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Abstract. A2 will denote the weighted L? Bergman space. Given a subset S of the open unit
disc we define 2(S) to be the infimum of {s | 3 f € A?_z, f # 0, having S as its zero set}.
By classical results on Hardy space there are sets S for which ©2(S) = 1. Using von Neumann
dimension techniques and cusp forms we give examples of S where 1 < Q(S) < oco. By using a
left order on certain Fuchsian groups we are able to calculate 2(S) exactly if (S) is the orbit
of a Fuchsian group. This technique also allows us to derive in a new way well known results on
zeros of cusp forms and indeed calculate the whole algebra of modular forms for PSL>(Z).
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1. Introduction

The weighted Bergman (Hilbert) spaces Ag for o > —1 are the spaces of holo-
morphic functions in the unit disc D which are square integrable with respect to the
measure (1 —r?)*r dr d6 in D. Obviously, A2 C A% for « < B. The Hardy space
H?(D) (see [36]) is contained in all the Bergman spaces. Given a complex valued
function f on a set X, we let Z¢ be its zero set

Zp={xeX|f(x)=0).

We are interested in Z¢ for f* # 0 in Bergman space. The case of the Hardy space is
completely understood (see [11], apparently! by Szegd in about 1915): An (obviously
countable) subset {z, | n = 1,2,...} of D is Z for some f € H?\{0} iff

> (1 =|zal) < oo

n

IThe editor believes that the author should rather refer to Blaschke, who wrote in 1915 a paper quoted
in [11], rather than to Szegd.
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Thus, any such set is Z¢ for some f € A2 for all @ > —1, but many other sets may be
zero sets and a similar characterisation for Bergman space seems out of reach.
So for a subset S C D, we let

Xs=1{s|3f e A2, f#0,SCZy}.

Then set
foe) if Xg = 0,

inf(Xg) otherwise.

Q(S) = {

(The shift in values, s = « + 2, is because for Bergman space the reference measure is
Lebesgue measure in the disc, i.e. @ = 0, whereas for cusp forms and von Neumann
algebras the reference measure is hyperbolic area, i.e. s = 2.)

In [15], 2(S) is determined in terms of a notion of “density” of points in S which
might be difficult to calculate. In this paper we will show that some progress can be
made when S is the orbit of a Fuchsian group I' acting on D, effectively calculating
the “density” of these orbits.

One can ask whether Q(S) = inf{s |3/ € A2_,, f #0, S = Zs}. Every subset
of the zero set of an ordinary (unweighted) Bergman space function is the zero set of
another function ([17]) but it is unknown whether this is true for weighted Bergman
spaces. However the result of [15] mentioned above makes it clear that the only value
of s for which it is unknown is precisely inf{s | 3/ € A2_,, f #0, S = Z} so this
is the same as ().

Our techniques make particular use of von Neumann algebras as inspired by Atiyah
in [3], both for the existence and non-existence questions. Fuchsian groups act unitarily
(projectively) on the Bergman spaces in such a way that they generate what is known
as a II; factor M (which depends on s and I"). But these techniques do not so far allow
us to get information on Zy itself so for results on Q(S) we use modular forms whose
zero sets are explicitly known.

Another key idea was proposed by Curt McMullen — that is, to exploit the Bergman
reproducing kernel vectors ¢, satisfying (e, f) = f(z) for f in a Bergman space.
Applying T" (hence, M) to an &, gives an M-module which has a von Neumann
dimension which may be compared to the von Neumann dimension of the Bergman
space itself. Standard von Neumann results then lead to an upper bound for Q(I'(z2)).
To obtain a lower bound involves showing the existence of a “trace vector” for M and
for this we introduce what appears to be a new technique. Every Fuchsian group I
contains a left-orderable subgroup W of finite index [16] (I" is either a free product of
cyclic groups or has a surface group of finite index). To each orbit of a left ordered I"
we produce a trace vector for vN(I") which acts on Aﬁ. This produces lower bounds
on von Neumann dimension.
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By covolume(I'), in this paper, we will mean the hyperbolic area (constant curvature
equals —1) of the quotient space H/ I". The simplest version of our main results is as
follows.

Theorem 1.1. Let I" be a Fuchsian group? and ' (z) be an orbit in H containing no
fixed points for any element of T'. Then there is a non-zero function in Ag vanishing

onT'(2) iff
4

>
covolume(I")
This establishes that
4
@) = covolume(I')
for such groups.

The value (47 /covolume(T")) + 1 is obviously special and there is a good reason
for this. It is the value for which the von Neumann dimension dim,, N(p)(Ag) is equal
to 1 meaning there is a “cyclic and separating trace vector” for v/N(I") in the Hilbert
space, and hence an anti-isomorphism between v/N(I") and its commutant on Ai. Now
in [27], Radulescu has shown that the commutant vN(T")’ is always generated in some
sense by cusp forms which thus give a model for vN(T')’. In addition, Voiculescu
in [34] has shown that, at least for groups like PSL,(Z) , vN(I") has a random matrix
model. Thus there exists a random matrix model for cusp forms. This is a theorem,
but it is of little use unless one can lay one’s hands on an explicit and manageable
cyclic and separating trace vector with which to implement the anti-isomorphism with
the commutant. If one did have such a vector one might be able to prove some of the
numerically well established relations between random matrices and modular forms;
see [23]. Indeed this was the motivation for the research that led to the results of this
paper.

Interestingly though, our main theorem shows that when dim, N([‘)(Ag) =1,a
trace vector, although it exists, can never be obtained by the left order method of this
paper, whereas for all other values of « (for which there is a trace vector) the left order
method works, starting with a cusp form!

We would like to end the introduction by making quite clear what issue this paper
brings to light.

Fix a Fuchsian group I' < PSL>(IR) and let y + u,, be its unitary projective action
on A?_z. An element £ € A?_z is called wandering for T" iff

(uy€,6) =0 forally eI', y #id,

2n this paper, a Fuchsian group is a discrete subgroup of PSL> (R) with finite covolume; see Section 4
(editor’s note).
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and tracelike if, up to a multiplicative constant,

E@PF -

Problem 1. It follows from the von Neumann dimension that if
_ 4 n
~ covolume(I')

there is a non-zero function in A2_, that is both wandering and tracelike. Find such a
function.

A first step might be to find a direct (non-von Neumann algebraic) proof of the equi-
valence of the wandering and tracelike conditions when s = (47 /covolume(I")) + 1.
For other values of s they are mutually exclusive.

2. Background in von Neumann algebras

We begin the paper by giving an account of von Neumann dimension, and self-
contained calculations of some von Neumann dimensions, which are slightly different
from the calculations of [4, 13,27,28], and require no knowledge of the discrete series
for PSL, (R).

A von Neumann algebra M is a x-closed unital algebra of bounded operators
on a (complex) Hilbert space # which is closed under the topology of pointwise
convergence on J¢. The commutant M' of M is the algebra of all bounded operators
that commute with M. It is also a von Neumann algebra and has the same centre as M.

A vector £ € JH is called cyclic for M if M & is dense in # and separating for M
if x > x§& is injective on M. £ is cyclic for M iff it is separating for M’. The vector &
is said to be a trace vector for M if (ab§, &) = (ba&, &) foralla,b € M.

