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1. Introduction

We arrived at the quasicentral modulus, a number associated to a n-tuple � of
operators and a normed ideal .J; j jJ/ of compact operators, studying perturbations of
n-tuples of operators with perturbations from the normed ideal [26, 27]. It turned out
to play a key role in the invariance of absolutely continuous parts and diagonalizability
mod the normed ideal in the case of n-tuples of commuting Hermitian operators, and
found uses in non-commutative geometry [6]. The number is also of interest in the
non-commutative setting of finitely generated groups and it also appears to be related
to dynamical entropy. The number is a kind of measure of the n-tuple of operators at a
scale given by the normed ideal. More recently, trying to understand the ubiquity of
the quasicentral modulus, we began looking for more structure around this number and
we found that the commutant modulo the normed ideal of the n-tuple of operators was
relevant structure. Vaguely, this resembles a K-theory construction of the commutant
modulo the compact operators, used in the Paschke duals, but there are unexpected
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twists in the analogy, like getting C �-algebras in situations where one only expected
Banach algebras or a much richer K-theory (see [29] for a recent survey).

In this paper we have collected various remarks and results further extending the
frame we began constructing with the commutants mod normed ideals.

We begin with the shortest discussion of a topic, actually only to point out some
questions. Perturbations of Hermitian operators with singular spectral measure, as
shown by rank one perturbation facts, behave very differently from what happens in the
case of dimension � 1, where the quasicentral modulus works well. While rank one
perturbations certainly do not fit with quasicentral modulus technique one may wonder
whether these results signal some more general rough pathologies for perturbation
from the quasinormed Schatten–von Neumann classes with 0 < p < 1.

Our second topic is completing the picture of the commutant mod a normed
ideal, by introducing the bicommutant mod the normed ideal, with the analogy with
von Neumann algebras in mind. Here we can use the results about commutants modulo
the compacts of von Neumann algebras and their refinement to normed ideals [2],
which was preceded by [14, 15, 23]. What this gives is that the bicommutant mod the
normed ideal, is the normed ideal plus a certain “smooth algebra” D.�; J/ for the
n-tuple � contained in its von Neumann algebra. In the commutative setting this can
be stated in terms of functional calculus and here the multivariable operator theory
work in [10, 18, 21] is relevant to getting a grasp on these smoothness classes.

Our last focus, which is the main part of this paper is about commutants mod
normed ideals associated to compact differentiable manifolds with boundary. Here a
choice of an embedding into some Rm provides an m-tuple of smooth functions the
multiplication operators by which determine the commutant mod the normed ideal up
to equivalent norms. We use this to develop for these commutants mod several of the
results we had about the case of n-tuples of operators. We also show that the K-theory
of Calkin algebras for commutants mod normed ideals for smooth manifolds has a
Mayer–Vietoris sequence when we perform connected sums on the manifolds. The
key to such a result is that these kinds of coronas/“Calkin algebras” are C.X/ algebras
in the sense of Kasparov or more general X-algebras considered by Kirchberg. The
conclusion from these results seems to be that operations like connected sums may
be manageable, but the main problem to better understand these commutants mod for
manifolds would be with understanding better their structure or K-theory in simple
cases like balls or spheres.

The paper has six sections, the first being this introduction and the last the list of
references. The second section is about preliminaries. Then the third section is about
the problems concerning the quasinormed setting, the fourth about bicommutants mod
the fifth about commutants mod for differentiable manifolds with boundary.
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2. Preliminaries

