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Spectral triples and �-cycles

Alain Connes and Caterina Consani

Abstract. We exhibit very small eigenvalues of the quadratic form associated to the Weil
explicit formulas restricted to test functions whose support is within a fixed interval with upper
bound S . We show both numerically and conceptually that the associated eigenvectors are
obtained by a simple arithmetic operation of finite sum using prolate spheroidal wave functions
associated to the scale S . Then we use these functions to condition the canonical spectral triple
of the circle of length LD 2 log.S/ in such a way that they belong to the kernel of the perturbed
Dirac operator. We give numerical evidence that, when one varies L, the low lying spectrum of
the perturbed spectral triple resembles the low lying zeros of the Riemann zeta function. We
justify conceptually this result and show that, for each eigenvalue, the coincidence is perfect for
the special values of the length L of the circle for which the two natural ways of realizing the
perturbation give the same eigenvalue. This fact is tested numerically by reproducing the first
thirty one zeros of the Riemann zeta function from our spectral side, and estimate the probability
of having obtained this agreement at random, as a very small number whose first fifty decimal
places are all zero. The theoretical concept which emerges is that of zeta cycle and our main
result establishes its relation with the critical zeros of the Riemann zeta function and with the
spectral realization of these zeros obtained by the first author.
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1. Introduction

When contemplating the low lying zeros of the Riemann zeta function one is
tempted to speculate that they may form the spectrum of an operator of the form
1
2
C iD with D D D� self-adjoint, and to search for the geometry provided by a

spectral triple1 for whichD is the Dirac operator. In this paper we give the construction

1A triple .A;H ;D/ where A is an algebra acting in the Hilbert space H and D is an unbounded
self-adjoint operator in H , this is the basic paradigm of noncommutative geometry [3].

https://creativecommons.org/licenses/by/4.0/
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Figure 1
The low lying spectrum of iD.�; k/ for �2 D 10:5, k D 18, on the left (in blue). On the right
(in red), the low lying zeros of the Riemann zeta function.

of a spectral triple ‚.�; k/ D .A.�/;H .�/; D.�; k// which admits, as shown for
small values of � > 1, a spectrum of 1

2
C iD very similar to the low lying zeros of the

Riemann zeta function (this fact is exemplified in Figure 1, for �2 D 10:5).
More precisely, the spectral triple ‚.�; k/ depends on � and also on the choice of

an integer k < 2�2, moreover for a fixed value of k the positive non-zero eigenvalues
�n.D.�; k// arranged in increasing order, vary continuously with �. A striking fact
(discovered numerically at first) is that for special values of � the dependence of
�n.D.�; k// on the value of k (close enough to 2�2) disappears (see Figure 2 for the
case n D 1), while the common value of these �n.D.�; k// coincides exactly with the
imaginary part of the n-th zero of the Riemann zeta function! This means that the
qualitative resemblance of spectra as in Figure 1 yields in fact a sharp coincidence in
some range: by varying � in the interval 5� �2 � 16:5, and determining the coinciding
eigenvalues up to nD 31 one produces 31 numbers in amazing agreement with the full
collection of values of the first 31 zeros of the zeta function (see Figure 3; incidentally
notice that the probability of obtaining such agreement from a random choice is of the
order of 10�50 ).

The main goal of this paper is to provide a theoretical explanation for this numerical
“coincidence” and relate it to the spectral realization of the zeros of zeta given in [4].
The new theoretical concept that emerges is that of a �-cycle.

In Section 6.1 we explain how to define scale invariant Riemann sums for func-
tions defined on Œ0;1/ with vanishing integral. This technique is implemented in the
definition of the linear map

†�EW � ev
0 ! L2.C /
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Figure 2
The curves represent as a function of � D �2 the first positive eigenvalue �1.D.�; 2k// of
D.�;2k/. The ordinate of the points where the graphs touch each other is constant and coincides
with the imaginary part �1 � 14:134 of the first zero of zeta. The abscissas, i.e. the values of �,
are part of the geometric progression with ratio exp.2�

�1
/.

Figure 3
Computing the coinciding eigenvalues �j .D.�; k// one obtains a list (lower line) which one
compares with the list (upper line) of imaginary parts �j of zeros of zeta.

from the Schwartz space � ev
0 of even functions, f; f .0/ D 0, with vanishing integral,

to square integrable functions on the circle C D R�C=�
Z of length L D log�. The

key notion is then provided by the following

Definition 1.1. A �-cycle is a circle C of length L D log� such that the subspace
†�E.� ev

0 / is not dense in the Hilbert space L2.C /.

It turns out that likewise for closed geodesics, �-cycles are stable under finite covers,
and if C is a �-cycle of length L, then the n-fold cover of C is a �-cycle of length nL,
for any positive integer n > 0.
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By construction, the subspace †�E.� ev
0 / � L

2.C / is invariant under the group of
rotations of the circle which appears here from the scaling action of the multiplicative
group R�C on C D R�C=�

Z. The main result of this paper is the following

Theorem 1.1. (i) The spectrum of the action of the multiplicative group R�C on the
orthogonal of †�E.� ev

0 / in L2.C / is formed by imaginary parts of zeros of the
Riemann zeta function on the critical line.

(ii) Let s > 0 be such that �.1
2
C is/D 0, then any circle of length an integral multiple

of 2�=s is a �-cycle, and the spectrum of the action of R�C on .†�E.� ev
0 //
?

contains s.

The ad-hoc Sobolev spaces used in [4] to provide the spectral realization of zeros
of zeta are here replaced by the canonical Hilbert space L2.C / of square integrable
functions. Moreover, Theorem 1.1 provides the theoretical explanation for the above
coincidence of spectral values. Indeed, the special values of �2 D � D expL at which
the k dependence of the eigenvalue �n.D.�;k// disappear, signal that the related circle
of length L is a �-cycle and that �n.D.�; k// is in its spectrum. This explains why the
low lying part of the spectrum of the spectral triple ‚.�; k/ possesses a tantalizing
resemblance with the low lying zeros of the Riemann zeta function. Indeed, the special
values of the length (L) of the circle for which the coinciding �n.D.�; k// occur, form
a part of the arithmetic progression of multiples of 2�=�n, where �n is the imaginary
part of the n-th zero of the zeta function. This forces the graphs of the functions
�n.D.�

1=2; k// to pass through points of the form .exp.2�m=�n/; �n/ (as in Figure 2)
which entails that the low lying spectrum of D.�; k/ (for k � 2�2) mimics the low
lying zeros of the zeta function.

The spectral triple ‚.�; k/ is a finite rank perturbation of the Dirac operator
on a circle of length log � D 2 log � and involves, as a key ingredient, classical
prolate spheroidal wave functions [11–13]. These functions are used to define a finite-
dimensional subspace (of dimension k) of the Hilbert space of square integrable
functions on the circle of length 2 log�, and the operator D.�; k/ is then canonically
obtained from the operator of ordinary differentiation D0.�/ to ensure that its kernel
contains the above finite-dimensional subspace.

A priori, there seems to be no relation between the construction of the spectral
triple‚.�;k/ and the Riemann zeta function: in Section 3 we explain how we stumbled
on‚.�; k/ while continuing our investigations of the Weil quadratic form restricted to
test functions with support in a fixed interval. The Riemann–Weil explicit formulas
give a concrete and finite expression of the semi-local Weil quadratic form (see Sec-
tion 2) which is suitable for numerical exploration since it only involves primes less
than, say, �2. By semi-local Weil quadratic form we mean the restriction QW� of the
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sesquilinear form

(1.1) QW.f; g/ WD
X

1=2Cis2Z

yf .xs/ yg.s/

on test functions f;g whose support is contained in the interval Œ��1; ���R�C. In (1.1),
Z is the set of non-trivial zeros of the Riemann zeta function and Fourier transform is
defined on C1c .R�C/ by

(1.2) yf .s/ D F�.f /.s/ WD

Z
R�
C

f .u/u�is d�u:

One knows that the positivity of the Weil quadratic form QW� for all � implies the
Riemann Hypothesis (RH), and in case RH holds,QW� is known to be strictly positive.
In [14], the positivity was shown to hold for � D

p
2 using numerical analysis. In

Section 2 we test numerically this positivity for larger values of �, showing (Section 2.2)
that the contribution from the archimedean place alone ceases to be positive in the
upper part of the interval

log.�2/ 2 Œlog 2 � 0:2; log 2C 0:2� � Œ0:493; 0:893�;

while the positivity is restored by adding the contribution of the prime 2. This latter
contribution depends explicitly on p D 2 in a form Wp which in fact can be evaluated
for any real number p � 2 (i.e. close to but not equal to 2). We show (Section 2.3)
that by requiring positivity one restricts the allowed values of p to an interval of
size � 10�3 around p D 2, and in Section 2.4 we display that when �2 grows past
a prime power and one ignores its contribution, the quadratic form QW� fails to
remain positive. This fact is displayed up to �2 � 7. One striking numerical result
is described in Section 2.5, where we report numerical evidence that as � increases
the corresponding operator in H .�/ WD L2.Œ��1; ��; d�u/ admits a finite number of
extremely small positive eigenvalues. For instance, we find that when �2 D 11 the
smallest positive eigenvalue is 2:389 � 10�48. The corresponding eigenfunctions are
graphically reported in Figures 22, 23, 24.

Section 3 explains conceptually the presence of these extremely small positive
eigenvalues and there we also give an excellent approximation of the related eigen-
functions. The theoretical reason for the presence of these extremely small eigenvalues
springs from the fact that the radical of the Weil quadratic form contains the range of
the map E of [4], that is defined on the codimension two subspace � ev

0 of even Schwartz
functions fulfilling f .0/ D yf .0/ D 0 by

(1.3) E.f /.x/ WD x1=2
X
n>0

f .nx/; 8f 2 � ev
0 :
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Even though RH implies thatQW� is strictly positive, and thus that its radical is ¹0º, by
making use of (1.3), one can nevertheless construct functions g with support in Œ��1;��
which are in the “near radical” of the Weil quadratic form, i.e. fulfillQW�.g/� kgk2.
More precisely, if the support of the even function f 2 � ev

0 is contained in the interval
Œ��; �� � R, the support of E.f / is contained in .0; �� � R�C. On the other hand, the
Poisson formula

(1.4) E. yf /.x/ D E.f /.x�1/; 8f 2 � ev
0

shows that the support of E.f / is contained in Œ��1;1/ provided the support of the
even function yf is contained in the interval Œ��; �� � R. The obstruction to obtain
an element E.f / of the radical of QW� is the equality P� \ yP� D ¹0º, where P�
and yP� are the cutoff projections in the Hilbert space L2.R/ev of square integrable
even functions (the projection P� is given by the multiplication by the characteristic
function of the interval Œ��; �� � R, the projection yP� is its conjugate by the Fourier
transform FeR). The seminal work of Slepian and Pollack [11–13] on band limited
functions then shows that while P� \ yP� D ¹0º, the angle operator between these
two projections admits a finite number 1C �.�2/ � 2�2 of extremely small non-zero
eigenvalues and that the corresponding eigenfunctions are the prolate spheroidal wave
functions

 m;�.x/ WD PS2m;0
�
2��2;

x

�

�
; m � �.�2/ � 2�2:

By construction, each  m;� is a function on the interval Œ��; �� that one extends by 0
outside that interval. Its Fourier transform FeR. m;�/ restricted to the interval Œ��; ��,
is equal to �m m;� where the scalar �m is very close to .�1/m provided that m is
less than �.�2/ � 2�2. After taking care of the two conditions f .0/ D yf .0/ D 0, the
restriction of E.f / to the interval Œ��1; �� gives rise to a function which we call a
“prolate vector”, and on which QW� takes non-zero, but extremely small values. This
fact is verified concretely in Section 3 where we compare the eigenvectors of the Weil
quadratic form QW� associated to its smallest eigenvalues with the orthogonalization
of the prolate vectors obtained using the technique outlined above, from the prolate
spheroidal wave functions.