A von Neumann algebra is a factor if it is central, i.e. if its center is C id. The most
obvious factor is the algebra B (#) of all bounded operators. A factor M is called
finite if it possesses a trace functional tr: M — C with the properties

(1) tr(ab) = tr(ba) foralla,b € M;

(2) tr(1) = 1.

The functional is completely determined by these properties. It is positive definite,
which means that tr(a*a) > 0 for a # 0 so one may form the Hilbert space L?(M)
which is the completion of M with respect to the pre-Hilbert space inner product
{(a,b) = tr(b*a). An easy example is the n x n-matrices acting on a Hilbert space of
dimension mn with some “multiplicity” m. We will see more interesting examples
very soon. An infinite dimensional finite factor is called a II; factor.
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Definition 2.1. Let I be a (countable) discrete group. The von Neumann algebra of T,
which we will write vN(I"), is the von Neumann algebra on £2(I") generated by the
left regular representation y — A, where A, (f)(y') = f(y~1y’).

More generally, if w: ' x I' — T is a unit circle valued 2-cocycle, vNy,(I") is
generated on £2(I") by the unitaries A2, where3 AP () = oy, y) f(y') (so group
multiplication is “twisted” by a cocycle).

It is well known (see [9,33]) that vN(I") is a II; factor iff I is icc, i.e. all non-trivial
conjugacy classes of I' are infinite. v, (I") is a II; factor if I is icc. The trace on
VN, (T) is given by
1 ify =id,

0 otherwise.

tr(Ay) = {

3. The von Neumann dimension

Let M be a finite factor. We will assign a positive real number, or co, which we will
call dimys (#) to any (separable) Hilbert space on which M acts. It will completely
characterise the Hilbert space as a (Hilbert space) M -module up to unitary equivalence.
In the finite dimensional case it will be m/n, where m is the multiplicity above, thus
measuring in some sense the number of copies of the M -module M inside # .

A type Il factor is the closure of the algebra of all finitely supported matrices
with entries in a fixed II; factor M acting on the direct sum of infinitely many copies
of the Hilbert spaces on which M acts. A Il factor has a “trace” given by adding up
the traces of the diagonal matrix entries. It is not defined everywhere but one may talk
of “trace class” operators in a Il factor just as one does for B(F) (see [29]). If M is
aII; factor on # we can “amplify” it to act diagonally on @72, #. Its commutant is
then a I, factor. All Il factors arise in this way.

We will now assume basic facts about type-Il, factors, traces on them and com-
parison of projections in a factor; see [9,33].

Proposition 3.1. If # is any Hilbert space on which M acts then there is an M -linear

isometry
u: H — o L*(M).

Proof. The factor M acts diagonally on the direct sum # & (°°,L*(M)). The
commutant M’ contains the two projections p = 1 @ 0 and ¢ = 0 @ 1. Since the
commutant is a Il factor and g is certainly infinite, we obtain a partial isometry

3Should be AL (f)(y') = o', y) f(y~1y’) (editor’s note).
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u € M’ such that u*u = p and uu™ < ¢. Identify J# with the image of p, we have
our u. ]

Note that if v is any other M -linear isometry as above then vv* is equivalent in M’
to uu*. Note also that, on &%, L?(M), the commutant M’ admits a canonically
normalised trace tr; > such that the trace of any projection onto one of the L2(M)’s is
equal to 1.

Definition 3.2. With notation as above
dimps (H) = trp2(uu™).

Notes 3.3. (1) Observe that if M is the scalars C then this definition gives exactly
the usual definition of the dimension dim # of a separable Hilbert space. If M is the
n x n matrices, we obtain (dim #)/n?.

(2) With this philosophy one may canonically normalise the trace on M’ by defining
Try(a) = trp2(uau™).

It is not hard to show that Trps- is dimps (#¢) times the normalised trace on M. Further,
ifa: # — K and b: X — H is a bounded linear map between Hilbert spaces over M,
then

Trar (ab) = Trpp (ba).

(3) Our definition is not the same as that of Murray and von Neumann in Chapter X
of [24] where it measures the relative mobility of M and M’ as follows. Take any non-
zero & € K and consider the two closed subspaces M & and M€ of # with orthogonal
projections p and ¢ respectively. Clearly, p € M’ and ¢ € M, so we may form the
ratio tras (q)/ tragr(p). This was shown in [24] to be independent of &. With this fact
one may easily show it is equal to our dimps (). This ratio became known as the
“coupling constant” but calling it the von Neumann dimension is more revealing. One
reason it is a little obscure in [24] is that the authors defined a theory for all types (I,
II;, U, II) of factors, each one requiring its own treatment.

The next theorem collects some elementary properties of dimys K .
Theorem 3.4. With the notation above.
(i) dimy (H) < 0 iff M’ is a 11y factor.
(i) dimps(H) = dimps (K) iff M on H and M on K are unitarily equivalent.
(iii) dimpr(B; H;) = ) ; dimpys H;.
(iv) dimps(L2(M)q) = trar(q) for any projection g € M.
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(v) If pis a projection in M, dimpps,(pFH) = trar (p)~"! dimpg (H).

For the next two properties we suppose M’ is finite, hence a 111 factor with trace trpy-
(and trpge (1) = 1).

(vi) If p is a projection in M’, dimpr,(pJH) = trap (p) dimps K.

(vii) (dimps H)(dimys H) = 1.

(viii) There is a cyclic vector for M iff dimps H < 1.

(ix) There is a separating vector, indeed a trace vector, for M iff dimps H > 1.

(x) If p& = & for € € H and p a projection in M, then dimp (M €) < trar (p).

Proof. These are all standard results due to Murray and von Neumann [24]. For proofs
based on our definition, see [13] or [21]. Property (x) is easiest proved using the
Murray—von Neumann definition. Clearly, one can reduce to the case # = M_f, and
then

M'§ = M'pt = pM'E < pJt,

so if g is projection onto M’&, then trps(q) < tras (p). ]

Proposition 3.5. Let I" be an icc discrete group and y — v, be a projective unitary
group representation on H with 2-cocycle w. Suppose there is a projection q on #H
such that

quv;l Lg Vyel, y#id, and Zquv;l =1.
yel

Then there is a T-linear unitary U: H — (2(I") ® qH with Uv,,U_1 =) ®id
fory eT.

