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W �-representations of subfactors
and restrictions on the Jones index
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Abstract. AW �-representation of a II1 subfactorN �M with finite Jones index, ŒM WN�<1,
is a non-degenerate commuting square embedding of N �M into an inclusion of atomic von
Neumann algebras˚i2IB.Ki /DN �E MD j̊2JB.Hj /. We undertake here a systematic
study of this notion, first introduced by the author in 1992, giving examples and considering
invariants such as the (bipartite) inclusion graph ƒN�M, the coupling vector .dim.MHj //j
and the RC-algebra (relative commutant)M 0 \N , for which we establish some basic properties.
We then prove that if N �M admits a W �-representation N �E M, with the expectation E

preserving a semifinite trace on M, such that there exists a norm one projection of M onto M
commuting with E , a property ofN �M that we call weak injectivity/amenability, then ŒM WN�
equals the square norm of the inclusion graph ƒN�M.
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1. Introduction

A tracial von Neumann algebra .M; �/ is naturally represented as the algebra of
left multiplication operators on the Hilbert space L2M , obtained by completing M in
the norm k � k2 given by the trace � . This is called the standard representation ofM . In
fact,M acts on L2M on the right as well, giving a representation ofM op, the opposite
of the algebra M . The left-right multiplication algebras M;M op commute, one being
the centralizer of the other, M op DM 0. Any other representation M � B.H / of M
as a von Neumann algebra, or left Hilbert M -module MH , is of the form

H ' ˚kL
2.M/pk;

for some projections ¹pkºk2K � P .M/, with the action of M by left multiplication.

https://creativecommons.org/licenses/by/4.0/
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If M is a factor, then

dim.MH /
def
D

X
k

�.pk/ 2 Œ0;1�

characterizes the isomorphism class of MH . The M -module MH can be alternatively
described as the (left) M -module e00L2.M1; Tr/p, where M1 is the II1 factor
M x̋B.`2K/, Tr denotes its normal semifinite faithful (n.s.f.) trace � ˝ TrB.`2K/,
e00 2 B.`2K/ is a rank one projection, and p 2M1 is any projection satisfying

Tr.p/ D dim.MH /:

Thus, the commutant M 0 of M in B.H / is a II1 factor iff dim.MH / <1, and if this
is the case then M 0 ' .M t /op; where t D dim.MH / D Tr.p/.

This summarizes Murray–von Neumann famous theory of continuous dimension
for type II factors. The number dim.MH / 2 Œ0;1� is called the dimension of the
M -module MH . When viewed as the amplifying number t , measuring the ratio
between the size of M and M 0 D .M t /op in B.H /, it is called the coupling con-
stant.

We consider in this paper the analogue for a subfactorN �M of finite Jones index,
ŒM WN� <1, of the representations of a single II1 factor. This concept was introduced
in [40, Section 2], but we undertake here a systematic study of this notion and its
applications. Thus, a W �-representation of N �M is a non-degenerate embedding
of N �M into an inclusion of atomic von Neumann algebras with expectation,

˚i2IB.Ki / D N �E M D j̊2JB.Hj /:

This means M is embedded as a von Neumann algebra into M such that: N � N ,
with the restriction of E toM equal to EN , the � -preserving expectation ofM onto N
(commuting square condition); the span ofMN equals M (non-degeneracy condition).

These conditions imply that any orthonormal basis ofM over N is an orthonormal
basis for E , so the index Ind.E/ of this expectation equals ŒM W N� and the inclusion
(bipartite) graph ƒ D ƒN�M D .bij /i2I;j2J of N �M satisfies

kƒk2 � ŒM W N�;

where bij gives the multiplicity of B.Ki / in B.Hj / and ƒ is viewed as an I � J
matrix (or element in B.`2J; `2I /).

The role of the Murray–von Neumann dimension, or coupling constant, is played
here by the dimension/coupling vectors

EdM D
�
dim.MHj /

�
j
; EdN D

�
dim.NKi /

�
i
:
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For these two vectors to have all entries finite it is sufficient that one of the entries is
finite, and if this is the case then

ƒtƒ. EdM / D ŒM W N� EdM ; EdN D ƒ. EdM /:

Thus, while for a single factor all representations are stably equivalent, W �-repre-
sentations of subfactors appear, from the outset, as a far more complex notion.

Indeed, a subfactor N � M admits a large variety of W �-representations, with
a central role played by the standard representation, N st �Est

Mst, whose inclusion
graphƒN st�Mst coincides with the transpose of the standard graph �N�M of N �M ,
with the coupling vectors given by the standard weights of �N�M .

This leads right away to natural concepts of injectivity and amenability, by analogy
with the single II1 factor case. Thus, an inclusion of II1 factors N �M is injective if
there exists an expectation of .N st �Est

Mst/ onto .N �M/, i.e. a norm one projection
ˆWMst!M that is Est-invariant. It is amenable if there exists a .N �M/-hypertrace
on .N st �Est

Mst/, i.e. a state ' on Mst that is Est-invariant and has M in its central-
izer. These two concepts are easily seen to be equivalent and they imply N;M are
amenable/injective as single factors, thus being isomorphic to the hyperfinite II1 fac-
tor R by the Connes theorem ([5]). They also imply that N � M is the range of a
norm-one projection in any of its W �-representations .N �M/ � .N �E M/, once
some natural compatibility of higher relative commutants is satisfied (smoothness).

Amenability of N � M was introduced in [39, 40, 44] and shown there to be
equivalent to the condition N;M ' R and �N�M amenable, i.e.

k�N�Mk
2
D ŒM W N�:

It was also shown equivalent to the fact that N � M can be exhausted by higher
relative commutants of a “.N � M/-compatible tunnel” of subfactors, M � N �
P1 � P2 � � � �, obtained by iterative choices of the downward basic construction
for induction/reduction by projections p 2 P 0n \Mk.n/, at each step n, thus being
completely classified by its standard invariant, GN�M . We revisit these results in
Section 4 of the paper (see Theorem 4.5).

The complexity of W �-representation theory for a subfactor naturally leads to sev-
eral weaker amenability properties as well. Thus, a subfactor of finite Jones indexN�M
is weakly injective (resp. weakly amenable) if it admits a W �-representation

.N �M/ � .N �E M/

with an E-invariant normal semifinite faithful (n.s.f.) trace, such that .N � M/ is
the range of a norm-one projection from .N �E M/ (resp. if .N �E M/ has a
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.N �M/-hypertrace). One should note that the standard representation does sat-
isfy this “traciality” property (more on this below), so amenability/injectivity does
imply weak amenablity/injectivity.

Again, these two notions are equivalent and they imply N;M ' R (by [5]). They
are also hereditary, i.e. if .Q � P /� .N �M/ is a non-degenerate commuting square
of subfactors and N � M is weakly amenable, then so is Q � P . A main result in
this paper is the following:

1.1 Theorem. If an extremal (e.g. irreducible) inclusion of II1 factors with finite index
N � M is weakly amenable, then ŒM W N� is the square norm of a bipartite graph.
More precisely, if .N � M/ � .N �E M/ is a tracial W �-representation so that
N �M is the range of a norm-one projection, then ŒM W N� D kƒN�Mk

2.

The above result indicates that W �-representations may help detect (and explain!)
restrictions on the set C.M/ of indices of irreducible subfactors of a given II1 factorM ,
especially for M D R

Recall in this respect Jones fundamental result in [20], showing that the index of
any subfactor lies in the spectrum

¹4 cos2.�=n/ j n � 3º [ Œ4;1/:

One of his proofs of this result amounts to showing that if ŒM W N� < 4 then it must
equal the square norm of the standard graph �N�M , and using the fact that the set E2 of
square norms of bipartite graphs has only the values 4 cos2.�=n/ when < 4 (see [21]).

The set E2 contains the half line Œ2C
p
5;1/, but E2 \ Œ1; 2C

p
5� is a closed

countable set, consisting of an increasing sequence of accumulation points converging
to 2C

p
5, the first of which being 4D limn 4 cos2.�=n/ (cf. [8]; see also [12]). Yet it

is known that any number > 4 can occur as index of an irreducible subfactor ([38,41]),
and that

C.LF1/ D ¹4 cos2.�=n/ j n � 3º [ Œ4;1/

(see [51]). On the other hand, ifM is constructed out of a free ergodic probability mea-
sure preserving action of a non-elementary hyperbolic group, thenC.M/D¹1;2;3; : : :º

(see [53]). So C.M/ appears to depend in very subtle ways on the nature of the factorM .
But the most important question along these lines, of calculating C.R/, remained

open. Our work in this paper attempts to provide some tools for approaching the
“restrictions” part of this problem, more specifically for showing that C.R/ � E2.

By [14], if an irreducible subfactor N �M satisfies

4 < ŒM W N� � 2C
p
5;

then its standard graph�N�M equalsA1. Equivalently, the higher relative commutants
N 0 \Mn in the Jones towerN �M �e0 M1 �e1 M2 � � � � are generated by the Jones
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projections e0; e1; : : : : So in order to show C.R/ � E2, it is sufficient to prove that
any A1-subfactor of R has index equal to the square norm of a bipartite graph. Our
belief is that in fact any hyperfinite A1-subfactor is weakly amenable. If true, then
Theorem 1.1 above would imply that C.R/ � E2.

In order to make this speculation more specific, we need to fix some terminology
and explain ways of producing W �-representations.

Thus, a W �-representation N �M is irreducible if Z.M/ \Z.N / D C. This is
equivalent to ƒN�M being connected as a graph (irreducible as a matrix).

The W �-representation is tracial if it admits a n.s.f. trace Tr that is E-invariant.
If .N �M/ � .N �E M/ is tracial and has finite couplings, with the n.s.f. trace Tr
given by EdM being E-preserving, then the W �-representation is canonically tracial.

The simplest example of a W �-representation occurs from a graphage of N �M ,
i.e. a non-degenerate commuting square .Q � P / � .N � M/, with Q; P finite
dimensional, by taking the basic construction inclusion

.N �M/ � .N D hN; eMP i � hM; e
M
P i DM/

(cf. [40, §2.1]; see Lemma 3.2.2 below). It is easy to see that such W �-representations
have finite couplings and are canonically tracial.

Another isomorphism invariant for a W �-representation N �E M, besides the
inclusion graph ƒN�M and the coupling vectors, is the isomorphism class of the rela-
tive commutant (RC) algebra M 0 \N . If N �M has finite couplings, then M 0 \N

identifies naturally to a von Neumann subalgebra of .M t /op, so it is finite.
A W �-representation .N �M/ � .N �E M/ is exact, if M _ .M 0 \N / DM.

Such a representation is irreducible if and only if its RC-algebra M 0 \N is a factor.
We are particularly interested in irreducible exact W �-representation with finite

couplings. They are all of the form

NP WD N _ P
op
�

EP M _ P op
DWMP ;

where P �M is an irreducible subfactor and M acts here by left multiplication on
L2.M1/, P acts on the right, and EP is the unique expectation extending EN˝idP op ,
M1 denoting the enveloping algebra of the Jones tower for N �M .

The standard W �-representation .N �M/ � .N st �Est
Mst/, corresponds to the

case P DM of this construction, i.e. to .N �M/ � .N _M op �M _M op/.
Taking the direct sum ˚P .NP �EP MP /, over all isomorphism classes of irre-

ducibleP �M , one obtains the universal exactW �-representation with finite couplings

.N �M/ � .N u;fc
�

Eu;fc
Mu;fc/:
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We say that N �M is ufc-amenable (resp. ufc-injective) if this representation has a
.N �M/-hypertrace (resp. norm-one projection). Our conjecture is that any hyperfinite
A1-subfactor N �M is ufc-amenable, and thus

ŒM W N� D kƒN u;fc�Mu;fck
2:

The paper is organized as follows. Section 2 recalls some basic facts in Jones theory
of subfactors, and its generalization for arbitrary W �-inclusions. In Section 3 we
develop the concept of W �-representation of subfactors, give formal definitions, prove
general results and provide examples. In Section 4 we recall from [40,44] the definition
of amenability and injectivity for a subfactor N �M , as well as a result establishing
the equivalence of amenability/injectivity with a series of other properties of N �M
(see Theorem 4.5). In Section 5 we introduce the concepts of weak-amenability and
weak-injectivity and prove Theorem 1.1 (see Theorem 5.4). We also define here ufc-
amenability and ufc-injectivity of a subfactor N �M (see Definition 5.7) and state a
result establishing the equivalence of these two properties with several other structural
properties of N �M (Theorem 5.8), which we will prove in a follow up to this paper.
Section 6 contains many comments and open problems.

We mention that this paper is an outgrowth of our unpublished 1997 note entitled
Biduals associated to subfactors, hypertraces and restrictions for the index.

2. Preliminaries

We recall in this section some basic facts about Jones’ index theory for inclusions of
II1 factors and, more generally, for inclusions of von Neumann algebras. We typically
use the notations M;N;P;Q;B for tracial von Neumann algebras, with the generic
notation � for the corresponding (faithful normal) trace state on it, sometimes with an
index specifying the algebra on which it is defined (e.g. �M for the trace on M ). The
generic notation for arbitrary von Neumann algebras will be M;N ;P ;Q, etc.

For basics on II1 factors and tracial von Neumann algebras we refer to [2] and for
general von Neumann algebras to [59].

2.1. Jones index for subfactors and the basic construction. If B � M is a von
Neumann subalgebra of the tracial von Neumann algebra M , then EB D EMB denotes
the unique trace preserving conditional expectation of M onto B . It extends to a
projection eB of L2M onto L2B , which is selfadjoint and positive on L2M , when
viewed as the space of square summable operators affiliated to M .

Identifying M with its standard representation M ,! B.L2M/ (as left multipli-
cation operators on L2M ), one has:
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(i) eBxeB D EB.x/eB for all x 2M ;

(ii) B D ¹x 2M j Œx; eB � D 0º; B 3 b 7! beB is an onto isomorphism;

(iii) _u2U.B/ueBu
� D 1:

The von Neumann algebra hM; eBi (or hM;Bi) generated in B.L2M/ by M and eB
is called the extension of M by B . It coincides with

.Bop/0 D .JMBJM /
0
\B.L2M/

(the commutant of the operators of right multiplication by elements in B). The span
of ¹xeBy j x; y 2M º is a wo-dense �-subalgebra of hM; eBi whose wo-closure con-
tains M . Thus, this wo-closure is equal to hM; eBi. This construction of the new
inclusion M � hM; eBi from an initial inclusion B �M , is called Jones basic con-
struction.

Given an inclusion of II1 factors N � M , the Jones index of N in M , denoted
ŒM W N�, is defined as the Murray–von Neumann coupling constant of N when acting
on the Hilbert space L2M by left multiplication operators (as a subalgebra of M ), or
equivalently the Hilbert-dimension of L2M as a (left) N -Hilbert module,

ŒM W N� D dimN L
2M:

Thus, ŒM W N� <1 iff N 0 \B.L2M/ is a II1 factor, while ŒM W N� D1 iff N 0

is of type II1. If the index is finite, then M � M1 WD hM; eN i is an inclusion of
II1 factors with index ŒM1 WM� D ŒM W N� and the trace state on M1 satisfies

�M1.xeNy/ D ��M .xy/; 8x; y 2M;

where � D ŒM W N��1.
The index of subfactors is multiplicative, in the sense that if P � N � M are

subfactors, then ŒM W P � D ŒM W N�ŒN W P �.
Letting .M�1 �M0/D .N �M/ and e0 D eN , this allows constructing iteratively

a whole tower of inclusions of II1 factors, M�1 �M0 �e0 M1 �e1�M2 � � � �, with
eachMiC1, i � 0, being generated byMi and a projection ei of trace � D ŒM W N��1,
having index ŒMiC1 WMi � D ŒM W N� and satisfying the properties:

(a) eixei D E
Mi
Mi�1

.x/ei for all x 2Mi ;

(b) ¹eiº0 \Mi DMi�1;

(c) �.xei / D ��.x/ for all x 2Mi .

In particular, the �-sequence of Jones projections ¹eiºi�0 with the trace � satisfy the
conditions:

(a0) eiei˙1ei D �ei ;
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(b0) Œei ; ej � D 0 for all j > i C 1;

(c0) �.xeiC1/ D ��.x/ for all x 2 Alg.¹e0; e1; : : : ; eiº/.

Jones’ celebrated theorem shows that the conditions (a0)–(c0) imply the restrictions
on the index

ŒM W N� D ��1 2 ¹4 cos2.�=n/ j n � 3º [ Œ4;1/;

with this latter set called the Jones spectrum. The key ingredient in his proof of
these restrictions on the index is the fact that axioms (a0)–(c0) above imply that An D
C �.1; e0; : : : ; en/ is finite dimensional, with e0 _ � � � _ en a central projection in it,
with the trace of its complement equal to

PnC1.�/ D Pn.�/ � �Pn�1.�/

whenever Pn.�/; Pn�1.�/ > 0, where the polynomials Pn.t/, n � �1, are defined
recursively by the formulas

P�1 D 1; P0 D 1; PnC1.t/ D Pn.t/ � tPn�1.t/; n � 0:

2.2. Extremal subfactors. It is shown in [20] that if N �M is a subfactor of finite
index and p is a projection in N 0 \M , then

ŒpMp W Np� D �M .p/�N 0.p/ŒM W N�

(Jones local index formula). Thus, if p1; : : : ; pn 2 N 0 \M is a partition of 1 with
projections, then

ŒM W N� D
X
i

ŒpiMpi W Npi �

�M .pi /
:

Note that, in particular, this implies dim.N 0 \M/� ŒM WN� <1, and more generally

dim.M 0i \Mj / � ŒMj WMi � D ŒM W N�
j�i <1:

Following [40, §1.2.5], an inclusion of II1 factors N � M is called extremal if
�M .p/ D �N 0.p/ for all p 2 P .N 0 \M/, or equivalently

ŒpMp W Np� D ŒM W N��.p/2; 8p 2 P .N 0 \M/ non-zero.

Recall from [31, Corollary 4.5] that this condition is equivalent to EN 0\M .e/D �1 for
any Jones projection e 2M (i.e. a projection whose expectation on N is equal to �1).
By [45] or the appendix in [44], this is also equivalent to the fact that the norm closure
of the convex hull of ¹ueu� j u 2 U.N /º contains �1.

Irreducible subfactors are automatically extremal. As pointed out in [31], ifN �M
is extremal and 4 < ŒM WN� < 3C 2

p
2, thenN �M is irreducible. So for subfactors

with small index > 4, extremality is same as irreducibility.
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2.3. The standard invariant and graph of a subfactor. The higher relative com-
mutants in the Jones tower ¹M 0i \Mj ºj�i��1 form a lattice of finite dimensional von
Neumann algebras, with a trace � inherited from [iMi with inclusions

M 0i \Mj �M
0
l \Mk;

whenever�1� l � i � j � k. Moreover, the Jones projection ej lies inM 0j�1 \MjC1
and implements the �-preserving expectation of M 0i \Mj onto M 0i \Mj�1 for all
j > i . Also, any two such expectations commute,

EM 0
i
\Mj

EM 0
k
\Ml
D EM 0

k
\Ml

EM 0
i
\Mj
D EM 0

k
\Mj

:

In other words ¹M 0i \Mj ºj�i��1 is a lattice of commuting square inclusions.
The lattice of higher relative commutants, with its trace and Jones projections, is

clearly an isomorphism invariant for N � M . It is called the standard invariant of
N �M and denoted GN�M . See [41] for more on this object and of a way to axiomatize
it as an abstract object, called standard �-lattice. It is pointed out in [41] that, due to
the duality result in [31], which shows that there is a natural identification between the
tower .MiC1 �MiC2 � � � � / and the ŒM W N�-amplification of .Mi�1 �Mi � � � � /,
all information is in fact contained in the first two rows of the lattice, i.e.