The construction of the spectral triple ‚.�; k/ is carried out in Section 4. Even
though this construction is motivated by the results of Section 3 on the near radical
of the Weil quadratic form QW�, the technique involved only uses the prolate vectors
without any reference to QW�. Using the first k C 2 prolate functions, one obtains a
k-dimensional subspace of

L2
�
Œ��1; ��; d�u

�
' L2

�
R�C=�

2Z; d�u
�
;

then one lets….�;k/ be the associated orthogonal projection. By definition, the spectral
triple‚.�;k/D .A.�/;H .�/;D.�; k// is given by the action by multiplication of the



Spectral triples and �-cycles 99

algebra of smooth functions A.�/ WD C1.R�C=�
2Z/ on H .�/ WD L2.R�C=�

2Z; d�u/,
while the operator D.�; k/ is the finite rank perturbation

(1.5) D.�; k/ WD
�
1 �….�; k/

�
ıD0 ı

�
1 �….�; k/

�
; D0 D �iu@u

of the standard Dirac operator D0 D �iu@u (with periodic boundary conditions when
viewed in L2.Œ��1; ��; d�u/ ' L2.R�C=�

2Z/). We compute the low lying spectra
of these spectral triples and find a neat resemblance with the low lying zeros of the
Riemann zeta function, provided that k is sufficiently close to the largest allowed
value �.�2/. On the other hand, since the eigenvalues �n.D.�; k// vary with �, one
cannot expect that they reproduce exactly the n-th zero of the zeta function. The subtlety
of the relation is explained in Section 5, where we produce several criteria to recover
the zeros of the Riemann zeta function using the non-zero eigenvalues �n.D.�; k//.
First we show that for k D 2`, the eigenvalues fulfill the inequality

�n
�
D.�; k C 1/

�
� �n

�
D.�; k/

�
;

then we prove (Section 5.1) that for certain values of � one has

�n
�
D.�; k C 1/

�
' �n

�
D.�; k/

�
:

When this happens and k is close enough to the upper bound �.�2/, the common
eigenvalue coincides with the imaginary part of the n-th zero of the zeta function. This
result is strengthened in Section 5.2, where we plot the evolution of the eigenvalues
�n.D.�; k//, as functions of � D �2, for fixed k, and find that several graphs coincide
at the above special values of � as displayed in Figure 2. In Section 5.3 we find that
the obtained special points in the .�; �n/ plane fulfill the quantization condition

�i�n D 1:

This result suggests that for the above special values of � one has an eigenvector which
is already an eigenvector of the unperturbed Dirac operator D0. In Section 5.4 we
apply this criterion to select the special values of �, and compute the first 31 zeros
of the Riemann zeta function with the precision shown in Figure 3. The conceptual
explanation of these experimental findings is Theorem 1.1 whose proof is developed
in the final Section 6.

2. The semi-local Weil quadratic form

In this section we test numerically the positivity of the Weil quadratic form
QW.f; g/, in the semi-local case, namely for test functions f; g with support in the
interval Œ��1; ��. This investigation breaks down in two independent cases so that

QW� D QW
C

�
˚QW �� ;

according to the parity of f and g with respect to the symmetry operator u 7! u�1.
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Lemma 2.5 shows that for real test functions, the even functions do not interfere with
the odd ones. Moreover, by construction, the positivity of QW� depends on the length
L D 2 log� of the support of the test functions. We define in (2.21) an orthonormal
basis ¹�n, n 2 Zº of the Hilbert space L2.Œ��1; ��/ formed by odd (for the symmetry
u 7! u�1) real functions for n < 0, and by even real functions for n � 0. The matrix

�.n;m/ D QW.�n; �m/

is the direct sum � D �C ˚ �� of two infinite symmetric real matrices, each of which
is expressed as a finite sum involving the archimedean contribution �WR, as well as
the contribution �Wp from primes p less than � D �2. The numerical tests consist in
evaluating the eigenvalues of the very large portion of these matrices corresponding to
indices n and m whose absolute values are � N . These computations give significant
evidence that the increasing of largeN does not alter substantially the lower part of the
spectrum of �.n;m/. In Section 2.2 we find that the archimedean contribution �WR

to the Weil quadratic form when taken separately, ends to be positive if computed in
an interval extending slightly beyond the value L D log 2 (Figure 6). However, the
positivity is restored after that value, and precisely in the interval log 2 � L < log 3,
by implementing also the contribution of the prime p D 2, in terms of the related
functional �W2.

In Section 2.3 we report our numerical findings supplying evidence to the fact that
the sign of QW� is also sensitive to the replacement of �W2 by a functional �Wp
whose definition uses the same formula as �W2 but replaces 2 with p, taken as a real
variable in a small neighborhood of p D 2. Indeed the computations show that the
positivity of the quadratic form fails if one considers real values of p outside an interval
of size < 10�3 around 2. In Section 2.4 we report graphical evidence indicating how
important is the contribution of each functional �Wp to preserve the positivity of the
quadratic form, if the support of the test function stretches beyond a prime power pn.
Finally, in Section 2.5 we display numerical evidence of the key fact that by suitably
increasing the support of the test functions, the “even” and “odd” matrices �˙ admit a
finite number of extremely small positive eigenvalues. The theoretical discussion of
this result is presented in Section 3.

2.1. The matrix � D �C˚ ��. This subsection describes the choice of test functions
used in this paper while performing the numerical computations. When viewed in
Hilbert theoretic terms the restrictionQW� of the Weil quadratic form to functions with
support in the interval Œ��1; �� is a lower bounded, lower semi-continuous quadratic
form defined on the Hilbert space H WD L2.Œ��1; ��; d�u/ with values in .�1;C1�.
We choose an orthonormal basis ¹�nºn2Z of H which is a core for QW� and compute
the eigenvalues of very large portions of the associated matrixQW.�n; �m/D �.n;m/.
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2.1.1. Explicit formula. Following [2], one considers the class W of complex valued
functions f on R�C which are continuous and with continuous derivative except at
finitely many points where both f .x/ and f 0.x/ have at most a discontinuity of the
first kind, and at which the value of f .x/ and f 0.x/ is defined as the average of the
right and left limits. Moreover, one assumes that for some ı > 0, one has

f .x/ D O.xı/ for x ! 0C;

f .x/ D O.x�1�ı/ for x !C1:

The Mellin transform of f 2 W is defined as

(2.1) zf .s/ WD

Z 1
0

f .x/xs�1 dx:

Let f ].x/ WD x�1f .x�1/, then Weil’s explicit formula takes the form

(2.2)
X
�

zf .�/ D

Z 1
0

f .x/ dx C

Z 1
0

f ].x/ dx �
X
v

Wv.f /;

where the sum on the left-hand side is over all complex zeros � of the Riemann zeta
function, and the sum on the right-hand side runs over all rational places v of Q. The
non-archimedean distributions Wp are defined as

(2.3) Wp.f / WD .logp/
1X
mD1

�
f .pm/C f ].pm/

�
;

while the archimedean distribution is given by

(2.4) WR.f / WD .log 4� C /f .1/C
Z 1
1

�
f .x/C f ].x/ �

2

x
f .1/

� dx

x � x�1
:

The translation to (equivalent) formulas using the Fourier transform (in place of the
Mellin transform) is done by implementing the automorphism �

(2.5) f 7! �1=2f D F; F.x/ D x1=2f .x/;

which respects the convolution product and satisfies the equalities

.�1=2f ]/.x/ D x1=2f ].x/ D x�1=2f .x�1/ D .�1=2f /.x�1/:

After taking complex conjugates, � is compatible with the natural involutions. For
a rational place v, we set Wv.F / WD Wv.�

�1=2F /; then the above distributions Wp

take the following form

(2.6) Wp.F / D .logp/
1X
mD1

p�m=2
�
F.pm/C F.p�m/

�
:
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Using the multiplicative version d�x D dx=x of the Haar measure, the archimedean
distribution WR becomes

WR.F / WD .log 4� C /F.1/(2.7)

C

Z 1
1

�
F.x/C F.x�1/ � 2x�1=2F.1/

� x1=2

x � x�1
d�x:

2.1.2. The semi-local Weil quadratic form. The Weil quadratic form is now re-
written as

(2.8)
QW.f; g/ D  .f � � g/;

 .F / WD yF .i=2/C yF .�i=2/ �WR.F / �
X
p

Wp.F /;

where
yF .s/ WD

Z
F.u/u�is d�u

denotes the Fourier transform of the functionF . Moreover, the functionalW1 WD �WR

fulfills the following formula

(2.9) W1.F / D

Z
yF .t/

2@t�.t/

2�
dt

in terms of the derivative of the angular Riemann–Siegel function �.t/

(2.10) �.t/ D �
t

2
log� C= log�

�1
4
C i

t

2

�
;

with log�.s/, for <.s/ > 0, the branch of the log which is real for s real.
By a lower bounded, lower semi-continuous (lsc) quadratic form q on a Hilbert

space H we mean a lower semi-continuous map2 qWH ! .�1;C1�, which fulfills
q.��/ D j�j2q.�/ for all � 2 C, the parallelogram law

q.� C �/C q.� � �/ D 2q.�/C 2q.�/

and also an inequality of the form q.�/ � �ck�k2 for all � 2 H , reflecting the lower
bound of q. The associated sesquilinear form (antilinear in the first variable) is given
on the domain of q, Dom.q/ WD ¹� 2 H j q.�/ <1º by

q.�; �/ WD
1

4

�
q.� C �/ � q.� � �/C iq.i� C �/ � iq.i� � �/

�
:

2i.e. such that when �n! � one has q.�/ � lim inf q.�n/.
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By a result of Kato (see [10, Theorem 2)]) such lower bounded quadratic forms corre-
spond to lower bounded densely defined self-adjoint operators T � �c on H by the
formula

q.�/C ck�k2 D h.T C c/1=2� j .T C c/1=2�i D k.T C c/1=2�k2; 8� 2 H :

At the informal level this means that q.�; �/ D h� j T �i.

Proposition 2.1. Let � > 1. The following formula defines a lower bounded lower
semi-continuous quadratic form QW�WL

2.Œ��1; ��; d�u/! .�1;C1�,

QW�.f; f / WD

Z
j yf .t/j2

2@t�.t/

2�
dt(2.11)

C 2<
�
yf
� i
2

�
xyf
�
�
i

2

��
�

X
1<n��2

ƒ.n/hf j V.n/f i;

whereƒ.n/ is the von Mangoldt function and V.n/ is the bounded self-adjoint operator
in L2.Œ��1; ��; d�u/ such that

(2.12) hf j V.n/gi D n�1=2
�
.f � � g/.n/C .f � � g/.n�1/

�
:

Proof. The function @t�.t/ is even, lower bounded and of the order of O.log jt j/ for
jt j ! 1. This shows that the first term in (2.11),

Q1.f / D

Z
j yf .t/j2

2@t�.t/

2�
dt;

defines a lower bounded, lower semi-continuous quadratic form Q1 on the Hilbert
space L2.R�C; d�u/. We view L2.Œ��1; ��; d�u/ as the closed subspace of func-
tions which vanish outside Œ��1; ��. The restriction of the quadratic form Q1 to
L2.Œ��1; ��; d�u/ is still lower semi-continuous and lower bounded, moreover the
domain ®

� 2 L2
�
Œ��1; ��; d�u

�
j Q1.�; �/ <1

¯
is dense since it contains all smooth functions with support in .��1;�/. Thus, it remains
to show that each of the remaining terms can be written in the form hf j Tgi with T
bounded and self-adjoint in L2.Œ��1; ��; d�u/. One has

yf
� i
2

�
D

Z �

��1
f .u/u1=2 d�u D hh j f i; h.u/ WD u1=2; 8u 2 Œ��1; ��:

Thus, the term 2<. yf .i=2/
xyf .�i=2// in (2.11) is of the form hf j Tf i, where T is the

sum of the rank one operators T D jhihh�j C jh�ihhj. Let us show that (2.12) defines
a bounded self-adjoint operator V.n/ in L2.Œ��1; ��; d�u/. One has

.f � � g/.v/ D

Z
f �.vu�1/g.u/ d�u D

Z
f .v�1u/g.u/ d�u
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so that by the Cauchy–Schwarz inequality one derives

j.f � � g/.v/j � kf kkgk:

This shows that the equality .f � � g/.v/ D jf ihVvgj defines a bounded operator Vv
in L2.Œ��1; ��; d�u/. Moreover, its adjoint is V �v D Vv�1 , and thus V.n/ is bounded
and self-adjoint.

Lemma 2.2. Let � > 1, and let U 2 L2.Œ��1; ��; d�u/ be the function

U.u/ WD u
i�

log� :

Then the space of Laurent polynomials CŒU;U�1� is a core for the quadratic formQW�.