Proof. Choose an orthonormal basis {n; | i = 1,2,3,...} of g#. Then by the two
conditions of the proposition {v,n; | y € ', i =1,2,3,...} is an orthonormal basis
for #. Defining U by U(vyn;) = €, ® n; gives the desired unitary, where g, is the
characteristic function of {y} in £2(I). ]

Corollary 3.6. Suppose I',v,q,w and U are as in Proposition 3.5. Then the action
of T on # makes it into a VN (I")-module and if p is a projection on # commuting
with vy, for all y, then

dimyy,, ) H = Trpge)(pqp) = Trpe)(qpq).

where Trg(ge) is the usual trace (sum of the diagonal elements for a positive oper-
ator [29]) on B(#).
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Proof. The commutant M’ of vN,,(I") on £2(I") ® ¢ # is the tensor product of vN,, (I")’
and B(qJ¢) and the correctly normalised trace on it is the tensor product of the trace
on vN, (I")’ (on £2(T")) and the usual trace on B(gJ#). Thus, since &4 is a trace vector
for vN, (I')’, for x > 0 in M, we have

Trp (x) = Z(X(Sid ® i), &ia ® Mi) = Trp2(ryeqs)(€xe),
i
where e is orthogonal projection onto ;g4 ® g ¥ .
Now Up is a vN,(I")-linear isometry from # to {>(I') ® g so that, by the
definition of von Neumann dimension,

dimyn,, vy pH = Trpu2ryepi)(eUpUTe).

However, U*eU = ¢, so that

dimyy,, ) pH = Trpge)(qrq)- L]

A commonly encountered situation in which the hypotheses of Proposition 3.5
are satisfied is when I" acts as deck transformations for a covering space 7w: M — N
between manifolds. Then if I" preserves a smooth measure and D is a fundamental
domain, Proposition 3.5 applies to the Hilbert space # = L?(.M) together with the
projection ¢ onto L2(D). This is the setup for Atiyah’s covering space L? index
theorem [3]. (See also [7] and [8, Section 1.5].) We will use it in a slightly modified
form where the natural measure is not preserved.

Remark 3.7. A rather different use of von Neumann dimension occurs in [18]. Given
a subfactor N of a II; factor M the Hilbert space L?(M) is a left N-module and
one defines [M : N| = dimy (L?(M)). Although the von Neumann dimension itself
takes on all positive real values, it turns out that [M : N| must be, if finite, in the set
{4cos’m/n:n =3,4,5,...} U[4,00). One recognises the squares of the numbers in
the usual generators of the Hecke groups (see [10]).

The context of this paper originated in 1982 in an attempt to find a relation between
the Hecke groups and subfactors. That is still a long way off as is the attempt to exploit
the rich structure of modular forms for a Fuchsian group to produce “exotic” subfactors
like those of [2, 14] (see also [19,20,22] for more examples and details).

4. Fuchsian groups and L2 holomorphic functions on H

A Fuchsian group T is by definition a discrete finite covolume subgroup of PSL; (R).
(Finite covolume is not always assumed in the literature.) If 3 is a compact Riemann
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surface of genus > 2, its universal covering space is the upper half plane H (as a
complex manifold). PSL,(R) is the group of complex automorphisms of H so 771 X
is a cocompact Fuchsian group. It is also icc. The unit disc D is holomorphically the
same as H under the Cayley transform C: H — D:

z—1 w+1

C(Z) = Z—_H, C_I(U)) = l(U)——l)

) az+b » a b

Z) = or =

& cz+d & c d

in PSL,(R) becomes, after conjugation by C, w + C(g(C~!(w))). The action of
PSL,(R) on H preserves the measure j1o = (dx dy)/y?, which is the measure from

And the action

a hyperbolic metric of constant curvature —1. On D the measure becomes

dx dy
Vo =4—T—.
P - wP)?
Proposition 4.1. For g as above,
Im(z)
I = ——.
m(gE) =

All Fuchsian groups are icc (see [1]). If I' is a Fuchsian group it has a fundamental
domain which means that L2(H, d1¢) satisfies the hypotheses of Proposition 3.5, so
that I" generates a II; factor with Ilo, commutant on L2(H, d/io).

For each real s > 1, we define the measure pg = y*~2 dx dy on H. The measure ftg
is not invariant under PSL, (R), but for any L! function F, we have

dxd dxd
/ F(z)Im(zy &2 = / Fg(2) Im(g () 22
H Yy H y

ys dx dy
= F
Ju e

so that, choosing a branch of (c¢z + d)° for each g,

(&™) = s /6

defines a unitary operator on L2 (H, du;), preserving holomorphic functions.
Remark 4.2. We will choose the following branch of log to define (cz + d)*:
i

¢
d A
cz+d Z+2

log(cz +d) = /

where « is the straight line from i to z. Exercise: show that 73(g™1) = ,(g) L.
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(The reason for using s rather than & = s — 2 is that the measure (1 — r2)~2r dr df
is hyperbolic measure, invariant under the usual action of PSL,(R) on the disc, which
is more natural when it comes to Fuchsian groups than the usual Lebesgue measure
for Bergman space.)

Now if we consider the function j:SL,(R) x H — C defined by j(g,z) =cz +d,
it is easy to check the cocycle condition

J(gh.z) = j(g.h(2))j(h.z),

so that if s is equal to a positive integer p, the map g — 1,(g) defines a unitary
representation of SL,(IR) which preserves holomorphic functions.

If p is even, 7 (—id) is the identity so that 7 passes to PSLy(R). If p is odd,
7(—id) = —id so 7 is only a projective representation.

Remark 4.3. For an arbitrary real positive s, y +> 7 () is a projective unitary rep-
resentation. To see this just take the sth power of the cocycle relation for j above to
obtain that j(gh, z)* and j(g, h(z))*j(h, z)* differ by a complex number of absolute
value equal to one.

The projective representation 77 cannot, for non-integral s, be lifted to an honest
representation of PSL, (R) since then it would be a discrete series representation which
it is not; see [5]. But when restricted to I" the relevant cohomology obstruction may
vanish (this is the case for PSL,(Z)) so one may still get an honest representation of I".
That there are Fuchsian groups for which the relevant cohomology obstruction does
not vanish will be treated in Appendix A.

If s is not an integer the cocycle condition for j does not imply a cocycle condition
for j ~2 so one only obtains a projective representation for 7. It can be considered a
unitary representation of the universal cover of PSL;(IR) via Bargmann [5].

Proposition 4.4. If f € L(D, dvy) then f + f, where

" 2 NS /z—1i
Z) =
S @ (Z-i-i) f<z+i)
defines a unitary from L>(D, dvy) to L?>(H., dg), which intertwines the two projective
representations of PSL;,(R).

Proof. This can be proved by extending the action on functions from SL(2, R) to
SL(2, C) and conjugating by the Cayley transform. Unitarity can be checked directly.
]

Definition 4.5. Let Py be orthogonal projection from L2(H, djus) onto the closed
subspace spanned by functions which are holomorphic. This subspace is the weighted
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Bergman space A2 with @ = s — 2. We will use the notation indifferently for functions
on D or H. The projective representation s of PSL,(R) is defined to be the restriction
of 77 to A2_,.

Remark 4.6. These Hilbert spaces of analytic functions are “reproducing kernel”
Hilbert spaces. The parameter in the literature is usually o« = s — 2. This means that
for each z € H, thereisa ¢, € A?_z such that

{e2, f) = f(2).
This follows from the continuity of point evaluation.

As noted, if s is an even positive integer we get an honest unitary representation of
PSL,(R), but not for s odd.