GN�M D
�
¹M 0i \Mj ºj�iD0;�1; ¹eiºi�0; �

�
:

The first row of consecutive inclusions

C DM 00 \M0 �M
0
0 \M1 � � � �

in GN�M is determined by a pointed bi-partite connected graph, called the standard
(or principal) graph of N �M and denoted �N�M D .akl/k2K;l2L, with the even
vertices being indexed by a set K containing the “initial” vertex �, the odd vertices
indexed by a set L, with akl � 0 denoting the number of edges between k and l (see
e.g. [40, Section 1.3.5]).

To explain this in detail, let

K0 D ¹�º; Li D ¹l 2 L j 9akl ¤ 0; k 2 Ki�1º;

Ki D ¹k 2 K j 9akl ¤ 0; l 2 Liº; i � 1;

and note that K D [i�0Ki , L D [i�1Li (because �N�M is connected). The set of
irreducible components of M 0 \M2i , i � 0 (resp. M 0 \M2i�1, i � 1) is identified
with Ki (resp. Li ), with the embeddings Ki � KiC1, i � 0 (resp. Li � LiC1, i � 1)
being implemented by the 1-to-1 map from Z.M 0 \M2i / into Z.M 0 \M2iC2/ (resp.
Z.M 0 \M2i�1/ into Z.M 0 \M2iC1/):

Z.M 0 \M2i / 3 z 7! unique z0 2 Z.M 0 \M2iC2/ with ze2iC1 D z0e2iC1;



S. Popa 158

(similarly for Li � LiC1). Each index k 2 K (resp. l 2 L) can also be viewed as
labeling the irreducible subfactor Mp � pM2ip (resp. Mq � qM2i�1q) with p a
minimal projection in the kth direct summand of M 0 \M2i (resp. l th summand
of M 0 \M2i�1) for any i � 0 with Ki 3 k (resp. any i � 1 with Li 3 l).

With these conventions, the bipartite graph (diagram) for the embedding

M 0 \M2i �M
0
\M2iC1; i � 0

(resp. M 0 \M2i�1 �M
0 \M2i , i � 1) is given by

�jKi D .akl/k2Ki ;l2LiC1

(resp. � t
jLi
D .blk/l2Li ;k2Ki , where blk D akl ).

Let us now assume N � M is extremal. In this case, the trace � on the finite
dimensional algebras M 0i \Mj is uniquely determined by the standard vectors Ev D
.vk/k2K , Eu D .ul/l2L, given by square roots of indices of irreducible inclusions
appearing in the Jones tower, as follows.

First note that Jones local index formula combined with the duality imply that if
k 2K (resp. l 2 L) then the index ŒpM2ip WMp� (resp. ŒpM2i�1p WMp�) is the same
for any i with the property that k 2 Ki (resp. l 2 Li ) and any p minimal projection in
the kth (resp. l th) summand of M 0 \M2i (resp. of M 0 \M2i�1). One defines

vk D ŒpM2ip WMp�
1=2 and ul D ŒpM2i�1p WMp�

1=2:

Thus, v� D 1 and if N 0 \M D C, then the single point set L1 D ¹l1º satisfies

ul1 D ŒM W N�
1=2:

Also, Eu D � t .Ev/, �� t .Ev/ D ��1Ev, where � D �N�M D .akl/k;l is now viewed as a
K � L matrix.

The trace of a minimal projection p in the kth summand of M 0 \M2i (for i large
enough so that k 2 Ki ) is then given by �.p/ D �ivk . Similarly, if q is a minimal
projection in the l th summand of M 0 \M2iC1 then �.q/ D �iC 12uk .

The norm of the standard graph of the subfactor coincides with the growth rate of
the higher relative commutants

k�N�Mk D lim
n!1

.dim.M 0 \Mn//
1=n

and satisfies the estimate k�N�Mk2 � ŒM W N� (see [40, §1.3.5]).
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2.4. Alternative definitions of the index. Let us recall two alternative ways of defin-
ing the index, from [31].

Given a von Neumann subalgebra B of a tracial von Neumann algebra .M; �/,
there exists a family of elements ¹�iºi � L2M such that

EB.�
�
j �i / D ıijpi 2 P .B/ and x D

X
i

�iEB.�
�
i x/ for all x 2M;

where the convergence is in L2M . Equivalently, ¹�iºi � L2M are so that �ieB are
partial isometries with

P
i �ieB�

�
i D 1.

Such ¹�iºi � L2M is called an orthonormal basis (o.b.) of M over B , and it is
unique in an appropriate sense (cf. [31, Proposition 1.3]). The finite partial sums inP
i �i�

�
i lie in L1MC and they form an increasing net with “limit”

Z D
X
i

�i�
�
i D Z0p0 C .1/.1 � p0/;

where p0 2 P .Z.M// and Z0 is a positive densely defined operator affiliated with
Z.M/, with Z D Z.B � M/ independent of the choice of the o.b. Thus, if M is a
II1 factor, then

Z D
X
i

�i�
�
i D ˛1

with ˛ 2 Œ1;1� only depending on the isomorphism class of B �M .
In case N �M is an inclusion of II1 factors, then by [31, §1.3.3] one has

ŒM W N� D Z.N �M/;

or in other words
ŒM W N� D

X
i

mim
�
i

for any o.b. ¹miºi of M over N . Thus, if ŒM W N� <1, then any o.b. is made up of
“bounded elements” mi 2 M , with kmik � ŒM W N�1=2, and one can in fact choose
them all but possibly one so that EN .m�i mi / D 1.

Another characterization of the Jones index is given in [31, Theorem 2.2], where it
is shown that the quantity

�.EN / WD sup¹c � 0 j EN .x/ � cx; x 2MCº;

which measures the “flattening” of the expected N -value of positive elements in M ,
satisfies �.EN / D ŒM W N��1. This characterization is key to calculating the Connes–
Størmer relative entropyH.M jN/ (see [7]) of a subfactorN �M ([31, Theorem 4.6]),
which in particular provides the characterization

“N �M extremal iff H.M jN/ D lnŒM W N�”.
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2.5. W �-inclusions with finite index. The above two formulas for the Jones index of
II1 subfactors, which only depend on the expectation from the ambient algebra onto its
subalgebra, give the possibility of defining the index for arbitrary inclusions of von
Neumann algebras (or a W �-inclusion) with conditional expectation, N �E M, in
two alternative ways.

The easiest to define is as follows. Denote

�.E/
def
D sup¹c � 0 j E.x/ � cx; 8x 2MCº

and define Ind.E/ D �.E/�1. We call the latter the index of E (also referred to as the
probabilistic index, or the Pimsner–Popa index, of the expectation E).

Note that if Ind.E/ <1, then E is automatically normal and faithful (see e.g. [45,
Lemma 1.1]). As we have seen in Section 2.4, if N �M are II1 factors with E D EN

the trace preserving expectation, then Ind.EN / D ŒM W N�.
This definition has many advantages for various limiting arguments (see below).

But it is useful to view it in combination with the definition of the index based on o.b.
of M over N , with respect to the expectation E . Since this is closely related to the
notion of basic construction for arbitraryW �inclusions N �E M, we recall from [58]
that if M � B.H / is the standard representation of the von Neumann algebra M, then
there exists a “canonical” projection e D eN 2 B.H / such that

(i) exe D E.x/e for all x 2M;

(ii) N D ¹eº0 \M; x 2 N , xe D 0 iff x D 0;

(iii) _¹ueu� j u 2 U.M/º D 1;

with e unique with these properties, up to spatial isomorphism. One denotes by hM; ei

the von Neumann algebra generated by M and e, which has sp¹xey j x; y 2Mº as
a wo-dense �-subalgebra. This is the basic construction for arbitrary W �-inclusions
with expectation. We still call e the Jones projection implementing E . We see by this
definition that ehM; eie D N e ' N , so a “corner” of central support 1 of hM; ei is
equal to N .

There does exist in this generality an analogue of o.b. of M over N with respect
to E . For our purposes, it is sufficient to discuss this under two types of assumptions:
when either Ind.E/ <1; or when M is finitely generated as a right N module. In
both cases it is immediate to show that there exists a family ¹mj ºj �M such that

E.m�i mj / D ıijpj 2 P .N / and
X
j

mj em
�
j D 1;

and which we call an orthonormal basis (o.b.) of N �E M.
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One has
Ind.E/ �




X
j

mjm
�
j




 � .Ind.E//2

(cf. [42, §1.1.6]). Thus, Ind.E/ <1 iffZ.E/ WD
P
j mjm

�
j is bounded, in which case

this element, which lies in Z.M/ and is � 1, does not depend on the o.b.
The o.b. properties imply that each X 2 hM; ei can be written as

X D
X
i;j

miyij em
�
j

for some unique yij 2 piN pj , i.e. hM; ei is an “amplification” of N , with Z.N /

naturally identifying with Z.hM; ei/, via the map Z.N / 3 z 7! z0, where z0 is the
unique element in Z.hM; ei/ such that z0e D ze.

If either N ;M are properly infinite, or if they are type II1, or if they are both type Ifin

but with each type In summand of N having multiplicity � n in each homogeneous
type Im summand of M, then one actually has

Ind.E/ D



X
j

mjm
�
j




;
for any o.b. ¹mj ºj of M relative to N (see [42, Theorem 1.1.6]).

Thus, under this dimension condition, one has Ind.E/ D Ind.E ˝ id/ for the inclu-
sion .N �M/ x̋B.H /. Note that this stability of the index implies the “stability” of
the inequality E.x/ � �x for all x 2MC, where � D �.E/, in the sense that more
than being positive, the map .E � �idM/WM!M is completely positive.

IfZD
P
imim

�
i is bounded, then E1W hM; ei!M defined by E1.xey/ D xyZ

�1,
defines a normal conditional expectation with Ind.E1/ <1. More precisely, by [42,
Lemma 1.2.1] one has

Ind.E1/ D kE.Z/kI ¹mieZ1=2ºi is an o.b. for E1I


X
j

mj eZem
�
j




 D kE.Z/k:
An important feature of the probabilistic index Ind.E/ of an expectation E is that

it behaves well to “limit operations”. For instance, if .Nn � Mn/ is a sequence of
W �-inclusions that are embedded into N �E M such that E.Mn/ D Nn for all n, and
Mn %M, Nn % N , then

lim
n

Ind.En/ D Ind.E/;

and if fn 2 P .N /, fn % 1, then

lim
n

Ind.E.fn � fn// D Ind.E/
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(see [31,32]). Also, if Ei WM!N is a net of expectations with decreasing (finite) index,
equivalently �.Ei /% �0 > 0, then any Banach-limit E of the Ei will be an expectation
of M onto N that satisfies E.x/ � �0x for all x 2MC (so it is automatically normal
and faithful). Thus, if one defines the minimal index Indmin.N �M/ 2 .0;1� of an
arbitrary inclusion of von Neumann algebras as the infimum of Ind.E/, over all normal
expectations E of M onto N (with the convention that it is equal to1 if there exists
none), then

Indmin.N �M/ <1

implies that there exists an expectation E0 with

Ind.E0/ D Indmin.N �M/:

In other words, the minimal index “is attained”, if finite. Note that if Ei are �i -Markov,
then E0 follows �0 D limi �i Markov. It is easy to see that if Q � P are finite dimen-
sional as above, with connected inclusion bipartite graphƒDƒQ�P , then there exists
a unique expectation EWP ! Q with Ind.E/ D Indmin.Q � P /, and it is exactly the
expectation preserving the trace on P implemented by the Perron–Frobenius eigenvec-
tor Et ofƒtƒ, thus being �D kƒk�2 Markov (see e.g. [40, Section 1.1.7]). In particular,
kƒk2 � Ind.E/ for any expectation EWP ! Q:

Another feature of the probabilistic index when considered for an expectation of a
C�-inclusionC �E B , is that it allows taking the bidualW �-inclusionC �� �E�� B��,
which satisfies

Ind.E��/ D Ind.E/ <1

(see [40, Section 2.4] and Section 3.3 of this paper). The [31]-index is also key in
relating the relative Dixmier property for W� and C�-inclusions with the finiteness
of the index ([44, 45]), as well as in the calculation of the relative entropy for finite
dimensional W �-inclusions Q � P (see [31, Section 6]) and for inductive limits of
such inclusions (see [32]).

Finally, let us mention that if the W �-inclusion N �E M is irreducible, i.e. if
one has a trivial relative commutant, N 0 \M D C, then E is the unique expectation
of M onto N , so one can use the Jones notation for the index ŒM W N �, even when
the factors N ;M are infinite (non-tracial). For arbitrary W �-inclusions of infinite
factors with finite index expectation N �E M (see [25]), one usually considers E

to be the expectation of minimal index ([15]), determined uniquely by the fact that
the (scalar) values E.q/ of E on minimal projections q 2 N 0 \M are proportional
to ŒqMq W N q�1=2 (see [15]). As pointed out in [25], in this case one can take an o.b.
of just one element ¹mº �M, which thus satisfies

X D mE.m�X/; 8X 2M
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and
E.m�m/ D 1; mm� D ��11:

2.6. �-Markov inclusion, the associated tower and enveloping algebra. Following
[20, §3.3.1], [40, §1.1.4], and [42, §1.2], a W �-inclusion with expectation N �E M

that has finite index and satisfiesX
j

mjm
�
j D �

�11 2 C1

for some (thus any) o.b. is called a �-Markov inclusion.
If N �EM is�-Markov and M�ehM; ei is its basic construction, then E1WM1!M

defined by E1.xey/ D �xy, x; y 2M, is a conditional expectation of M1 D hM; ei

onto M0 DM and M0 �
E1 M1 is again �-Markov, with o.b. ¹��1=2mieºi .

Thus, like in the II1 factor case, one can iterate this construction and obtain a whole
tower of �-Markov inclusions Mn�1 �

En
en�1 Mn, n � 1, where we have put e0 D e.

Moreover, the composition of expectations E1 ı � � � ı En ı � � � implements a trace �
on Alg.¹enºn�0/ with �.en/ D � for all n, and the sequence of projections e0; e1; : : :
satisfies properties (a0)–(c0) of Section 2.1 with respect to this trace and �. Thus, ��1

lies in the Jones spectrum and .¹enºn�0; �/ gives a �-sequence of projections.
Moreover, the inductive limit of the Jones tower Mn associated with a �-Markov

W �-inclusion N �E M gives rise to a canonical enveloping von Neumann algebra,
denoted M1.

2.6.1 Lemma. Let N �E M �
E1
e0 M1 � � � � be a �-Markov tower of W �-inclusions.

Let � be a normal faithful state on N and still denote by � the state on [nMn which
on Mn is defined by �.X/ D � ı E ı E1 ı � � � ı En.X/. Denote .M1;H�/ the GNS
completion of .[nMn; �/. Then, we have:
(i) The spatial isomorphism class of .M1;H�/ does not depend on �.
(ii) The tower Mn is naturally embedded into M1 and there exist unique �-preserving

conditional expectations zEnWM1!Mn�1 satisfying zEnjMm
D En ı � � � ı Em for

all m � n � 0, where E0 D E .
Moreover, if Tr is an n.s.f. (normal semifinite faithful) trace on M that is E-invariant,

then Tr WD Tr ı zE0 defines an n.s.f. trace on M1 and all zEn leave invariant this trace.
Also, if � ¤ 1, then we have:
(a) If M has no finite direct summand, then M1 is of type II1.
(b) If Tr.1/ <1, then M1 is II1. If in addition N �M are finite dimensional with

irreducible inclusion graph, then M1 is a type II1 factor.
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Proof. Parts (i), (ii) are standard applications of Takesaki’s classic results in [58]. The
fact that Tr n.s.f. implies Tr ıE ı E1 ı � � � ıNn is n.s.f. on Mn follows easily from the
fact that Ind.N �Mn/ D �

�n�1 <1. The last part is trivial and we leave it as an
exercise.

Note that if M is a factor, then any N �E M with finite index is Markov. In
particular, if N � M are II1 factors with ŒM W N� <1 and � D ŒM W N��1, then
N �M is �-Markov.

If N �E M is a W �-inclusion with Ind.E/ D ��1 <1, then any other normal
expectation of M onto N is of the form EAD E.A1=2 �A1=2/ for someA 2 .N 0 \M/C

with E.A/ D 1. Thus, such A satisfies

1 D E.A/ � �A;

so A � ��11. This same argument applied to EA shows that if �A D �.EA/ > 0, then
A � �A1. Note that ¹mj ºj is o.b. for E iff ¹mjA�1=2ºj is o.b. for EA.

A W �-inclusion N �E M may have finite index without being Markov, yet for
some A the expectation EA becomes Markov. For this, one needs A 2 .N 0 \M/C to
satisfy X

j

mjA
�1m�j 2 C1:

For instance, by [20, Theorem 3.2], if˚i2IMni .C/DQ �
E P D j̊2JMmj .C/ is a

finite dimensionalW �-inclusion withE preserving a normal faithful trace state � onP ,
given by the weight vector Et D .tj /j , then E is �-Markov iff Et is a Perron–Frobenius
eigenvector for ƒtƒ, corresponding to

��1 D kƒtƒk D kƒk2;

where ƒ D ƒQ�P is the inclusion bipartite graph of Q � P , viewed as an I � J
matrix, i.e. ƒtƒEt D ��1Et .

2.7. AtomicW �-inclusions. Let N �E M be an inclusion of atomic von Neumann
algebras with Ind.E/ D ��1 <1. Thus, both N ;M are direct sums of type I factors,

N D ˚i2IB.Ki /; M D j̊2JB.Hj /:

It is trivial to see that if bij denotes the multiplicity of B.Ki / in B.Hj / (i.e. b2ij D
dim.B.Ki /

0 \ B.Hj /), then bij � ��1 (if bij � dim.Ki /, then one actually has
bij � �

�1=2, see [31, Section 6] or [40, p. 200]). The finiteness of the index also
implies that for each j 2 J (resp. i 2 I ) the number of i 2 I (resp. j 2 J ) with
bij ¤ 0 is finite.
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Thus, such an inclusion N � M is described by a bipartite graph (diagram)
ƒN�M D .bij /i2I;j2J , where the number bij of edges between the vertices i and j
is equal to the multiplicity of B.Ki / in B.Hj /. We alternatively view ƒ as an I � J
matrix with integer non-negative entries bij . One trivially has that

Z.N / \Z.M/ D C1

iff ƒ is connected (equivalently, ƒ is irreducible as a matrix).
We are particularly interested in the case N ;M are of type I1 and N �E M is

�-Markov, where ��1 D Ind.E/. Assume this is the case and let M �
E1
e M1 D hM; ei

be the associated basic construction, with e denoting the Jones projection. Then M1 is
an amplification of N , so it is again an atomic von Neumann algebra and by [20, §3.3.2]
there is a natural isomorphism

Z.N / 3 z 7! z0 2 Z.M1/;

where z0 is the unique element in Z.M1/ with z0e D ze. Moreover, if one identifies
the set labeling the direct summands of M1 with I , via this identification, then the
J � I bipartite graph ƒM�M1

is given by

.ƒN�M/
t
D .b0j i /j2J; i2I ;

where b0j i D bij .
An important case is when the atomic W �-inclusion N �E M is both Markov

and E leaves invariant some normal semifinite faithful (n.s.f.) trace Tr on M. A W �-
inclusion N �E M with the property that M admits a E-invariant n.s.f. trace, is called
tracial. If N �E M is tracial and �-Markov, then an E-invariant n.s.f. trace Tr on M

is called a �-Markov trace.
The proof of Theorem 3.3.2 in [20] can be easily adapted to general atomic inclu-

sions to completely characterize when a tracial E is Markov:

2.7.1 Lemma. Let˚i2IB.Ki /D N �E M D j̊2JB.Hj / be an atomicW �-inclu-
sion of finite index with inclusion graph ƒ D ƒN�M D .bij /i2I;j2J . Then we have:
1ı kƒk2 � Ind.E/.
2ı Assume E preserves a n.s.f. trace Tr on M, with Et D .tj /j its weight vector, i.e. tj

is the trace of a minimal projection in B.Hj /. Denote � D Ind.E/�1. Then

zTr.xey/ D �Tr.xy/; x; y 2M;

defines a n.s.f. trace on M1 and the following conditions are equivalent:
(i) N �E M is �-Markov;
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(ii) zTrjM D Tr;
(iii) ƒtƒ.Et / D ��1Et .

