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Abstract. This article has two purposes. The first one is to describe what the Editors know on
how and when Vaughan Jones worked on the subject of the article published in the same volume.
The starting point, in the late 1980’s, was his fascination for a formula giving Murray–von
Neumann dimensions of Hilbert spaces of unitary representations of Fuchsian groups. Over the
years, he discovered surprising relations of these dimensions with other domains of mathematics.
The second purpose is to expose with some details a subject which plays an important role in
Jones’ article: the irreducible projective unitary representations of PSL2.R/, which constitute
a continuous family known as the discrete series, and which have interesting restrictions to
various discrete subgroups of PSL2.R/.
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Introduction

Vaughan Jones has been constantly intrigued by the structure of type II1 factors
and by their relations to other branches of mathematics. He defined an index for a
subfactor of a II1 factor, which has properties like those of the index of a subgroup of
a group, using the Murray–von Neumann dimension of modules over II1-factors. He
miraculously discovered, using the so-called Jones basic construction and the Jones
projections, that the possible index values, up to 4, constitute a discrete spectrum. In
a breakthrough series of papers, he used this construction for the study of knots and
topological properties of three-manifolds, and he defined the Jones polynomial of
knots.

In the paper published in this issue, first posted on arXiv in June 2020, Jones applies
his ideas on representations of II1-factors to a problem of complex analysis: Given a
discrete subset S of the open unit discD of the complex plane and one of the classical
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Bergman spaces H of holomorphic functions on D, decide whether there exists a
non-zero function f in H which is zero on S . The first purpose of the present text is
to expose some background of representation theory used in [Jones]. In the late ’80s,
Jones was fascinated by a formula giving the von Murray–von Neumann dimension of
the Hilbert space of a representation of a Fuchsian group, formula (1) below; thirty
years later, it was the first and main ingredient of his renewed interest in questions
which are addressed in [Jones].

Murray–von Neumann dimensions
and discrete series projective unitary representations

Murray–von Neumann dimensions appear in the following situation. Consider a
connected semi-simple real Lie groupG with trivial centre and without compact factor,
a Haar measure � onG, a lattice � inG, and let vol.G=�/ denote the covolume of this
lattice computed with �. Let vN.�/ denote the von Neumann algebra of � , which is a
factor of type II1; recall that it is defined as the von Neumann algebra ��.�/00 generated
by the image of the left regular representation �� of � on the space `2.�/. Let � be
an irreducible unitary representation of G on a Hilbert space H� . Assume that � is
in the discrete series; this means that, for all �; � 2 H� , the coefficient c��WG ! C,
g 7! h�.g/� j �i is in L2.G;�/. This implies that there exists a number d� > 0, the
formal dimension of � , such that hc�� j c

�0

�0i D
1
d�
h� j � 0ih� j �0i for all � , �, � 0, �0 2H� ;

note that the number d� depends on the choice of the Haar measure �. This implies
also that the restriction of � to � extends to a representation of vN.�/ on H� .

Let M be a factor of type II1. A representation of M on a Hilbert space H is an
ultraweakly continuous unital �-homomorphism fromM to the algebra of all bounded
operators on H . Recall that any such representation has a Murray–von Neumann
M -dimension dimM H , and that two representations are equivalent if and only if they
have the same dimension (see [Jones, Theorem 3.4]).

In the case discussed above, the Murray–von Neumann vN.�/-dimension of H�

is the product of the formal dimension d� and the covolume of � , in other terms:

(10) dimvN.�/ H� D d� vol.G=�/:

This appears in [GoHJ–89, Theorem 3.3.2], and was first observed by Atiyah and
Schmid [AtSc–77, formula (3.3)]. More recently, the formula was also extended to
other representations which are direct integrals of irreducible representations which
appear continuously in L2.G;�/ (see [Yang–22]).