Let I' be a Fuchsian group with fundamental domain F. We have seen that 7
restricted to I defines a projective unitary representation of the II; factor M = vN,, (I"),
where w is the 2-cocycle with values in the circle which comes from the chosen
branch of the logarithm of cz + d on H. To calculate the von Neumann dimension
dimps (A2_,) we will use an orthonormal basis of A2_,. We will work in D where it is
obvious that the powers of z are orthogonal so all we need to do is normalise them.
The result is very well known (see [13,28]), but we include the calculation for the
convenience of the reader.

Proposition 4.7. (1) Let

en(w) = \/s—l\/s(s—}—l)-'-(s—i—n—l)wn forw € D.

4 n!

Then ey, is an orthonormal basis for A%_,.

(2) Let

o= o DD 2 e

Then fy is an orthonormal basis for A2_,.

Proof. 1tis trivial that (e, e;,) = 0 for n # m, so writing w = u + iv, we only need
to calculate

2r 1
|w"||* = /D lw[>" (1 — |w|2)s_24du dv = 4/0 /0 "1 —r?)*2r dr dé.

Putting ¢ = r2, we get

F'n+ DHI(s—1)
'(n+s)

1
471/ "(1—1)"2dt =4nP(n+ 1,5 — 1) = 4x
0
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Expanding the I" functions we get the result for e, and the result for f;, follows from
Proposition 4.4 |

Theorem 4.8. With notation as above

s—1

dimps (A2_,) = - covolume(I").

Proof. We will do the calculation in the D model. By Corollary 3.6, we have to calculate

o0
Z/ len (W) (1 — [w|?)* >4 du dv
n=0 F

oo

_S_IZ/ S(S+l)m(s+n_1)r2”4dudv.
F

4 !
jrn:O n

Everything in sight is positive so one can commute summing and integration. We have

oo

(1-r?)~ = Z elua O 1)rZ”,
n!
n=0

which gives

s—1 du dv

dimps (A2_,) = :
lmM( s—2) 4 /;: 02

so we get

-1

dimps (A2_,) = : covolume(I"),

54

as required. |

Notes 4.9. Special cases.

(1) ' = PSL,(Z). Here the covolume (= hyperbolic area of fundamental domain) is,
by Gauss—Bonnet or direct integration over F', equal to /3. So, for s > 1, we have

s—1
12

Since I' is in this case the free product of two cyclic groups the projective representation

dimy N (psi, () A7, =

actually lifts to an honest one so we are dealing with vN(PSL;(Z)).

(2) If X is a compact Riemann surface of genus g > 1 with hyperbolic metric, its area
isdn(g—1),so
dimyy e (2 452 = (s = D(g = 1.

In this case the projective representation does not necessarily lift to an honest one as
we will show in Appendix A. However, if s is an odd integer the existence of spin
structures shows that the lifting does exist.
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Why might these von Neumann dimension formulae actually lead to non-trivial
results? The fact that equality of traces in a factor implies equivalence of projections
is an ergodic theoretic result ultimately relying on patching together lots of little
projections. There are some instances of results using it which are non-trivial. Let
us discuss the author’s favourite (due to Kaplansky). In fact, it does not even use
factoriality!

Theorem 4.10. Let T" be a discrete group and F a field of characteristic zero. Let FT'
be the group algebra. Then ab =1 <= ba =1inFT.

Proof. Since the relations ab = 1 and ba = 1 only involve finitely many scalars we
may embed IF in C and work in CT" which embeds into vN(T").

So the result follows from ab = 1 <= ba = 1 in a finite von Neumann algebra M
with trace tr. Let M act on some 9.

Suppose ab = 1. Then for any & € $, ba(b§) = b€ so since ba is bounded it
suffices to show that the range of b is dense. But if » = u/|b| is the polar decomposition
of b then u is a partial isometry from the orthogonal complement of the kernel of b
to the closure of the image of . But u*u = 1 since ker(b) = 0 (since ab = 1). So,
tr(uu™*) = 1 is one which means uu™ = 1 so the image of b is dense. [

The conclusion of the theorem remains an open problem if one drops the condition
that the characteristic of the field be zero. Thus the use of von Neumann algebra in this
context can have considerable content and it could be that the results of this paper are
quite difficult to obtain by any other means. Here is a sample (it will be one direction
of Theorem 1.1 below).

Proposition 4.11. Let " be a Fuchsian group. Then if s > 1 + (47 /covolume(I"))
and z € H, there is a non-zero function in A§_2 vanishing on the orbit I'(z).

Proof. The group T is icc by [1]. Let &, be the reproducing kernel vector for z, so that
(e2,€) = £(z) for all £ € A2_,. Then the von Neumann dimension of the closure of
VN, (T")e, is at most 1 by (viii) of Theorem 3.4. But by Theorem 4.8, the von Neumann
dimension of A2_, is greater than 1. So there is a § € AZ_, orthogonal to 75(y)e; for
every y. Thus, £ vanishes on I'(z). [

By a relatively subtle argument with cusp forms it is possible to prove this res-
ult without the use of von Neumann algebras for PSL,(Z) (see the discussion after
Definition 7.2), but a proof in full generality might be very complicated.
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5. Wandering vectors and trace vectors

For convenience, we introduce the following definition which appears to be well
accepted.

Definition 5.1. If 7 is a (projective unitary) representation of a group I" on a Hilbert
space J, then

(1) A (non-zero) vector £ € H is called a wandering vector for  if

(&, 7()(E)) =0 forally #1inT.

(2) A subspace V C K is called a wandering subspace if
a(y)(V) LV forally # 1inT.

Note that any non-zero element of a wandering subspace is a wandering vector and
orthogonal vectors in a wandering subspace produce wandering vectors with orthogonal
orbits.

Definition 5.2. If M is a von Neumann algebra on #, a non-zero vector n € K is
called a trace vector for M if (xn, n) is a multiple of the trace of x for every x € M.

There is a simple relationship between the two concepts:

Proposition 5.3. If  is a (projective unitary) representation of a group I" on a Hilbert
space H and & is a wandering vector for m, then € is a trace vector for the von Neumann
algebra M generated by w(I"). Moreover, on the closure of the subspace [w(T")£],
M is isomorphic to the twisted group von Neumann algebra vN, (I") (where w is the
2-cocycle of the projective representation), acting on L>(M).

6. Proof of the main theorem

We will use the following easy result on Bergman space functions (“popping
zeros”).

Lemma 6.1. Let f € A2, be a non-zero function with a zero of order k at w,
ie. fDw)=0forj=0,1,2,....k—1, but f®(w) # 0. Then the functions
(z—w) f(z)for j = 1,2,... k are in A2_,.

Proof. By the transitivity of the action of PSL,(R) (= SU(1, 1)), we may assume

z = 0. Write
00
f = Z Cnén,
n=k
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where

s—=1 [s(s+1)--(s+n—-1) ,
en(z) = yp z

n!
are the orthonormal basis constructed in Proposition 4.7. We know that ¢, is square
summable. The limit of the sequence

s+ D (s+n+k—-1) n!
MEN TS+ D) tn—1) (k)

is 1, so a, is bounded. The holomorphic function g(z) = z~* f(z) has Taylor series

o0 o0
—k
E CnakZ “enik(z) = E anCparen(z).

n=0 n=0
Thus, g(z) € A2, andsois z/ g(z) for 1 < j < k. n

Now let I" be an orderable Fuchsian group and let y — m5(y) be the (projective)
unitary representation on Af_z that we have been considering.