Proof. Since all terms in (2.11) are bounded except for Q1, it is enough to show that
CŒU; U�1� is a core for the quadratic form Q1 restricted to L2.Œ��1; ��; d�u/. First
note that the powers U n belong to the domain of Q1 since the Fourier transform
of U n is given by

yU n.s/ D

Z �

��1
U n.u/u�isd�u D

h
u
i�n
log��is

� i�n
log�

� is
��1i�

��1
(2.13)

D 2 log�.�1/n sin.s log�/.�n � s log�/�1 D O.1=jsj/:

Thus, the integral of j yU n.s/j2@t�.t/ is absolutely convergent and U n belongs to the
domain ofQ1. Next, given � 2 L2.Œ��1; ��; d�u/ such thatQ1.�; �/ <1, we want
to show that for any " > 0, there exists � 2 CŒU; U�1� such that (with �c the lower
bound of Q1)

(2.14) .1C c/k� � �k2 CQ1.� � �; � � �/ < ":

We switch from R�C to the additive group R (using the logarithm) and let L D 2 log�
and H D L2.Œ�L=2;L=2�/ � L2.R/. Under this change of variable the function U
becomes U.x/ D exp.2�ix=L/. Moreover, using the Fourier transform on R ' yR,
one can write

(2.15) Q1.f; f / WD

Z
j yf .t/j2

2@t�.t/

2�
dt:

In view of the asymptotic expansion for jt j ! 1 ,

@t�.t/ D
1

2

�
log.jt j/ � log.2/ � log.�/

�
�

1

48t2
CO.t�4/;
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one can replace (2.14) by an equivalent condition of finding, given " > 0, a Laurent
polynomial � in U.x/ D exp.2�ix=L/ for x 2 Œ�L=2;L=2�, such that

(2.16)
Z
jy�.s/ � y�.s/j2

�
1C log.1C s2/

�
ds < ":

We first replace � by �1 with �1.x/ WD � �.�x/ for � > 1, while

(2.17)
Z
jy�.s/ � y�1.s/j

2
�
1C log.1C s2/

�
ds < "=2

This latter inequality holds provided � is close enough to 1. Indeed, one hasZ
jy�.s/j2

�
1C log.1C s2/

�
ds <1; y�1.s/ D y�.�

�1s/;

while the scaling action S of R�C on the Hilbert space of functions on R with the norm

kf k21 WD

Z
jf .s/j2

�
1C log.1C s2/

�
ds

is pointwise norm continuous. Note first that S.�/ is bounded uniformly near � D 1
sinceZ

jf .��1s/j2
�
1C log.1C s2/

�
ds D �

Z
jf .t/j2

�
1C log.1C �2t2/

�
dt

while �
1C log.1C �2t2/

�
� 2

�
1C log.1C t2/

�
for all t 2 R for � � 2. The pointwise norm continuity of S.�/ follows since this action
is pointwise norm continuous on the dense subspace of continuous functions with
compact support. Now the support of �1, �1.x/ WD � �.�x/ is contained in the inter-
val Œ���1L=2; ��1L=2�. Thus, the convolution �2 D � � �1 with a smooth function
� 2 C1c .R/ whose support is contained in a small enough neighborhood of 0 is a
smooth function with support in the interior of the interval Œ�L=2;L=2�. Fix such a �
positive with integral equal to 1. Let �n.x/ D n�.nx/, and let �n D �n � �1. One has

y�n.s/ D y�.s=n/y�1.s/:

The functions y�.s=n/ are bounded j y�.s=n/j � 1 and converge pointwise to 1, thus the
Lebesgue dominated convergence theorem shows that for n large enough, one has

(2.18)
Z
jy�1.s/ � y�n.s/j

2
�
1C log.1C s2/

�
ds < "=4:
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Finally, since �n 2 C1c ..�L=2;L=2// it can be viewed as a smooth function on the
circle obtained by identifying the end points of the interval Œ�L=2;L=2� so that there
exists a sequence .ak/k2Z of rapid decay such that �n D

P
akU

k . Equation (2.13)
still holds after the change of variables and one gets the equality

k yU kk21 D 4.log�/2
Z ˇ̌

sin.s log�/.�k � s log�/�1
ˇ̌2�
1C log.1C s2/

�
ds:

One has
sin2.s/s�2 � 2.1C s2/�1;

and for any a 2 R,
1C .s � a/2 � 2.1C a2/.1C s2/;

so that
log
�
1C .s � a/2

�
� log 2C log.1C s2/C log.1C a2/:

This shows that k yU kk21 D O.log jkj/ and hence, since �n D
P
akU

k where the
sequence .ak/k2Z is of rapid decay, one can find N such that � D

PN
�N akU

k fulfills

(2.19)
Z
jy�.s/ � y�n.s/j

2
�
1C log.1C s2/

�
ds < "=4:

Combining (2.17)–(2.19), one obtains the required approximation.

Proposition 2.3. Let � > 1. The quadratic form

QW�WL
2
�
Œ��1; ��; d�u

�
! .�1;C1�

of (2.11) fulfills

(2.20) QW�.f / D lim inf
gn!f

QW�.gn/; gn 2 CŒU; U�1�

for any f 2 L2.Œ��1; ��; d�u/.

Proof. By applying the lower semi-continuity of QW� one sees that in (2.20) the
left-hand side is smaller than the right-hand side. The density of CŒU; U�1� in the
domain of QW� for the graph-norm shown in Lemma 2.2, proves that if f is in the
domain ofQW� there exists a sequence gn of elements of CŒU;U�1� converging to f
in norm, and such that QW�.f / D limgn!f QW�.gn/.

Corollary 2.4. The lower bound of QW� is the limit, when N !1, of the small-
est eigenvalue of the restriction of QW� to the linear span EN of the functions U k

for jkj � N .
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2.1.3. Basis of real functions in CŒU; U�1�. In order to compute explicitly the
smallest eigenvalue of the restriction ofQW� to the linear spanEN of the functionsU k

for jkj � N , as in Corollary 2.4, we first find a convenient orthonormal basis formed of
real valued functions. We first consider the Hilbert space L2.Œ�L=2;L=2�/ � L2.R/
with the inner product defined by the formula

h� j �i WD

Z L=2

�L=2

�.x/�.x/ dx:

An orthonormal real basis is, given by the constant function �0.x/ D L�1=2 together
with the functions �n.x/, n 2 Z, n ¤ 0, defined as follows

(2.21)
�n.x/ WD .�1/

n
� 2
L

�1=2
cos
�2�nx

L

�
; 8n > 0

�n.x/ WD .�1/
n
� 2
L

�1=2
sin
�2�nx

L

�
; 8n < 0:

We note the following simple facts:

Lemma 2.5. Let L > 0, �j 2 L2.Œ�L=2;L=2�/ and � D �1 � ��2 . Then
(i) The support of � is contained in the interval Œ�L;L�, and for t 2 Œ0; L�, one has

�.t/ D

Z L=2

t�L=2

�1.x/�2.x � t / dx; �.�t / D

Z L=2

t�L=2

�1.x � t /�2.x/ dx:

(ii) If the functions �j are real, then

�1 � �
�
2 .�t / D �2 � �

�
1 .t/:

(iii) If the functions �j are real, with �1 even and �2 odd, then for all t 2 R, one has

�1 � �
�
2 .t/C �2 � �

�
1 .t/ D 0:

Proof. (i) The function � is given, using ��2 .x/ D �2.�x/, by

�.t/ D

Z
R
�1.x/�2.x � t / dx; t 2 R:

Since the integrand is not zero only if x 2 Œ�L=2;L=2� and x � t 2 Œ�L=2;L=2�, one
can restrict the integration in the interval Œt � L=2;L=2�. The second equality follows
using the equality �� D �2 � ��1 .

(ii) Follows from �� D �2 � �
�
1 .

(iii) Notice that ��2 D ��2 since �2 is real and odd, and ��1 D �1 since �1 is real and
even, thus one derives

�1 � �
�
2 C �2 � �

�
1 D ��1 � �2 C �2 � �1 D 0:
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It is convenient to rewrite the Weil sesquilinear form QW.f; g/ D  .f � � g/

using the natural invariance of the functional  under the symmetry h� .u/ WD h.u�1/.
Thus,

(2.22)  .h/ D  #.hC h� /; h� .u/ WD h.u�1/;

where

(2.23)  #.F / WD W #
0;2.F / �W

#
R.F / �

X
W #
p .F /

with

W #
0;2.F / D

Z 1
1

F.x/.x1=2 C x�1=2/ d�x;(2.24)

W #
R.F / D

1

2
.log 4� C /F.1/C

Z 1
1

x1=2F.x/ � F.1/

x � x�1
d�x;(2.25)

W #
p .F / D .logp/

1X
mD1

p�m=2F.pm/:(2.26)

Lemma 2.6. With �n.u/ WD �n.log u/, the �j , jj j � n form an orthonormal basis
of En.
(i) The matrix of the Weil sesquilinear form is given by the following formula

(2.27)
QW�.�n; �m/ D �.n;m/ D  

#.h/;

h.u/ D .�n � �
�
m C �m � �

�
n /.logu/;

where  #.h/ is defined in (2.23).
(ii) For n � 0, m < 0, one has

.�n � �
�
m C �m � �

�
n /.y/ D 0; 8y 2 R:

(iii) For nm > 0, or n D 0 and m � 0, one has

�n � �
�
m D �m � �

�
n :

Furthermore, the convolution �n � ��m.y/ is an even function of y whose explicit
description, for y 2 Œ0;L�, is given in Table 1 whose general term gives the function
1=2.�n � �

�
m C �m � �

�
n /.y/.

Proof. (ii) Follows from Lemma 2.5.

(iii) The table reported in (iii) is obtained by direct computation.
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n > 0 n D 0 n < 0

m>0, n¤m
n sin

�
2�ny
L

�
�m sin

�
2�my
L

�
�.m2�n2/

�
sin
�
2�my
L

�
p
2�m

0

m D n > 0
.L�y/ cos

�
2�ny
L

�
L

�
sin
�
2�ny
L

�
2�n

; ;

m D 0 �
sin
�
2�ny
L

�
p
2�n

L�y
L

0

m<0, n¤m 0 0
m sin

�
2�ny
L

�
�n sin

�
2�my
L

�
�.m2�n2/

m D n < 0 ; ;
sin
�
2�ny
L

�
2�n

C
.L�y/ cos

�
2�ny
L

�
L

Table 1

(i) The formulas reported in (iii) show that all functions involved are in the domain of
applicability W of the explicit formulas (see Section 2.1.1). Moreover, the terms of the
explicit formulas correspond to the terms which enter in the definition (2.11) of the
quadratic form QW� in Proposition 2.1.

Lemma 2.6 (ii) shows that � is a symmetric matrix and that

�.n;m/ D 0; 8n � 0; m < 0:

Thus, � splits in two blocks � D �C ˚ �� which we shall informally call the “even”
and “odd” matrices. They correspond to the partition Z D ¹n � 0º [ ¹n < 0º and one
has

(2.28) QW� D QW
C

�
˚QW �� ; � D �C ˚ ��:

This decomposition shows that the positivity of the Weil quadratic form can be tested
working separately the cases of even functions (using the matrix �C) and odd functions
(using ��). In the chosen basis �n, the even case corresponds to considering elements
of the basis indexed by n � 0, while the odd case involves the �n’s indexed by n < 0.

2.1.4. The matrix w0;2.n;m/. Next, we shall describe the contribution of the first
two terms in (2.8) to the matrix �.m; n/. The following lemma shows that these terms
contribute by a rank one matrix to both the odd and the even matrices �˙.