By H, we will denote a separable infinite-dimensional complex Hilbert space and
B.H/, K.H/, B=K.H/, R.H/, P.H/ or simply B, K, B=K, R, P will denote the
bounded operators, the compact operators, the Calkin algebra, the finite rank operators
and the finite rank Hermitian projectors. The canonical homomorphism B! B=K

will be denoted by p.
The normed ideals of compact operators .J; j jJ/ or .J.H/; j jJ/, when H needs to

be specified, and their properties are discussed in the standard reference [11, 24]. Note
that the normed ideals, as defined in these references have the so-called Fatou property
which is required in results of [2], which we shall use. In particular, .Cp; j jp/ will
denote the Schatten–von Neumann p-class, 1 � p <1. We shall also use the notation
.Cp; j jp/ when 0 < p < 1, in which case j jp is a quasinorm and the ideal Cp is no
longer locally convex. When 1 � p � 1 we denote by .C�p ; j j�p / the .p; 1/ Lorentz
ideal, the norm on which is given by

jT j�p D
X
j2N

sj j
�1C1=p;

where s1 � s2 � � � � are the eigenvalues of .T �T /1=2. Note that C�1 D C1, j j�1 D j j1.
If � D .Tj /1�j�n is a n-tuple of bounded operators, we denote �� D .T �j /1�j�n,

k�kDmax1�j�n kTj k, and Œ�;X�D .ŒTj ;X�/1�j�n, whereX 2B. If � D .Sk/1�k�m
is an m-tuple of bounded operators then .�; �/ is the .m C n/-tuple .S1; : : : ; Sm;
T1; : : : ; Tn/ and ifmD n, then � C � D .Sj C Tj /1�j�n. If .J; j jJ/ is a normed ideal,

E.� I J/ D ¹X 2 B j ŒTj ; X� 2 J; 1 � j � nº

is the commutant of � mod J. We also have that E.�; J/ is a Banach algebra with the
norm

kjXkj D kXk C jŒ�; X�jJ

where the j jJ-norm is the max of the J-norms of the components. If � D ��, E.� I J/
is a �-algebra and kjXkj D kjX�kj. We also denote by

K.� I J/ D E.�; J/ \K;

E=K.�; J/ D E.� I J/=K.� I J/;

� WE.� I J/! E=K.� I J/;

the compact ideal, the quotient Banach algebra and the canonical homomorphism. Note
that p.E.� I J// � B=K and E=K.� I J/ are algebraically isomorphic and the map

E=K.� I J/! p.E.� I J//
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is contractive. The quasicentral modulus of � with respect to J is the number

kJ.�/ D lim inf
A2R

C

1

jŒA; ��jJ;

where RC1 D ¹X 2 R j 0 � X � I º is the set of finite rank positive contractions
endowed with the natural order [26,28]. If J D Cp or J D C�p , we denote kJ.�/ also
by kp.�/ and respectively, k�p .�/. In case 0 < p < 1, the definition of kp.�/ still makes
sense with j jp being the p-quasinorm in this case. We shall also consider the modulus
of quasidiagonality

qdJ.�/ D lim
P2P

inf jŒP; ��jJ

the liminf being with respect to the natural order on the finite rank projections P.
Assuming R is dense in J, we recall (see [23]) that if kJ.�/ D 0, then E=K.� I J/

is a C �-algebra, while if only kJ.�/ <1, then E=K.� I J/ is isomorphic as a Banach
algebra with involution to a C �-algebra (not isometrically). Actually, p.E.� I J// is a
C �-subalgebra of B=K and is isomorphic (not isometrically) to E=K.� I J/.

We shall also denote by PE.� I J/ the Hermitian projectors in E.� I J/.
Finally, if ! � B, we denote by !0 its commutant in B:

!0 D ¹X 2 B j ŒX; !� D ¹0ºº:

Then !00 D .!0/0 will be the bi-commutant of !, that is in case ! D !�, the von Neu-
mann algebra generated by !.

3. The problem with 0 < p < 1

A n-tuple � of commuting Hermitian operators is diagonalizable mod C�n , which
is also equivalent to k�n .�/ D 0, iff the spectral measure of � is singular with respect
to n-dimensional Lebesgue measure [26]. A similar result also holds for the normed
ideal C�p , 1 < p < nwhen the spectrum of � is contained in certain fractals of Hausdorff
dimension p, with p-dimensional Hausdorff measure replacing Lebesgue measure [8,
31]. In these cases, we observe that diagonalizability mod C�p and k�p are tied to
p-Hausdorff measure, where p � 1.