(Recall that a group T is orderable if it admits a total order < which is invariant
under left translation, i.e. « < § <= ya < yp for all y. Free groups are orderable
as are fundamental groups of surfaces [31].)

Theorem 6.2. Suppose Oy, O,,..., O, aredisjoint orbitsinD of T'. Let f € A?_Z be
non-zero, with a zero of order at least v; on all points of O;. Then there is a wandering
subspace W of dimensiont = Y_"'_ v; for wg(T'), and ms(y)(f) € W forall y.

Proof. To make the argument clear let us begin with the case of the orbit of a single
point z, with f having zeros at y(z) forall y € T.

Choose a left ordering < of T" and define the closed subspaces U and V of 42_,
to be

U={§[§(() =0fory <id}, V ={§]&(y(2)) =0fory <id}.

We will now show that a vector in the orthogonal complement U+ NV of U in V
is a wandering vector for I".
Suppose £ € UL N V. Then for y < id and any other A < id,

yA <yid =y <id,

SO

7s(yHEM(2)) = §(yA(z)) =0 (since§ € V),

(cz+d)s
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which means that 7rg(y ~1)& € U, and thus

(ms(y™HEE) =0

since £ € U+. This also means, by unitarity,

(ms(y)§.€) = 0.

So & is wandering.

Moreover, for all y, w(y)( f) vanishes on the entire orbit so it is in U, hence it is
orthogonal to .

So we just need to check that the containment of U in V is strict. For this, divide f
enough times by a linear function vanishing at z as in Lemma 6.1.

For the general case we essentially repeat the argument. Fix a “base point” z; in
each O;. Given f satisfying the hypotheses of the theorem let

U=1{]eY(y(zi)) =0fory <id Viandall0 < j < v;}
V ={tED(y(zi)) =0fory <id Vi andall 0 < j < v;}.

Clearly, U €V andput W = UL N V. We claim W is a wandering subspace for s (T").
For suppose £, 7 € UL N V. Then for y < id and any other A < id,

yA <yid =y < id,

SO

ms(y HEM(zi)) = E(yA(zi)) =0 Vi.

(cz+d)s
The factor 1/(cz + d)* does not change the nature of the zeros so 75 (y )€ € U, and
thus

(ms(y"HE) =0

since n € U~L. Which, since £ and 7 are arbitrary in W, also means by unitarity that

(ms(y)s,m) =0 forally.

Thus, W is wandering. Moreover, 7s(y)(f) € U,so ns(y)(f) L W Vy e T.

We will now show that the dimension of W is atleasts = ) ;_, v;. Without loss of
generality we may assume that, for each i, the order of the zero at z; of f is exactly v;.
(It suffices to apply Lemma 6.1 at each z; to the given non-zero f.) For such an f, we
claim that the ¢ functions

S
(z —z;)/

fori=1,...,nand j =1,...,v;
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are in V' and are linearly independent modulo U. They are in V' by Lemma 6.1 and
the fact that the nature of the zeros of f on the rest of the orbits is unchanged by
multiplication by powers of z — z;. Suppose a;, ; are constants with

Za,-,j# =g forsomegeU.

— (2 —zi)

i,

Then g has a zero of order at least v; at z;, so the meromorphic function g/f is
holomorphic at each z;. This forces all the a; ; to be zero. [ ]

We now deduce some consequences of Theorem 6.2. We start with Theorem 1.1,
which is the most straightforward. (The condition on the freeness of the action on the
orbit in Theorem 1.1 is significant. See Remark 7.3.) For convenience of reading we
recall Theorem 1.1.

Theorem 6.3. Let I' be a Fuchsian group and I'(z) be an orbit in H containing no
fixed points for any element of U. Then there is a non-zero function in A?_z vanishing

onT'(2) iff
4

>4+ — .
y + covolume(I")

Proof. (=) By [16], I is either a free product of finitely many cyclic groups or
has a surface group of finite index. Either way there is an orderable subgroup ¥ < I'
withn = [I" : W] < oco. Let < be a left ordering on W. Suppose by way of contradiction
that f € A2_, is non-zero but vanishes on I'(2).

By the fixed point hypothesis, I'(z) consists of n disjoint W-orbits so apply The-
orem 6.2 to obtain a wandering subspace of dimension at least n. Choosing an orthonor-
mal basis we obtain n vectors &; so that if M is the II; factor vN,, (¥), then each &;
is a trace vector and the M -modules M&; are mutually orthogonal, of von Neumann
dimension one. Hence,

n < dimps A?_z = ndimyn,, () A?_z,
which forces dim,y,, (1) A?_z > 1. In other words,

4

>4+ —.
5= covolume(I")

To see that s cannot be equal to 1 + (47r/covolume(I")), observe that by Theorem 6.2,
£ itself is orthogonal to vN,,(I')(V+ N W), which already has von Neumann dimen-
sion equal to one, a contradiction.

( <= See Proposition 4.11. u
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Corollary 6.4. If T is an arbitrary Fuchsian group then for all z, Q(I'(2)) is strictly
greater than 1.

Proof. If Ty C T, then Xt(z) € Xry(2), 50 2(Io(z)) < Q(I'(z)). As before, [16],
any Fuchsian group I' has a left orderable subgroup I'y of finite index and the von
Neumann dimension multiplies by [I" : I'g] on restricting to the I'g. So by Theorem 6.3,
s € Q(To(z)) for s sufficiently close to 1. [

The next corollary can be proved by other means, e.g. equidistribution (McMullen).

Corollary 6.5. For any Fuchsian group " and any z € D,

Z(l - |V(Z)|) diverges.

yel

Proof. If the sum converged there would be a Hardy space function vanishing on I"(z)
and Hardy space is contained in the Bergman spaces. |

In [15], a density D1 (S) called the “upper asymptotic x-density” is defined for
subsets S of the unit disc. It is shown on page 131 of that book that the condition

1
D¥(s) < ¢

is necessary and the condition

1
DH(S) < — ¢

is sufficient for A to be an AZ-zero set.
Corollary 6.6. If " and z are as in Theorem 1.1, then

2

+ _
brr@E) = covolume(T")

Proof. Putting p = 2 in the condition from [15] above, we get

DH(I(2)) I+a s-—1 2
z = = =
2 2 covolume(I")

from Theorem 1.1. n

Remark 6.7. Once we have D (I'(z)), we know that when I'(z) is an AZ-zero set for
all p by [15]. Thus, the L? methods of this paper solve, thanks to [15], an L? problem
for all p.
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7. Use of cusp forms

Let us restrict initially to the case I' = PSL,(Z). A cusp form of weight p is a
function f:H — C, which is holomorphic and satisfies

fy(@) = (cz+d)? f(2).

which means that f(z + 1) = f(z) so that we may write f as a function of ¢ = 277,
The cusp form condition is then

@)= auq".
n=1

The first thing to observe is that
| £(z)| < (constant)(Im z)~?/2.