3ı If the equivalent conditions (i)–(iii) in 2ı above are satisfied and ƒ is finite, then

��1 D kƒk2:

Proof. 1ı Let fi 2 P .N / be an increasing net of finite rank projections such that
fi% 1 and denoteƒi the inclusion graph of the finite dimensional inclusions fiN fi �

fiMfi . We clearly have

lim
i
kƒik D kƒk and Ind E.fi � fi / � Ind E; 8i:

We already pointed out in Section 2.5 that in the finite dimensional case, one has
Ind E.fi � fi / � kƒik

2. Thus,

kƒk2 D lim
i
kƒik

2
� lim sup

i

Ind E.fi � fi / � Ind E:

2ı The fact that zTr is a trace follows from the fact that

.x1ey1/.x2ey2/ D x1E.y1x2/ey2; .x2ey2/.x1ey1/ D x2E.y2x1/ey1;

so applying zTr gives

zTr
�
.x1ey1/.x2ey2/

�
D �Tr

�
x1E.y1x2/y2

�
D �Tr

�
E.y1x2/y2x1

�
D �Tr

�
E.y1x2/E.y2x1/

�
D �Tr

�
x2E.y2x1/y1

�
D zTr

�
.x2ey2/.x1ey1/

�
:

(i)) (ii). Let ¹mkºk �M be an o.b. with respect to E . If x 2M is finite rank, then
by applying zTr to x D x

P
k mkem

�
k
, we get

zTr.x/ D
X
k

zTr.xmkem�k/ D �Tr
�
x
X
k

mkm
�
k

�
D ��1�Tr.x/ D Tr.x/:

(ii)) (iii). The equality zTr.x/ D Tr.x/ for all x2M, implies

zTr.ex/ D �Tr.x/ D � zTr.x/;

and thus E1 is the zTr-preserving expectation of M1 onto M.
Denote Es D ƒ.Et / and note that si gives the trace Tr (thus also trace zTr) of any

minimal projection fi in B.Ki /. Then fie is a minimal projection in the i th summand
of M1 and from the above it has trace zTr.fie/ D �si . One thus getsƒƒt .�Es/ D Es and
ƒt .�Es/ D Et . Thus,

ƒtƒ.Et / D ƒt .Es/ D ��1Et :
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(iii)) (i). The fact that Es D ƒ.Et / together with (iii) shows that the trace Tr1 on M1

given by the vector �Es has the property that restricted to M;N coincides with Tr and
that Tr1.ex/ D �Tr.x/, for all finite rank x 2M. This in turn implies that the unique
Tr1-preserving expectation E 01 of M1 onto M satisfies E 01.e/ D �1, and thus coincides
with E1.

3ı Since ƒtƒ.Et / D ��1Et and Et has positive entries, if ƒ is finite then one necessarily
has ��1 D kƒtƒk, by the Perron–Frobenius theorem (see, e.g., [11]).

2.7.2 Definition. An atomic properly infinite W �-inclusion .N �E M; Tr/ with
an E-invariant semifinite trace Tr that satisfies the equivalent conditions (i)–(iii) in
Lemma 2.7.1.2ı above is called a tracial �-Markov atomic inclusion.

The above lemma shows that such an object is completely determined by its inclu-
sion bipartite graph ƒ D ƒN�M and the trace vector Et . Indeed, by Lemma 2.7.1.2ı,
given any pair .ƒ; Et / where ƒ D .bij /i2I;J2J is a bipartite graph and Et D .tj /j2J has
positive entries and satisfiesƒtƒ.Et /D ��1Et , there exists a unique inclusion of type I1
atomic von Neumann algebras with a n.s.f. trace Tr and Tr-preserving expectation E

such that .N �E M;Tr/ is a tracial �-Markov with ƒN�M D ƒ and Tr given by Et .
We call such a pair .ƒ; Et / a Markov weighted bipartite graph. If in addition we

fix an even vertex j0 2 J and renormalize Et so that tj0 D 1, then .ƒ; j0; Et / is called a
pointed Markov weighted graph. When specifying the scalar � with ƒtƒ.Et / D ��1Et ,
we call it a (pointed) �-Markov weighted graph.

We will show in Proposition 2.7.5 below that such an object .ƒ; j0; Et / is also
equivalent to a sequence of inclusions of finite dimensional C�-algebras ¹Anºn�0
with a trace state � and a representation of the Jones �-projections ¹enºn�1, satisfying
certain properties. It turns out that this set of characterizing properties (axioms) is
surprisingly minimal (cf. [46, Remark 1.4.3, Theorem 1.5]).

2.7.3 Proposition. Let C D A0 � A1 � A2 � � � � be a sequence of inclusions of finite
dimensional C �-algebras, with a faithful trace � on [nAn and a representation of the
Jones �-sequence of projections ¹enºn�1 � [nAn, such that:
(i) en 2 A

0
n�1 \ AnC1 for all n � 1;

(ii) enxen D EAn�1.x/en for all x 2 An, n � 1.
Then we have:
(a) For each n � 1 and z 2 Z.An�1/, there exists a unique z0 2 Z.AnC1/ such that

zen D z
0en, and the resulting map z 7! z0 implements an embedding

Z.An�1/ ,! Z.AnC1/:



S. Popa 168

(b) If Jn (resp. In) labels the set of simple summands in A2n (resp. A2nC1) and
we identify Jn (resp. In) with a subset of JnC1 (resp. InC1) and let J D [nJn,
I D [nIn, then there exists a unique pointed J � I bipartite graph .�; ¹j0º/,
where ¹j0º D J0 � J such that

ƒA2n�A2nC1 DKn � and ƒA2nC1�A2nC2 DLn �
t ; n � 0:

(c) There exist unique vectors Et D .tj /j2J , Es D .si /i2I such that

tj0 D 1; � t .Et / D Es; �� t .Et / D ��1Et ;

and �ntj gives the trace of a minimal projection in the j th summand of A2n, while
�nsi gives the trace of a minimal projection in the i th summand of A2nC1.

Proof. Let B0n D An for n � 0, and define

B11 D C D B12; B1n D Alg¹1; ek j 2 � k � n � 1º for n � 3:

Then .Bij /j�i IiD0;1 is clearly a generalized � sequence of commuting squares, in the
sense of [46, Definition 1.3]. Thus, by [46, Theorem 1.5], it follows that

Ind.EAnAn�1/ � �
�1 for all n � 1;

and that there exists a Jones �-tower of factorsM�1 �M0 �M1 �e1 M2 � � � �, with
An �Mn satisfying EAnEMn�1 D EAn�1 , n � 1 (the commuting square relation, see
Section 2.8 below).

But then the proof of the existence of a unique graph and weight vector in [37,
Proposition 2.1, Corollary 2.2] for a sequence of inclusions of finite dimensional
C�-algebras C D A0 � A1 � A2 � � � � with Jones �-projections works exactly the
same in this more general case.

2.7.4 Definition. Following [46, §1.4.3], a sequence of inclusions of finite dimensional
C�-algebras with a faithful trace and a representation of the Jones �-sequence of
projections .¹Anºn�0; ¹enºn�1; �/ satisfying Proposition 2.7.3 (i),(ii) above is called
a �-sequence of inclusions, with .�; j0; Et / in (c) above being its associated pointed
weighted graph.

2.7.5 Proposition. Let .ƒ; j0; Et / be a pointed bipartite graph with a �-Markov weight
vector. Let .N �E M;Tr/ be the associated tracial �-Markov atomic W �-inclusion
and N �M�

E1
e0 M1 �

E2
e1 M2 � � � its Jones tower, with the semifinite trace Tr on[nMn

that is invariant to all En. Let p D pj0 be a minimal projection in B.Hj0/. Then the
sequence of inclusions

.A0 � A1 �e0
1
A2 � � � � / ' .pMp � pM1p �e1p pM2p � � � � /

with the trace state � D Tr.p � p/ and Jones projections e0i D eip, is a �-sequence of
inclusions, with its graph � given by ƒt .
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Proof. This is trivial by the properties of tracial �-Markov inclusion and its Jones
tower.

2.8. Commuting square embeddings. If Q �F P , N �E M are W �-inclusions
with expectation then a commuting square (c.sq.) embedding (or simply an embedding)
of Q�F P into N �E M is a von Neumann algebra inclusion P �M so that Q�N ,
E.P / D Q, EjP D F . Note that this trivially implies Ind.F / � Ind.E/ and that if
these indices are finite, then any o.b. ¹�iºi � P for F is an orthonormal system for E ,
which can be completed to an o.b. ¹�j ºj �M for E , thusX

i

�i�
�
i �

X
j

�j�
�
j :

This property was first considered in [33, p. 29 and §1.2.2] (cf. also [34]) to study
the “interaction” between subalgebras of a tracial von Neumann algebra M , calculate
relative commutants and normalizers of subalgebras. If P;Q �M are von Neumann
subalgebras, and EP ; EQ denote as usual the trace preserving expectations onto them,
then the commuting square relation amounts to

EPEQ D EQEP D EP\Q:

This is equivalent to EP .Q/ � P and also to eP eQ being a projection in B.L2M/. In
caseM is the von Neumann algebra L� of a discrete group � , then any two subgroups
G;H � � give rise to subalgebras P D LG;Q D LH satisfying this relation. So
one can view the c.sq. relation for subalgebras of a II1 factor as a natural “lattice-like”
condition.

Commuting square embeddings are the natural “morphisms” between W �-inclu-
sions with expectation. All such morphisms considered here will be taken between
inclusions of “same index”, a property that we call “non-degeneracy” (following [40,
§1.1.5]). More precisely, the commuting square embedding of Q �F P into N �E M

is non-degenerate if one has that sp P N is weakly dense in M (note that in all cases
of interest for us P is finitely generated right Q-module, where the condition becomes
sp P N DM).

Note that if Ind.E/ <1, or if all algebras involved are tracial and the expectations
involved are trace preserving (with respect to the trace on the largest algebra M), then
this is equivalent to saying that any o.b. for F is an o.b. for E . So one necessarily has
Ind.E/ D Ind.F /. Moreover, if M �M1 D hM; eN i is the basic construction for E ,
then sp¹xeN y j x; y 2 P º is a �-subalgebra of M1 and its weak closure contains P

and identifies naturally with the basic construction Q �F P � P1 WD hP ; eQi.
If the above c.sq. is non-degenerate, it follows trivially that Q �F P is �-Markov

iff N �E M is �-Markov, with � D �.E/ D �.F /. Also, if one has a c.sq. embedding
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.Q �F P / � .N �E M/ and both Q � P and N �M are �-Markov (same �) then
the commuting square follows non-degenerate.

If these conditions are satisfied, then we say that .Q �F P / � .N �E M/ is a
�-Markov commuting square. By the above observations about basic construction for
non-degenerate commuting squares, such c. sq. gives rise to a whole tower of �-Markov
c.sq. embeddings

N �E M �
E1
e0 M1 �

E2
e1 � � �

[ [ [

Q �F P �
F1
e0 P1 �

F2
e1 � � �

where ei implements both Ei and Fi ,

EiC1.ei / D �; MiC1 D sp MieiMi ; PiC1 D sp PieiPi :

Finally, let us recall from [40, Proposition 1.1.6] that ifM is tracial andN;P �M
are von Neumann subalgebras such that

EPEN D ENEP D EQ;

where Q D N \ P (but no finite index assumption on any of the expectations) then
the resulting commuting square embedding .Q � P / � .N �M/ is non-degenerate
iff the embedding .Q � N/ � .P �M/ is non-degenerate.

From a remark above, if such a commuting square is non-degenerate then one can
take its basic construction both “horizontally”�

Q � P � hP;Qi
�
�
�
N �M � hM;N i

�
and “vertically” �

Q � N � hN;Qi
�
�
�
P �M � hM;P i

�
;

with the canonical trace TrjhM;N i restricted to hP;Qi equal to TrjhP;Qi, resp. TrjhM;P i
restricted to hN;Qi equal to TrjhN;Qi. Moreover, one has a canonical Tr-preserving
expectation EhM;N i

hP;Qi
(resp. EhM;P i

hN;Qi
) between the corresponding extension algebras and

its restriction to M is equal to EMP (resp. EMN ). In addition, the resulting embeddings

.N �M/ �
�
hN;Qi � hM;P i

�
and .P �M/ �

�
hP;Qi � hM;N i

�
are non-degenerate. Also, if the two rows (resp. columns) of the initial commuting
square are Markov, then so is the row (resp. column) basic construction inclusion.
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2.9. Subfactors of R from Markov commuting squares. An important class of
Markov commuting squares are the ones with all the algebras involved finite dimen-
sional and all expectations trace preserving. We explain here how such an object
produces an extremal hyperfinite subfactor as an inductive limit of the associated
Jones tower (cf. [12, 63]; this construction was found independently in early 1984 by
Pimsner–Popa).

Let us consider a finite dimensional c.sq. embedding .P00 � P01/ � .P10 � P11/,
with a (faithful) trace state � on the largest algebra P11 and all expectations involved
being �-preserving. The �-Markov condition means that the c.sq. is non-degenerate
and the row inclusions are �-Markov. In addition we assume this c.sq. is so that both
row inclusion graphs ƒP00�P01 and ƒP10�P11 are irreducible. We call such an object
a Markov cell.

As shown in Section 2.8 and Lemma 2.6.1 (b), such an object .P00 � P01/ �
.P10 � P11/ gives rise to a tower of �-Markov c.sq., with row enveloping II1 factors
P11, P01

P10 � P11 � P12 � � � %P1;1

[ [ [ [

P00 � P01 � P02 � � � %P0;1

Moreover, due to the non-degeneracy at each step, the commuting square

P10 � P11

[ [

P00 � P01

follows non-degenerate. This implies

Ind.EP10P00
/ D Ind.EP11P01

/ D ŒP11 W P01�:

In addition, since the algebras involved are II1 factors, the inclusion P01 � P11 is
�01-Markov, where �01 D ŒP11 W P01��1. So P00 � P10 follows �01-Markov as well,
and so do all the vertical inclusions P0n � P1n.

Thus,
ŒP11 W P01� D �

�1
01 D kƒP0n�P1nk

2; 8n � 0:

Moreover, by the formulas for relative entropy in [32], it follows that

H.P11jP01/ D lim
n
H.P1njP0n/ D � ln �01;

and hence H.P11jP01/ D lnŒP11 W P01�. By [31, Corollary 4.5], this implies that
P01 � P11 is extremal.
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In conclusion, a Markov cell

P10 � P11

[ [

P00 � P01

which, by definition, is only assumed Markov “horizontally”, follows Markov “verti-
cally” as well, with the inclusion graphs satisfying

ƒP10�P11 ıƒP00�P10 D ƒP01�P11 ıƒP00�P01 ;

and
kƒP10�P11k D kƒP00�P01k; kƒP00�P10k D kƒP01�P11k:

Moreover, the resulting inclusion of enveloping II1 factors P01 � P11 gives an
extremal hyperfinite subfactor of index ˛ D kƒP00�P10k2. As we have seen in Sec-
tion 2.2, if 4 < ˛ < 3C 2

p
2, the subfactor follows irreducible.

Given a finite bipartite graph ƒ, the commuting square problem for ƒ consists in
constructing a Markov cell with the vertical inclusion graph ƒP00�P10 equal to ƒ.

2.10. The sets C.R/ and E2. Following [12], we denote by E the set of norms of
bipartite graphs (finite or infinite) and let E2 WD ¹˛2 j ˛ 2 Eº. Equivalently, E2 is the
set of square norms of matrices with non-negative integer entries. The set E was first
described in [8, 16]. A detailed account can be found in [12, Section A]. We recall
some properties, using the notations therein.

First of all, notice that E2 is a closed set consisting of an increasing sequence of
accumulation points, followed by the half line Œ2C

p
5;1�.

One has E2 \ .0; 4� D ¹4 cos2.�=n/ j n � 3º [ ¹4º, the only bipartite graphs of
square norm < 4 being the Coxeter graphs An;Dn; E6; E7; E8. The bipartite graphs
of square norm 4 are A1;D1; A�1;1, D.1/

n ; E
.1/
6 ; E

.1/
7 ; E

.1/
8 D E9.

There is a gap right after the first accumulation point 4, with kE10k2 � 4:0265 : : :
being the first (smallest) element in E2 \ .4;1/. Then one has an increasing sequence
of accumulation points c2n, n � 3, converging to c21 D 2C

p
5. Each c2n for n � 3 is

an accumulation point both from below and from above. The set of E20 of square norms
of finite bipartite graphs is a dense subset of E2.

Following [20, 21], given a II1 factor M one denotes C.M/ the set of indices
of irreducible subfactors of M . We also let E.M/ be the set of indices of extremal
subfactors of M . One obviously has

C.M t / D C.M/; E.M t / D E.M/; 8t > 0:

Also, one has
C.M1/ � C.M2/ � C.M1 x̋M2/
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and similarly for E. Since R x̋R ' R this implies C.R/, E.R/ are multiplicative
semigroups inside the Jones spectrum ¹4 cos2.�=n/ j n � 3º [ Œ4;1/, that contains
the integers.

By Jones’ theorem, ¹4 cos2.�=n/ j n � 3º � C.R/ and, as we have seen in Sec-
tion 2.9 above, several other ˛ 2 E20 have been shown to be contained in C.R/ as well.
Solving the commuting square problem for all finite bipartite graphs would show that
in fact E20 � E.R/.

3. W �-representations of subfactors

In this section we’ll define the analogue for a finite index subfactor N �M of the
notion of Hilbert-module (or W �-representation) of a single II1 factor M . Roughly
speaking, this will be an inclusion of “multi-Hilbert modules”˚i .NKi / ,! j̊ .MHj /,
a structure that is rigorously described as a non-degenerate embedding of N �M into
the atomic W �-inclusion˚iB.Ki / �

E
j̊B.Hj /.