It is worthwhile to extend formula (10) to projective representations, as we indicate
now (the proof will be essentially the same, see Theorem 3.2 (iii) of [Radu–98]). In
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the case of PSL2.R/, projective unitary representations in the discrete series depend
on a continuous parameter s 2 �1;1Œ and provide an interpolation between values
n 2 ¹2; 3; 4; : : :º which index the ordinary representations in the discrete series.

Let T denote the group of complex numbers of modulus 1. A multiplier on a locally
compact group G is a Borel function � WG �G ! T such that �.g; e/ D �.e; g/ D 1
and

�.gh; k/�.g; h/ D �.g; hk/�.h; k/ for all g; h; k 2 G:

A � -projective unitary representation of G on a Hilbert space H� is a map from G to
the unitary group of H� such that the coefficient c��WG ! C is a continuous function
for all �; � 2 H� and such that

�.g/�.h/ D �.g; h/�.gh/ for all g; h 2 G:

For example, given a left invariant Haar measure � on G and a multiplier � on G, the
left regular � -representation ��G of G on L2.G;�/, defined by�

��G.g/�
�
.h/ D �.h�1; g/�.g�1h/ for all g; h 2 G and � 2 L2.G;�/;

is a �-projective unitary representation of G. For a discrete group � , we denote
by vN.�/� the von Neumann algebra on `2.�/ generated by the image ���.�/. Assume
now, as above, that G is a connected semi-simple real Lie group with trivial centre and
without compact factor and that � is a lattice in G. Since the non-trivial conjugacy
classes of � are all infinite, vN.�/� is again a factor of type II1 [Klep–62]. Let �
be a � -projective unitary representation of G in some Hilbert space H� , assumed as
above to be irreducible and in the discrete series, i.e., with L2 coefficients. It is again
true that � has a formal dimension d� , that H� can be identified with a ��G-invariant
subspace of L2.G; d�/, that the restriction of � to � extends to a representation
of vN.�/� , so that H� is now a vN.�/� -module, and that we have

(1) dimvN.�/� H� D d� vol.G=�/:

Remark: When � does not have any non-trivial multiplier, for example when � is the
lattice PSL2.Z/ in G D PSL2.R/, it is easy to check that vN.�/� is isomorphic to the
factor vN.�/ for all multipliers � on G. In other cases, such as that of the fundamental
group � of a closed surface of genus at least 2 embedded in PSL2.R/ as a cocompact
lattice, we do not know whether the vN.�/� ’s are isomorphic to each other.

Here is the strategy of Jones’ argument to establish (1), and some comments about
it. Denote by P� the G-invariant orthogonal projection of L2.G;�/ onto H� . As � is
a discrete subgroup of G, there is a fundamental domain F for the action of � on G;
note that

R
F
d� D vol.G=�/. Denote by QF the orthogonal projection of L2.G;�/
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onto the subspace L2.F; �/ of functions which vanish outside F . Let T be the usual
trace on the algebra of bounded operators on L2.G;�/. Then

(2) dimvN.�/� H� D T .P�QF /I

the formula follows from the fact that the Hilbert space L2.F; �/ has an orthonormal
basis consisting of wandering vectors for the group�; the computation is explicitly done
in [GoHJ–89, formula (3.3.2.1), p. 146]. (A vector � in the space of� is wandering for�
if h�./� j �i D 0 for all  ¤ 1 in �; see [Jones, Section 5].) Then, using properties
of square integrable representations, we have

(3) T .P�QF / D d� vol.G=�/:

Formula (3) is the content of Theorem 3.3.2 in [GoHJ–89]. A posteriori, formula (3)
can be obtained easily with an argument using an average over the Haar measure;
see [Radu–13, Proof of Remark 4.4]. Finally, (1) follows from (2) and (3).

