect to B� . In this subsection, we shall discuss
how the assumption that a multiple of .M; '; h/ stably bounds with respect to B�
(cf. Definition 4.5) is related to the Baum–Connes conjecture and the Stolz conjecture.
Here again M is a closed spin manifold equipped with a Riemannian metric h of
positive scalar curvature. Let 'WM ! B� be the classifying map for the covering
zM !M , that is, the pullback of E� by ' is zM .

To be more precise, in this subsection, let us assume the Baum–Connes assembly
map

�RWKO
�
� .E�/! KO�

�
C �r .�IR/

�
is rationally isomorphic17. There is a long exact sequence for KO-theory of reduced
C �-algebras analogous to commutative diagram (4.1). Now a similar argument as in

17The rational bijectivity of �R follows from the rational bijectivity of the complex version
�WK�� .E�/! K�.C

�
r .�//, cf. [7].
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the proof of Theorem 4.3 shows the higher rho invariant �. zD/ D @Œp� (up to rational
multiples) for some element Œp� 2 KOnC1.C �r .�IR//, where n D dimM . Now the
rational surjectivity of the Baum–Connes assembly map

�RWKO
�
� .E�/! KO�

�
C �r .�IR/

�
implies the rational surjectivity of the Stolz map

� WR
spin
� .B�/ŒB�1�! KO�

�
C �r .�IR/

�
;

cf. [37, Corollary 3.15]. And the rational surjectivity of � implies that there exists
an element .L; f; h/ 2 Rspin

nC1.B�/ŒB
�1� such that �.L; f; h/ D Œp� (up to a rational

multiple). Recall that (cf. [24, Theorem 1.14] and [33, Theorem A])

@
�
�.L; f; g/

�
D �.D �@L/ in KOn

�
C �L;0.E�IR/

�
�
;

where �.D �@L/ is the higher rho invariant of D �@L with respect to the positive scalar
curvature metric h. In particular, this implies that

�. zD/ D �.D �@L/:
Hence, as far as �. zD/ is concerned, we could work with .@L; f; g/, which clearly
bounds, instead of .M; '; h/. On the other hand, it is an open question whether the
higher rho invariants for M and @L remain equal to each other, for corresponding
finite-sheeted covering spaces of M and @L.

A.2. Positively stable bounding with respect to E� . In this subsection, we shall
discuss how the assumption that a multiple of . zM; zh/ positively stably bounds with
respect to E� (cf. Definition 4.6) is related to the Baum–Connes conjecture and the
generalized Stolz conjecture.

Observe that the injectivity of the generalized Stolz map

‚WRspin
n .E�/� ŒB�1�! KOn

�
C �r .�IR/

�
has the following immediate geometric consequence. Let .L; f; h/ be an element
in Rspin

n .E�/� , that is, L is a n-dimensional spin �-manifold whose boundary @L
carries a �-invariant positive scalar curvature metric h, together with a �-equivariant
map f WL ! E� . Suppose the higher index Ind.DL/ associated to .L; f; h/ van-
ishes, then the injectivity of the generalized Stolz map implies that .L; f; h/ is stably
�-equivariantly cobordant to the empty set. More precisely, if .L0; f 0; h0/ is the
direct product of .L; f; h/ with sufficiently many copies of B, then .L0; f 0; h0/ is
�-equivariantly cobordant to the empty set. In particular, this implies that, if the higher
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index of .L; f; h/ vanishes, then @L positively stably bounds with respect to E� ,
cf. Definition 4.6. More precisely, @L0 bounds a spin �-manifold V such that V admits
a �-invariant positive scalar curvature metric g0, which has product structure near the
boundary @V D @L0, and the restriction of g0 to the boundary is equal to h0.

Now let M be a closed spin manifold equipped with a Riemannian metric h of
positive scalar curvature. Let 'WM ! B� be the classifying map for the covering
zM !M and zh the metric on zM lifted from h. The above discussion has the following

consequence.

Lemma A.5. With the above notation, suppose a multiple of .M; '; h/ stably bounds
with respect to B� . If the Baum–Connes assembly map

�RWKO
�
� .E�/! KO�

�
C �r .�IR/

�
is rationally surjective and the generalized Stolz map

‚WRspin
n .E�/� ŒB�1�! KOn

�
C �r .�IR/

�
is rationally injective, then . zM; zh/ positively stably bounds with respect to E� .

Proof. For notational simplicity, let us assume .M; '; h/ itself bounds with respect
to B� , that is, there exists a compact spin manifold W and a map ˆWW ! B� such
that @W DM and ˆj@W D '.

EndowW with a Riemannian metric g which has product structure near @W DM
and whose restriction on @W is the positive scalar curvature metric h. Let zW be
the covering space of W induced by the map ˆWW ! B� and zg be the lift of g
from W to zW . Due to the positive scalar curvature of zg near the boundary of zW , the
corresponding Dirac operatorD zW on zW with respect to the metric zg has a well-defined
higher index Ind.D zW ; zg/ in KOnC1.C �r .�IR//:

By the (rational) surjectivity of the Baum–Connes assembly map

�RWKO
�
� .E�/! KO�

�
C �r .�IR/

�
;

there exists a spin�-manifoldZ (without boundary) such that the higher index Ind.DZ/
of its Dirac operator DZ is equal to � Ind.D zW ; zg/ (up to a rational multiple). Let Z1
be the �-equivariant connected sum18 of zW with Z. Then Z1 is a spin �-manifold
whose boundary is equal to @ zW D zM . Moreover, the higher index Ind.DZ1/ of the
Dirac operator DZ1 is zero. Now it follows from the discussion in this subsection that

. zM; zh/ D .@Z1; zh/

positively stably bounds with respect to E� .

18The connected sum is performed away from the boundary of zW .
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