While in the case of a single factorM a (left) HilbertM -moduleMH (orW �-rep-
resentationM ,!B.H /) comes with the Murray–von Neumann dimension dim.MH /

(or coupling constant cM;M 0 of M ,! B.H /), the role of this for an inclusion of II1
factors will be played by the dimension/coupling vector .dim.MHj //j .

3.1. Some basic definitions. A non-degenerate (normal) embedding of a finite index
extremal subfactor N � M into an atomic W �-inclusion N �E M is called a W �-
representation of N �M . Thus, N ;M are direct sums of type I1 factors, i.e.

˚iB.Ki / D N �E M D j̊B.Hj /:

Note that by Section 2.8, N �E M follows automatically �-Markov for �D ŒM WN��1.
Thus, by Lemma 2.7.1, its inclusion (bipartite) graph ƒ D ƒN�M satisfies

kƒk � ŒM W N�1=2:

The representation N �E M is irreducible if

M0 \N D Z.M/ \Z.N / D C;

or equivalently if ƒN�M is connected as a graph (irreducible as a matrix).
Two representations Nl �

El Ml , l D 0; 1, are equivalent (or isomorphic) if there
exists an isomorphism � WM0 'M1, with �.N0/ D N1, � ı E0 D E1 ı � , that inter-
twines the corresponding embeddings of N �M . The two representations are stably
equivalent (or stably isomorphic) if there exist projections pl 2M 0 \Nl such that

plNlpl �
El .pl �pl / plMlpl ; l D 0; 1;

are equivalent.
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Stable isomorphism of W �-representations involves “reducing” the commuting
square embedding .N � M/ � .N �E M/ by a projection in M 0 \N . This latter
algebra is of course an isomorphism invariant for the representation.

We call M 0 \ N the RC-algebra (relative commutant W *-algebra) of the W �-
representation. The interesting case is whenM 0 \N is a factor. If this is the case, then
we say that N �E M is RC-factorial. Note that the Murray–von Neumann type of the
RC-algebra/factor is an isomorphism invariant of the representation. More on this in
Section 3.6.

Since N �M is �-Markov for � D ŒM W N��1 and W �-representations are non-
degenerate embeddings, a representation .N � M/ � .N �E M/ is a �-Markov
commuting square embedding, so by Section 2.8 it gives rise to a tower of representa-
tions

.N �M �e0 M1 �e1 � � � / � .N �
E M �E1

e0
M1 �e1 � � � /:

Since M�1 D N � M D M0 are II1 factors, by using the downward basic con-
struction in [40, §1.2.3], one can choose (up to conjugacy by a unitary in N DM�1) a
projection e�1 2M0 withEN .e�1/D�1 and defineM�2 WD ¹e�1º0 \M�1. ThenM�2
follows a II1 subfactor of index ��1 with the property thatM�2 �M�1 �e�1 M0 is a
basic construction. One can make such choices of Jones projections recursively, thus
obtaining a tunnel of factors � � � �e�2 M�1 �e�1 M0.

Moreover, by [42, §§1.2.6–1.2.9], if for each i � �1we define Mi�1 D ¹eiº
0 \Mi

and Ei WMi !Mi�1 by
Ei .X/ D �

X
j

mijXm
i
j

�
;

where ¹mij ºj is an o.b. of ¹enº00n�i over ¹enº00n�iC1 (in M1), then

.Mi�1 �Mi �ei�1 MiC1/ � .M�n�1 �M�n �e�n M�nC1/; n 2 Z;

are all representations. We call such a double sequence of representations a tower-tunnel
of representations.

3.2. Two classes of examples. This concept of W �-representation of a subfactor
was introduced in [40, §2], where one also notices the following class of examples
(see [40, Proposition 2.1]).

3.2.1 Example. Let N �M be an extremal inclusion of II1 factors with finite Jones
index. Let .Q � P / � .N �M/ be a non-degenerate commuting square withQ � P
finite dimensional. We will call such Q � P a graphage of N �M . Since N �M
is � D ŒM W N��1 Markov and the commuting square is non-degenerate, Q � P



W �-representations of subfactors and restrictions on the Jones index 175

follows �-Markov as well. By the remark at the end of Section 2.8, if one takes the
basic construction of this commuting square vertically and one denotes

N D hN;Qi �E
hM;P i DM;

where E DE
hM;P i

hN;Qi
, then EjM DE

M
N and .N �M/� .N �E M/ is a non-degenerate

W �-embedding. Since N �M is an amplification ofQ � P , it follows that N ;M are
atomic, so N �E M is a representation of N �M . Moreover, since E D E

hM;P i

hN;Qi
pre-

serves the canonical trace TrhM;P i, we have that N �E M is both �-Markov and tracial.
Also, since N �M is an amplification of Q � P , the bipartite graph ƒN�M identi-
fies naturally with ƒQ�P , so the representation is irreducible iff ƒQ�P is irreducible
(equivalently, Z.P / \Z.Q/ D C). Also, we have

ŒM W N� D kƒN�Mk
2
D kƒQ�P k

2:

Another class of examples of W �-representations of a given subfactor N � M
comes from the following trivial observation.

3.2.2 Lemma. If .N � M/ � . zN �
zE zM/ is a non-degenerate commuting square

embedding of the extremal inclusion of II1 factors N �M into another inclusion of
factors with expectation, then any representation

. zN �
zE zM/ � .N �E M/

(that is, a non-degenerate embedding of zN � zE zM into an atomic W �-inclusion with
expectation N �E M) gives a W �-representation .N �M/ � .N �E M/, by com-
posing the embeddings.

3.3. Tracial representations. A representation N �E M of a subfactor N �M is
tracial if the atomicW �-inclusion N �E M is tracial, i.e. there exists an n.s.f. trace Tr
on M such that Tr ıE D Tr. As seen in Example 3.2.1 above, a representation arising
from a graphage .Q � P / � .N � M/ does have this property. The existence of a
graphage is a rather strong structural property of N �M , which in particular implies

ŒM W N� D kƒQ�P k
2
2 E2:

So a II1 subfactor N � M with A1-graph and index in the set .4; 2 C
p
5/ n E2

(which by [38] exists for any ˛ lying in this set) does not have any graphage. A tracial
representation can be viewed as a “dim graphage” of N �M .

Note that the tower/tunnel of reps associated with a tracial W �-representation
.N �M/ � .N �E M/ are all tracial.
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3.3.1 Proposition. Let .N �M/ � .N �E M/ be an irreducible representation with
finite inclusion graph ƒ D ƒN�M.
1ı If Tr is a n.s.f. � D ŒM W N��1 Markov trace on N �M, then it is necessarily

E-invariant.
2ı N �E M is tracial if and only if kƒk2 D ŒM W N�.

Proof. By Lemma 2.7.1, any n.s.f. trace Tr on M for which the Tr-preserving expec-
tation E 0 is �0-Markov, for some �0 > 0, forces �0 D kƒk�2 and Tr be given by a
weight vector proportional to the (unique) Perron–Frobenius eigenvector of ƒtƒ
corresponding to eigenvalue kƒk2. Thus, condition 1ı implies kƒk2 D ŒM W N�. In
particular, Ind E D Ind.E 0/. Since E 0 is the unique expectation with index kƒk2, this
implies E D E 0.

This also proves( in 2ı, while the opposite implication follows from Lemma 2.6.1.

3.4. The coupling vector of a representation. Given an .N �M/-representation

˚i2IB.Ki / D N �E M D j̊2JB.Hj /;

we denote

EdM .N �M/ D .dM .j //j2J (resp. EdN .N �M/ D .dN .i//i2I );

the vectors with entries dM .j / D dim.MHj / 2 .0;1� (resp. dN .i/ D dim.NKi / 2

.0;1�), and call them the coupling vectors (or dimension vectors) of the representation.
If dM .j / <1, dN .i/ <1 for all i; j , then we say that the representation has finite
couplings (or finite dimension vectors).

We will next prove that if this is the case, then N �E M is automatically tracial
whenever ƒN�M is finite, with the dimension vector EdM giving the weights of the
E-invariant n.s.f. trace Tr. Another important class of tracial representations with finite
coupling vector giving the weights of Tr will be discussed in Section 3.8.

Recall first some well known facts about the dimension of Hilbert modules over a
II1 factor and the way it relates to Jones index (see e.g. [20]).

3.4.1 Lemma. LetN �M be an inclusion of II1 factors and H ;H 0 some (left) Hilbert
M -modules. Then we have:
(a) dim.M .H ˚H 0// D dim.MH /C dim.MH 0/.
(b) When viewing H as an N -module, one has dim.NH / D ŒM W N� dim.MH /.
(c) If p is a projection in M , then dim.pMpp.H // D �.p/�1 dim.MH /.
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3.4.2 Proposition. Let˚lB.Ki / D N �E M D j̊B.Hj / be an irreducible repre-
sentation of N �M with inclusion graph ƒ D ƒN�M and dimension vectors

EdM D .dM .j //j2J ; EdN D .dN .i//i2I :

If dM .j0/ <1, or dN .i0/ <1, for some j0 2 J , or i0 2 I , then the representation
has finite couplings and we have:
1ı EdN D ƒ. EdM /, ƒt . EdN / D ŒM W N� EdM , ƒtƒ. EdM / D ŒM W N� EdM .
2ı The n.s.f. trace Tr on M given by the weight vector EdM is a �D ŒM W N��1 Markov

n.s.f. trace for N �M.
3ı If ƒ is finite, then the n.s.f. trace Tr on M given by the weights EdM is E-invariant.

Proof. Note that proving the “entry by entry” equalitiesƒ. EdM / D EdN andƒt . EdN / D
ŒM W N� EdM with the entries being in .0;1� (so a priori not all finite) implies both the
fact that “dM .j0/ <1 for some j0 2 J , or dN .i0/ <1 for some i0 2 I , implies all
entries of both EdM ; EdN are finite”, and the fact that ƒtƒ. EdM / D ŒM W N� EdM .

LetƒD .bij /i2I;j2J as usual. Since Hj D˚iK
˚bij
i , by Lemma 3.4.1 (a),(b), we

have
ŒM W N� dim.MHj / D dim.NHj / D

X
i

bij dim.NKi /;

showing that ƒt . EdN / D ŒM W N� EdM .
Let N �M �

E1
e M1 D˚i2IB.K 0i / be the basic construction for N �E M, with

N �M �e M1 represented in it. Note that .N � N / is isomorphic to

e.M1 �M1/e D .eM1e � eM1e/;

and that eB.K 0i /eDB.e.K 0i //, so thatN�B.Ki / is the “same as” eM1e�B.e.K 0i //.
By Lemma 3.4.1 (c), since �M1.e/ D ŒM W N��1, it follows that

(3.4.2.1) dim.M1K
0
i / D �M1.e/ dim.eM1ee.K

0
i // D ŒM W N�

�1 dim.NKi /;

implying that for the dimension vectors, we have

(3.4.2.2) EdM1 D ŒM W N�
�1 EdN :

By applying the first part of the proof to the representation ofM�M1 into j̊B.Hj /D

M �M1 D ˚iB.K
0
i /, with its inclusion bipartite graph/matrix ƒM�M1

identified
with ƒt D ..bij /i;j /t , it follows that

ƒ. EdM / D .ƒM�M1
/t EdM D ŒM1 WM� EdM1 ;
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so by (3.4.2.2) and by using the fact that ŒM1 WM� D ŒM W N�, we get EdN D ƒ. EdM /,
end the rest of the equalities in 1ı.

Part 2ı is now an immediate consequence of part 1ı and of Lemma 2.7.1.2ı, while
part 3ı follows from part 2ı and Proposition 3.3.1.

3.4.3 Definition. If aW �-representation .N �M/ � .N �E M/ has finite couplings
and the n.s.f. trace Tr implemented by its coupling vector is E-invariant, then we say
that it is canonically tracial.

3.5. Smooth representations. A representation N �E M of a subfactor N �M is
called smooth if in the associated tower of representations

.N �M �e0 M1 � � � � / � .N �
E M �E1

e0
M1 � � � � /

one has N 0 \Mj � N 0 \Mj (see [40, Section 2.3]). It is trivial to see that this
condition implies

M 0i \Mj �M0i \Mj ; 8j � i � �1

(where M�1 D N , M0 DM,M�1 D N;M0 DM ) and that these relations are equiv-
alent to

M0i \Mj DM
0
i \Mj ; 8i; j:

This compatibility relation between the higher relative commutants of N � M
and N �M is natural to impose, a fact that’s amply emphasized by results in [40, 44].
More generally, a non-degenerate commuting square embedding of N �M into an
arbitraryW �-inclusion with expectation N �E M is smooth ifM 0i \Mj �M0i \Mj

for all j � i � �1, with the same convention of notations as above.

3.6. Exact representations. Following [40, Section 2.4], a representation N �E M

for a subfactor N �M is called exact, if M DM _M 0 \N . We then also say that
it has the relative bi-commutant property.

We briefly recall below some facts about exact representations, referring to [40,
Section 2.4] for more details.

Note that an exact representation is irreducible iff P DM 0 \N is a factor and that
if this is the case then each factorial type I1 direct summand B.H / of M (resp. B.K/

of N ) is an irreducible binormal representation ofM ˝P (resp.N ˝P ), equivalently
an irreducible Hilbert bimodule MHP op (resp. NKP op). We will call P DM 0 \N

the RC-factor (or exacting factor) of the exact representation.
Let N �M �

E1
e0 M1 � � � � be the Jones tower for N �M and denote by M1

its enveloping von Neumann algebra. We then have M 0n \ N D M 0 \ N D P for
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all 0 � n �1, and Mn DMn _P for all �1 � n �1. In particular, this shows that
an exact representation is smooth.

Exact representations arise concretely as follows. For simplicity, let us assumeN;M
are separable II1 factors and we only look for separable exact representations ofN �M .
Take P to be a subfactor of M op x̋B.`2N/, like for instance P D M op. Denote by
M ˝bin P the completion ofM ˝P in the maximal binormal C�-norm, obtained from
all binormal representations ofM ˝ P . It is easy to see that the norm it induces on the
subalgebra N ˝ P is equal to its own maximal binormal C�-norm, thus identifying
N ˝bin P as a C�-subalgebra of M ˝bin P . Moreover, the map

EN ˝ idP WM ˝ P ! N ˝ P

extends to a conditional expectation, still denotedEN ˝ id, ofM˝binP ontoN˝binP .
Since the inequalityEN .x/� �x for all x 2MC, is stable (i.e. difference is completely
positive), it follows that one still has

EN ˝ idP .X/ � �X; 8X 2 .M ˝bin P /C:

This expectation extends to an expectation from the von Neumann algebras they entail.
To see this rigorously, note first that by taking biduals ofN ˝bin P �

EN˝id M ˝bin P ,
one gets an inclusion of von Neumann algebras with expectation

.N ˝bin P /
��
�

E .M ˝bin P /
��;

where E D .EN ˝ id/�� still satisfies E.X/ � �X for all X � 0. Due to weak density
of N ˝bin P �M ˝bin P inside it, for which one has the formula

X D
X
j

mjE.m�jX/; 8X 2M ˝bin P;

one has this formula for all X 2 .M ˝bin P /
��.

By [40, Section 2.4] or [42, §1.1.2 (iii)], the inequality E.X/ � �X for all X � 0,
ensures that the central support of the atomic parts of .N ˝bin P /

��; .M ˝bin P /
��

coincide, and so do the central supports of the parts whereM;P (resp.N;P ) are repre-
sented normally, and for which each factorial direct summand is separable. Thus, if one
denotes N u

P �
E Mu

P this atomic inclusion, then each factorial direct summand of Mu
P

(resp. N u
P ) is an irreducible binormal representation of M ˝bin P (resp. N ˝bin P ).

Obviously, any irreducible separable exact representation of N �M arises this
way. Doing this construction for all subfactors P �M op x̋B.`2N/, then choosing one
irreducible representation for each isomorphism class of such a rep., then taking direct
sum, gives a representation of N �M that we denote N u �E Mu and that we call
the universal exact (or binormal) W �-representation of N �M .
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One should note that if N � M arises as an irreducible NP � MP , for some
P �M op x̋B.`2N/, then one has P DM 0 \N � P but the inclusion can be strict
(see Remark 3.7.3 for concrete examples). We call P the RC-envelope of P .

We denote
ƒu D ƒuN�M D .blk/l2Lu;k2Ku

the inclusion graph of N u �Mu, where Ku labels the set of atoms in Z.Mu/, Lu

labels the set of atoms of Z.N u/. One also denotes by Hk (resp Kl ) the irreducible
binormal M � P (resp. N � P ) Hilbert bimodule corresponding to the atom k 2 Ku

(resp. l 2 Lu).
Note that Z.Mu/ \ Z.N u/ is atomic, in fact any atom of Z.Mu/;Z.N u/ is

majorized by a (unique) atom of this intersection, corresponding to a connected com-
ponent of ƒu. Each such direct summand

.N �M/ D .N u
�Mu/s.q0/

gives an irreducible representation of N �M , i.e. with Z.N / \Z.M/ D C.
The construction of an irreducible sub-representation N �M of .N u �E Mu/

can be obtained more directly as follows. Start with a (separable) irreducible Hilbert
.M � P /-bimodule H0, corresponding to some central atom q0 2 Z.Mu/, labeled
by 0 2 Ku (note that by Connes’ theory of correspondences, this is equivalent to an
embedding with trivial relative commutant P ,! .M op/˛ for some 0 < ˛ � 1 D @0;
see [35]). Set J0 D ¹0º. Then take all irreducible .N � P /-Hilbert subbimodules Ki

appearing in N .H0/P , indexed by i 2 I1, denoting bi0 its multiplicity. Then take all
irreducible .M �P /-Hilbert bimodules Hj with N .Ki /P � N .Hj /P , for some i 2 I1,
indexed by j2J1, or equivalently the irreducible direct summands ofM .L2M˝NH0/P .
Denote bij the corresponding multiplicity. One continues recursively with N .Ki /P ,
i 2 In being the irreducible .N � P /-submodules of

N .L
2M˝N .n�1/ ˝N H0/P ;

and M .Hj /P , j 2 Jn the irreducible .M � P /-submodules of

M .L
2M˝Nn ˝N H0/P ;

while denoting bij the multiplicity of this subbimodule. One has natural identifications

In ,! InC1; Jn ,! JnC1;

due to 2-periodicity in the Jones tower and the fact that QL2.Mn/N is isomorphic
to Q.L2M˝N .nC1//N for any n � 0, where Q 2 ¹N;M º. If one denotes J D [nJn,
I D [nIn, then it is immediate to see that

.N �M/ D
�
˚i2IB.Ki / � j̊2JB.Hj /

�
;

with the inclusion bipartite graph given by ƒ D .bij /i2I;j2J (see [40, Section 2.4] for
more on this).
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3.7. The standardW �-representations. (See [40, Section 2.4] and [44, Section 5]).
The “concrete construction” of exact representations of N � M from irreducible
subfactors P of amplifications of M , shows that one has “plenty” of examples of such
representations, as many as irreducible subfactors of M ˛; 0 < ˛ � 1, one can have
(see however Problems 6.1.6, 6.1.7 and accompanying remarks).