Holomorphic discrete series of
irreducible projective unitary representations of PSL2.R/

Let us consider now the particular case in which G is SL2.R/ or PSL2.R/. For
his classification of the irreducible unitary representations of this group, Bargmann
discovered the holomorphic discrete series representations. He rather considers the
group SU.1; 1/ of matrices of the form

�
a b
xb xa

�
, where a; b 2 C and jaj2 � jbj2 D 1,

which is isomorphic to SL2.R/.
First, he defines for any real number ˛ > �1 the Hilbert space

A2˛ D

²
f WD! C holomorphic

ˇ̌̌ ˛ C 1
�

Z
D
jf .z/j2.1 � r2/˛r dr d� <1

³
;

where D is the open unit disc of the complex plane; see [Barg–47, (9.9), p. 621]. The
dimension of A2˛ is infinite, because zn 2 A2˛ for all n 2 N, and A2˛ is dense in A2

ˇ

whenever �1 < ˛ � ˇ. Bargmann’s notation is H` for our A2˛, with ` D ˛ C 2. The
notation A2˛ is that of more recent books; see [HeKZ–00, p. 2] and [DuSc–04, p. 103],
and of [Jones]. The spaces A2˛ are now called weighted Bergman spaces. The name of
Bergman refers to the fact that these spaces are reproducing kernel Hilbert spaces, as
in the book [Berg–50], where A20 is the first example on page 1 of the book.

Then Bargmann defines a unitary representation �˛ of SU.1; 1/ on A2˛ (see below
the definition of L�s), mainly for the integral values ˛ 2 N D ¹0; 1; 2; : : :º giving rise
to ordinary representations, but Bargmann mentions en passant non-integral values
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giving rise to projective representations (last remark of Section 9 in [Barg–47]). When
˛ 2 N, a standard notation is now DCn for �˛ , with n D ˛ C 2; the DCn ’s with n � 2
constitute the holomorphic discrete series of irreducible unitary representations of
SU.1; 1/; when n is even, DCn can be viewed as an irreducible unitary representation
of PSU.1; 1/ D SU.1; 1/=¹˙ idº.

The classification of all irreducible projective unitary representations of the group
PSU.1; 1/ is equivalent to the classification of all irreducible ordinary unitary rep-
resentations of the universal covering group of SU.1; 1/; see for example [BaMi–00,
Theorem 1.2]. The latter is due to Pukánszky; see [Puka–64], as well as [Sall–67].
These representations fall into three classes, the principal series, the complementary
series, and the discrete series, itself consisting of two parts, the holomorphic discrete
series, i.e., the �˛’s, and the so-called antiholomorphic discrete series.

We find it convenient to define precisely the representations �˛’s, or rather their
alias, the L�s’s. Since the subgroup PSL2.Z/ is of particular interest, it is appropri-
ate to consider the group PSL2.R/, rather than PSU.1; 1/, and therefore spaces of
holomorphic functions on the upper half-plane

H D ¹z D x C iy 2 C j y > 0º;

rather than on the unit disc D; we will denote the projective representations by L�s
rather than by �˛ , with s real, s D ˛ C 2 > 1.

The first ingredients to define are the multipliers. We write
�
a b
c d

�
the class in

PSL2.R/ of a matrix
�
a b
c d

�
in SL2.R/. The group PSL2.R/ acts on H by holomorphic

transformations, defined by

gz D

"
a b

c d

#
z D

az C b

cz C d
for all g D

"
a b

c d

#
2 PSL2.R/ and z 2 H:

The function j WPSL2.R/ �H! C is defined by

j.g; z/ D .cz C d/2 for g D

"
a b

c d

#
2 PSL2.R/ and z 2 H;

so that
g0.z/ D

d.gz/

dz
D

d

dz

�
az C b

cz C d

�
D

1

.cz C d/2
D

1

j.g; z/
:

(If g were in the group SL2.R/, the number j.g; z/ could be defined to be cz C d , as
for example in [Iwan–97, p. 24] and in [Jones, Section 4], but here g is in PSL2.R/, and
we rather define j.g; z/ as .cz C d/2 D .�cz � d/2.) For s 2 R, we need to define
j.g; z/s . Note that j.g; z/ D .cz C d/2 is never zero. We define here the logarithm