p-Hausdorff measure and dimension are also natural and interesting when 0 <
p < 1. Something quite different occurs with the diagonalization problem and we
will not even need the refined Lorentz double scale to see it. If T D T � has a cyclic
vector and its spectral measure is singular with respect to Lebesgue measure, then
([9, 19,22,25]) there is a rank one operator X D X� of arbitrary small norm so that
X C T is diagonal. A general Hermitian operator T on a separable Hilbert space is
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an orthogonal sum of a sequence of Hermitian operators with cyclic vector. We can
find for each summand a rank one perturbation which diagonalizes it and so that the
orthogonal sum of the perturbations is a Hermitian operator X so that X 2 Cp for all
0 < p < 1. This means that k1.T / D 0, which is equivalent to the singularity of the
spectral measure of T implies kp.T / D 0 for all 0 < p < 1. Here kp.T / is defined
the same way as in the case p � 1, with the only difference that the p-norm is now a
p-quasinorm when 0 < p < 1. This looks like a kind of “phase-transition” at p D 1
in the correspondence between k�p and p-Hausdorff measure. It is natural to ask how
general this is.

Problem 3.1. Let � be a n-tuple of Hermitian operators. Assume k1.�/ D 0. Does it
follow that kp.�/D 0 for 0 < p < 1? If this is too general, one can add the assumption
that � is a n-tuple of commuting Hermitian operators.

Remark 3.1. If T D T �, then k1.T / D 0 is equivalent to qd1.T / D 0 implies that
k�p .�/ D 0 or even qdp.�/ D 0 for 0 < p < 1. Again one may consider the extra
assumption about commuting components in � .

4. The bicommutant mod a normed ideal

In this section � D .Tj /1�j�n is a n-tuple of Hermitian operators on H and .J; j jJ/
is a normed ideal.

Definition 4.1. The bicommutant of � mod J is the �-algebra

EE.� I J/ D ¹X 2 B j ŒX;E.� I J/� � Jº:

Its compact ideal is
KE.� I J/ D EE.� I J/ \K

and the bicommutant Calkin algebra is

E=KE.� I J/ D EE.� I J/=KE.� I J/:

Lemma 4.1. If X 2 EE.� I J/, then

sup¹jŒX; Y �jJ j Y 2 E.� I J/; kjY kj � 1º <1

and EE.� I J/ is an involutive Banach algebra with isometric involution when endowed
with the norm

kkXkk D kXk C sup¹jŒX; Y �jJ j Y 2 E.� I J/; kjY kj � 1º:
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The lemma is a consequence of the closed graph theorem applied to the map

E.� I J/ 3 Y ! ŒX; Y � 2 J

whereX 2 EE.� IJ/. Indeed if kjYn � Y kj ! 0, jŒX;Yn��ZjJ! 0, then ŒX;Y �DZ,
so the graph is closed. The rest is also an easy exercise.

Theorem 4.1. We have EE.� I J/ D EE.� I J/ \ .�/00 C J and EE.� I J/ \ .�/00 is a
closed subalgebra of EE.� I J/.

Proof. We have .�/0 � E.� I J/ so that if X 2 EE.� I J/ then we will have ŒX; .�/0� � J.
By [2], this implies X 2 .�/00 C J. On the other hand J � EE.� I J/, so this gives

EE.� I J/ D EE.� I J/ \ .�/00 C J:

If Y 2 E.� I J/, the map

EE.� I J/ 3 X ! ŒX; Y � 2 J

is continuous. Since .�/0 � E.� IJ/ it follows that EE.� IJ/\ .�/00 is closed in EE.� IJ/.

Corollary 4.1. We have p.EE.� I J// � p..�/00/ � B=K. If .�/00 \K D ¹0º, then p
gives an isomorphism of EE.� I J/ \ .�/00 and p.EE.� I J//.

The corollary is an immediate consequence of the theorem.

Definition 4.2. We define D.� I J/ D EE.� I J/ \ .�/00 to be the smooth algebra of �
with respect to J. We also define D=K.� I J/ D p.D.� I J// D p.EE.� I J// to be the
essential smooth algebra of � with respect to J.