Lemma 2.7. Let n;m > 0 be positive integers, � D �m � ��n , F.x/ D �.log x/. The
following equality holds:

(2.29) yF .i=2/C yF .�i=2/ D
8e�L=2.eL=2 � 1/2L3

.L2 C 16�2m2/.L2 C 16�2n2/
:



A. Connes and C. Consani 110

If n;m < 0 are negative integers, then one has

(2.30) yF .i=2/C yF .�i=2/ D �
256�2Le�L=2.eL=2 � 1/2mn

.L2 C 16�2m2/.L2 C 16�2n2/
:

Proof. We give the proof of (2.30); one proves (2.29) in a similar manner. One has

yF .i=2/C yF .�i=2/ D

Z
R�
C

F.x/.x1=2 C x�1=2/ d�x

D

Z
R
�.t/.et=2 C e�t=2/ dt

D

Z 1
0

.�.t/C �.�t //.et=2 C e�t=2/ dt

D

Z L

0

.�.t/C �.�t //.et=2 C e�t=2/ dt:

For m ¤ n, Lemma 2.6 (iii) with t 2 Œ0; L� implies

�.t/C �.�t / D
2

.m2 � n2/�

�
m sin

�2�nt
L

�
� n sin

�2�mt
L

��
:

Furthermore, one also hasZ L

0

sin
�2�nt

L

�
.et=2 C e�t=2/ dt D �

8�e�L=2.eL=2 � 1/2Ln

L2 C 16�2n2
;

which gives

yF .i=2/C yF .�i=2/ D
2

.m2 � n2/�

�
�
128�3e�L=2.eL=2 � 1/2Lmn.m2 � n2/

.L2 C 16�2m2/.L2 C 16�2n2/

�
and this proves (2.30). When m D n, Lemma 2.6 (iii) with t 2 Œ0; L� gives

�.t/C �.�t / D
1

n�
sin
�2�nt

L

�
C 2

�
1 �

t

L

�
cos
�2�nt

L

�
:

Then, one hasZ L

0

�
1�

t

L

�
cos
�2�nt

L

�
.et=2 C e�t=2/ dt D

4e�L=2.eL=2 � 1/2L.L2 � 16�2n2/

.L2 C 16�2n2/2
;

which gives

yF .i=2/C yF .�i=2/ D�
8e�L=2.eL=2 � 1/2L

L2 C 16�2n2

C
8e�L=2.eL=2 � 1/2L.L2 � 16�2n2/

.L2 C 16�2n2/2
:

This argument shows (2.30) using the equality

�.L2 C 16�2n2/C .L2 � 16�2n2/ D �32�2n2:



Spectral triples and �-cycles 111

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-15

-10

-5

Figure 4
Coefficient of �sym.0/=2. Its value at L D log 2 is 2:00963.

2.1.5. The sum
P
Wp. The contribution of the non-archimedean primes is given

by (2.6), now written as

(2.31)
X

Wp D
X

1<m�exp.L/

ƒ.m/m�1=2.�n � �
�
m C �m � �

�
n /.logm/:

2.1.6. The functionalWR. Let �sym.t/D .�n � �
�
m C �m � �

�
n /.t/, then (2.7) reads as

WR D

Z L

0

exp.x=2/�sym.x/ � �sym.0/

exp.x/ � exp.�x/
dx � �sym.0/

Z 1
L

dx

exp.x/ � exp.�x/

C
1

2
. C log.4�//�sym.0/:

One has Z 1
L

dx

exp.x/ � exp.�x/
D
1

2
log
�eL C 1
eL � 1

�
;

so that one obtains

WR D
�sym.0/

2

�
 C log

�
4�
eL � 1

eL C 1

��
(2.32)

C

Z L

0

exp.x=2/�sym.x/ � �sym.0/

exp.x/ � exp.�x/
dx:

Figure 4 shows that the coefficient of �sym.0/=2 is negative near the origin (LD 0),
thus its contribution to the quadratic form QW is a positive one for small values of L,
due to the minus sign in front ofW CR (in (2.23)). This very same contribution becomes
negative for larger values of L.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

1.0

1.5

Figure 5
Positivity of the archimedean contribution to the even matrix for L 2 Œ0; log 2�. The smallest
eigenvalue when L D log 2 is � 0:00133.

0.6 0.7 0.8 0.9

0.01

0.02

0.03

Figure 6
Change of sign of the smallest eigenvalue of the archimedean contribution to the even matrix
for L 2 Œlog 2 � 0:2; log 2C 0:2� � Œ0:493; 0:893�.

2.2. Sensitivity of Weil positivity, archimedean place. The first fact we report from
the numerical computations is that the archimedean contribution fails to remain positive
when extended a bit beyond the value L D log 2. In the two graphs above (Figures 5
and 6), we report the variation of the smallest eigenvalue for the even matrix �C, as
the value of L approaches and then stretches a bit beyond log 2. When one considers
values of L in the interval log2 � L < log3, the contribution of the primes to the Weil
quadratic form is only by p D 2, and of the form

(2.33) Wp.F / D p
�1=2 logp

�
�.logp/C �.� logp/

�
:

Figure 7 shows that adding the contribution of the prime 2 to the archimedean contribu-
tion restores the positivity of the even matrix �C. The graph is in terms of � WD expL,
and this choice of the variable is dictated by the fact that its integer prime power values
play a crucial role in this study.
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2.05 2.10 2.15 2.20 2.25 2.30

-0.0010

-0.0005

0.0005

0.0010

Figure 7
Change of sign of the smallest eigenvalue for the archimedean contribution alone, as a function
of � WD expL, near �D 2 (in yellow). After adding the contribution of the prime 2 the smallest
eigenvalue of the even matrix is > 0 (in blue).

2.00 2.02 2.04 2.06 2.08 2.10

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

Figure 8
Sensitivity to the precise value p D 2.

2.3. Sensitivity of Weil positivity to the precise value p D 2. Figure 7 shows that
beyond �D 2 the contribution (2.33) of the prime 2 first lowers the smallest eigenvalue
in the interval expL 2 .2; 2:27/ but then saves it from being negative. The value of the
smallest eigenvalue of �C for �D 3 is< 6� 10�8. This suggests to use p as a variable
in (2.33) and to test the sensitivity of Weil positivity to the precise value p D 2. To
this end one fixes L D log 3 (i.e. � D 3) and replaces 2 by a variable p in (2.33).

As Figure 8 shows, one finds that the smallest eigenvalue �.p/ for L D log 3 is
negative for p D 1:9999 and also for p D 2:0005, so that the positivity requirement
restricts the choice of p to an interval of size < 10�3 around p D 2.

2.4. Change of sign of smallest eigenvalue. Beyond p D 3 the sign of the smallest
eigenvalue of the sum of the contributions of1 and 2 to the even matrix �C is reported
in yellow in Figure 9. Once again we notice that its negative behavior beyond � D 3
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3.05 3.10 3.15 3.20 3.25

-3.×10-7

-2.5×10-7

-2.×10-7

-1.5×10-7

-1.×10-7

-5.×10-8

5.×10-8

Figure 9
Change of sign of the smallest eigenvalue (in yellow) of the contributions of1 and 2 to the
even matrix beyond �D 3. In blue, after adding the contribution of the prime 3: the total is > 0.

4.05 4.10 4.15 4.20

-2.×10-12

-1.5×10-12

-1.×10-12

-5.×10-13

5.×10-13

1.×10-12

Figure 10
Change of sign of the smallest eigenvalue of the even matrix beyond 4: in yellow if one neglects
the contribution of the prime power 4 D 22, in blue if one does not. The smallest eigenvalue of
the total contribution is > 0.

is “fixed” and the output (in blue in the figure) switches to be positive by adding the
contribution of the prime 3.

When � goes beyond the prime power 4 D 22, the behavior of the smallest eigen-
value is similar to the earlier reported cases and is shown in Figure 10.

For�� 5 and�� 7, the behavior of the smallest eigenvalue for the even matrix �C

is similar to those shown in the earlier cases and is reported in Figures 11 and 12.
The following graphs (Figures 13–17) report the change of sign of the smallest

eigenvalues for the odd matrices ��, and for the same choices of prime powers: namely
near 2, 3, 4, 5 and 7.
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5.02 5.04 5.06 5.08 5.10

-5.×10-18

5.×10-18

1.×10-17

Figure 11
Going beyond � D 5 without (yellow) and
with (blue) the contribution of the prime 5.

7.02 7.04 7.06 7.08

-2.×10-27

-1.×10-27

1.×10-27

Figure 12
Going beyond � D 7 without (yellow) and
with (blue) the contribution of the prime 7.

2.02 2.04 2.06 2.08 2.10 2.12

0.02

0.04

0.06

0.08

Figure 13
Odd case. Going beyond � D 2 without
(yellow) and with (blue) the contribution of
the prime 2.

3.02 3.04 3.06 3.08 3.10

-0.00002

-0.00001

0.00001

Figure 14
Odd case. Going beyond � D 3 without
(yellow) and with (blue) the contribution of
the prime 3.

4.02 4.04 4.06 4.08 4.10

-6.×10-10

-4.×10-10

-2.×10-10

2.×10-10

4.×10-10

6.×10-10

Figure 15
Odd case. Going beyond � D 4 without
(yellow) and with (blue) the contribution of
the prime power 4.

5.01 5.02 5.03 5.04 5.05 5.06

-1.5×10-14

-1.×10-14

-5.×10-15

5.×10-15

1.×10-14

Figure 16
Odd case. Going beyond � D 5 without
(yellow) and with (blue) the contribution of
the prime 5.
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7.01 7.02 7.03 7.04

-5.×10-24

5.×10-24

1.×10-23

Figure 17
Odd case. Going beyond �D 7 without (yellow) and with (blue) the contribution of the prime 7.

2 4 6 8

-80

-60

-40

-20

Figure 18
Decay of the log of the smallest eigenvalue
of the even matrix as a function of � D
expL.

2 4 6 8

-80

-60

-40

-20

Figure 19
Decay of the log of the smallest eigenvalue
of the odd matrix as a function of expL.

2.5. Semi-local Weil quadratic form, small eigenvalues. Pushing the computations
further and increasing the precision, one obtains an estimate of the size of the smallest
eigenvalue s.L/ of the even matrix, as a function of�D expL. One finds an exponential
behavior, as reported in Figures 18 and 19, where log s.L/ is plotted in terms of
� D expL.

When one selects the small eigenvalues of the even matrix �C and plots the graphs
of the logarithm of their size, one finds (see Figure 20) that their number increases
roughly like � D expL. For the odd matrix ��, the behavior is similar but with one
less small eigenvalue, as shown in Figure 21.

Figures 22, 23 and 24 report the graphs of the eigenvectors of the quadratic
form QW C

�
for the smallest, the second smallest, and the third smallest eigenvalues,

respectively.
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Figure 20
Decay of the log of the smallest eigenval-
ues of the even matrix �C as a function of
� D expL.
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Figure 21
Decay of the log of the smallest eigenvalues
of the odd matrix �� as a function of � D
expL.
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Figure 22
Eigenvector for the smallest eigenvalue of
QWC

�
as function on R�

C
.
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Figure 23
Eigenvector for the second smallest eigen-
value of QWC

�
as function on R�

C
.
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Figure 24
Eigenvector for the third smallest eigenvalue of QWC

�
as function on R�

C
.
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3. Eigenfunctions and the prolate projection….�;k/

In this section we explain the existence of the very small eigenvalues of the Weil
quadratic form QW� on test functions with support in an interval Œ��1; �� � R�C. We
start by recalling that if RH holds, then the Weil quadratic form restricted to functions
with support in a finite interval has zero radical, since the number N.r/ of zeros of
modulus at most r of the Fourier transform of a function f with compact support is of
the order N.r/ D O.r/ (see [8, Section 15.20 (2)]), while if f belonged to the radical
of QW it would (assuming RH), vanish on all zeros of the Riemann zeta function
whose number grows faster than O.r/. On the other hand, the radical of QW contains
the range of the map E defined on the codimension two subspace � ev

0 � �.R/ of even
Schwartz functions fulfilling f .0/ D yf .0/ D 0 by the formula ([4])

(3.1) E.f /.x/ D x1=2
X
n>0

f .nx/:

It is thus natural to bring in (3.1) for the construction of functions g with support in
Œ��1;���R�C which belong to the “near radical” ofQW�, i.e. fulfillQW�.g/�kgk2.
The definition of E shows that if the support of the even function f 2 � ev

0 is contained
in the interval Œ��; �� � R, then the support of E.f / is contained in .0; �� � R�C. On
the other hand, by applying the Poisson formula (with yf the Fourier transform of f )
one has

(3.2) E. yf /.x/ D E.f /.x�1/; 8f 2 � ev
0 :

Thus, we see that ��1 would be a lower bound of the support of E.f / if the support
of the even function yf 2 � ev

0 were contained in the interval Œ��; �� � R. However
this latter inclusion is impossible since the Fourier transform of a function with com-
pact support is analytic. In spite of this apparent obstacle in the construction, the
work of Slepian and Pollack on band limited functions [13] provides a very useful
approximate solution. The conceptual way to formulate their result is in terms of the
pair of projections P� and yP� in the Hilbert space L2.R/ev of square integrable even
functions. The operator P� is the multiplication by the characteristic function of the
interval Œ��; �� � R, and the projection yP� is its conjugate by the (additive) Fourier
transform FeR . These two projections have zero intersection but their “angle”, – an
operator with discrete spectrum – admits approximately 2�2 very small eigenvalues
whose associated eigenfunctions provide excellent candidates for the “approximate
intersection” P� \