.ln j /.g; z/ D ln jj.g; z/j C i Arg.j.g; z// with Arg.j.g; z// 2 ���; ��;
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and the sth power of j

j.g; z/s D exp
�
s.ln j /.g; z/

�
for all g 2 PSL2.R/ and z 2 H:

Define a function ms;z on PSL2.R/ � PSL2.R/ by

ms;z.g
�1; h�1/ D j.hg; z/s=2=

�
j.h; gz/s=2j.g; z/s=2

�
:

On the one hand, the function z 7! j.g; z/s=2 is holomorphic and not zero on H, so
that the function z 7! ms;z.� ; �/ is holomorphic in z. On the other hand, the chain rule
identity

j.hg; z/�1 D
d..hg/.z//

dz
D
d.h.gz//

d.gz/

d.gz/

dz
D j.h; gz/�1j.g; z/�1

implies that ms;z.g1; h�1/ 2 T. It follows that ms;z.g�1; h�1/ does not depend on z;
we will write it ms.g�1; h�1/. We have

(4) ms.g
�1; h�1/ D

j.hg; z/s=2

j.h; gz/s=2j.g; z/s=2
for all g; h 2 PSL2.R/ and z 2 H:

Then ms is a multiplier; indeed ms.g�1; id/ D ms.id; g�1/ D 1 and

ms.g
�1; h�1/ms.g

�1h�1; k�1/ D
j.hg; i/s=2

j.h; gi/s=2j.g; i/s=2
j.khg; i/s=2

j.k; hgi/s=2j.hg; i/s=2

D
j.khg; i/s=2

j.k; hgi/s=2j.h; gi/s=2j.g; i/s=2

D
j.khg; i/s=2

j.kh; gi/s=2j.g; i/s=2
j.kh; gi/s=2

j.k; hgi/s=2j.h; gi/s=2

D ms.g
�1; h�1k�1/ms.h

�1; k�1/

for all g; h; k 2 PSL2.R/. Note that ms.g�1; h�1/ takes three values only, which
are e�is� , 1, eis� , unless s is an even integer in which casems.g�1; h�1/D 1 for all g
and h; moreover, msC2 D ms for all s 2 R.

Multipliers on a locally compact group G constitute a group Z2.G;T/ of 2-co-
cycles; multipliers which are trivial, namely of the form .g;h/ 7! �.g/�.h/�.gh/�1 for
some Borel function �WG! T, constitute the subgroupB2.G;T/ of coboundaries; and
the quotient group Z2.G;T/=B2.G;T/ constitute the cohomology group H 2.G;T/.
It is known that the 2-cocycle ms is a coboundary if and only if s is an even integer,
that ms and ms0 are cohomologous if and only if s0 � s 2 2Z, and that any class in
H 2.PSL2.R/;T/ can be represented by a ms , so that

H 2
�
PSL2.R/;T

�
� R=2Z � T

(see, for example, [BaMi–00, Theorem 1.1 and Proposition 1.1]).
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The Bergman space for s > 1 is now the Hilbert space

(5) Hs D

²
f WH! C holomorphic

ˇ̌̌ Z
H
jf .z/j2ys�2 dx dy <1

³
:

For s > 1 and g 2 PSL2.R/, define an operator L�s.g/ on Hs by

(6)
�
L�s.g/f

�
.z/ D j.g�1; z/�s=2f .g�1z/:

It is straightforward to check that L�s.g/ is unitary and that

(7) L�s.g/ L�s.h/ D ms.g; h/ L�s.gh/ for all g; h 2 PSL2.R/;

so that L�s is a projective unitary representation of PSL2.R/ with multiplier ms .
Moreover, L�s is irreducible, and in the discrete series. To fix the normalization of
the Haar measure � on PSL2.R/, we defineZ

PSL2.R/
d�f

 "p
y xp

y

0 1p
y

#"
cos � sin �
� sin � cos �

#!