Remark 4.1. If � � � 0 2 .J/n, then clearly E.� I J/ D E.� 0I J/, so that

EE.� I J/ D EE.� 0I J/:

While .�/00 and .� 0/00 are different in general, we obviously have

D=K.� I J/ D D=K.� 0I J/:

Moreover, EE.� 0I J/=J D EE.� I J/=J gives that D.� I J/ and D.� 0I J/ have the same
image in B=J.

Remark 4.2. Note that if � is an n-tuple of commuting Hermitian operators, then .�/00

is the algebra of Borel functions of � by functional calculus and this relates D.� I J/ to
smoothness properties of operator functions, see for instance [10,18, 21] and related
work.
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5. Commutants mod normed ideals associated with differentiable manifolds

Let X be a compact C1-manifold with boundary [13]. Let � be a Radon mea-
sure on X such that in each local parametrization the restriction of � has the same
absolute continuity class as Lebesgue measure. The representation M WL1.XI�/!
B.L2.XI�// by multiplication operators M.f /h D f h, up to unitary equivalence
does not depend on the choice of �. The intertwining operator for the representations
arising from two such measures is given by multiplication with the square-root of their
Radon–Nikodym derivative. Let .J; j jJ/ be a normed ideal, which to simplify, is so
that R is dense in J. Then we define

E.X; J/ D ¹X 2 B.L2.X; �// j ŒM.C1.X//; X� � Jº

the �-algebra which is the commutant mod J ofM.C1.X//. If ˛ is a diffeomorphism
of X, there is a unitary operator U˛h D .h ı ˛�1/ � Œ˛�� W ��1=2 on L2.X; �/ so that
˛ ! U˛ is a representation of Diff .X/ and

U˛M.f /U
�1
˛ DM.f ı ˛�1/:

It follows that
U˛E.XI J/U

�1
˛ D E.XI J/;

and we see that
˛ ! .X ! U˛XU

�1
˛ /

gives a homomorphism of Diff .X/ into the automorphisms of E.XI J/. Our next aim
is to show that E.XI J/ can actually be defined using only finitely many M.f / so that
we can use the results on commutants mod a normed ideal of commuting n-tuples of
Hermitian operators. In particular, E.XI J/ is a Banach algebra with involution.

Lemma 5.1. Let � D .Xj /1�j�n be a n-tuple of commuting Hermitian operators
and � � Rn an open set so that the spectrum �.�/ � �. If J is a normed ideal and
F W�! R is a C1-function, and if Y 2 B.L2.X; �//, then

jŒF .�/; Y �jJ � C jŒ�; Y �jJ;

where the constant does not depend on J.

This is well known. It can for instance be proved by dealing first with the case of
F.x1; : : : ; xn/ D exp.i

P
1�j�n xj �j / and then obtaining the result for general F by

using the fact that the Fourier transform can be used to express F.�/ as an integral
involving exponentials applied to � .
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Proposition 5.1. Let f1; : : : ; fm 2 C1.X/ be such that F WX! Rm, where F D
.f1; : : : ; fm/ is a neat embedding of X into a half-space of Rm, in the sense of [13].
Then we have

E.XI J/ D E
�
.M.fj //1�j�mI J

�
:

Proof. Obviously, we have that the “left-hand side � right-hand side”, so what we
need to prove is that the “left-hand side � right-hand side”. We need to prove that if
X 2 E..M.fj //1�j�mI J/ and g 2 C1.X/ is real-valued then ŒM.g/; X� 2 J. This
follows from Lemma 5.1 since we can find a C1-function GW�! R, where � is a
neighborhood of F.X/, so that G ı F D g and then

G
�
M.f1/; : : : ;M.fm/

�
DM.g/:

Since X is compact by [13, Theorem 4.3], the embedding assumption in the pre-
ceding proposition can be satisfied and thus the results we have for commutants mod
normed ideals of m-tuples of Hermitian operators apply to E.XI J/. In what follows
we list a few of the consequences which we would like to point out in particular. An
embedding of X provides a norm on E.XI J/ with respect to which it is a Banach
algebra with isometric involution and using the closed graph theorem one finds that
different embeddings give rise to equivalent norms on E.XI J/. Then E.XI J/ \ K,
which we shall denote by K.XIJ/, is a closed ideal and E=K.XIJ/D E.XIJ/=K.XIJ/

is also a Banach algebra with involution.