0 yP�. In their work on signals transmission, Slepian and Pollack
discovered that these eigenfunctions are exactly the prolate spheroidal wave functions
which were already known to be solutions (by separation of variables) of the Helmoltz
equation for prolate spheroids.
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The basic result of Slepian and Pollack is the diagonalization of the positive operator
P� yP�P� in the Hilbert space L2.Œ��; ��/. They show that this operator commutes
with the differential operator

(3.3) .W� /.q/ D �@
�
.�2 � q2/@

�
 .q/C .2��q/2 .q/

(here @ is the ordinary differentiation in one variable q 2 Œ��;�� and the dense domain is
that of smooth functions on Œ��;��). The operator W� (obtained by closing its domain
in the graph norm) is self-adjoint and positive and its eigenfunctions are the prolate
spheroidal wave functions. When considering the Weil quadratic form QW� evaluated
on test functions with support in Œ��1; �� we shall compare the eigenvectors associated
to the extremely small eigenvalues with the range of the map E applied to linear
combinations of eigenfunctions  of W� which belong to the approximate intersection
P� \

0 yP� and vanish at zero. For this process, we only take the eigenfunctions which
are even functions of the variable q, and distinguish two cases since the action of the
Fourier transform fulfills FeR '˙ on eigenfunctions of W�. The corresponding
sign˙ determines precisely the choice of an eigenvector for the even or odd matrix. In
standard notation one sets

 m;�.x/ WD PS2m;0
�
2��2;

x

�

�
;

where  m;� is a function on the interval Œ��; �� that one extends by 0 outside that
interval. Its Fourier transform FeR. m;�/ is equal to �m m;� on Œ��; ��, where the
scalar �m is very close to .�1/m provided that m is less than 2�2. More precisely,
FeR. m;�/ is computed using the equalityZ 1

�1

PS2m;0.; �/ exp.i�!/ d� D .�1/m2S .1/2m;0.; 1/PS2m;0.; !/

for  D 2��2, ! D y=�. After changing variables to � D � �, the equality above
becomes Z �

��

 m;�.�/ exp.i2��y/ d� D .�1/m2�S .1/2m;0.2��
2; 1/ m;�.y/:

Given � D �2, one only retains the values of m for which the characteristic value

�.�;m/ D 2�S
.1/
2m;0.2��; 1/

is almost equal to 1. This determines a collection ¹0; : : : ; �.�/º of length approximately
equal to 2�, such that �.�;m/ � 1 form � �.�/. The formula �.�/ D 2�� 1 works
well when � is a small half integer.
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1 2 3 4 5 6 7

�.�; 5/ �.�; 8/ �.�; 11/

Figure 25
Graphs of the functions �.�;m/ as functions of �.

In order to define the prolate projection we consider linear combinations of prolate
functions which vanish at 0 and are given, for n > 0, by

�2n.x/ WD  2n.x/ 0.0/ �  0.x/ 2n.0/;

�2nC1.x/ WD  2nC1.x/ 1.0/ �  1.x/ 2nC1.0/:

For 1 < n � �.�/, one may approximate FeR.�n/ by .�1/n�n and, using the Poisson
formula, act as if E.�n/ would fulfill the equality

E.�n/.u
�1/ D .�1/nE.�n/.u/:

We can then compute the components of E.�n/ in the orthogonal basis �j .u/ D
�j .logu/ of H D L2.Œ��1; ��; d�x/ (Lemma 2.6) which fulfill

�j .u
�1/ D ��j .u/ for j < 0, and

�j .u
�1/ D �j .u/ for j � 0:

For 1 < n � �.�/, the component of E.�n/ on �j is non-zero only if �j has the same
parity as n, i.e. fulfills �j .u�1/ D .�1/n�j .u/, and in this case is given by the formula

(3.4) E.�n/j ' 2
X
1�r<�

Z �=r

1

u1=2�n.ru/�j .u/ d
�u:

One computes all these components for jj j � N with N large, and applies the Gram-
Schmidt orthogonalization process (separately for the even and odd cases) to the
obtained vectors in EN . This process determines orthonormal vectors

"n 2 EN � H D L2
�
Œ��1; ��; d�x

�
for 1 < n � �.�/

which are, by construction, the natural candidate functions to be compared (up to sign)
with the eigenfunctions of the semi-local Weil quadratic form QW� on EN .

Definition 3.1. Let k < �.�2/. We define….�; k/ as the orthogonal projection on the
linear span of the vectors "n for n 2 ¹2; : : : ; k C 1º.
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Figure 26
Agreement of eigenfunctions for the even matrix and the smallest eigenvalue, for the 16 values
of � between 3:5 and 11. For � D 11 the eigenvalue is 2:389 � 10�48.

Let  be the grading operator in H DL2.Œ��1; ��; d�x/which takes the values˙1
on functions satisfying the equality f .u�1/ D ˙f .u/. By construction, the vectors "n
are eigenvectors of  and the following commutativity holds

(3.5)  ….�; k/ D ….�; k/ ; 8�; k:

The series of graphs reported here (Figures 26–37) display the coincidence of the "n
with the actual eigenfunctions of the semi-local Weil quadratic form QW� for the
smallest eigenvalues. When only one graph appears (in yellow the graph of the "’s)
this means that the graphs of the two functions match with a high precision, otherwise
the graph in blue of the eigenfunction is no longer hidden behind the yellow graph.
Notice that the coincidence of "2m with the eigenfunction of the even matrix for its
m-th eigenvalue is expected to hold only when this eigenvalue is small and hence only
when � > m. Similarly, one expects the coincidence of "2mC1 with the eigenfunction
of the odd matrix for its m-th eigenvalue only when � > mC 1 (since the number
of small eigenvalues of the odd matrix is one less than for the even one). We have
nevertheless plotted the graphs for all half integer values of � between 3:5 and 11 to
show the mismatch of the graphs when � is too small.
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Figure 27
Agreement of eigenfunctions for the odd matrix and the smallest eigenvalue for the 16 values
of � between 3:5 and 11.
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Figure 28
Agreement of eigenfunctions for the even matrix and the second smallest eigenvalue for the 16
values of � between 3:5 and 11.
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Figure 29
Agreement of eigenfunctions for the odd matrix and the second smallest eigenvalue for the 16
values of � between 3:5 and 11.

1.2 1.4 1.6 1.8

-2.0
-1.5
-1.0
-0.5

0.5

1.2 1.4 1.6 1.8 2.0

-1.5
-1.0
-0.5

0.5

1.2 1.4 1.6 1.8 2.0-0.5

0.5
1.0
1.5

1.2 1.4 1.6 1.8 2.0 2.2-0.5

0.5
1.0
1.5

1.2 1.4 1.6 1.8 2.0 2.2-0.5

0.5
1.0
1.5

1.2 1.4 1.6 1.8 2.0 2.2 2.4

-1.5
-1.0
-0.5

0.5

1.5 2.0 2.5-0.5

0.5
1.0
1.5

1.5 2.0 2.5-0.5

0.5
1.0
1.5

1.5 2.0 2.5

-1.5
-1.0
-0.5

0.5

1.5 2.0 2.5-0.5

0.5
1.0
1.5

1.5 2.0 2.5-0.5

0.5
1.0
1.5

1.5 2.0 2.5 3.0-0.5

0.5
1.0
1.5

1.5 2.0 2.5 3.0-0.5

0.5
1.0
1.5

1.5 2.0 2.5 3.0

-1.5
-1.0
-0.5

0.5

1.5 2.0 2.5 3.0

-1.5
-1.0
-0.5

0.5

1.5 2.0 2.5 3.0

-1.5
-1.0
-0.5

0.5

Figure 30
Agreement of eigenfunctions for the even matrix and the third smallest eigenvalue for the 16
values of � between 3:5 and 11. They begin to agree around � D 4.
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Figure 31
Agreement of eigenfunctions for the odd matrix and the third smallest eigenvalue for the 16
values of � between 3:5 and 11. They begin to agree around � D 4:5.
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Figure 32
Agreement of eigenfunctions for the even matrix and the 4-th smallest eigenvalue for the 16
values of � between 3:5 and 11. They begin to agree around � D 5.
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Figure 33
Agreement of eigenfunctions for the odd matrix and the 4-th smallest eigenvalue for the 16
values of � between 3:5 and 11. They begin to agree around � D 5:5.
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Figure 34
Agreement of eigenfunctions for the even matrix and the 5-th smallest eigenvalue for the 16
values of � between 3:5 and 11. They begin to agree around � D 6.
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Figure 35
Agreement of eigenfunctions for the odd matrix and the 5-th smallest eigenvalue for the 16
values of � between 3:5 and 11. They begin to agree around � D 6:5.
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Figure 36
Agreement of eigenfunctions for the even matrix and the 6-th smallest eigenvalue for the 16
values of � between 3:5 and 11. They begin to agree around � D 7.



Spectral triples and �-cycles 127

1.2 1.4 1.6 1.8

-4
-2

2
4

1.2 1.4 1.6 1.8 2.0

-4
-2

2

4

1.2 1.4 1.6 1.8 2.0

-4
-3
-2
-1

1
2
3

1.2 1.4 1.6 1.8 2.0 2.2

-4

-2

2

1.2 1.4 1.6 1.8 2.0 2.2-1

1
2
3
4

1.2 1.4 1.6 1.8 2.0 2.2 2.4

-10
-8
-6
-4
-2

2

1.5 2.0 2.5

5

10

1.5 2.0 2.5
-1.0
-0.5

0.5
1.0
1.5
2.0
2.5

1.5 2.0 2.5

-2.0
-1.5
-1.0
-0.5

0.5
1.0

1.5 2.0 2.5

-2.0
-1.5
-1.0
-0.5

0.5
1.0

1.5 2.0 2.5
-1.0
-0.5

0.5
1.0
1.5

1.5 2.0 2.5 3.0
-1.0
-0.5

0.5
1.0
1.5

1.5 2.0 2.5 3.0

-1.5
-1.0
-0.5

0.5
1.0

1.5 2.0 2.5 3.0
-1.0
-0.5

0.5
1.0
1.5

1.5 2.0 2.5 3.0
-1.0
-0.5

0.5
1.0
1.5

1.5 2.0 2.5 3.0

-1.0
-0.5

0.5
1.0
1.5

Figure 37
Agreement of eigenfunctions for the odd matrix and the 6-th smallest eigenvalue for the 16
values of � between 3:5 and 11. They begin to agree around � D 7:5.

4. The spectral triple‚.�;k/ D .A.�/;H .�/;D.�; k//

The spectral triple ‚.�; k/ D .A.�/;H .�/; D.�; k// described in this section,
whose spectrum has a remarkable similarity with the low lying zeros of the Riemann
zeta function is defined through the action by multiplication of the algebra of smooth
functions A.�/ WD C1.R�C=�

2Z/ on the Hilbert space H .�/ WD L2.R�C=�
2Z; d�u/.

The operator D.�; k/ is defined by the following formula

(4.1) D.�; k/ WD
�
1 �….�; k/

�
ıD0.�/ ı

�
1 �….�; k/

�
; D0.�/ WD .�iu@u/:

This is a finite rank perturbation of the standard Dirac operatorD0.�/, since by construc-
tion the range of the prolate projection ….�; k/ is contained in the domain of D0.�/,
so that one derives

D.�; k/ D D0.�/ �….�; k/D0.�/ �D0.�/….�; k/C….�; k/D0.�/….�; k/:

Proposition 4.1. The operatorD.�;k/, combined with the action of periodic functions
by multiplication in L2.Œ�L=2;L=2�/ defines a spectral triple.

Proof. The operator D.�; k/ is a finite rank perturbation of D0.�/, thus by the Kato–
Rellich theorem (see [9, Proposition 8.6]) it is essentially self-adjoint on any core
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of D0.�/. The domain of D.�; k/ is the same as the domain of D0.�/ and the
boundedness of the commutator ŒD.�; k/; f � follows from the boundedness of the
perturbation.