The simplest case of such a construction is when P DM and H0 is the Hilbert
bimodule ML2MM , i.e. the standard representation of M . We call the correspond-
ing irreducible direct summand of N u � Mu the standard W �-representation of
N �M and denote it N st �Est

Mst. So the RC-factor P for the standard representa-
tion of N �M is M op itself.

One quick way to describe this representation is to consider in B.L2.M1// the
inclusion

N st
D N _M op

�M _M op
DMst;

with the expectation Est given by

X 7!
X
j

mj e0Xe0m
�
j

for X 2M _M op, where ¹mj ºj is here an o.b. of ¹enº00n�1 over ¹enº00n�2 and as usual
N �M �e0 M1 �e1 M2 � � � � %M1 is the Jones tower forN �M . This coincides
withe the unique expectation extending EMN ˝ idM op .

One can show that, up to isomorphism of representations, N st �Est
Mst is the

unique irreducible exact representation N �E M of N �M for which there exists a
direct summand B.H0/ of M such that dim.MH0/D 1 (equivalently,MH0DM L2M )
and such that after cutting by the support projection of B.H0/ in Z.M/, one has

P DM 0 \B.H0/ 'M
0
\B.L2M/ DM op:

Recall from [40, Section 2.4] that N st �Est
Mst is tracial, with inclusion graph

ƒDƒN st�Mst naturally identifying with the transpose of the standard graph ofN �M ,
�N�M D .akl/k2K;l2L. Namely, ƒ D .blk/l2L;k2K , where blk D akl , the “pointed”
set � 2 K labeling the irreducible subfactors in the “even levels” of the Jones tower,
M �M2n, and L labeling the irreducible subfactors in the “odd levels” of the Jones
tower, N �M2n. More precisely, one has

˚l2Kl
B.Kl/ D N st

�Mst
D ˚k2KB.Hk/;

where ¹Hkºk2K (resp. ¹Klºl2L) is the list of all irreducible Hilbert .M �M/ (resp.
.N �M/)-bimodules in ML

2.Mn/M (resp. NL2.Mn/M ), n � 0. The weight vec-
tors giving the canonical Est-preserving n.s.f. trace Tr were denoted in [40, §2.4]
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as Ev D .vk/k2K and Eu D .ul/l2L, with vk (resp. ul ) the square root of the index of
the irreducible subfactor Mp � pM2np (resp. Nq � qM2nq), where p (resp. q) is a
minimal projection inM 0 \M2n (resp. N 0 \M2n/ labeled by k 2 Kn (resp. l 2 Ln/,
the significance of Kn � K, Ln � L being as in Section 2.3.

Note that the considerations in [40, Section 2.4] show that Ev; Eu coincide with
the dimension vectors EdM ; EdN of the representation .N � M/ � .N st �Est

Mst/,
i.e. vk D dim.MHk/, ul D dim.NKl/ for all k 2K, l 2L. Thus, with the terminology
we introduced in Section 3.3, the standard representation has finite couplings and it is
canonically tracial, i.e. the n.s.f. trace Tr given by the coupling vector is Est-invariant.

We also consider the dual standard W �-representation of N �M , defined again
on L2.M1/ by

.N _N op
D N st0

�
Est0

Mst0
DM _N op/;

with the expectation Est0 being the unique expectation extending EMN ˝ idN op . With
the same reasoning as above, its inclusion graph ƒ0 D ƒN st0�Mst0 identifies natu-
rally with the dual standard graph � 0N�M , which in turn coincides with the standard
graph �N op�M op , of the opposite subfactor .N �M/op D .N op �M op/ (see [40, Sec-
tion 2.4]). Also, this representation has finite couplings and it is canonically tracial,
with the coupling vectors given by the canonical weights Eu0; Ev0 of � 0N�M .

3.7.1 Definition. The atomic W �-inclusions involved in the standard representation
and its dual form a natural commuting square embedding

.N st0
�

Est0
Mst0/ � .N st

�
Est

Mst/

given by
N _M op �M _M op

[ [

N _N op � M _N op

with the vertical expectations being extensions of idN ˝EM
op

N op (resp. idM ˝EM
op

N op ),
with all expectations involved preserving the canonical n.s.f. trace Tr on M _M op,
and with vertical inclusion graphs given by

ƒN_N op�N_M op D �N�M (resp. ƒM_N op�M_M op D .� 0N�M /
t ):

This object is obviously an isomorphism invariant of the subfactor N �M . We call it
the standard �-commuting square (or standard �-cell) ofN �M , and denote it CN�M .

Let us note that, as an invariant ofN �M , the standard commuting square CN�M

contains the same amount of information as (i.e. it is equivalent to) the standard
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invariant GN�M . Recall in this respect that an isomorphism of standard invariants
(viewed as abstract objects as in [41]) means a trace preserving isomorphism between
the union of the finite dimensional algebras involved which takes the ij algebras of the
lattices one onto the other and the Jones-sequences of projections one onto the other.
For standard �-cells, an isomorphism is the usual notion of Tr-preserving isomorphism
of commuting squares.

3.7.2 Theorem. 1ı Let N �M be an extremal inclusion of II1 factors. Then CN�M

identifies naturally with the tracial Markov commuting square .A�1�1 � A�10 / �

.A0
�1 � A0

0/ in [51, Section 2].
2ı If .Q � P / is another extremal inclusions of II1 factors, then CN�M ' CQ�P

if and only if GN�M ' GQ�P .

Proof. 1ı The first part is trivial by the definition of CN�M and by the way the
commuting square .A�1�1 � A�10 / � .A

0
�1 � A0

0/ is constructed in [51].

2ı Letting M�1 D N � M D M0 �e0 M1 �e1 M2 � � � � be the Jones tower for
N �M , one has a Jones tower for the (Markov) standard �-cell in Notation 3.8.1

M�1 _M
op �M0 _M

op �e0 M1 _M
op � � �

[ [ [

M�1 _N
op � M0 _N

op �e0 M1 _N
op � � �

with the Jones tower M�1 �M0 �e0 M1 �e1 � � � represented in the bottom row (and
in the top row by composition of embeddings). It is immediate to see that

.Mi _M
op/0 \ .Mj _N

op/ DM 0i \Mj ;

with the Jones projections appearing in the algebras M 0i \Mj same way as they do in
the higher relative commutants. Moreover, it is easy to see that the compositions of
expectations Est

i ; i � 0 for the top row implement on these higher relative commutants
the trace state � they inherit fromM1. Since all these data comes from CN�M viewed
as an abstract object, it follows that CN�M uniquely determines GN�M .

Conversely, if GN�M is given, then [51, Lemma 2.1] associates to it in a canonical
way a tracial Markov commuting .A�1�1 � A�10 / � .A

0
�1 � A0

0/, which by part 1ı is
the same as CN�M .

3.7.3 Remark. We mentioned that one can have exact representations NP �MP ,
where P is strictly smaller than the RC-factor/envelope. Indeed, if N � M is any
extremal inclusion of separable II1 factors with finite index and Jones tower

N �M �M1 �M2 � � � %M1;
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then by [49] there exists a decreasing sequence of hyperfinite subfactors Rn �M such
that \nRn D C1 and R0n \Mj DM 0 \Mj for all j �1. Thus, given any P D Rn,
we have

.N �M/ � .NP �MP / D .N _ P
op
�M _ P op/

is isomorphic to the standard representation

.N �M/ � .N st
�Mst/ D .N _M op

�M _M op/:

3.8. Exact representations with finite couplings. We discuss in this section the
class of exact representations with finite couplings, showing they are canonically
tracial. We also prove that, after an appropriate amplification, the RC-factor P can be
identified with the mirror image P op of an irreducible subfactor P � M satisfying
the bicommutant condition .P 0 \M1/0 \M D P . The standard representation is a
particular case of this class of exact representations, corresponding to P DM , while
the dual standard representation corresponds to the case P D N .

Thus, let
˚i2IB.Ki / D N �E M D j̊2JB.Hj /

be an irreducible exact representation of the subfactorN �M , with inclusion bipartite
graph/matrix

ƒ D ƒN�M D .bij /i2I;j2J :

As usual, denote P DM 0 \N . Recall from Proposition 3.4.2 that N �M has finite
dimension vectors EdM ; EdN iff there exists j0 2 J such that

˛ D dM .j0/ D dim.MHj0/ <1:

Note that if this is the case then P is a II1 factor which identifies with an irreducible
II1 subfactor of the ˛-amplification of M op.

Let t > 0. Replacing N �E M by

N ˝Mn.C/ �
E˝id M ˝Mn.C/

for n � t , and then taking p to be a projection in the II1 factor P ˝Mn.C/ of
normalized trace �.p/ D t=n, one obtains a representation of N �M into

p
�
N ˝Mn.C/ �M ˝Mn.C/

�
p

with exactness factor p.P ˝Mn.C//p D P t (the t -amplification of P ) and expecta-
tion E ˝ id.p � p/. It is easy to see that the isomorphism class of this representation
does not depend on the choice of n and p.
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We call this representation of N �M the t -amplification of N �E M and denote
it N t �Et Mt . Its inclusion graph ƒN t�Mt identifies naturally with ƒN�M and if
one denotes

˚i2IB.H t
i / D N t

�Mt
D j̊2JB.H t

j /;

then the entries of its dimension vectors are given by

dim.MH t
j / D t dim.MHj /; dim.NK t

i / D t dim.NKi /:

The amplified representations N t �Mt , t > 0, are obviously stably isomorphic.
Thus, if ˚i2IB.Ki / D N �E M D j̊2JB.Hj / D M is an exact represen-

tation with finite couplings and j0 2 J then, modulo stable equivalence, we may
assume dim.MHj0/ D 1. Thus, there exists a unique irreducible subfactor P � M
such that after reducing with the central support pj0 of B.Hj0/ ' B.L2M/, one
has P oppj0 D Ppj0 and N �M can be reconstructed from the Hilbert .M � P /-
bimodule M .Hj0/P DM L2MP , as explained in the last paragraph of Section 3.5, in
which case we denote it NP �MP .

3.8.1 Notation. We denote by N u;fc � Mu;fc the subrepresentation of N u � Mu

obtained as the direct sum of irreducible representations that contain a type I1 factor
summand B.Hj / of Mu with dim.MHj / D 1. Thus, N u;fc �E Mu;fc is of the form
˚P .NP � MP /, where the sum is over some irreducible subfactors P � M . We
denote the inclusion graph of N u;fc �Mu;fc by ƒu;fc

N�M
.

Taking into account thatM .Hj /P ,N .Ki /P are all sub bimodules ofL2.Mn/, n� 0,
whose union is dense in L2.M1/, it follows that ML2.M1/P (resp. N .L2.M1/P )
is the direct sum of irreducible .M � P /- (resp. .N � P /-) Hilbert bimodules ¹Hj ºj

(respectively ¹Kiºi ), which appear with infinite multiplicity. Thus, when viewed as
a direct summand of the universal exact representation N u � Mu, NP � MP is
isomorphic to the W �-inclusion N _ P op �M _ P op, acting on L2.M1/.

In fact, the entire Jones tower for NP D M�1 � M0 D MP is represented on
L2.M1/, with the consecutive inclusions Mn �en MnC1 D hMn; eni given by

Mn _ P
op
�en MnC1 _ P

op;

and expectation EnC1WMnC1 !Mn given by

EnC1.X/ D
X
k

mnkenC1XenC1m
n
k
�
; X 2MnC1;

where ¹mn
k
ºk is o.b. for .¹emºm�nC2/00 over .¹emºm�nC3/00, andN �M �e0M1�e1 � � �

being the Jones tower and sequence of projections for N �M , acting (from the left)
on L2.M1/.
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Moreover, if one denotes B D P 0 \M1, then the Mn’s are all contained in the
II1 von Neumann algebra

hM1; eBi D .JM1BJM1/
0
\B.L2M1/;

with the canonical n.s.f. trace Tr D TrhM1;Bi (defined as usual by Tr.xeBy/D �.xy/,
x; y 2 M1) being semifinite on each Mn and preserving En, n � 0. In addition,
in B.L2M1/ one has [nMn D hM1; eBi and hM1; eBi naturally identifies this way
with the enveloping von Neumann algebra M1 of the Jones tower ¹Mnºn, i.e. with the
GNS completion of .[nMn; ˆ/, where ˆ D � ı E ı E1 ı � � �, with � any n.s.f. weight
on N (e.g. tracial; or a normal faithful state).

To see this, it is sufficient to prove that eB is contained in M _ P op. Indeed,
because then ueBu�, u 2 U.M/ are in M _ P op and _uueBu� D 1, showing that Tr
is semifinite on M _ P op. Then recursively, using that En have finite index, Tr follows
semifinite on Mn for all n.

To see that eB 2 M _ P op, we show that the cyclic projection Œ.M _ P op/0.y1/�,
which belongs to MP DM _P

op, is equal to eB . Indeed, by cutting with the orthogonal
projection eMn , of L2.M1/ onto L2.Mn/, which is invariant to MP DM _ P

op and
commutes with eB (because one has the commuting square relation EMnEP 0\M1 D
EP 0\Mn), one gets

eMn.M _ P
op/0eMn.

y1/ D .P 0 \Mn/.y1/ � B.y1/

and the equality follows by letting n!1.
Note that by the commuting square relation eMneB D eBeMn D eP 0\Mn , by the for-

mula for the canonical trace Tr on hM1; eBi, and by the fact that eMn 2 .M _ P op/0,
it follows that Tr restricted to .M _ P op/zn (where zn 2 Z.MP / is the support
of MP 3 x 7! xeMn) coincides with TrhM;eP 0\Mn i and thus the minimal projections
of its direct summands are proportional with the trace � of the minimal projections
in P 0 \Mn �Mn, which by Section 3.3 are proportional to the entries of EdM sup-
ported by zn. This shows that for any finite subset J0 � J the restriction of Tr
to ¹pj ºj2J0 , withpj minimal projection in B.Hj /, is proportional to ¹dim.MHj /ºj2J0 .
This in turn clearly implies that the weight vector for Tr on M _ P op is proportional
with the dimension vector EdM .

We summarize all these fact in the next statement.

3.8.2 Proposition. Let N �M be an extremal subfactor of finite index. Let P �M
be an irreducible subfactor and denote as above by NP �

E MP the associated exact
.N �M/-representation with finite couplings

˚i2IB.Hi / D N _ P
op
�

E M _ P op
D j̊2JB.Hj /;

viewed as acting on L2.M1/, with P op D JM1PJM1 . Then we have:
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1ı NP �
E MP is canonically tracial. Moreover, the sequence of inclusions with Jones

projections C D P 0 \M � P 0 \M1 �e1 M2 � � � � and the trace state � inherited
from M1 forms a �-sequence of inclusions, in the sense of Definition 2.7.4 and
Proposition 2.7.5, with its pointed bipartite graph given by ƒt and weight vector
Et D .tj /j given by tj D dim.MHj /.

2ı The Jones tower NP �
E MP �

E1
e0 M1 � � � � identifies with the towerMn _ P

op �

B.L2M1/ with the enveloping von Neumann algebra .M1;Tr/ identifying with
.hM1; Bi;TrhM1;Bi/, where B D P 0 \M1.

3ı P op is the RC-factor of NP �MP (i.e.M 0 \NP D P
op) iff P satisfies the bicom-

mutant condition .P 0 \M1/0 \M D P .

Proof. We already proved the first part of 1ı and part 2ı. The second part of 1ı is an
immediate consequence of Propositions 2.7.3 and 3.4.2.

To prove 3ı, recall from Section 3.6 that M 0 \ .N _M op/ DM op (because M op

is the RC-factor of the standard rep.). Thus,

M 0 \ .N _ P op/ D .M 0 \ .N _M op// \ .N _ P op/ DM op
\ .N _ P op/

DM op
\ .N _ P op/ \ ..P 0 \M1/

0
\M1/

op

D ..P 0 \M1/
0
\M/op

\ .N _ P op/:

Thus, if .P 0 \M1/0 \M D P , then the last term is equal to P op, showing that

M 0 \ .N _ P op/ D P op:

Conversely, ifM 0 \ .N _P op/DP , with P op �P �M op but P op ¤P , then P

commutes with .P 0 \M1/op, so

..P 0 \M1/
0
\M/op

� P ;

showing that .P 0 \M1/0 \M is strictly larger than P .

3.9. A1-subfactors. We say that N �M is an A1-subfactor if its standard graph
�N�M is equal to the bipartite graph A1. This is equivalent to the “dual” standard
graph � 0N�M being equal to A1, and also to the fact that ŒM W N� � 4 and the higher
relative commutants in the tower N �M �e0 M1 �e1 � � � are generated by the Jones
projections, i.e. M 0i \Mj D ¹1; eiC1; : : : ; ej�1º

00 for all j � i C 2.
The existence of subfactors withA1 graph and index equal to 4 of the hyperfinite II1

factorR was shown by Vaughan Jones in his original paper [20], who gave two alternate
constructions: (a) as the inclusion ¹enº00n�1 � ¹enº

00
n�0, where en is the sequence of

Jones projections for the tower of C �M2.C/; (b) as the inclusion of fixed point
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algebras of the product action of SU.2/ on x̋ n�1.M2.C/; tr/n � x̋ n�0.M2.C/; tr/n.
By [40, Corollary 5.2.1], there exists in fact a unique index 4 subfactor of R with A1
graph, up to conjugacy by an automorphism.

The problem of the existence ofA1-subfactors with arbitrary index ��1 > 4, which
is closely related to the restriction problem on the Jones index for irreducible subfactors
beyond 4, remained open for some time. This was solved in [38], where it was shown
that any ��1 > 4 can occur as the index of an A1-subfactor. This was surprising,
because initially it was believed that the set of all possible indices of irreducible
subfactors has gaps beyond 4 (cf. [21, p. 940]).

The A1-subfactors in [38] are canonical, universal objects, obtained through a
tracial amalgamated free product construction, which we briefly recall. Let .¹enºn�0; �/
be a sequence of �-Jones projections. Such a sequence exists by [20], because of the
existence of subfactors of arbitrary index ��1 > 4 constructed as locally trivial, non-
extremal subfactors of R, defined by

R� D ¹x C �.x/ j x 2 pRpº;

where � WpRp' .1� p/R.1� p/, with �.p/�.1� p/D � (due to the fact that by [27]
the fundamental group of R is the entire multiplicative group .0;1/).

Let Q be a diffuse tracial von Neumann algebra (taken as “initial data”). Denote
Ai;1 D ¹ej j j � iº

00 and letM�
1.Q/DQ x̋A1;1 �A1;1 A0;1. Then defineM�.Q/

as the smallest von Neumann algebra in M�
1.Q/ that contains Q and is stable to the

u.c.p. map x 7!
P
j mj e0xe0m

�
j , where ¹mj ºj is o.b. of A1;1 over A2;1, and let

N �.Q/ D ¹e0º
0 \M�.Q/. Theorem 5.2 of [38] then shows that N �.Q/ �M�.Q/

is an inclusion of factors of index ��1 and standard graphs equal to A1.
By [51], if Q D L.F1/, then

N �.Q/;M�.Q/ ' L.F1/;

so L.F1/ contains A1-subfactors of any index � 4. It is pointed out in [38, §8.1]
(cf. [43, Theorem]; see also [46, Theorem 4.5]) that given any extremal subfactor
N �M of index ��1, any free ultrafilter ! and anyQ �M! , the subfactorN �.Q/�

M�.Q/ can be realized as commuting square embedding into N! �M! .
The construction in [38] was further refined in [41] to obtain a characterization

of all lattices of tracial finite dimensional algebras with �-Jones projections G D

.¹Aij ºj�i��1; ¹ej ºj�0; �/ that can occur as the standard invariant of a subfactor of
index ��1, i.e. for which there exists an extremal subfactor N �M with GN�M D G .
The abstract objects G are called standard �-lattices. Thus, the result in [38] states that
the “minimal” lattice, consisting of the algebras generated by the Jones projections,

Aij D Alg
�
¹1; ek j i C 1 � k � j � 1º

�
; 8j � i � �1;
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is a standard �-lattice. This is called the Temperley–Lieb–Jones (TLJ) �-lattice and
denoted G�. Thus, A1-subfactors are the subfactors that have TLJ standard invariant.