D

Z
H

dx dy

y2

Z �

0

d� f

 "p
y xp

y

0 1p
y

#"
cos � sin �
� sin � cos �

#!
for all continuous functions of compact support f W PSL2.R/! C. The formal dimen-
sion of L�s is then

d L�s D
s � 1

4�
:

(The formal dimension in [Robe–83, Theorem 17.8] is .s � 1/=� , but Robert uses
a different normalization of the Haar measure on PSL2.R/.) The L�s’s constitute the
holomorphic part of the discrete series of PSL2.R/.

For ˛ > �1 and s D ˛ C 2, there is a natural isomorphism A2˛ ! Hs , defined in
terms of the Cayley transform, which intertwines the representation �˛WPSU.1; 1/!
U.A2˛/ with the representation L�sWPSL2.R/! U.Hs/; see [Jones, Proposition 4.4].

Restrictions of the L�s’s to PSL2.Z/

Consider now the lattice PSL2.Z/ in PSL2.R/. Its covolume is the area of a hyper-
bolic triangle with angles �

3
; �
3
; 0, which is �

3
.

For any s 2 R, the restriction to PSL2.Z/ of the cocycle ms 2 Z2.PSL2.R/;T/ is
a coboundary. A first way to prove this is to observe that the homology group

H 2
�
PSL2.Z/;T

�
D H 2

�
.Z=2Z/ � .Z=3Z/;T

�
D H 2.Z=2Z;T/˚H 2.Z=3Z;T/

is zero, becauseH 2.C;T/ D 0 for any finite cyclic group C . The following alternative
proof is also of interest.
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Consider the usual modular cusp form of weight 12, which is the function � on H
defined for example by

�.z/ D .2�/�12e2�iz
1Y
rD1

.1 � 22�irz/24 for all z 2 H:

It is a holomorphic function defined on a simply connected domain and it does not
vanish, therefore it has a holomorphic logarithm Ln� which can be defined as follows:
choose z0 2 H and w0 2 C such that ew0 D �.z0/, and set

.Ln�/.z/ D w0 C
Z z

z0

�0.�/

�.�/
d�;

where
R z
z0

holds for an integration along some (in fact any) continuous path in H with
origin z0 and extremity z. (Note that the function Ln� depends on the choice of w0.)
Then Ln� is holomorphic and

�.z/ D exp
�
.Ln�/.z/

�
for all z 2 H:

Since � is a modular form of weight 12, we have

(8) �.z/ D j.; z/6�.z/ for all  2 PSL2.Z/ and z 2 H:

Define a logarithm Ln j , holomorphic in z, by

(9) .Ln j /.; z/ D
1

6

�
.Ln�/.z/ � .Ln�/.z/

�
:

(Beware that this logarithm .Ln j /.; z/ is another logarithm as the .ln j /.; z/ previ-
ously defined.) It is a straightforward consequence of (8) that

(10) .Ln j /.21; z/ D .Ln j /.2; 1z/C .Ln j /.2; z/

for all 1; 2 2 PSL2.Z/ and z 2 H. For  2 PSL2.Z/ and z 2 H, we have

exp
�
6.Ln j /.; z/

�
D
�.z/

�.z/
D j.; z/6 and exp

�
6.ln j /.; z/

�
D j.; z/6;

so that the difference 6.Ln j /.; z/
�
� 6.ln j /.; z/ is in 2�iZ, and independent of z.

Define a cochain cs 2 C 1.PSL2.Z/;T/ by

cs.
�1/ D exp

� s
12

�
6.Ln j /.; z/ � 6.ln j /.; z/

��
for all  2 PSL2.Z/
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(we repeat that the right-hand side above has the same value for all z 2 H). The
coboundary of cs is given by

dcs.
�1
1 ; �12 / D cs.

�1
2 /cs.

�1
1 �12 /�1cs.

�1
1 /

D exp
� s
12

�
6.Ln j /.2; 1z/ � 6.ln j /.2; 1z/

��
� exp

� s
12

�
�6.Ln j /.21; z/C 6.ln j /.21; z/

��
� exp

� s
12

�
6.Ln j /.1; z/ � 6.ln j /.1; z/

��
by (10)
D exp

� s
2
.ln j /.21; z/ �

s

2
.ln j /.2; 1z/ �

s

2
.ln j /.1; z/

�
D

j.21; z/
s=2

j.2; 1z/s=2j.1; z/s=2
by (4)
D ms.