To compare the spectrum ofD.�;k/, for k just below the upper bound �.�2/� 2�2

(discussed in Section 3), with the zeros of the Riemann zeta function, one needs to
select an appropriate range of eigenvalues for which the comparison is meaningful. By
construction the number of eigenvalues of D.�; k/ in the interval Œ0; E� has the same
asymptotic behavior as for D0.�/, and thus differs from the asymptotic behavior of
the number N.E/ of zeros of the Riemann zeta function with imaginary part in the
interval Œ0; E�, namely

(4.2) N.E/ D #¹� j �.�/ D 0 and 0 < =.�/ � Eº:

This number is the sum of two contributions: N.E/ D hN.E/i CNosc.E/. The oscil-
latory term Nosc.E/ is of order logE and, more importantly in this context, one knows
that

(4.3) hN.E/i D
E

2�
log

E

2�
�
E

2�
:

When considering the operator D.�; k/, with k smaller and close to the upper bound
�.�2/, we let � D �2 and we obtain the following proposition.

Proposition 4.2. For E D 2��, the number N 0.E/ of non-zero eigenvalues of the
operator D.�; k/ in the interval .0; E� fulfills N 0.E/ � hN.E/i.

Proof. It follows from (3.5) thatD.�; k/ D �D.�; k/, so that the number of eigen-
values of D.�; k/ of absolute value less than E is 2N 0.E/ plus the dimension of
the kernel of D.�; k/. The spectrum of D.�; k/ is a perturbation of the spectrum
of D0.�/, i.e. of ¹2�k=L j k 2 Zº. The perturbation increases the dimension of the
kernel of D.�; k/ by the dimension of the projection ….�; k/, i.e. by k � 2�, up to
a log� term. Thus, the number of non-zero eigenvalues ofD.�; k/ with absolute value
less than E has an approximated size equal to

2N 0.E/ � #
�²
2�j

L
j j 2 Z

³
\ Œ�E;E�

�
� 2�

� 2
EL

2�
� 2� D 2

�
E

2�
log

E

2�
�
E

2�

�
using L D log� and � D E

2�
, which gives the expected estimate.

4.1. Examples�D 5:5;6:5;7:5;8:5;9:5;10:5. In this part we report some numerical
evidence showing the close resemblance of the spectrum ofD.�; k/ with the low lying
zeros of the Riemann zeta function, for a sample of small values of �.
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n �.5:5; n/

5 0:99999999999647719857

6 0:99999999894391115741

7 0:99999980631702676769

8 0:99997809227622865324

9 0:99852183576050441685

10 0:95065832620623051607

11 0:57197061534624863399

12 0:139174533954574303539

Table 2

�j �j

14:781 14:1347

21:701 21:022

25:547 25:0109

29:345 30:4249

33:168 32:9351

Table 3

Figure 38
First 5 non-zero eigenvalues for the Dirac in upper line and imaginary parts of zeros of zeta in
lower line.

4.1.1. � D 5:5. For � D 5:5, the cosine eigenvalues �.5:5; n/ are extremely close
to 1 when n D 0; 1; 2; 3; 4 and given for the next values of n in Table 2. Thus, one
derives that �.5:5/ D 10, since the next eigenvalue 0:5719706153 is far from 1. One
has 2�5:5 � 34:5575. Table 3 compares the positive eigenvalues �j D �j .D.�; k//
of D.�; k/ (reported on the left column) with the imaginary part �j of the first zeros
of the Riemann zeta function (right column). The spectral visualization is shown in
Figure 38, with the zeta zeros at the bottom.

4.1.2. � D 6:5. For � D 6:5 the cosine eigenvalues �.6:5; n/ are extremely close
to 1 when n D 0; 1; 2; 3; 4; 5; 6; for 7 � n � 14, the values are reported in Table 4.
Thus, one has �.6:5/ D 12, since the next eigenvalue 0:5753409908 is far from 1. One
has 2�6:5�40:8407. Once again, Table 5 reports the eigenvalues �j D�j .D.�; k//
compared with the imaginary part �j of the first zeros of the zeta function. The spectral
visualization is shown in Figure 39 with the zero of the zeta function in the second line.

4.1.3. � D 7:5. The cosine eigenvalues �.7:5; n/ are extremely close to 1 for n D
0; 1; 2; 3; 4; 5; 6; 7; 8, and then given by Table 6. Thus, one has �.7:5/ D 14 since
the next eigenvalue 0:5780962979 is far from 1. One has 2�7:5 � 47:1239. Table 7
compares the eigenvalues �j D �j .D.�; k// with the imaginary part �j of the first
zeros of the zeta function. The spectral visualization is shown in Figure 40, with zeta
zeros in the second line.
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n �.6:5; n/

7 0:99999999998668315975

8 0:99999999731589077585

9 0:99999963978717981581

10 0:99996808936687677767

11 0:99821407841789989100

12 0:94788066237037484836

13 0:57534099083086049406

14 0:14710511279564130503

Table 4

�j �j

13:936 14:1347

20:580 21:022

24:690 25:0109

30:194 30:4249

33:454 32:9351

36:826 37:5862

40:259 40:9187

Table 5

Figure 39
First 7 non-zero eigenvalues for the Dirac in upper line and imaginary parts of zeros of zeta in
lower line.

n �.7:5; n/

9 0:99999999996397226733

10 0:99999999453062631606

11 0:99999941709770526957

12 0:99995709581648305854

13 0:99792322303841470726

14 0:94552083061302325507

15 0:57809629788957190907

16 0:15383636015962926720

Table 6

�j �j �j �j

15:060 14:1347 37:406 37:5862

21:683 21:022 40:514 40:9187

24:948 25:0109 43:643 43:3271

30:979 30:4249 46:658 48:0052

33:243 32:9351

Table 7

Figure 40
First 9 non-zero eigenvalues for the Dirac in upper line and imaginary parts of zeros of zeta in
lower line.
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n �.8:5; n/

11 0:99999999992101000288

12 0:99999999034148375362

13 0:99999913999089362040

14 0:99994536408530411219

15 0:99764801726717553636

16 0:94347292951033144975

17 0:58041289343441020661

18 0:15967051202562674536

Table 8

�j �j �j �j

14:887 14:1347 41:088 40:9187

20:778 21:022 43:741 43:3271

25:535 25:0109 46:685 48:0052

29:928 30:4249 49:910 49:7738

32:473 32:9351 52:845 52:9703

37:965 37:5862

Table 9

Figure 41
First 11 non-zero eigenvalues for the Dirac in upper line and imaginary parts of zeros of zeta in
lower line.

4.1.4. � D 8:5. The �.8:5; n/ are extremely close to 1 for n � 10, and the next ones
are given by Table 8. Thus, one has �.8:5/D 16, (the next eigenvalue 0:5804128934 is
far from 1) and 2�8:5 � 53:4071. Table 9 reports the eigenvalues �j D �j .D.�; k//
compared to the imaginary part �j of the first zeros of the zeta function. The spectral
visualization is reported in Figure 41, with the zeta zeros in the second line.

4.1.5. � D 9:5. For � D 9:5 the cosine eigenvalues �.9:5; n/ are extremely close
to 1 when 0 � n � 12, and for 13 � n � 20 they are reported in Table 10. Thus,
one has �.9:5/ D 18, since the next eigenvalue 0:5824024487 is far from 1. One has
2�9:5 � 59:6903 and Table 11 reports the eigenvalues �j D �j .D.�; k// compared
to the imaginary part �j of the first zeros of the zeta function. The spectral visualization
is shown in Figure 42, with the zeta zeros in the second line.

4.1.6. � D 10:5. For � D 10:5 the cosine eigenvalues �.10:5; n/ are extremely close
to 1 when 0 � n � 14, and for 15 � n � 22 they are reported in Table 12. Thus, one
has �.10:5/ D 20, since the next eigenvalue 0:5841397980 is far from 1. One also has
2�10:5 � 65:9734. The table of eigenvalues (left column) compared to the first zeta
zeros (right column) is Table 13. The spectral visualization is shown in Figure 43, with
zeta zeros in the second line.
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n �.9:5; n/

13 0:99999999984990646525

14 0:99999998455736228573

15 0:99999881131048713492

16 0:99993308190344158164

17 0:99738707752987412262

18 0:94166650390462098514

19 0:58240244869697875785

20 0:16480962032526478957

Table 10

�j �j �j �j

13:998 14:1347 43:050 43:3271

21:501 21:022 47:319 48:0052

25:121 25:0109 50:190 49:7738

30:689 30:4249 53:026 52:9703

33:583 32:9351 55:731 56:4462

37:813 37:5862 58:581 59:347

41:272 40:9187

Table 11

Figure 42
First 13 non-zero eigenvalues for the Dirac in upper line and imaginary parts of zeros of zeta in
lower line.

n �.10:5; n/

15 0:99999999974270022369

16 0:99999997703659571104

17 0:99999843436641476606

18 0:99992039045021729410

19 0:99713907784499135361

20 0:94005235637340584775

21 0:58413979804862029634

22 0:16939519615152177689

Table 12

�j �j �j �j

14:450 14:1347 48:095 48:0052

21:455 21:022 50:346 49:7738

25:356 25:0109 53:272 52:9703

30:345 30:4249 56:050 56:4462

32:600 32:9351 58:737 59:347

37:410 37:5862 61:386 60:8318

40:387 40:9187 63:949 65:1125

42:895 43:3271

Table 13

Figure 43
First 15 non-zero eigenvalues for the Dirac in upper line and imaginary parts of zeros of zeta in
lower line.
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4.2. Average discrepancy. For an objective comparison of the N 0.2��/ eigenval-
ues �j of size up to 2��, with the imaginary parts �j of the zeros of the Riemann zeta
function, one has at disposal the following three possible measures of the discrepancy:

(1) Mean absolute error.

A.�/ WD
1

N 0.2��/

X
j�j � �j j:

When this error is computed for the values of � used in the previous pages it gives the
following list of values

A.5:5/ D 0:635176; A.6:5/ D 0:44693; A.7:5/ D 0:528827;

A.8:5/ D 0:456739; A.9:5/ D 0:395068:

(2) Root-mean-square deviation. It is defined as the square root of the average value
of the square deviation

R.�/ WD

s
1

N 0.2��/

X
.�j � �j /

2:

This gives the following list of values

R.5:5/ D 0:691088; R.6:5/ D 0:48858; R.7:5/ D 0:650648;

R.8:5/ D 0:562489; R.9:5/ D 0:459776:

(3) Normalized root-mean-square deviation. This deviation is obtained by dividing the
root-mean-square deviation by the diameter of the range of the variables. It is invariant
under affine transformations and is thus a good measure of the discrepancy, usually
expressed as a percentage. The diameter of the range of the variables is here equal
to 2�� � 14, and this gives the list,

NR.5:5/ D 0:0375848; NR.6:5/ D 0:0185609; NR.7:5/ D 0:0205914;

NR.8:5/ D 0:0148189; NR.9:5/ D 0:0103126; NR.10:5/ D 0:00995148:

These numbers show that the normalized root-mean-square deviation is steadily improv-
ing and reaches 1% (one percent) for � D 9:5 and then drops to less than one percent
for � D 10:5.

5. Zeta zeros from eigenvalues of spectral triples

In the previous section we explored the low lying eigenvalues of the spectral triples
‚.�; k/ D .A.�/;H .�/; D.�; k// for k D 2` an even number as close as possible
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to the boundary �.�2/ � 2�2 of the allowed interval. These numerical results give
evidence of a deep relation between the low lying spectrum �n.D.�; k// of these
spectral triples and the low lying zeros of the Riemann zeta function. The dependence
on the parameters .�; k/, and the difference between the growth of the eigenvalues and
that of the zeros of zeta, show that the relation is certainly more subtle than a simple
equality between the eigenvalues �n.D.�; k// and the imaginary part �n of the zeros.

The main observation of this section is that, for any n 2 N there are special values
of the parameter � at which the dependence of �n.D.�; k// on k disappears. For these
special values of � the common value of the �n.D.�; k// coincides with the imaginary
part �n of the n-th zero of the Riemann zeta function. Moreover, these special values
of � form a geometric progression whose scale factor is the exponential of �=�n.

This observation was first experimentally tested and it will be fully and conceptually
justified in Section 6.

We shall pursue 4 different criteria to detect these special values of �. They are:
� Comparison of �n.D.�; 2`// with �n.D.�; 2`C 1// (Section 5.1).
� Evolution of �n.D.�; k// as a function of � (Section 5.2).
� Quantization criterion x2iy D 1 applied to the point .�;�n.D.�;k/// (Section 5.3).
� How far is the eigenvector �n.D.�; k// for D.�; k/ from being an eigenvector

of D0.�/?