But the main interest for us in this paper is the study of A1-subfactors of the
hyperfinite factor R. By results in [14], any irreducible subfactor N � M of index
ŒM W N� 2 .4; .5C

p
13/=2/ has A1 graph. In particular, if 4 < ŒM W N� < 2C

p
5,

then �N�M D A1. So if ˛ 2 .4; 2C
p
5/ and N � R is an irreducible subfactor of

index ˛ of the hyperfinite factor, then �N�R D A1. For ˛ D kE10k2 � 4:062 : : :,
which we saw in Section 2.10 is the first number in E2 that’s larger than 4, Ocneanu was
able to solve the commuting square problem forE10 (see Section 2.9), thus obtaining an
example of irreducible hyperfinite subfactor of index ˛ through the method described
in Section 2.9 (see [57] for details).

The next two results detail some classes of representations that any A1-subfactor
has, starting with the standard representation:

3.9.1 Proposition. Let N � M be an A1-subfactor and denote ˚l2LB.Kl/ D

N st � Mst D ˚k2KB.Hk/ its standard representation, with its inclusion graph
ƒ D ƒN st�Mst . Then,

ƒt D A1 D �N�M D .akl/k2K; l2L:

If one denotesK D ¹� D 0; 2; 4; : : :º the “even” vertices of �N�M andLD ¹1; 3; : : :º
its “odd” vertices, then the entries are given by

a2n;2nC1 D 1 D a2nC2;2nC1; n � 0;

with all other akl D 0. The corresponding couplings are given by

dn D
p
Pn.�/=�Pn�1.�/ for all n � 0;

where P�1.�/ D 1, P0.�/ D 1, PnC1.�/ D Pn.�/ � �Pn�1.�/ for all n � 1.

Proof. The formulas for the entries of the weights dn, n � 0, are well known (see
e.g. [12]).

Recall from [20] that if .¹enºn2Z; �/ is the two-sided �-sequence of Jones projec-
tions with ��1 >4 and we denoteRnD¹ei j i � n� 1º00 (resp.PnD¹ei j i � nC 1º00),
n 2 Z, then .Rn �en RnC1/n2Z (resp. .PnC1 �en Pn/n2Z) is a Jones tower/tunnel of
II1 factors of index ��1. Moreover, by [31, Corollary 5.4]; see also [36, Corollary 3.3]),
Rn � RnC1 (resp. PnC1 � Pn) is a locally trivial subfactor with

R0n�1 \Rn D Cfn CC.1 � fn/ (resp. P 0nC1 \ Pn D Cf 0n CC.1 � f 0n/);

where fn; f 0n are projections of trace t < 1=2 and t .1 � t / D �.
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3.9.2 Proposition. Let N �M be an A1 subfactor and

N �M �e0 M1 �e1 M2 �e2 � � � %M1

its Jones tower and enveloping II1 factor. For each i � 0, denote

zMi D ¹en j n � i C 1º
0
\M1 D P

0
i \M1 D .M

0
i \M1/

0
\M1;

with zM0 D zM , zM�1 D zN . Denote by zEnW zMn ! zMn�1 the map given by

x 7!
X
j

mnj enxenm
n
j
�
; x 2 zMn;

where ¹mnj ºj is an o.b. of Pn over PnC1.

1ı zMn are II1 factors with zMn D .M
0
n \M1/

0 \M1 and one has:
(i) zMn�1 � zMn is locally trivial with zM 0n�1 \ zMn D Cf 0n CC.1 � f 0n/;
(ii) M 0i \

zMj D zM
0
i \
zMj D Alg.¹1; ei ; : : : ; ej If 0i ; : : : ; f

0
j º/;

(iii) zEn is a conditional expectation satisfying zEn.f 0n/ D 1 � t ;

(iv) ¹ zMn �
zEnC1
en

zMnC1ºn2Z is a Jones tower-tunnel;
(v) zMn D vN.Mn; f

0
n/;

(vi) .N �EN M/�. zN �
zE zM/ is a commuting square embedding, i.e. zEjM DEN .

2ı Let P D zM and consider the HilbertM � P bimoduleMHP DM L2. zM/ zM . The
exact irreducible representation NP �

E MP has graph A�1;1 and is not tracial.
3ı There exists a choice of a tunnel � � � �e�2 M�1 �e�1 M0 forN DM�1 �M0DM

such thatR0D¹ej j j ��1º00 satisfiesR00 \M DC, and more generallyR00 \M1 D
R00 \R1. If one denotes by NR0 �MR0 the exact irreducible representation associ-
ated with the irreducible Hilbert .M � R0/-bimodule ML2MR0 , then NR0 �MR0

has inclusion graph ƒ D A�1;1 and has finite couplings. Moreover, if one labels
by Z the consecutive vertices of ƒ, with even vertices J D ¹2n j n 2 Zº, odd vertices
I D ¹2n C 1 j n 2 Zº, then the vector EdM of M -couplings at even levels is given
by d2n D ..1 � t /=t/n, n 2 Z.

Proof. 1ı Part 1ı is essentially [38, Theorem 7.8].

2ı The fact that if P D zM the inclusion graph of NP �
E MP , is equal to A�1;1

follows immediately from 1ı. The corresponding .N � M/-representation is non-
tracial because one has zN D zM�1 � zM0 D zM as an intermediate inclusion, i.e. one
has

.N �M/ � . zN � zM/ � .NP �
E MP /;

with E
j zM D

zE0 and f 00 2 zN
0 \ zM satisfying zE0.f 00/ D 1 � t , while �.f 00/ D t .
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3ı The existence of the choice of the tunnel M DM0 �M�1 � � � �, so that

R0 D [nM 0�n \M D ¹ej j j � �1º
00

has trivial relative commutant in M , and more generally R00 \M1 D R00 \ R1,
follows from [44, Theorem 4.10 (b)] (see also [50, Lemma 2.7]).

By part 1ı of Proposition 3.8.2, the calculation of theM -couplings amounts to the
calculation of the trace vector for the �-sequence of inclusions

C D R00 \M � R
0
0 \M1 �e1 R

0
0 \M2 � � � � ;

which coincides withR00 \R0 �R
0
0 \R1 �R

0
0 \R2 � � � �, for which this calculation

was done in [31, Section 5].

3.9.3 Remark. Given anA1-subfactorN �M , the irreducible inclusion of II1 factors

M � zM D P 00 \M1 D .M
0
\M1/

0
\M1

in Proposition 3.9.2 is quasi-regular, in the sense of [44, Definition 4.9] or [47,
Section 1.4.2]. This follows trivially from the fact that ML2. zM/M is a submodule
of ML2.M1/M , which is a direct sum of finite index bimodules. Using an argument
similar to that found in the proof of Theorem 4.5 of [44], one can in fact show that
if M � zM � h zM; ei 'M1 denotes the basic construction, with its canonical n.s.f.
trace Tr, then M 0 \ h zM; ei is discrete abelian, generated by minimal projections
¹fkºk2K , with Tr.fk/ D vk , where .vk/k is the standard vector at even levels of the
standard graph �N�M , and that ML2. zM/M D ˚k2K.MHkM /.

3.10. Untamed representations. By Lemma 3.2.2, any non-degenerate embedding
of a given subfactor N � M into another subfactor zN � zE zM composed with the
standard representation of the latter, gives a representation ofN �M . When combined
with [46, Theorem 4.10], this gives the following class of representations, which we
loosely call untamed.

3.10.1 Theorem. Let N � M be an extremal inclusion of separable II1 factors of
index 4 < ��1 D ŒM W N� <1. Given any standard graph .�; Ev/ of index ��1, there
exists a separable tracial representation .N �M/ � .N �E M/ having �-Markov
weighted graph .ƒN�M; Et / given by .� t ; Ev/.

Proof. Let Q � P be an extremal inclusion of II1 factors of index ��1 and weighted
standard graph (�; Ev/. Both GN�M ; GQ�P contain the TLJ �-lattice G�. So by [46,
Theorem 4.10], there exists a separable extremal subfactor zN � zM with standard
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invariant G� in which both N �M andQ � P embed as non-degenerate commuting
squares. Let e D e zMP denote the Jones projection for the basic construction

P � zM �e h zM;P i ' P1:

By applying [40, Proposition 2.1], one thus gets a non-degenerate embedding

. zN � zM/ �
�
h zN; ei � h zM; ei

�
' .Q1 �E

1

P1/;

where .Q1 �E1 P1/D .Q�E
P
Q P / x̋B.`2N/. Thus, this inclusion further embeds

with non-degenerate commuting squares into

.N �E M/
def
D .Qst

� P st/ x̋B.`2N/;

which is a tracial �-Markov atomicW �-inclusion with weighted inclusion graph given
by the standard weighted graph ofQ � P , i.e. .�; Ev/. Composing the embeddings, we
get the representation .N �M/ � .N �E M/ which has all required properties.

3.10.2 Corollary. Any extremal inclusion of separable II1 factors N �M of index
4 < ��1 D ŒM W N� <1 has a tracial representation with inclusion graph equal
to A1 and �-weights as given in Proposition 3.9.1.

4. Amenability for graphs, subfactors, and �-lattices

In this section we recall the definition of amenability for weighted bipartite graphs,
standard �-lattices and subfactors from [39, 40, 44], and revisit some results in [44]
about these notions.

4.1 Definition. A Markov weighted graph .ƒ; Et ; �/ is amenable if kƒk2 D ��1.

The next result establishes a Følner-type characterization of amenability for Markov
weighted graphs. Like in [39, Definition 3.1], if ƒ D .bij /i2I;j2J is a bipartite graph
and F � J is a non-empty set, then we let

ƒtƒ.F / D
°
j 2 J j 9j 0 2 F such that

X
i

bij bij 0 ¤ 0
±

and denote @F def
D ƒtƒ.F / n F .

4.2 Theorem. Let .ƒ; Et / be a Markov weighted graph, with ƒ D .bij /i2I; j2J; Et D
.tj /j2J and ƒƒt .Et / D ��1Et . Then .ƒ; Et / is amenable if and only if it satisfies the
following Følner-type condition:

(4.2.1) For any " > 0, there exists F D F."/� J finite such that kEtj@F k2 < "kEtjF k2,
i.e. .

P
j2@F t

2
j /
1=2 < ".

P
j2F t

2
j /
1=2.
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Proof. In the case where ƒ is the standard graph of a subfactor, this result amounts to
(10), (2) of Theorem 5.3 in [44] and (i), (ii) of Theorem 3.5 in [39], whose proof
only uses the fact that ƒ has non-negative integers as entries, the weight-vector Et has
strictly positive entries, and the fact thatƒtƒ.Et / D ��1Et . We revisit that argument, for
convenience.

For a D .aj /j ; b D .bj /j 2 CJ , with b finitely supported, we write

ha; bi D
X
j

aj xbj :

If condition (4.2.1) is satisfied, then for any " > 0, the finite setF DF."/� J gives rise
to the finitely supported element tF D .tj /j2F 2 `2J and if we denote F 0 D ƒtƒ.F /,
then we have

��1
X
j2F

t2j D hƒ
tƒ.tF 0/; tF i

� kƒk2ktF 0k2ktF k2 � kƒk
2.1C "/1=2ktF k

2
2;

where ƒtƒ is viewed here as an operator on `2.J / and k k2 denotes the norm on
this Hilbert space. Letting "! 0, this shows that kƒk2 � ��1. Since we also have
kƒk2 � ��1 (see Section 2.7), we get kƒk2 D ��1.

Conversely, assume kƒk2 D ��1. LetˆD �T �1ƒtƒT , viewed as a J � J matrix
with non-negative entries, where T is the diagonal matrix with entries Et D .tj /j . Note
that ˆ defines a unital positive linear map from the semifinite von Neumann algebra
P D `1J into itself. We endow P with the n.s.f. trace Tr which on a finitely supported
a D .aj /j 2 `

1J D P is given by

Tr.a/ D
X
j

aj t
2
j :

The�-Markovianity condition for .ƒ; Et / trivially implies Tr.ˆ.b//DTr.b/ for all b2P .
By Kadison’s inequality, this also implies kˆ.b/k2;Tr � kbk2;Tr for all b 2 L2.P;Tr/.

Since k�ƒtƒk D 1, it follows that for any ı > 0, there existsF0 � J finite such that
T0 DF0 .�ƒ

tƒ/F0 satisfies 1 � kT0k � 1 � ı2=2. Since T0 is a symmetric F0 � F0
matrix with non-negative entries, by the classic Perron–Frobenius theorem there
exists b0 2 PC supported by F0 such that

hb0; b0i D 1 and T0b0 D kT0kb0 � .1 � ı
2=2/b0:

Thus, �ƒtƒ.b0/ � .1 � ı2=2/b0.
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Denote b D T �1.b0/ 2 PC and notice that kbk22;Tr D 1. Also, we have

kˆ.b/ � bk22;Tr � 2 � 2Tr.ˆ.b/b/
D 2 � 2h�ƒtƒ.b0/; b0i � 2 � 2.1 � ı

2=2/ D ı2:

Thus,ˆ is a Tr-preserving unital c.p. map on P and b 2 L2.P;Tr/C is a unit vector
satisfying

kˆ.b/ � bk2;Tr � ı; kˆ.b/k2;Tr � 1 � ı
2=2:

By [44, Section A.2], when ı < 10�4 this implies there exists a spectral projection e
of b, corresponding to an interval .c;1/ for some c > 0, such that

kˆ.e/ � ek2;Tr < ı
1=4
kek2;Tr:

The latter inequality implies k.1� e/ˆ.e/k2;Tr < ı
1=4kek2;Tr. If one denotes byF � J

the support of e 2 P D `1J , this is easily seen to implyX
j2@F

t2j < �
�4ı1=4

X
j2F

t2j :

Thus, if one chooses ı � .�4"2/4 at the beginning, then F satisfies (4.2.1) for the
given " > 0.

4.3 Definition. 1ı Let N � M be an extremal inclusion of II1 factors with finite
index and N st �Est

Mst its standard representation. N �M is injective if there exists
a norm-one projection ˆWMst !M such that ˆ.N st/ D N . It is easy to see that this
is equivalent to the condition Est ıˆD ˆ ı Est. We then also say thatˆ is a norm-one
projection of N st �Est

Mst onto N �M .
N �M is amenable if the standard representation has an .N �M/-hypertrace,

i.e. a state ' on Mst that has M in its centralizer and is Est-invariant.

2ı A standard �-lattice G (resp. standard invariant GN�M of an extremal subfactor
N � M ) is amenable if its standard graph �G satisfies the Kesten-type condition
k�Gk

2 D ��1 (resp. k�N�Mk2 D ŒM W N�).

4.4 Proposition. Let .N �M/ � .N �E M/ be a non-degenerate commuting square
embedding of N �M into a W �-inclusion with expectation. There exists a norm one
projectionˆWM!M such thatˆ ı E D EN ıˆ iff there exists a state ' on M that’s
E-invariant and has M in its centralizer.

Proof. If ˆWMst !M is a norm one projection commuting with E then it is M -bi-
modular by Tomiyama’s theorem and thus for any x 2M;X 2M, the state ' D � ıˆ
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satisfies

'.xX/ D �.ˆ.xX// D �.xˆ.X//

D �.ˆ.X/x/ D �.ˆ.Xx/ D '.Xx/:

Also, '.X/ D �.ˆ.X// D �.EN .ˆ.X// D �.ˆ.E.X// D '.E.X//.
Conversely, if ' is a state on M that hasM in its centralizer and commutes with E

then one constructs a conditional expectation ˆ from M onto M in the usual way:
if X 2M, then ˆ.X/ is the unique element inM with the property that �.ˆ.X/x/ D
'.Xx/ for all x 2M (see e.g. [40, Proposition 3.2.2]). Since ' D ' ı E , it follows that

ˆ.E.X// D '.E.X/�/ D '.E.E.X/�// D '.E.X/E.�/

D '.XE.�// D '.XEN .�// D EN .ˆ.X//:

4.5 Theorem. LetN �M be an extremal inclusion of separable II1 factors with finite
index. The following conditions are equivalent:
(1) N �M is amenable.
(10) N �M is injective.
(2) Any smooth representation .N �M/ � .N �E M/ has an .N �M/-hypertrace,

i.e. an E-invariant state on M that has M in its centralizer.
(20) Any smooth representation .N �M/� .N �E M/ admits a norm one projection

of M onto M that commutes with E .
(3) N;M are amenable II1 factors (equivalently, N ' R ' M ) and its standard

invariant GN�M is amenable (i.e. k�N�Mk2 D ŒM W N�).
(4) N ' R ' M and kƒu;fN�Mk

2 D ŒM W N�, where ƒu;fN�M denotes the inclusion
graph of the universal exact finite representation of N �M (arising as direct sum
of NP �MP , with MP D j̊B.Hj /, dim.MHjP / <1 for all j ).

(5) N ' R 'M and kƒk2 D ŒM W N� for any connected component ƒ of ƒu;fN�M .
(6) Given any finite set F �M and any " > 0, there exists a subfactor of finite index

P � N such that F �" P 0 \M .
(7) There exists a sequence of subfactors with finite indexM � N � P1 � P2 � � � such

that P 0n \M %M .
(8) There exists an .N �M/-compatible tunnelM � N � P1 � P2 � � � (in the sense

of [50, Definition 2.1]) such that P 0n \M %M .
(9) N �M is isomorphic to a model hyperfinite subfactor N.G / �M.G /, obtained

as an inductive limit of higher relative commutants (in N and resp. M ) of an
.N �M/-compatible tunnelM � N � P1 � P2 � � �, whose choice is dictated by
the standard invariant G D GN�M .
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Proof. By Theorem 4.2, we have .1/,.10/, .2/,.20/. One obviously has .2/).1/

while .1/) .2/ follows from the implication .2/) .1/ of [44, Theorem 7.1]; see
page 720 for the proof.

The implications .8/) .7/) .6/ are trivial and .6/) .1/ is a consequence of
.4/) .5/) .6/) .7/ in [44, Theorem 7.1]; see page 720 for the proof.

Since k�N�Mk D kƒN st�Mstk, the implication .1/) .3/ is a consequence of the
general Theorem 5.3 hereafter (note that it is also a consequence of [40, Theorem 4.4.1]
combined with [32, Theorem 3.1 or 3.3]).