To see this, note that | £(z)|Im(z)?/? is invariant under the action of PSL(Z). (Follows
from modularity of f and Proposition 4.1.) But since f(z) = ¢qg(z) with g having
a finite limit as ¢ — 0, then | f(z)| Im(z)?/? is bounded on a fundamental domain,
hence everywhere.

The first cusp form is the modular discriminant A(z) of weight 12 which as a
function of ¢ can be written as

(e, 0)
g [Ta—-qm*
n=1

It is the 24th power of the Dedekind 7 function. Cusp forms give a graded algebra
under multiplication and can be multiplied by modular forms (same invariance as cusp
forms but do not vanish at co) to give other cusp forms. See [32].

Now let I' be an arbitrary Fuchsian group and, following some authors ([35]), we
say a cusp form of weight p is a holomorphic function f:H — C such that

f(y() = (cz+d)? f(z) and |f(z)| < (constant)(Im z) ?/2.
Proposition 7.1. If f is a cusp form of (integer) weight p, let
Myg: L*(H, y*">dx dy) — L*(H, y*t?72 dx dy)

be the operator of multiplication by f. Then My is a bounded linear operator intertwin-
ing the actions of s+ p(y) and 75(y) , and preserving the subspace of holomorphic
functions. Also,

M} (§)(z) = Im(2)” f(2)€(2).
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Proof. Boundedness: For £ € L2(H, y*~2 dx dy), using the above bound on | f(z)],
IM7El” = [ 1FGPIERy 72 dx dy

< (constant)[ lE(2)2y* 2 dxdy.
H

Also,
e (M) = g [V EEE)
— S TR = My R
And finally,
(Mg = [ F@E@REY 2 dxdy
= [ €7@ )7y dx dy,
which is the formula given in the statement of the proposition for M ; [

Definition 7.2. If f is a cusp form of weight p, we call Ty the operator from A2

to A2

a+p given by

Ty = PMy,
where P is orthogonal projection from £ € L?(H, y**? dx dy) onto Bergman space.

We saw above that for a Fuchsian group I' there is, for s large enough and any z,
simply because of von Neumann dimension, a function f € A?_z vanishing on I'(z2).
But the von Neumann dimension is a blunt tool and is of no help whatsoever in finding
such functions. Cusp forms give us explicit functions in Bergman spaces vanishing on
orbits under I'. Indeed if f is a cusp form of weight p vanishing atz € H, and & € A2_,
then by Proposition 7.1, T¢§ is in 4 , and vanishes on I'(z). For I' = PSL,(Z) this
shows that there are elements of A?_z vanishing at F(ei”/ 3) provided s > 17. This is
because the Eisenstein series G, is a modular form of weight 4 vanishing at e'™/3 5o
that AG, is a cusp form of weight 16 vanishing at e’ /3 Elements of A?_Z fors > 1
may be multiplied by G, A to give the required Bergman space functions.

L. Rolen and I. Wagner have improved this method considerably ([30]) to get explicit
elements of A2_, vanishing on PSL,(Z)(z) for any s > 13: Begin with the modular
function j(z) and choose any w € H. Then j(z) — w is a holomorphic function that
vanishes exactly on the PSL,(Z) orbit of a zg with j(z9) = w. Now multiply by A(z)
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to obtain a modular form vanishing on the same set. Then choose a branch of 1(z)"
for r real, small and positive. Then the product f(z) = (j(z) — w)An(z)" satisfies

/(&) Im()*H* = | f(2)].
Since (j(z) — w)A(z) has a limit as ¢ — 0 and |5(z)| tends to zero as Im z grows,
| f(y(z)| Im(z)®+"/4 is bounded on a fundamental domain, and hence

| f(2)] < (constant) Im(z)~©F"/4.

Thus, as before, multiplication by f defines a bounded operator from A5 t0 As4104r/2-
Choosing s close to 1 and r close to zero we get an explicit element of A?_, whose
zero set is exactly the orbit PSL,(Z)(z) for any ¢ > 13.

Remark 7.3. Here is an example showing that the freeness of the action on the orbit
of z is essential. Let G, be the Eisenstein series modular form for I' = PSL,(Z) of
(smallest) weight 4. Then G (e™'/3) = 0, so G, vanishes on the I orbit of ¢”*/3. Using
the same trick as above, multiply G, by some branch of 7(z)" for r real, small and
positive. The resulting holomorphic function f will satisfy

| /(z)| < (constant) Im(z)~@+7/¥

and so defines by multiplication a bounded map from Ay to Agq44r/2. So if 5 is
slightly bigger than 1 we obtain elements of A3, vanishing exactly on the I" orbit
of e™i/3 for all € > 0.

Remark 7.4. For a cusp forms f of weight p the operator Ty is M -linear where
M = vN,(T") so if we let M acting diagonally on the direct sum @;2 (As—24np Of
Bergman spaces, the T define operators in the commutant which is a I, factor. But
we can also think of Tr as a map between Bergman spaces intertwining the action
of M.

Proposition 7.5. The closure of Ty A?_z is an M -module of von Neumann dimension
equal to that of A2_,.

Proof. This is trivial since multiplication by a non-zero holomorphic function is inject-
ive so the polar decomposition of T gives a unitary equivalence. |

Here is a simple consequence of von Neumann dimension in the spirit of Proposi-
tion 4.11.

2

Corollary 7.6. Foranys > 1and every cusp form f of weight p, thereisa§ € Ay, ,_,

which is orthogonal to fn forall n € A?_z.

C. McMullen pointed out that this result is trivial if f has zeros since then the Berg-
man reproducing kernel vector ¢, is automatically orthogonal to f7 for all n € A?_z.
For a cusp form with no zeros, like A we have not seen a constructive proof.
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8. Fixed points

It is possible to improve on Theorem 1.1 by a closer analysis of the orbits of an
orderable subgroup of finite index. We are guided by Example 7.3. If T is a Fuchsian
group, the stabiliser of any point z € H is finite and cyclic. Denote by stab; the stabiliser
of a point in an orbit O; (defined up to conjugacy).

Theorem 8.1. If T is any Fuchsian group and Oy, O,, ..., O, are disjoint orbits in D
of T'. Then there is a non-zero function in A?_z with a zero of order at least v; on all

points of O; iff

4 V;
> 1 .
y + covolume(I") Xl: |stab; |

Proof. (=) Choose as in Theorem 1.1 an orderable subgroup ¥ < I'' with n =
[[" : W] < oo. The action of the stabiliser of a point in H on I'/ W is free since if
y(u¥) = u\v, then yu = py for some ¢ € W, so y is conjugate to an element of W,
but the stabiliser is of finite order and W is torsion free. The action of I" on O; is
the same as the action on I"/stab;. But the spaces (stab; \I")/ W and stab; \(I"/ W) are
the same so there are [I" : W]/|stab;| disjoint orbits of W in O;. Thinking of A2_,
as a representation of M = vN, (W), the orbit O; thus contributes v; [[" : W]/|stab;|
mutually W-orthogonal trace vectors for M by Theorem 6.2. Thus,

) Vi

|stab; |’

dimps (A2_,) = ;Tlcovolume(F)[F (W] > [T ¥ Xl:

Moreover, as before the function in the statement of the theorem vanishing on the orbit
is actually orthogonal to the M -linear span of the trace vectors so the inequality is
strict.