�1
1 ; �12 /

for all 1; 2 2 PSL2.Z/, so that ms restricted to PSL2.Z/ is the coboundary of cs .
This ends our alternative proof that the restriction to PSL2.Z/ of the cocycle ms 2
Z2.PSL2.R/;T/ is a coboundary.

It follows that, for any s > 1, the restriction to PSL2.Z/ of the ms-projective
representation L�s is equivalent to an ordinary representation. The von Neumann algebra
.. L�sjPSL2.Z//.PSL2.Z///00 is therefore isomorphic to the factor vN.PSL2.Z//, and Hs

is naturally a vN.PSL2.Z//-module. In the present situation, formula (1) shows that

dimvN.PSL2.Z// H L�s D d L�s vol
�
PSL2.R/=PSL2.Z/

�
(11)

D
s � 1

4�

�

3
D
s � 1

12
:

For a positive even integer k � 12, denote by Sk the space of cusp form of weight k
for PSL2.Z/. It is a space of finite dimension, more precisely of dimension Œ k

12
� if k 6� 2

.mod 12/ and Œ k
12
� � 1 if k � 2 .mod 12/; in particular dim Sk > 0 when k is even

and k D 12 or k � 16; see for example [Iwan–97, Theorem 1.4]. It is a fact that
multiplication by f 2 Sk provides an intertwining operator T s

f
from the space Hs

of L�sjPSL2.Z/ to the space HsCk of L�sCkjPSL2.Z/. (The S stands for Spitzenform, and
the T for Toeplitz operator.) For two cusp forms f; g 2 Sk , it follows that .T s

f
/�T sg

is an operator in the commutant . L�s.vN.PSL2.Z////0 of vN.PSL2.Z//, in particular
.T s
f
/�T sg has a canonical trace. Using a method which is analogous to that used for his

computation of the Murray–von Neumann dimension dimvN.�/ H� , Jones computed
this trace and found that it is the Petersson inner product hf j gi, up to a canonical
scalar.

Vaughan initially wrote all this (at least for ordinary representations) in a note-
book [Jones–NB] and part of it appeared in Section 3.3 of [GoHJ–89]. This generated a
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series of open problems, but Vaughan decided to give up working on them and in 1993
he handed the notebook to Florin. One problem was solved in [Radu–94] (see also
[Radu–14]), where it is shown that operators of the form .T s

f
/�T sg , with f; g 2 Sk and

k 2 ¹12; 16; 18; 20; 22; : : :º, generate the whole of the commutant of . L�s.PSL2.Z///00.
Lately, Vaughan directed a PhD student, Jun Yang, who generalized the above res-
ults to the case of lattices in higher rank semi-simple Lie groups with discrete series
[Yang–20] (the advisor for the final form of the thesis was Dietmar Bisch).

In 2019, Vaughan came back to this construction and asked Florin whether he
still had his notebook. After a lot of search in my studio in Rome, Jacopo Bassi and
myself, while working on [BaRa–22], were very happy to find it and to send a scan to
Vaughan. He then remembered that, at the time, he had a very specific way to calculate
Murray–von Neumann dimensions, and the method is contained in [Jones].

Zero sets of functions in Bergman spaces

In [Jones], Vaughan found again a miraculous application of the theory of type
II1 factors. It is an illustration of Vaughan’s ideas that many of the results in this
theory have consequences that might be formulated with no reference to the theory
of II1 factors, although the proofs depend on this theory. Vaughan finds an alternative
characterization of the density of points in the orbit of a Fuchsian group acting on the
upper half-plane, by looking at analytic functions that vanish on the orbit.