.3/) .8/. By the implication .2/) .3/ in [44, Theorem 7.1] (see top of page 719
for the proof), one first gets that for any F �M finite and any " > 0, there exists an
.N �M/-compatible subfactor P � N and a finite dimensional subfactor Q0 � P
such that F �" .P 0 \M/ _Q0. Since �N�M amenable implies �P�M amenable
(cf. [44, Corollary 6.6 (ii)]; see also [50, Proposition 2.6] for an alternative proof),
we can apply this recursively to get a tunnel of .N � M/-compatible subfactors
M � N � P1 � P2 � � � � and a sequence of commuting finite dimensional factors
Q1;Q2; : : : ;Qn � \

n
iD1Pi such that

.P 0n \M/ _Q1 _ � � � _Qn %M:

This implies .P 0n \N/ _Q1 _ � � � _Qn % N as well. It also implies that .N �M/

(or any other inclusion of hyperfinite factors with amenable graph) splits off R. This
means that if we denote M 0 WD _n.P

0
n \M/ and N 0 WD _n.P

0
n \N/, then

.N �M/ ' .N 0
�M 0/ x̋R:

But .N 0 � M 0/ ' .N 0 � M 0/ x̋R (because N 0 � M 0 are hyperfinite with same
standard graph as N �M , thus amenable!). Hence, .N �M/ ' .N 0 �M 0/, which
implies the approximation by higher relative commutants of .N �M/D .N 0 �M 0/-
compatible tunnels, required in .8/.

This shows that (1)–(3), (6)–(8) are equivalent.
We further have .2/) .5/ by Theorem 5.3 below. The implication .5/) .4/ is

trivial and .4/) .3/ by [44, Theorem 6.5]. Thus, (1)–(8) are equivalent.
The equivalence of .8/ and .9/ is proved in [44, Remark 7.2.1]. But let us give

here a more elegant argument, based on [50, Theorem 2.9] and its proof, which allows
deducing (9) directly from (3).

Thus, we assume G is an amenable standard �-lattice with standard graph � D �G

and canonical weights Ev. Thus, k�k2 D ��1 and � t� Ev D ��1Ev. By Theorem 4.2,
this condition is equivalent to the Følner property (4.2.1) of the Markov weighted
graph .�; Ev/. The proof of Theorem 2.9 in [50] shows that, given any (separable)
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subfactorN �M with standard graph GN�M D G , there exists a choice of .N �M/-
compatible tunnel M � N � P1 � P2 � � � �, such that if one denotes

.Q � R/ D .[nP 0n \N/ � [nP
0
n \M/;

then ŒR WQ�D ŒM WN� and the higher relative commutants ofQ �R and respectively
N �M coincide, in fact

(4.5.1) N 0 \Mn D Q
0
\Mn D Q

0
\Rn; 8n:

In particular, GQ�R D G D GN�M .
In order to satisfy condition (4.5.1), the .N �M/-compatible tunnel M � N �

P1 � P2 � � � � that one takes depends on two types of choices, at each step n.
Thus, if M � N � � � � � Pn have been already chosen, one next takes PnC1 to be

a downward basic construction

PnC1 � Pn ' Pnq � qMmq;

with m � 1 and q 2 P 0n \Mm appropriately chosen. The choice of PnC1 is up to
conjugacy by a unitary in Pn, but the way m � 1 and q 2 P 0n \Mm are chosen
depends only on the properties of G , more precisely on the Følner-constants for .�G ; Ev/.
It is important to note that this second type of choice, which depends only on G , can
be taken the same for any N �M .

We callM � N � P1 � � � � a G -compatible tunnel, and for each given G we make
once for all a choice for it, which we call the model G -compatible tunnel.

In particular, the isomorphism class of Q � R is completely determined by G and
Q � R itself admits a model G -compatible tunnel R �Q � P1 � P2 � � � � such that

P 0n \R% R; P 0n \Q% Q:

We denote this subfactor by N.G / �M.G /, calling it the model subfactor associated
with the amenable standard �-lattice G .

Note that in case G is both amenable and has ergodic core in the sense of [40],
i.e. when G D .Aij /j�i is so that Q D A11 � A01 D R are factors, then one can
take the model G -compatible tunnel to be the Jones tunnel.

Now, given any hyperfinite subfactor N � M with amenable standard graph
GN�M D G , then exactly the same proof as [39, Theorem 4.1], shows that there
exists a choice of the model G -compatible tunnel M � N � P1 � P2 � � � � such that
if one denotes R0 D \nPn, then .P 0n \M/ _R0 %M . Thus,

.N �M/ ' .N.G / �M.G // x̋R0:

Since N.G / �M.G / splits off R0, this shows that

.N �M/ ' .N.G / �M.G //:
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4.6 Remarks. 1ı It is shown in [44, Theorem 7.5] that if an extremal subfactorN�M
is amenable, in the sense of Definition 4.3.2ı, then any extremal subfactorQ � P that
can be embedded into it as a commuting square (not necessarily non-degenerate!) is
amenable as well. In other words, if N ' R ' M and k�N�Mk2 D ŒM W N�, then
any commuting square sub-inclusion Q � P of N �M satisfies

k�Q�P k
2
D ŒP W Q�

(in fact, the sub-inclusion Q � P does not even need to be extremal, in general one
has Indmin.Q � P / D k�Q�P k

2).
This hereditary property is somewhat surprising. A key fact that allows the proof of

this result is [44, Lemma 7.3], which shows that ifQ � P is any finite index subfactor
andB is an arbitrary tracial von Neumann algebra that containsP , then the �-subalgebra
B0 � B generated by P and [kQ0k \ B is equal to spP.[kQ0k \ B/R, where P �
Q � Q1 � � � � is a tunnel for Q � P and R D [kQ0k \ P . This easily implies that
PL

2.B0/P is contained in .˚k2Kst Hk/
˚1, where Hk is the list of irreducible Hilbert

bimodules in the standard representation Qst � P st of Q � P , allowing to show that
the .Q � P /-bimodules and .P � P /-bimodules in L2.M1/D [nL2Mn give rise to
a multiple of the standard representation ofQ � P . The amenability ofN �M is then
used to prove that P 0 \M1 is big enough so that its commutant in M1 is “locally”
approximately equal to P , a fact that allows constructing the .Q � P /-hypertrace
on Qst � P st.

2ı Theorem 7.6 of [44] states that for an extremal subfactor N � M the following
three conditions are equivalent (formulated as such in that theorem):

(1) N �M amenable;

(2) For all " > 0, there exists P � M hyperfinite such that kƒM 0\P�N 0\P k2 �
ŒM W N� � ";

(3) kƒu;rf
N�Mk

2 D ŒM W N�,

where ƒu;rf
N�M is the inclusion graph of the “universal right-finite exact representation”

N u;rf �Mu;rf ofN �M , obtained as the direct sum of NP �MP , with P II1 factors
that containM as an irreducible subfactor, see Section 6.1.5 below for more about this
sub-representation of the universal exact representation of a subfactor.

However, while the proofs of .1/, .2/ and .1/) .3/ are correct in [44], the
proof of .3/) .2/ in [44, p. 724] uses the fact that all P in this construction are
hyperfinite. So in order for that proof to work, one needs to modify the statement of
Theorem 7.6 in [44] by replacing N u;rf �Mu;rf in condition (3) with N u;hrf �Mu;hrf ,
defined similarly but with all P taken' R.
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On the other hand, one can prove the equivalence of (1) above with the following:

(20) For all " > 0, there exists P � M such that kƒM 0\P�N 0\P k2 � ŒM W N� � "
and N;M ' R;

(30) kƒu;rf
N�Mk

2 D ŒM W N� and N;M ' R.

We will detail the proof in a future paper.

3ı In [44] there are two other interesting characterizations of amenability for a sub-
factor N � M , that we did not include in Theorem 4.5 above. Thus, it is shown
in [44, Theorem 7.1] that N �M is amenable iff its symmetric enveloping II1 factor
M �
eN
M op is amenable (soM �

eN
M op'R, by [5]). And it is shown in [44, Theorem 8.1]

that N �M is amenable iff the C�-algebra generated in B.L2M/ byM ,M op and eN
is simple (this is an “Effros–Lance-type” characterization of amenability of N �M ).

4ı Using Theorem 4.5 it is immediate to see that if N � M is amenable then any
smooth commuting square embedding of N � M into an arbitrary W �-inclusion
N �E M (with N ;M not necessarily atomic) has an .N � M/-hypertrace, i.e. an
E-invariant state on M that has M in its centralizer. Equivalently, any smooth com-
muting square embedding .N �M/ � .N �E M/, admits a E-invariant norm-one
projection of M onto M . This condition actually appears as one of the equivalences
in [44, Theorem 7.1].

5. Weak amenability for subfactors

5.1 Definition. An extremal subfactor of finite indexN �M is weakly amenable (resp.
weakly injective) if it admits a tracial representation N �E M that has an .N �M/-
hypertrace (resp. a norm one projection).

5.2 Proposition. 1ı If N �M is amenable then it is weakly amenable.
2ı If .Q � P / � .N �M/ is a non-degenerate commuting square embedding of II1

factors and N �M is weakly amenable, then Q � P is weakly amenable. If in
addition ŒM W P � <1 then Q � P weakly amenable implies N � M weakly
amenable.

3ı Weak amenability is a stable isomorphism invariant: IfN �M is weakly amenable,
then .N �M/t for all t > 0, and .N �M/ x̋R are weakly amenable.

Proof. Clear by the definitions.
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We next show that weak amenability/injectivity, which follow equivalent by Propo-
sition 4.4, are also equivalent to a Connes–Følner-type condition, and they imply the
index of the subfactor must be equal to the square norm of the inclusion bipartite graph
of the representation, thus belonging to the set E2.

5.3 Theorem. Let N � M be an extremal inclusion of II1 factors and N �E M

a tracial representation. The following conditions are equivalent:
(1) There exists a norm one projection of N �E M onto N �M .
(2) There exists a .N �M/-hypertrace on N �E M.
(3) Given any finite set F �U.M/ and any " > 0, there exists a finite rank projection

p 2 N such that X
u2F

kupu� � pk2;Tr < "kpk2;Tr:

Moreover, if the above conditions hold for .N �M/ � .N �E M/ and we denote
by

.Mi�1 �Mi �ei MiC1/ � .Mi�1 �
Ei Mi �ei MiC1/; i 2 Z;

the tower-tunnel of representations associated with it, then conditions (1)–(3) hold for

.Mi �Mj / � .Mi �
Eij Mj / for any j > i;

where M0 DM;M�1 D N , M0 DM, M�1 D N and Eij D EiC1 ı � � � ı Ej .

Proof. We already proved the equivalence of conditions .1/ and .2/ in Proposition 4.4.
Assume .2/ holds true and let ' be an E-invariant state on M that has M in its

centralizer.
Let F D ¹u1; : : : ; unº. Denote

L D ¹. �  ı E;  �  .u�1 � u1/;

 �  .u�2 � u2/; : : : ;  �  .u
�
n � un// 2 .M�/

nC1
j  a state in M�º:

Note that L is a bounded, convex subset in .M�/nC1 D .MnC1/� and since the states
' 2M� are �.M�;M/ dense in S.M/ it follows that the �..M�/nC1;MnC1/ clo-
sure xL of L contains all .nC 1/-tuples

. �  ı E;  �  .u�1 � u1/; : : : ;  �  .u
�
n � un//

with  2 S.M/.
Taking  D ', it follows that xL contains

.' � ' ı E; ' � '.u�1 � u1/; : : : ; ' � '.u
�
n � un//:
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But '.u � u�/D ' for all u2U.M/, so in particular ' � '.u�i � ui /D 0, i D 1;2; : : : ;n.
Since we also have ' ı E D ', it follows that

.0; : : : ; 0/ D .' � ' ı E; ' � '.u�1 � u1/; : : : ; ' � '.u
�
n � un// 2

xL:

But since both .0; : : : ; 0/ and L are in .M�/nC1 and since the dual of .M�/nC1

is MnC1, it follows that the �..M�/nC1;MnC1/ closure of L in .M�/nC1 is equal to
the norm closure of L and thus, .0; : : : ; 0/ is norm adherent to L.

It follows that for all ı > 0, there exists a state  0 2M� such that

k 0 �  0 ı Ek < ı=3; k 0 �  0.u
�
i � ui /k < ı=3; 1 � i � n:

By replacing  0 with  D  0 ı E , it follows that there exists a state  2 M�

satisfying
 D  ı E; k �  .u�i � ui /k < ı; 1 � i � n:

Since M� D L
1.M;Tr/ andL1.M;Tr/\M is dense inL1.M;Tr/, it follows that

we may in addition assume there exists b 2 L1.M;Tr/ \MC such that  D Tr.�b/.
Thus,

Tr.b/ D 1; Tr.Xb/ D Tr.E.X/b/; 8X 2M

and
kTr.�b/ � Tr..u�i � ui /b/k < ı; 1 � i � n:

Since Tr.E.X/b/ D Tr.X.E.b/// and Tr..u�i � ui /b/ D Tr.�uibu�i /, it follows that

b D E.b/ and kuibu
�
i � bk1;Tr < ı; 1 � i � n:

The first relation shows that b 2NC and the Powers–Størmer inequality [55] applied
to the second shows that a D b1=2 2 NC satisfies

kak2;Tr D 1 and kuiau
�
i � ak2;Tr < ı

1=2; 8i:

The Connes–Namioka trick (see [5, Theorem 1.2.1] or [6, Section 2.5]) then yields a
spectral projection p of a such that

kuipu
�
i � pk2;Tr < ı

1=2
kpk2;Tr;

while p 2 N (because a 2 N ). Taking ı D "2=jF j2 ends the proof or .2/) .3/.
.3/) .2/. Assuming .3/, it follows that for each F � U.M/ finite, there exists

pF � P .N / finite rank such thatX
u2F

kupF u
�
� pF k2;Tr <

1

jF j
kpk2;Tr:
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Define ' as '.X/D LimF Tr.XpF /=Tr.pF / for allX 2M, where LimF is a Banach
limit over an ultrafilter majorizing the filter of finite subsets F � U.M/. It is then
immediate to see that ' this way defined has all U.M/ (thus all M ) in its centralizer.
Moreover, since the states Tr. � pF /=Tr.pF / 2 S.M/ are E-invariant, ' follows E-
invariant.

The last part is trivial and we leave it as an exercise.

5.4 Theorem. LetN �M be an extremal inclusion of type II1 factors. If .N �M/ �

.N �E M/ is a tracial representation for which there exists a norm-one projection
onto .N �M/, then kƒN�Mk

2 D ŒM W N�.

Proof. By Lemma 2.7.1, we have

kƒN�Mk
2
� Ind.E/ D ŒM W N�;

so we only need to prove the opposite inequality.
Let e D e�1 2M be a Jones projection, N1

def
D ¹eº0 \N and E�1 the conditional

expectation of N onto N�1 implemented by e (see e.g., [40, Proposition 2.2.4]).
Let " > 0. By the relative Dixmier property for N � M (see [44, Section A.1]

or [45, Theorem 1.1]), there exist unitary elements u1; : : : ; un 2 N such that



1n nX
iD1

uieu
�
i � �1





 < �"=2:
By Theorem 5.3, given any ı > 0, there exists a finite rank projection p 2 N1 such

that kŒui ; p�k2;Tr < ıkpk2;Tr. Let wi D puip 2 pN p. Then

kwiw
�
i � pk2;Tr D kpuipu

�
i p � pk2;Tr D kp.uipu

�
i � p/pk2;Tr

� kuipu
�
i � pk2;Tr D kŒui ; p�k2;Tr < ıkpk2;Tr:

A standard perturbation argument (cf. e.g., [40, Lemma A.2.1]) then shows that there
exist unitary elements vi 2 pN p such that kvi � wik2;Tr � f .ı/kpk2;Tr, with f .ı/
a constant depending only on ı and satisfying f .ı/! 0 as ı ! 0. This shows that
for any ı0 > 0 there exists a finite rank projection p 2 N1, 0 ¤ Tr p <1, and unitary
elements v1; : : : ; vn 2 pN p such that kpui � vik2;Tr < ı

0kpk2;Tr for all i .
So if we choose ı0 > 0 such that ı0 < �"=4, then p 2P .N1/, vi 2U.pN p/ satisfy



1n nX
iD1

vi .ep/v
�
i � �p






2;Tr
� max

i
kpui � vik2;Tr C





1n nX
iD1

puiev
�
i � �p






2;Tr

� 2max
i
kpui � vik2;Tr C





p�1n nX
iD1

uieu
�
i � �1

�
p






2;Tr
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� 2max
i
kpui � vik2;Tr C





p�1n nX
iD1

uieu
�
i � �1

�



kpk2;Tr

� .�"=2/kpk2;Tr C .�"=2/kpk2;Tr D �"kpk2;Tr:

It follows thatpN p�E0 pMp is a finite dimensionalW �-inclusion with trace state
� D Tr.p/�1 Tr and �-preserving expectation E 0 D E.p � p/, which has a projection
e0 D ep satisfying E 0.e0/ D �p D �1pMp and such that



1n nX

iD1

vie
0v�i � �1






2

< �"

for some unitary elements vi 2 U.pN p/. By Theorem 4.2 and the estimate at the
bottom of page 79 in [31], it follows that if H.pMp j pN p/ denotes as usual the
Connes–Størmer relative entropy, then

H.pMp j pN p/ � .1C "1=2/�1 ln ��1 � .1C "1=2/��1�.�"/(5.4.1)

D .1 � "/.1C "1=2/�1 lnŒM W N� � .1C "1=2/�1�."/;

where � denotes here the function on the positive reals �.t/ D �t ln t , t > 0.
But by [32, Theorem 2.6], if we denote byƒ0 the inclusion matrix forpN p�pMp

(which is thus a restriction of the inclusion matrix ƒN�M), then

(5.4.2) kƒ0k2 � exp.H.pMp j pN p//:

Finally, since kƒk � kƒ0k, since " > 0 can be taken arbitrarily small and since
.1 � "/.1C "1=2/�1 ! 1, .1C "1=2/�1�."/! 0 as "! 0, from (5.4.1) and (5.4.2)
it follows that

kƒN�Mk
2
� ŒM W N�:

5.5 Corollary. An extremal II1 subfactor is weakly amenable if and only if it is weakly
injective, and if these conditions are satisfied then the index of the subfactor lies in the
set E2.

5.6 Remark. A W �-inclusion Q �F P is called AFD (approximately finite dimen-
sional) if given any finite set F � .P /1, any normal state ' on P with ' ı F D '

and any " > 0, there exists a finite dimensional W �-inclusion Q �E P and a c.sq.
embedding of it into Q �F P such that for any x 2 F there exists y 2 .P /1 with
kx � yk' < ". For an inclusion of II1 factors with finite index N �M , this amounts
to the definition of the AFD property in [32]: for any F � .M/1 finite and " > 0, there
exists a commuting square .Q � P / � .N �M/ with Q;P dimensional such that
kx �EP .x/k2 � " for all x 2 F .
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By Theorem 4.5, amenable subfactorsN �M are AFD. The hyperfinite II1 subfac-
tors P01 � P11 constructed from Markov cells as in Section 2.9 are obviously AFD.
By [40, §3.1.3], ifN �M is AFD with the finite dimensional approximatesQ � P so
that .Q � P / � .N �M/ is non-degenerate, thenN �M has tracial representations
with .N �M/-hypertrace, so they are weakly amenable. Note that this non-degeneracy
condition on the approximating finite dimensional subalgebras is automatic if ŒM W N�
is an isolated point in E2 \ .4; 2C

p
5/.