( <= ) For each i choose z; € O; and let 8{ be vectors such that
( ,e{) = fUW(z) foreach0 < < v;_;.

If y; generates the stabiliser of z; we can clearly arrange the cocycle w of the projective

representation 7 so that
|stab; |
U, =1,

u; being w4 (y;). Moreover, it is clear that u,-s{ is a multiple of sij , necessarily by an

i] are in eigenspaces of the u;. Hence, they are in the

image of projections in vV, (I") of trace 1/|stab; |. Hence, by Theorem 3.4 (x), we have

nth root of unity so that the u; e

, ' 1
dim,y,, (1) (va (F)sl-]) < staby |’
13
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Since the von Neumann dimension is subadditive, summing over i and j, we get

Zdlmva(I‘) (UN (r)8 Z |stab |’

iJ

which by hypothesis is less than dim,y,, (1) A?_z. '
So there is a function & € A2_, which is orthogonal to all the 7 (y)s{ . This means
that £ vanishes to order at least v; on each O;. ]

We can now extend the calculation in Corollary 6.6 of the density D to all orbits
of all Fuchsian groups.

Corollary 8.2. If T', a Fuchsian group, and z € D are given with the stabiliser of z
having order stab then

2
DT (I'(z2)) = sl covolume(I").
stab

Proof. The proof is as in Corollary 6.6. |

Note that the result extends to more than one orbit, and if there were a density
calculation for sets with zeros of prescribed order, that density could be calculated for
Fuchsian groups.

The following result is surely known to experts.

Corollary 8.3. Let [ be a holomorphic k-differential on a Riemann surface D/ T of
genus g, lifted to give a holomorphic function on D. Then f is square integrable for
the measure (1 —r2)S=2r dr df for every s > 2k + 1, but not for s = 2k + 1.

Proof. With our definition of cusp form, f is a cusp form of weight 2k so the mul-
—142k+e€ for
"2k e Onthe
other hand, the degree of the kth power of the canonical bundle is 2k(g — 1), so by
Riemann—Roch f has 2k(g — 1) zeros counted with multiplicity. So by Theorem 8.1,
since I' acts freely we must have s strictly greater than

tiplication operator My is by 7.1 a bounded operator from A? Zlycto A?
every € > 0. The constant function 1 is in 42 14e SO f itself is in A?

4
14+2k(g—1)—— =1+ 2k.
+2k(e )covolume(F ) + -

9. Trace vectors for the commutant of T

We need an elementary result on Poincaré series, going back to Poincaré [26]. We
prove it here because it is usually stated for s a positive integer whereas we need it for
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real s > 1 (see [6]). If s is a positive even integer the next step after convergence is
usually to show that the Poincaré series defines a cusp form. But for real s this will not
be the case because of the non-homomorphic nature of the branch of the logarithm.
In the next lemma, F will be a fundamental domain for I", a Fuchsian group as
usual with the convention established above for the meaning of ¢z + d, s will be a real
number bigger than one and a fixed branch of log is used to define (cz + d).

Lemma 9.1. Let & € A§—2~ Then the Poincaré series
)3 E(r(2))?
2
oy (cz+d)>s
converges locally uniformly in H as does

E(y ()

the former to a holomorphic function and the latter to (at least) a continuous one.

Proof. Fix aball K in F. Putting

E(y(2)?

fy(2) = (cz +d)2s’

the square of the L? norm of & is

sdxdy sdxdy
[reory S =3 [ 1S,

2
yel Y

Since f, is holomorphic, by the mean value property there is a C such that | f,, (z)| <

C|fy(2)|1 forall y e I' and z € K, where by || — ||; we mean the 1-norm on the

fundamental domain F for the measure d)éiy . Since ), || f|l1 converges, conver-
y Y

gence on F of the two functions in the statement of the theorem is guaranteed by the
Weierstrass M-test. Locally uniform convergence everywhere follows by varying the
fundamental domain. n

In [27,28], Radulescu has given a description of the commutant M = vN,,(T")
on A?_z. Given an L function f on H that is fixed by the action of I (which is the
same thing as an L*° function on a fundamental domain), one can define the “Toeplitz”
operator T¢, which is the composition

Ty = PMy: A2, — A2,

where P is the orthogonal projection from L?(H) onto A%_,. In [27], we find the
following two theorems.
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Theorem 9.2. The subspace of M spanned by the Ty is dense in the 2-norm

[x]2 = vir(x*x).

Theorem 9.3. The trace in M of Ty is a multiple of
dx dy
| ro=s
F y

Note that by I'-invariance the integral does not depend on the fundamental domain.

Definition 9.4. An element £ € A2_2 will be called tracelike if, for all z € H,

Z |c|zgf)a|12|23 (constant) Im(z) ™",

Corollary 9.5. A function & € A?_z is a trace vector for M iff it is tracelike.

Proof. By Theorem 9.3 we have, up to constants, for a bounded I' invariant function
on H,

dxd
<Tfé,s>=/Ff(z> xa
However,

d
(Ty6.6) = /f(Z)IE( 2y ’;y

E(y(2)|*>  dxdy
/f( )Z|cz+d|zs y2

The series converges to a continuous function by Lemma 9.1. When we subtract a
constant times y~° we get a function orthogonal on F to all bounded measurable
functions. The corollary follows by varying the fundamental domain. ]

Remark 9.6. Cusp forms give us a supply of interesting Toeplitz operators. We have
seen in Definition 7.2 that a cusp form f gives a bounded vN, (I')-linear map Ty
between Bergman spaces. So if f and g are cusp forms of the same weight p, T; T,
isin M. It is actually the Toeplitz operator for the I'-invariant bounded function

h(z) = f(z)g(z) Im(z)".

Theorem 9.3 then shows that the trace in M of T Ty is the integral of & over the
fundamental domain with hyperbolic measure, i.e. the well known Petersson inner
product [25]. This result was also obtained in [13]. Radulescu also claims in [27] that
the Toeplitz operators given by cusp forms are dense in M though it appears he has
only proved it for PSL,(Z).
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This allows us to state a theorem about existence of such functions.
Theorem 9.7. There is a tracelike § € A2_, iff

4
covolume(T")

Moreover, if s = 1 4 (4z/covolume(I")), the condition is equivalent to & being a
wandering vector for T.

Proof. These are immediate consequences of von Neumann dimension. Theorem 3.4 (ix)
proves the first assertion and the equivalence of being a trace vector for M and M’
is easy when the von Neumann dimension is one since then the Hilbert space is
M -isomorphic to the L? closure of M. u

A. Existence of non-trivial central extensions of Fuchsian groups arising
from the non-integral values of s

We observed in Section 4 that for s > 1, the formula

(&™) = s /)

only defines a projective unitary representation of PSL;(R) on A?_z, but that on
restriction to a Fuchsian group I' the representation might be adjusted to become
honest. That is the case for instance if T" is a free product of cyclic groups [16] — simply
adjust the unitaries representing the generators so that they have the right order in the
unitary group of A2_,. It would have simplified the presentation in this paper if we
could do the same for all Fuchsian groups, but in this appendix we will show that this
is not the case for fundamental groups of surfaces of genus bigger than one.