The numerical tests of these criteria show their agreement, but the precision
becomes very sharp when one applies the last criterion. Applying the last method
for the small range of � in the interval .2; 4/ one obtains the agreement with the first
31 zeros �n (n � 31) of zeta with sufficient accuracy to assess the probability of a
fortuitous coincidence at 10�50.

5.1. The criterion �n.D.�; 2`// � �n.D.�; 2` C 1//. The first step in order to
detect the special values of � is to see what happens if one replaces k D 2` by the odd
number k C 1 D 2`C 1. One sees that the positive eigenvalues �n.D.�;�// decrease
and actually agree for special values of �. We first briefly explain why

�n
�
D.�; 2`/

�
� �n

�
D.�; 2`C 1/

�
;

and then display some numerical results showing the coincidence for special values
of �. By construction, the kernel of D.�; k/ contains the range of ….�; k/ and is thus
at least of dimension k. Moreover, by (3.5) one has, for the grading  of H .�/,

(5.1)  D.�; k/ D �D.�; k/ :

The kernel of the operator D0.�/ is one dimensional and given by the constant func-
tion 1� which is even (i.e. .1�/ D 1�). This implies that the graded index of the
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operator D0.�/ is equal to 1. Then by stability of the index it follows that the graded
index of the operator D.�; k/ is also equal to 1. This means that the signature of
the restriction of  to the kernel of D.�; k/ is 1 and hence that the dimension of
ker.D.�; k// is an odd number. Thus, for k D 2` even, it is natural to expect this ker-
nel to be of dimension kC 1. This entices one to compare the two non-zero eigenvalues
�n.D.�; k// and �n.D.�; k C 1//. By construction one has

….�; k/ < ….�; k C 1/;

and we now explain why the positive eigenvalues of these operators, arranged in
increasing order, fulfill the inequality

(5.2) �n
�
D.�; k C 1/

�
� �n

�
D.�; k/

�
; 8n; �

Lemma 5.1. LetA be a self-adjoint matrix of dimensionN , andE �KerA a subspace
of its kernel. Then the positive eigenvalues �n.A/ arranged in decreasing order fulfill

(5.3) �n.A/ D max
F jdimFDn
F?E

min
�2F
k�kD1

h� j A�i:

Proof. By the mini-max theorem of Courant–Fisher, one has

�n.A/ D max
F jdimFDn

min
�2F
k�kD1

h� j A�i

and we need to show that the added condition that F is perpendicular to E does not
change the maximum. It can only lower it and it is enough to check that the choice
of F which reaches the maximum in the Courant–Fisher formula does fulfill F ? E.
Indeed this F is the linear span of the eigenvectors for eigenvalues �k.A/ for k � n,
and all these eigenvectors are orthogonal to the kernel of A since

�k.A/ � �n.A/ > 0

for k � n.

Proposition 5.2. Let D 2MN .C/ be a self-adjoint matrix.
(i) LetP 2MN .C/ be a projection (self-adjoint idempotent) andQD 1�P ,DP WD

QDQ. Then the positive eigenvalues of DP arranged in decreasing order fulfill
the equality

(5.4) �n.DP / D max
F jdimFDn
F?P

min
�2F
k�kD1

h� j D�i:
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Figure 44
First eigenvalue, the lower graph is that of �1.D.�; k C 1// and the upper graph is that of
�1.D.�; k//. The horizontal line is the imaginary part of the first zero of zeta.
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Figure 45
Second eigenvalue, the lower graph is that of �2.D.�; k C 1// and the upper graph is that of
�2.D.�; k//. The horizontal line is the imaginary part of the second zero of zeta.

(ii) Let Pj 2MN .C/ be projections such that P1 � P2. Then with the notations of (i),
the positive eigenvalues of DPj fulfill the inequality

(5.5) �n.DP2/ � �n.DP1/:

Proof. (i) By (5.3) applied to A D DP and E D P.CN /, one has

�n.DP / D max
F jdimFDn;
F?E

min
�2F
k�kD1

h� j DP �i;

and for � ? E, one has Q� D � so that

h� j DP �i D h� j QDQ�i D hQ� j DQ�i D h� j D�i;

which gives (5.4).
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Figure 46
Using the criterion �n.D.�; k// � �n.D.�; k C 1//.

(ii) We apply (5.4) to�n.DPj /. The conditionF ? P2 is more restrictive thanF ? P1
so one obtains (5.5).

Applying the criterion �n.D.�; k// � �n.D.�; k C 1// to determine the rele-
vant values of � 2 I D Œ5; 16:5�, i.e. by minimizing the difference �n.D.�; k// �
�n.D.�; k C 1// on the finite set of � 2 1

10
Z \ I , one obtains the approximate list of

the first 31 zeros of zeta shown in Figure 46.

5.2. Continuous evolution of non-zero eigenvalues for a fixed number of prolate
conditions. When dealing with the operators D.�; k/, with k close to the largest
allowed value �.�2/� 2�2 one introduces necessarily a discontinuity due to the discrete
nature of the variable k. To avoid it one can, for fixed k, consider the dependence of
the eigenvalues �n.D.�; k// as long as � is sufficiently large so that k < �.�2/. One
finds that for the values `D 2; 3, the �n.D.�; 2`// agree around �� 3:8 and that their
common value is close to �1. This fact is all the more remarkable that when � < 4,
i.e. � < 2 there is no summation involved in the (3.4). For `D 3; 4; 5, the �n.D.�;2`//
agree around � � 5:95 and again we find that their common value is close to �1. For
` D 5; 6; 7; 8, the �n.D.�; 2`// agree around � � 9:2 and again their value is close
to �1. For ` D 8; 9; 10; 11; 12; 13 the �n.D.�; 2`// agree around � � 14:4 and their
value is close to �1. The special values of � at which the graphs meet appear to form a
geometric progression. One finds that the ratio of consecutive terms is � exp.2�=�1/
and, more generally that for the n-th eigenvalue the special values of� form a geometric
progression with scale ratio � exp.2�=�n/ where �n is the imaginary part of the n-th
zero of zeta. These “experimental” facts will be theoretically explained by Theorem 6.4.

5.3. Quantization of length log�. The fact that many graphs of the eigenvalues
�n.D.�; k// meet at some specific points of the plane suggests that one could push
the comparison even further and compare these points with the spectrum of the unper-
turbed operator D0.�/. In terms of the coordinates .x; y/, where x D � D �2 and
y D �n.D.�; k//, the spectrum of D0.�/ is characterized by the quantization con-
dition xiy D 1. The subset of the plane defined by this condition is the union of the
graphs of the functions 2�n= log x.
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�1.D.�; 4//

�1.D.�; 6// �1.D.�; 8//

�1.D.�; 10//

�1.D.�; 12//

�1.D.�; 14// �1.D.�; 16//

Figure 47
Evolution of the first non-zero eigenvalue of D.�; 2`/. The dashed horizontal line is the value
of the imaginary part �1 of the first zero of zeta.
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y D 6�= logx
y D 8�= logx

y D 10�= logx
y D 12�= logx

�1.D.�; 4//

�1.D.�; 6// �1.D.�; 8//

�1.D.�; 10//

�1.D.�; 12//

�1.D.�; 14// �1.D.�; 16//

Figure 48
Coincidence with solutions of xiy D 1.

Figure 48 shows a perfect agreement between these graphs and the meeting points
of the eigenvalue graphs. Independently of this result, one can measure how far the
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Figure 49
Graph of j�i�1.�/ � 1j.
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Figure 50
Graph of j�i�2.�/ � 1j.
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Figure 51
Distance of eigenvector of D.�; k/ for �1
to eigenvectors of D0.�/.

6 8 10 12 14 16

0.2

0.4

0.6

0.8

Figure 52
Distance of eigenvector �2.D.�; k// to
eigenvectors of D0.�/.

point .�; �n.D.�; k// is from fulfilling the quantization condition by writing it in the
form

�i�n.D.�;k// D 1 ” j�i�n.D.�;k// � 1j D 0;

and by plotting the graphs of these functions for each integer n. They are shown in
Figure 49 for n D 1 and in Figure 50 for n D 2. The key fact here is that the values
of � at which these functions vanish coincide with the previously determined values
where �1.D.�; k C 1// � �1.D.�; k// of Figures 44 and 45.

5.4. The criterion of common eigenvector forD.�;k/ andD0.�/. The agreement
of the quantization with the meeting points of the graphs of the eigenvalues suggests
that all the eigenvectors of the D.�; k/ involved agree with each other and are in fact
eigenvectors of the unperturbed operator D0.�/. This gives a very strong criterion
obtained by measuring the Hilbert space distance of an eigenvector �n.D.�; k// for
D.�; k/ with the eigenvector of D0.�/ which has the same rotation number. In Fig-
ures 51 and 52 the norm of the difference is plotted and one gets the agreement of
the zeros with the values determined by the three previous criteria. Finally, Figure 53
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Figure 53
Using the criterion �n.D.�;k// eigenvector ofD0.�/, one obtains the 31 eigenvalues compared
above with the imaginary parts of the first 31 zeros of the Riemann zeta function.

compares the first 31 eigenvalues selected using the last criterion with the imaginary
parts of the first 31 zeros of the Riemann zeta function.

Remark 5.3. By construction the integersm involved in the construction of the operator
D.�; k/ (in the sum (3.4) involved in the projection ….�; k/) are limited to m < �

while Proposition 4.2 specifies the range (jEj � 2��, � D �2) where the eigenvalues
of D.�; k/ compare with the imaginary parts of zeros of the Riemann zeta function. It
is remarkable that the above restriction on the involved integers coincides exactly with
the restriction in the partial sums

P
n�� n

�s occurring in the Riemann–Siegel formula
for the approximate value of �.s/, s D 1

2
C iE (see [1] and [7, Section 6.1]).

6. �-cycles

The aim of this section is to provide a theoretical explanation for the numerical
computations reported in the previous part of this paper, and in particular to give a
theoretical justification for the close similarity of the spectrum of the operatorD.�; k/
in the spectral triple �.�;k/ (see Section 4) and the low lying zeros of the Riemann zeta
function. The goal we shall pursue here is to relate these intriguing numerical results
with the spectral realization of the zeros of the Riemann zeta function, as developed
in [4]. The new theoretical concept emerging is that of a �-cycle C . In the following
part we first explain how to define scale invariant Riemann sums for functions defined
on Œ0;1/ with vanishing integral. This technique is then implemented in the definition
of a linear map †�EW � ev

0 ! L2.C / which plays a central role in this development
and enters in the definition of the �-cycle (Definition 6.1). In Section 6.2 we prove that
�-cycles are stable under finite covers, and finally we state and prove the main result of
this paper, namely Theorem 6.4. This result naturally selects a family of Hilbert spaces
H .L/ WD †�E.� ev

0 /
? naturally associated to the critical zeros of the Riemann zeta

function.
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6.1. Scale invariant Riemann sums and the map †�E . Let � > 1 and †� be the
linear map defined on functions gWR�C ! C by the following formula

(6.1) .†�g/.u/ WD
X
k2Z

g.�ku/:

This definition makes sense pointwise provided g decays fast enough at 0 and1 in R�C.
The map E is defined as follows

(6.2) .Ef /.u/ WD u1=2
X
n>0

f .nu/:

It is, by construction, proportional to a Riemann sum for the integral of f .
We let � ev

0 be the linear space of real valued even Schwartz functions f 2 �.R/

such that
f .0/ D 0 D

Z
f .x/ dx:

The following lemma describes the “well-behavior” of the map E .

Lemma 6.1. Let f be a function of bounded variation on .0;1/, of rapid decay for
u!1, O.u2/ when u! 0, and such thatZ 1

0

f .t/ dt D 0:

Then the following properties hold:
(i) E.f /.u/ is well-defined pointwise, is O.u1=2/ when u! 0 and of rapid decay

for u!1.
(ii) The series (6.1) defining †�E.f / is geometrically convergent, and defines a

bounded measurable function on R�C=�
Z.