The various properties of representations (smoothness, exactness, traciality, etc)
allow defining several notions of “weak amenability/injectivity”, where one requires
existence of a .N �M/-hypertrace, respectively of a norm-one projection, from one
(or all) representation .N �E M/ in some “special” class. Of particular interest is the
following case.

5.7 Definition. We say that .N � M/ is ufc-amenable (resp. ufc-injective) if the
universal exact finite-coupling representation .N u;fc �Eu;fc

Mu;fc/ admits an .N �M/-
hypertrace (resp. a norm-one projection with range N �M ).

Note that for an extremal subfactor N �M , one obviously has

“amenable) ufc-amenable) weakly amenable”.

So in particular, if N �M is ufc-amenable, then ŒM W N� 2 E2.
While we will undertake a detailed study of this notion in a follow up to this article,

we end this section by stating without proof a result from this forthcoming paper, which
relates ufc-amenability with several interesting structural properties of subfactors.

5.8 Theorem. Let N � M be an extremal inclusion of separable II1 factors. The
conditions (1), (10), (2), (3) below are equivalent and they imply condition (4):
(1) N � M is ufc-amenable: the universal exact fc-representation .N � M/ �

.N u;fc �Eu;fc
Mu;fc/ admits an .N �M/-hypertrace.

(10) N �M is ufc-injective: there exists a norm-one projection of .N u;fc �Eu;fc
Mu;fc/

onto .N �M/.
(2) kƒu;fc

N�Mk
2 D ŒM W N� and N ' R 'M .

(3) N �M has the AFDRC-property (AFD by relative commutants): given any finite
set F �M and any " > 0, there exists a subfactor Q � N such that Q0 \M is
finite dimensional and F �" Q0 \M .

(4) N �M has the abc-property (asymptotic bi-centralizer property):

M D .M 0 \N!/0 \M! :
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The proof of some of the implications in the above theorem are quite elaborate, but
let us point out right away that one has .1/, .10/ by Proposition 4.4, and .1/) .2/ by
Theorem 5.4. Also, .3/) .1/ has a proof similar to [40, §3.1.3]. This entails .3/) .2/

as well, but note that this implication is also a direct consequence of [32, Theorem 3.3].
In addition, a proof of the implication .3/) .4/ can be easily completed along the
lines of the proof of Theorem 2.14 (6) in [48, p. 1676].

6. Further remarks and open problems

6.1. General questions onW �-representations. Representations of II1 factors seem
interesting to study in their own right. There is a large number of intriguing problems
of “general” nature. We mention just a few.

We have been able to construct only three types of W �-representations for a given
subfactor N �M : the ones in Example 3.2.1, coming from graphages .Q � P / �
.N �M/; the exact representations in Section 3.6; the untamed W �-representations
in Section 3.10. Representations in this last class tend to be non-smooth, with infinite
coupling constants, in some sense “uncontrollable”. For instance, we saw that even
if N � M has finite depth with index > 4, by Corollary 3.10.2 one can construct
W �-representations of N �M that have A1 inclusion graph.

6.1.1. Find new constructions of tracial representations with finite couplings. Conceive
a method that produces all such representations for a given II1 subfactor.

6.1.2. Is traciality automatic for representations with finite couplings?

6.1.3. Establish whether a representation given by a graphage is necessarily exact. Or
at least that it necessarily has “large” RC-algebra.

6.1.4. Assume .N �M/� .N �E M/ is a tracial representation with finite couplings
and irreducible finite inclusion graphƒN�M. Is this representation necessarily arising
from a graphage, as in Example 3.2.1?

6.1.5. Do there exist representations .N �M/� .N �E M/with RC-factorM 0 \N

of type III (preferably exact) ? Do such representations exist for M ' R?
Assume .N � M/ � .NP �

E MP / is an irreducible exact “right-finite” repre-
sentation, coming from an irreducible Hilbert-bimodule MHP with P a II1 factor
and dim.HP / <1, say dim.HP / D 1. ThenMHP D ML

2PP and the RC-envelope
P D M 0 \ NP of P op follows of the form zT op, for some intermediate subfactor
M � P � zT � hP; eM i. But any such subfactor comes from an intermediate II1
subfactor M � T � P via basic construction, zT D hM; eT i.
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Thus, by reducing with a finite projection in the type II factor zP op D zT op, it follows
that .N �M/� .NP �MP / is stably isomorphic to .N �M/� .NT �MT /, a rep-
resentation that is still right-finite but this time the RC-envelope of T isM 0 \NT DT

op.
Note that even if one starts with M � P with ŒP W M� D 1, during this process
we may end up with M � T satisfying ŒT W M� < 1, so a sub-representation of
.N u;f �Mu;f /. This justifies the following question:

6.1.6. Do there exist examples of irreducible exact right-finite representations .N �M/

� .NP �MP / arising from an irreducible embedding M � P with P a II1 factor
and ŒP W M� D 1, such that P equals its (exacting) RC-envelope ? In other words,
while .N u;f �Mu;f / is a subrepresentation of .N u;rf �Mu;rf/, are there examples
where this inclusion is strict?

6.1.7. Calculate the RC-factor (or exacting factor) for NP �MP , for a given irreducible
embedding P � M ˛, 0 < ˛ � 1. Along these lines, one can push the question in
Section 6.1.6 even further: Is any irreducible sub-representation of N u �Mu stably
isomorphic to an exact representation with finite couplings? (i.e. a subrepresentation of
N u;fc�Mu;fc). Find concrete examples where .N �M/� .N u�Mu/ is “essentially”
equal/non-equal to .N �M/ � .N u;f �Mu;f /.

6.1.8. Do there exist representations .N �M/ � .N �E M/ with trivial RC-algebra,
M 0 \ N D C (preferably with finite couplings)? Do such representations exist for
N �M ' R?

6.2. Values of index problems. The W �-representation theory for a II1 subfactor
N � M devised in this paper, following up on [40], is an analogue of the “classic”
representation theory of a II1 factor, and in fact it becomes just that whenN DM . But
while for a single II1 factor M its representations M � B.H / are completely classi-
fied by the Murray–von Neumann dimension/coupling, dim.MH /, for a (non-trivial)
irreducible subfactor N � M the “W �-representation picture” becomes strikingly
complex. It seems to us that it is this framework that’s key for investigating rigidity
paradigms concerning the values of the index of a given II1 factor M , constructed
out of specific “geometric data”, most notably for M D R and for factors with Cartan
subalgebras.

Despite the results in [38], showing existence of large families of A1-subfactors of
any given index ��1 > 4, and more generally the results in [41] identifying the abstract
objects G that can occur as higher relative commutants of subfactors (called standard
�-lattices in [41]), a phenomenon such as C.M/ D ¹4 cos2.�=n/ j n � 3º [ Œ4;1/
seems to only occur when the II1 factor M comes from “random-like” constructions,
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such as the ones in [38, 41, 51] or in [13]. In turn, for a II1 factor M with a “very
geometric background”, C.M/ seems more prone to be a subset of E2, E20, or even N.

Recall in this respect the huge difference between the two types of existing results
whereC.M/ could be fully calculated, with the case of the free group factorMDL.F1/
havingC.M/ equal to the whole Jones spectrum ¹4cos2.�=n/ jn� 3º[ Œ4;1/ by [51],
and the case of free group measure space factorsM D L1X Ì Fn having C.M/ equal
to the semigroup of integers ¹1; 2; 3; : : :º by [30, 47, 53].

The case of the hyperfinite II1 factor M ' R is particularly puzzling, as R can be
constructed from very geometric data (finitary, more generally amenable, due to [5,27]),
while at the same time it is the playing field for matrix randomness! However, the latter
is always “approximate randomness”, in moments. Our belief is that its “geometric-
finitary background” prevails when it comes to index of subfactors problems.

6.2.1. Is C.R/ equal to E2? This question splits into two types of problems:

(a) The restrictions on the index problem, asking whether the index of any irreducible
hyperfinite subfactor is necessarily the square norm of a (possibly infinite) bipartite
graph, i.e. that C.R/ � E2. We believe quite strongly that this inclusion holds true.
But there may be further restrictions for C.R/.

W �-representation theory should be quite useful in approaching this problem.
Since the inclusion C.R/ � E2 represents a condition only on the interval .4; 2C

p
5/

and any irreducible subfactor with index in this interval has A1 graph by [14], proving
C.R/ � E2 amounts to showing that any hyperfinite A1-subfactor N � R with index
less than 2C

p
5 satisfies ŒR W N� 2 E2.

(b) The commuting square problem, asking whether for a given finite connected bipar-
tite graphƒ, there exists a Markov cell .P00 � P01/ � .P10 � P11/ as in Section 2.9,
with the column P00 � P10 having inclusion graph equal to ƒ. While this would
merely show E.R/ � E20, since E.M/ \ .4; 2C

p
5/ D C.M/ \ .4; 2C

p
5/ for any

II1 factor M , it would still imply E20 \ .4; 2C
p
5/ � C.R/. Ideally, the commuting

square problem should be solved with control of the higher relative commutants of the
resulting subfactor (in particular its irreducibility, see also Section 6.3.1).

One should note that there is no known example of an irreducible hyperfinite
subfactor with a non-algebraic number as index, nor in fact of any number C.R/ n E20.

6.2.2 Conjecture. Any hyperfinite A1-subfactor N � R is ufc-amenable, and thus
any such subfactor satisfies ŒN W R� D kƒu;fc

N�Rk
2 2 E2. From the above observations,

this would imply C.R/ � E2, thus solving 6.2.1 (a) above.

6.2.3. More generally, we believe that if M is any (separable) II1 factor with a Cartan
subalgebra, then C.M/ � E2.
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This is of course verified by results in [30, 47, 53], where for a large class of
II1 factors with Cartan decomposition one even has C.M/ � ¹1; 2; 3; : : :º. But in
these cases the index rigidity is due to the uniqueness up to unitary conjugacy of the
Cartan subalgebra (what is called Cs-rigidity in [53]), a property that many group
measure space factors, such as R, do not have. Nevertheless, the presence of a Cartan
subalgebra in a II1 factor M seems to make the W �-representation theory of its
subfactors N �M be very “structured”, a phenomenon that should entail “graph-like”
obstructions for ŒM W N�.

6.2.4. Another intriguing question is the calculation of C.M/ for the II1 factors
M D LFn associated withe free groups with finitely many generators, n D 2; 3; : : : :
Since C.M/ is invariant to amplifications ofM , they are all equal (cf. [9,56,62]). One
would be tempted to believe that, due to its “pure random nature”, C.LFfin/ is equal to
the entire Jones spectrum ¹4 cos2.�=n/ j n � 3º [ Œ4;1/, like in the caseM D LF1.

But all calculations of C.LF1/ are based on variations of the construction in [38],
which uses amalgamated free product involving commuting squares associated with a
�-lattice (not necessarily standard) G and some “initial (semi)finite data” Q. When
the data Q is LFn, n � 1, this allowed identifying the resulting subfactors N G .Q/ �

MG .Q/ as free group factors, using various models in Voiculescu’s free probability
theory ([13,51, 56]). This does give M ' LFfin when G is finite (i.e. a Markov cell),
but it always gives M ' LF1 if G is not finite, notably if G is the TLJ standard
�-lattice G� (equivalently the TLJ standard �-cell C�), with A1 graph and index ��1.

Consequently, the only known values ��1 2 C.LFfin/ are square norms of finite
bipartite graphsƒ for which the commuting square problem could be solved! So exactly
the same as the values ��1 that have been shown to exist in C.R/. This makes quite
plausible the prediction C.LFfin/ D C.R/.

6.2.5. Along the lines of Murray–von Neumann question of characterizing all multi-
plicative subgroups of .0;1/ that can be realized as fundamental groups of separable
II1 factors (where much progress has been done in [52], a natural question is to charac-
terize all sub-sets (resp. sub-semigroups) of the Jones spectrum ¹cos2.�=n/ j n � 3º [
Œ4;1/ that can be realized as C.M/ (resp. E.M/) for some separable II1 factor M .
To approach this, it may be useful to revisit the universal construction in [38, 46] with
the tools of deformation-rigidity theory in hand.

6.2.6. One obviously has C.Q x̋LF1/ D ¹4 cos2.�=n/ j n � 3º [ Œ4;1/ for any II1
factor Q. On the other hand, by [51, Theorem 1.3], one has C.N / � C.N � LF1/ for
any II1 factor N . Hence,

C..Q x̋LF1/ � LF1/ D ¹cos2.�=n/ j n � 3º [ Œ4;1/
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for any II1 factorQ. It would be interesting to find other classes of factorsM withC.M/

equal to the entire Jones spectrum.

6.3. Actions of �-lattices on R. Given a II1 factor M , we denote by G.M/ the set
of all standard �-lattices G that can appear as the standard invariant of an extremal
subfactor N �M , G D GN�M (i.e. which in some sense can “act” on M ).

Note that this set encodes both C.M/ and E.M/, as one has

E.M/ D ¹Ind.G / j G 2 G.M/º

(where Ind.G /D ��1 is the index of G ), and C.M/ is the set of all Ind.G /, G 2 G.M/

with �G having just one edge from its “initial” vertex � (see Section 2.3). With this in
mind, the question in Section 6.2.1 can be refined by asking the following:

6.3.1. Identify the set G.R/ of all standard �-lattices that can act on R. Or at least
calculate the set G˛.R/ of all G 2 G.R/ with Ind.G / � ˛, for some specific number
˛ > 4, notably for ˛ D 2C

p
5, or ˛ D 5.

At this point these questions seem extremely difficult to answer, with no indication
of what the corresponding sets might be. Note however that if Conjecture 6.2.2 is
answered in the affirmative, with a solution to the commuting square problem 6.2.1 (b)
for every finite connected bipartite graphƒ (as per Section 2.9), then a next step would
be to devise a method of constructing Markov cells, with given “vertical” bipartite
graph ƒ as in Section 2.9, in a way that allows controlling (and computing!) the
standard invariant of the resulting subfactor. From that point on, the classification of
all standard �-lattices (planar algebras) in [24] would help complete the picture at least
for G5.R/.

Along these lines, the following question, complementing Conjecture 6.2.2 above,
is interesting to investigate:

6.3.2. Does there exist a hyperfinite subfactorN � R with ŒR WN�D ˛ andA1 graph
for any ˛ 2 C.R/ \ .4;1/?

As noticed in Remarks (3) and (5) of Section 5.1.5 in [40] (see also [39, §4.4],
[42, §6.2]) our classification theorem for hyperfinite subfactors with amenable stan-
dard invariant ([44, §7.2.1]; cf. Theorem 4.5 in the present paper) implies Ocneanu’s
theorem [28] on the uniqueness, up to cocycle conjugacy, of the free actions of a given
finitely generated amenable group � on the hyperfinite II1 factor R. Jones obtained
in [19] a converse to Ocneanu’s result, by showing that any countable non-amenable
group � admits two actions on R that are not cocycle conjugate. So it is quite natural
to predict the following (see [40, Problem 5.4.7]):
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6.3.3 Conjecture. Given any non-amenable G 2G.R/, there exist subfactorsQ;P �R
such that GP�R D GQ�R but .P � R/ 6' .Q � R/. Taking into account [3], one
can even speculate that given any G 2 G.R/ there exist infinitely/uncountably many
hyperfinite subfactors with G as standard invariant.

6.3.4. In the spirit of [40, §5.4.3], we denote by Ca.M/ (resp. Cfd.M/) the set of
indices of irreducible subfactors with amenable (resp. finite depth) graph of the II1 fac-
tor M . Similarly, we denote Ga.M/ (resp. Gfd.M/) the set of amenable (resp. finite
depth) �-lattices that can occur as standard invariants of subfactors of M . Note that
Ga.M/ � Ga.R/ for any II1 factorM (because by [44, §7.2.1] any amenable G can be
realized as the standard invariant of a hyperfinite II1 subfactor; see also [46, §4.4.2]
and [50, Theorem 2.9]), so in fact we can denote

Ca.R/ D Ca; Cfd.R/ D Cfd; Ga.R/ D Ga; Gfd.R/ D Gfd:

It would be interesting to calculate such sets, or at least obtain some general
properties/estimates, especially in the caseM DR. For example, is the set Ca (resp. Ga)
countable/uncountable? Can it contain points in E2 n E20 (“limit points”)? We refer the
reader to [40, §5.4.3] for a series of questions related to this. One should note the early
results about Gfd in [14,29] and the more recent complete description of Gfd

5 in [24],
finalizing a two decades long series of impressive results along these lines (see also [1],
where the description is pushed to Gfd

5:25).

6.3.5. Like for the set C.M/, there have been two types of complete calculations
of G.M/ for a II1 factor M . On the one hand, G.LF1/ was shown in [51] to be equal
to the set G of all standard �-lattices (as constructed in [41]). Thus, G.Q x̋LF1/ D G,
and hence by [51, Theorem 1.3],

G..Q x̋LF1/ � LF1/ D G

for any II1 factor Q. On the other hand, there have been several constructions of
factors M that have no �-symmetries other than the trivial ones, corresponding to sub-
factors that “split-off” Mn.C/; n � 1 (cf. [4,54,61]). Similar techniques (deformation-
rigidity theory) have been used to construct II1 factors M with various prescribed
groups G as outer automorphism group, Out.M/ D G (see e.g. [17]). It would be
interesting to obtain results of this type for prescribed “small” subsets F of G. Like in
Section 6.2.4 above, this should be possible by combining the universal construction
in [46] with a way of adding to the building data of a II1 factor M the “right amount”
of both rigid and soft ingredients, to show F � G.M/, then using deformation-rigidity
to prove that any G 2 G.M/ must lie in F .
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6.4. W �-representations for subfactors of type III. A type III factor P is charac-
terized by the property of being “purely infinite”: all its “parts are same as the whole”,
all non-zero projections are equivalent. If P has separable predual, an alternative
characterization is that any two (normal) representations of P on separable Hilbert
spaces (or left Hilbert modules) are unitary conjugate.

For an inclusion of type III factors Q �F P , endowed with an expectation F

of finite index, Ind.F / D ��1 <1, the expectation F that one usually considers is
the “optimal one” of minimal index (see [15]), uniquely determined by the condition
that the values F .q/ it takes on the minimal projections q in Q0 \P are proportional
to ŒqPq W Qq�1=2 (see end of Section 2.5).

Like in the II1 case, aW �-representation for a type III subfactor Q�F P is defined
as a non-degenerate embedding into an atomicW �-inclusion N �E M. So in this case,
all the reps P ,! B.Hj / are equivalent. However, many of the general considerations
in Section 3 work the same, with the obvious adjustments.

An interesting problem here is to see whether there exist irreducible exact repre-
sentation

˚i2IB.Ki / D N �E M D j̊2JB.Hj /

of .Q �F P / with T D P 0 \N of type II1. More generally, are there irreducible
exact representations for which there are minimal central projections qj 2M such that
Mqj D B.Hj /qj corresponds to an irreducible .P � T /-bimodule that does not have
finite index, i.e. ŒT 0 WM� <1?

Viewing bimodules for the single factors Q;P as endomorphisms and using the
ensuing formalism of superselection sectors in [10, 26] may be useful for the analysis
of W �-representations of type III subfactors.

Funding. Supported in part by NSF Grant DMS-1955812 and the Takesaki Endowed
Chair at UCLA.
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