Theorem A.1. Let I be the Fuchsian group of the fundamental group of a Riemann
surface 3 of genus g. The projective representation given by the restriction of 7t (for
s > 1) is equivalent to an honest representation iff s € éZ.

Proof. Let{y; } be generators for I so that the defining relation for T is [ [[y;, yi+1] =1
(see [12]). Then changing liftings 775 () of the projective representation of I" to different
unitaries does not affect [[[77 (y;), 7 (yi+1)] = 1 provided the liftings of inverses in T’
are inverse unitaries. By Remark 4.2 this is true for our careful definition of 7. So the
single number

obstr(s) = l_[[ﬁ(yi), 7 (Yit1)]
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is exactly the obstruction to lifting the restriction of 77 to an honest unitary representation.
Observe also that s — obstr(s), when written out as an explicit function of s and z, is
a continuous homomorphism from R to the circle T'!.

Thus, the problem becomes: “what is the kernel of obstr?” (Any even integer s
is in the kernel since then 1/(cz + d)® has the cocycle property for all of PSL,(R).)
This question has nothing to do with Bergman space. We will answer it using line
bundles on X. We claim that ker(obstr) = ﬁZ. Our proof will use the following
construction.

Proposition A.2. Suppose obstr(s) = 1 for some s € R, s > 1. Then there is a holo-
morphic line bundle L(s) over X with the following two properties:

(1) L(s +1) = L(s) ® L(1);
(2) L(2) is the canonical line bundle K.

Proof. Since obstr(s) = 1, the projective representation of I" on A?_z may be lifted to
an honest representation by defining, for w = []] &;, where ¢; is one of the generators

foreachi =1,2,...,n,
n

r(w) = [ ]#(@).

1
It follows that

7y 2) = j(r.DEX(2)),

where j(y, z) satisfies the cocycle condition

J(1y2.2) = j(y1,v2(2) j(y2, 2),

and j(y, z) is a product of holomorphic functions of z of the form exp(s log(cz + d)).
The cocycle condition is exactly what is required to define an action of I" on the
line bundle (over H) H x C:

vz, w) = (y(2), j(y, 2)w).

This action is properly discontinuous so, passing to the quotient, we obtain a line
bundle L(s) on X, which is holomorphic because j is.

(1) Change of local trivialisations of L(s) are obtained by lifting to H x C and
applying elements of I', and tensor product of line bundles corresponds to multiplying
the cocycle defining the action. Since j is a product of terms f(s) with f(s + 1) =
f(s) f(¢), the same is true for j as a function of s.
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(2) When s = 2, 1/(cz + d)° is already a cocycle so it is equal to j(y, z). But
the canonical line bundle is that of holomorphic one-forms which are locally of the
form f(z) dz and transform under the action of I" just as our action on H x C acts on
functions. |

We return to the proof of Theorem A.1. The rational number 2 is in ker(obstr), so
it suffices to show that

(1) 1/(g — 1) € ker(obstr);
(2) no rational numberr = 1+4+¢,0 <€ < 1/(g — 1) is in ker(obstr).

Let us begin with (2). Suppose s = 1 + 7% € ker(obstr) with m/n < 1/(g — 1). Form
the line bundle L(s) of Proposition A.2 over X and let its degree be d. Then

®2nL(S) ~ ®n+mK
by Proposition A.2 (2). Equating the degrees of both sides, we get
2nd =2(g—1(n+m) or d=(g— 1)(1 + ﬁ).
n

But (g — 1)7 is not an integer, so we have a contradiction.

So we only have to show that s = 1/(g — 1) € ker(obstr). Note that another way
of phrasing the lifting property for 75 is the following: does there exist a function
w:T' — T sothat y — w(y)/(cz + d)° has the cocycle property.

Choose a holomorphic line bundle L over X of degree 1. Tensoring L if necessary
by a line bundle of degree 0 we may assume that ®28~2 L is the canonical line bundle K
of holomorphic 1-forms. Now take the universal cover of L to obtain L over H which
may be trivialised so that there is an action of I' on H x C of the form

y(z.w) = (y(2).a(y.2)w)

for some holomorphic cocycle o. The (2g — 2)th power of « yields an action on
H x C which is equivalent to the action yielding K, i.e. that coming from the cocycle
1/(cz + d)*. We conclude there is a non-vanishing holomorphic function /(z) such
that

(20 = D)

Since H is simply connected choose for each y a branch of i(y(z))/?¢~2) to obtain

a(y.z) = CU(V)mh(y(z))l/@g—z)(h(z)l/(z,g—z))—l

for some 2(g — 2)th roots of unity w(y). Since « and h(y(z))"/ 28~ (h(z)1/(28=2))~1
are (holomorphic) cocycles, so is w(y)/(cz + d)* which means s € ker(obstr). =
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B. An amusette: Calculation of the algebra of modular forms

We will restrict our attention to PSL;(Z) though the method of this section surely
applies in great generality. All the results about modular forms in this section are
extremely well known and elementary (see [32,35]), but our derivation of them is
somewhat different! The method should be applicable to a Fuchsian group provided
there is an analogue of A ([10]). Relations in the algebra can be checked using zero
sets.

Lemma B.1. If f is a cusp form of weight p for PSL,(Z), then p > 12.

Proof. Choose a w which is not a fixed point for PSL,(Z). Then g(z) = j(z) — j(w)
vanishes on the orbit of w. And fg is a modular form of weight p. Choosing a small
€ > 0, |A€ fg|y@*+129/2 js invariant under PSL,(Z) and bounded on a fundamental
domain. Which gives

|A€ fg(z)| < (constant)y~(P+126)/2,

So that for § € A2_,, we have A€ fgé € A§—2+p+126 and it vanishes on the orbit of w
which contradicts Theorem 1.1 if s is close to 1 and € is small. n

Corollary B.2. There is no non-zero modular form of weight 2.

Proof. Suppose f were such a modular form. If f has a zero, then multiplying it by
a small positive power of A times a vector £ as in Lemma B.1 gives an A2 function
vanishing on an orbit which contradicts Theorem 1.1.

If f vanishes nowhere, one may form A /f which is a cusp form of weight less
than 12, disallowed by Lemma B.1. ]

Given the above and the Eisenstein series it is not hard to determine the whole
algebra of modular forms. Uniqueness of the modular form of weight 12 is given
by dividing by A and the maximum modulus theorem, as usual [35]. For weights
p = 4,6,8, 10, just subtract the appropriate multiple of G/, to obtain a cusp form
which must be zero by Lemma B.1.

It is now routine to obtain the whole algebra of modular forms since multiplication
by A is clearly an injection of modular forms of weight p onto cusp forms of weight
p + 12 and subtracting the appropriate multiple of the Eisenstein series gives a cusp
form. We conclude that the algebra of cusp forms is a graded commutative algebra
freely generated by G, in degree 4 and G3 in degree 6 (see [32]).
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