Analyzing the set of zero points for analytic functions on the unit disc is a problem
that, as Vaughan mentions quoting the book of Duren [Dure–70], was completely
understood for the Hardy space already in 1915, by Szegö. (According to the editors,
Vaughan should have written Blaschke, instead of Szegö, see [Blas–15].) For Bergman
spaces, Vaughan quotes the book [HeKZ–00], where such problems are solved by
introducing various density measures for countable sets of points in the disc. The
problem was also extensively studied by Seip [Seip–93]. In [Jones], Vaughan defines
the density �.S/ of a subset S of the upper half-plane (equivalently a subset S of the
unit disc) as the infimum of the weights s such that the Bergman space Hs contains
a non-zero analytic function vanishing on S . Vaughan determines �.S/ for sets S
that are the orbit of a point z in the upper half-plane, under the action of a Fuchsian
group � of the first kind.

The main ingredient is the Murray–von Neumann dimension theory. Indeed, let
vN.�/s be the II1 factor generated by L�s.�/. Let "z 2 Hs be the evaluation vector at
the point z 2H, such that f .z/D hf j "zi for f 2Hs; observe that L�s./"z is a scalar
multiple of "z . Then the closed linear span of the orbit L�s.�/"z has Murray–von
Neumann dimension at most 1; it follows that, if the Murray–von Neumann dimension
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of Hs is strictly larger than 1, there exists a non-zero vector f 2 Hs orthogonal to "z
for all  2 � . This shows the “easy half” of the main result of [Jones]:

(12)
if dimvN.�/s Hs D

s�1
4�
.hyperbolic area of H=�/ > 1,

for all z in the upper half-plane there exists
a function f ¤ 0 in Hs which vanishes on the orbit �z.

In fact, in an older paper [Pere–73], Peremolov introduced the notion of complete-
ness of a coherent system, and obtained estimates that were very close to the values
of Jones. It seems that the relation to Peremolov article was observed in [Bekk–04],
where Bekka generalizes formula (1) and uses it for frame analysis. In the context of
wavelets, recent preprints consider the dimension formula introduced by Vaughan to
determine completeness of coherent systems; see [AbSp–22] and [CavV–22].

On ordered groups

A deep result in [Jones] is that the converse of (12) holds:

(13) if there exists a function f ¤ 0 in Hs which vanishes on some orbit,
then dimvN.�/s Hs D

s�1
4�
.hyperbolic area of H=�/ > 1.

This is a statement that apparently does not have any operator algebra content, however
the proof requires deep facts from the Murray–von Neumann dimension theory. It
requires the explicit construction of trace vectors in the Bergman space, for which
Vaughan uses in a very clever way the theory of ordered groups.

An unfinished work

Vaughan wanted very much to work further on the subject of his paper, as shown
in particular by the following two excerpts from his e-mails.

The first was sent to Florin and dated November 5, 2019.

The left invariant ordering is really quite concrete. You can just look at the
action on R I think and get the order from that of R. I knew about it because it
was fashionable about 20 years ago when Dehornoy showed it for the braid
groups. I got to know Dehornoy quite well. Very sadly he died a few weeks ago.
Here is a nice article of Rolfsen about it: [Rolf–01].

Vaughan also observes that if the Murray–von Neumann dimension of Hs is 1,
although the existence of cyclic trace vectors is known, the explicit construction of
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such a vector remains a mystery. He repeatedly pointed this out in his lectures, and he
intended to work on it, by using his new, breakthrough method.

The second concerns the ambitious project underlying [Jones]. Vaughan was inter-
acting frequently with Curtis McMullen about the complex analytic aspects of this
topic, and explained his motivations in an email to him as follows:

The reason I would like so much to have an explicit cyclic and separating trace
vector is that it would give an explicit isomorphism between vN.PSL2.Z//,
shown by Voiculescu to have everything to do with random matrices, and the
algebra given by cusp forms, also known to have a lot to do with random
matrices.

The study of zeros of functions in Bergman space ultimately allowed him to use
orderings of the free group in his beautiful construction of a wandering subspace
[Jones, Theorem 6.2].
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