Proof. (i) The sum

S.u/ WD u

1X
nD0

f .nu/

is a Riemann sum for the integralZ 1
0

f .x/ dx D 0:

One has f .0/ D 0, and the following equality holds

u

1X
nD0

f .nu/ D �

1X
nD0

Z .nC1/u

nu

�
.nC 1/u � t

�
df .t/
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since integration by parts in the Stieltjes integral shows thatZ .nC1/u

nu

�
.nC 1/u � t

�
df .t/ D

Z .nC1/u

nu

f .t/ dt � uf .nu/;

while Z 1
0

f .t/ dt D 0

by hypothesis. Since j..n C 1/u � t /j � u for t 2 Œnu; .n C 1/u�, one obtains the
upper-bound ˇ̌̌̌ 1X

0

f .nu/

ˇ̌̌̌
�

1X
nD0

Z .nC1/u

nu

jdf .t/j:

The integral of the measure jdf .t/j is finite since f is of bounded variation. We thus
derive ˇ̌̌̌ 1X

nD0

f .nu/

ˇ̌̌̌
�

Z 1
0

jdf .t/j

and from this it follows that jE.f /.u/j D O.u1=2/ for u! 0.

(ii) Since f .u/ is of rapid decay for u!1, one has jf .u/j � Cu�N , N > 1 and
this implies X

n�1

jf .nu/j � Cu�N
X
n�1

n�N D C 0u�N :

Thus, E.f /.u/ is of rapid decay for u!1. Let u 2 Œ��1; ��. The terms of the seriesX
Z

E.f /.�ku/

converge geometrically for k > 0; for k � 0, (i) gives jE.f /.�ku/j � C�k=2, and
hence the required uniform geometric convergence follows.

The scaling action of R�C on functions is defined by .#.�/f /.x/ WD f .��1x/. The
next lemma describes the behavior of the scaling action in relation to the map E .

Lemma 6.2. (i) The Schwartz space � ev
0 is globally invariant under the scaling

action # and with � > 1, the following equalities hold

(6.3) E ı ��1=2#.�/ D #.�/ ı E; #.�/†� D †�#.�/

(ii) The scaling action # induces an action of the multiplicative group C� D R�C=�
Z

on †�E.� ev
0 /.
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(iii) Let f be a function as in Lemma 6.1 that coincides near zero with a smooth even
function, then †�E.f / belongs to the closure of †�E.� ev

0 / in L2.C�/.

Proof. The conditions defining the subspace � ev
0 � �.R/ are invariant under the scaling

action. One has

E.#.�/f /.u/ D u1=2
X
n>0

f .n��1u/ D �1=2#.�/.E.f //.u/:

Moreover, one has #.�/†� D †�#.�/. Thus, since � ev
0 is invariant under the scaling

action, the same invariance holds for its image †�E.� ev
0 / on which the scaling action

is now periodic of period �. From this fact one derives an induced action of the
multiplicative group C� D R�C=�

Z. Let f be as in Lemma 6.1. Let " > 0 and � 2
C1c .R

�
C/ have support in a small neighborhood of 1 and be such that, for the norm in

L2.C�/,
k#.�/†�E.f / �†�E.f /k < ":

By applying (6.3) for a z� 2 C1c .R�C/ with the same support as �, one has

#.�/†�E.f / D †�E.#.z�/.f //:

Finally, the hypothesis on f show that the function #.z�/.f / belongs to � ev
0 .

6.2. Zeros of zeta and �-cycles. We identify a circle of length L D log� > 0 with
the quotient space C� WD R�C=�

Z viewed as a homogeneous space over the multi-
plicative group R�C. This space is endowed with the measure d�u associated to the
Haar measure of the multiplicative group R�C. One thus obtains a canonical bundle
of R�C-homogeneous spaces over the base .0;1/.

We keep the notations introduced in the previous part.

Definition 6.1. A �-cycle is a circle C of length L D log� such that the subspace
†�E.� ev

0 / is not dense in the Hilbert space L2.C /.

As for closed geodesics, the �-cycles are stable under finite covers.

Proposition 6.3. Let C be a �-cycle of length L D log�, then for any positive integer
n > 0 the n-fold cover of C is a �-cycle.

Proof. Let � WCn ! C be the n-fold cover of C . From the adjunction of the operation
��WL2.C /! L2.Cn/ with the operation of sum on the preimage of a point, it follows
that if a vector � 2 L2.C / belongs to the orthogonal to †�E.� ev

0 /� L
2.C / with

� D expL, then ��� is orthogonal to †�nE.� ev
0 /.

We are now ready to state and prove our main result. The spectral realization of
the zeros of the Riemann zeta function of [4] admits the following geometric variant
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� -cycle � D e3�=�1

� -cycle � D e4�=�1 � -cycle � D e5�=�1 � -cycle � D e6�=�1

�1.D.�; 4//
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Figure 54
Example of �-cycles. They are shown here for the first non-zero eigenvalue �1.D.�; k//. The
graphs touch each other at the points P.k/ D .exp.2�k=�1/; �1/.

Theorem 6.4. (i) Let C be a �-cycle. Then the spectrum of the action of the mul-
tiplicative group R�C on the orthogonal complement of †�E.� ev

0 / in L2.C / is
formed by imaginary parts of zeros of zeta on the critical line. Conversely:

(ii) Let s > 0 be such that �.1
2
C is/ D 0, then any real circle C of length an inte-

gral multiple of 2�=s is a zeta cycle and its spectrum, for the action of R�C
on †�E.� ev

0 / � L
2.C /, contains is.

Proof. (i) The action of the multiplicative group R�C on the orthogonal of †�E.� ev
0 /

in L2.C / is periodic and factors through the action of the multiplicative group G D
R�C=�

Z. Since G is a compact abelian group the representation of G is a direct sum of
unitary characters. Let � be any such unitary character, then there then exists s 2R with
�is D 1, such that �.u/ D uis for all u 2 G D R�C=�

Z. The orthogonality property
of an eigenvector with eigenvalue � with respect to the subspace †�E.� ev

0 / � L
2.C /

implies the following vanishingZ
G

�.u/†�E.f /.u/ d�u D 0; 8f 2 � ev
0 :

In turn, this implies the vanishing of the following integralZ
R�
C

uisE.f /.u/ d�u D 0; 8f 2 � ev
0 :
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Let, in particular,
f .x/ WD e��x

2

�x2.�2�x2 C 3/:

One easily checks that Z 1
0

f .x/ dx D 0

and that f 2 � ev
0 . Furthermore, one hasZ

R�
C

uisf .u/ d�u D
�1
4
C s2

�
��

1
4�

is
2 �
�1
4
C
is

2

�
and, as we shall prove in general in the following part for functions f 2 � ev

0 , one also
has Z

R�
C

uisE.f /.u/ d�u D �
�1
2
C is

� Z
R�
C

uisf .u/ d�u:

This fact entails that for the specific choice of f made above, one obtains the equalityZ
R�
C

uisE.f /.u/ d�u D
�1
4
C s2

�
�Q

�1
2
C is

�
;

where �Q denotes the complete zeta function. Thus one derives that 1
2
C is is a zero

of zeta.

(ii) Let s > 0 be such that �.1
2
C is/ D 0 and let L D 2�n=s, with n > 0 a positive

integer. To show that the circle C of length L is a zeta cycle, we first prove thatZ
R�
C

uisE.f /.u/ d�u D 0; 8f 2 � ev
0 :

Indeed, let f 2 � ev
0 , then withw being the unitary identificationw.f /.x/D x1=2f .x/,

the multiplicative Fourier transform F�.w.f // D  :

 .z/ D

Z
R�
C

f .u/u
1
2�iz d�u

is holomorphic in the half plane =.z/ > �5=2, since f .u/ D O.u2/ for u! 0. For
n > 0, one obtainsZ

R�
C

u1=2f .nu/u�iz d�u D n�1=2Ciz
Z

R�
C

v1=2f .v/v�iz d�v

and for =.z/ > 1=2, by applying the Fubini theorem, one derivesZ
R�
C

X
n

u1=2f .nu/u�izd�u D

�X
n

n�1=2Ciz
�Z

R�
C

v1=2f .v/v�iz d�v;
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so that for z 2 C with =.z/ > 1=2, one obtains

(6.4)
Z

R�
C

E.f /.u/u�iz d�u D �
�1
2
� iz

�
 .z/:

To justify the use of the Fubini theorem in proving (6.4), note that for N > 1 one
derives from Lemma 6.1 the following estimateX

n�1

jf .nu/j � Cu�N
X
n�1

n�N D C 0u�N ; 8u > 1;

which shows that the series
P
n�1 jf .nu/j is of rapid decay for u!1. For u! 0

we use instead the rough estimate, due to the absolute integrability of f , of the formX
jf .nu/j D O.u�1/:

This ensures the validity of Fubini for =.z/ > 1=2. Now, we know that �.1
2
� iz/ has a

pole at z D i=2, but since  .i=2/D 0 this singularity does not affect the above product
�.1
2
� iz/ .z/ which is thus holomorphic in the half plane =.z/ > �5=2. By applying

Lemma 6.1, we see that the function E.f /.u/ is O.u1=2/ when u! 0 and of rapid
decay for u!1. Thus, Z

R�
C

E.f /.u/u�iz d�u

is holomorphic in the half-plane =.z/ > �1=2. Therefore, one may conclude that (6.4)
holds when z 2 R and, if �.1

2
C is/ D 0, one obtainsZ

R�
C

E.f /.u/uis d�u D 0; 8f 2 � ev
0 :

At the beginning of this proof one has defined L D 2�n=s: let now � D expL then
one has �is D exp.2�in/ D 1. In this way the function �.u/ WD uis is well-defined
on C D R�C=�

Z and the following vanishing holds in L2.C /

h†�E.f / j�iD

Z
G

�.u/†�E.f /.u/d�uD

Z
R�
C

E.f /.u/uis d�uD 0; 8f 2 � ev
0 :

This shows that C is a zeta-cycle and that its spectrum contains is.

The above development provides us with a family of Hilbert spaces H .L/ WD

†�E.� ev
0 /
? � L2.C / and, for each integer n > 0, maps ��n WH .L/! H .nL/ which

lift the action of N� on .0;1/. Moreover, we also have an action #.�/ of R�C on H .L/

and we have shown that the linear maps��n are equivariant. LetZ be the set of imaginary
parts of critical zeros of the Riemann zeta function, one finally deduces the following
corollary.
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Corollary 6.5.

(6.5) H .L/ ¤ ¹0º ” 9s 2 Z; n 2 Z s.t. sL D 2�n:

Proof. Assume first that sL D n with s and n positive. Then it follows from Theo-
rem 6.4 (ii) that H .L/ ¤ ¹0º since the circle of length L is a zeta-cycle. Conversely, if
H .L/ ¤ ¹0º, then the circle C of length L is a zeta-cycle, and there exists by Theo-
rem 6.4 (i), a positive s 2Z and a non-zero vector � 2H .L/ such that #.�/.�/D �is�
for all � 2 R�C. Since the action of R�C on L2.C / is periodic of period � D exp.L/,
we have �is D 1 and this entails sL 2 2�Z.

7. Outlook

In this paper we have unveiled a new compelling relation between noncommutative
geometry and the Riemann zeta function using the concept of spectral triple. The
previous relations are:
� The BC system is a system of quantum statistical mechanics with spontaneous sym-

metry breaking which admits the Riemann zeta function as its partition function.
� The adele class space of Q is a noncommutative space, dual to the BC-system and

directly related to the zeros of the L-functions with Grossencharacter [4].
� The quantized calculus is a key ingredient of the semi-local trace formula and it

provides a source of positivity for the Weil quadratic form [6].

It turns out that the adele class space of Q in its topos-theoretic incarnation as the
Scaling Site (the topos S D Œ0;1/ Ì N�) is the natural parameter space for the circles
of length L which play a critical role in the present paper. Proposition 6.3 gives the
compatibility of �-cycles with the action of N� by multiplication on the parameter L.
The action of N� coming from coverings turns L2.C / into a sheaf over the Scaling
Site S. The family of subspaces †�E.�0/ � L

2.C / generate a subsheaf of modules
over the sheaf of smooth functions and one is then entitled to consider the cohomology
of the quotient sheaf over S. Endowed with the R�C-equivariance this cohomology
provides the spectral realization of the critical zeros of zeta, taking care, in particular,
of eventual multiplicity. We shall discuss this fact in details in a forthcoming paper
which, in particular, gives an application of the algebraic geometry over S developed
in [5].

Finally, the stability of �-cycles under coverings is reminiscent of the behavior of
closed geodesics in a Riemannian manifold, suggesting to look for a mysterious “cusp”
whose closed geodesics would correspond to �-cycles.
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