Theorem 5.1. Let X be a compact smooth manifold with boundary and real-valued
f1; : : : ; fm 2 C

1.X/ which give a neat embedding of X (see [13]). Further, let
.J; j jJ/ be a normed ideal so that J � C�n , J ¤ C�n and with R dense in J, where n is
the dimension of X. Then,
(a) kJ.M.f1/; : : : ; M.fm// D 0, 0 < k�n .M.f1/; : : : ; M.fm// <1, and if H1 �

L2.M;�/ is an invariant subspace for .M.f1/; : : : ;M.fm//, H1 ¤ 0, then still

k�n
�
M.f1/jH1

; : : : ;M.fm/jH1

�
> 0:

(b) E=K.XIC�n / is (non-isometrically) isomorphic to a C �-algebra and E=K.XI J/ is
a C �-algebra, the norm being independent of the embedding.

(c) The center of E=K.XI C�n / is �.M.C.X///. Also, the center of E=K.XI J/ is
�.M.C.X///.

(d) If n � 3 and vm 2 C1.X/ are such that jvmj D 1 and w � limm!1M.vm/ D 0,
then the strong limit

ˆ.T / D s � lim
m!1

M.vm/TM.vm/
�
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exists for every T 2 E.XIC�n / and is independent of the choice of vm’s and gives
a �-homomorphism

ˆWE.XIC�n /!M
�
L1.X; �/

�
;

so thatˆ.M.f //DM.f / if f 2 L1.X; �/, kˆk D 1, andˆ.K.X;C�n //D ¹0º.
In particular, there is a �-homomorphism

‰WE=K.XIC�n /! �
�
M
�
L1.XI�/

��
;

so that � ıˆ D ‰ ı � .

Proof. (a) One can cover X with a finite number of open sets in each of which there
is some subset of ¹f1; : : : ; fmº which provides a coordinate system. Then L2.XI�/ is
an orthogonal sum of L2.�I� j �/ where � is a Borel subset of one of those open
sets. Then the assertion reduces to that for an .nC p/-tuple of commuting Hermitian
operators the first n of which have joint spectrum which is Lebesgue of multiplicity one
and the remaining p are smooth functions of these. Thus, (a) becomes a consequence
of the facts about normed ideal perturbations of commuting n-tuples of Hermitian
operators (see [3, 26–28]) supplemented by Lemma 5.1.

(b) This is a consequence of (a) and of [30].

(c) This follows from [5,32] and (a).

(d) Let vm 2 C1.X/ be such that jvmj D 1 and w � limm!1M.vm/ D 0, then the
strong limit

s � lim
m!1

M.vm/TM.vm/
�
D ˆ.T /

exists for every T 2 E.XI C�n /. This is obtained after a construction like that in the
proof of (a) from [27, Theorem 2.3], the comments following it, and [27, Corollary 1.6].
As remarked in [27] the fact that the sequence of vm is arbitrary implies, ˆ does not
depend on the choice of vm’s which implies

ˆ.T / 2
�
M
�
C1.X/

��0
DM

�
L1.XI�/

�
:

Note that if T 2 K.X; C�n /, then ˆ.T / 2 K and K \M.L1.XI �// D ¹0º gives
ˆ.T / D 0.

It is also useful to make the following simple observation. If we compress E.XI J/
to L2.�I�/, where � � X is a Borel set, we get the commutant mod J of the multi-
plication operators by f j�, where f 2 C1.X/, or equivalently of f1j�; : : : ; fnj� for
an embedding f1; : : : ; fm of X. Note also these kinds of consideration carry over to
K.XI J/ and E=K.XI J/. In particular, we have the following, for an arbitrary normed
ideal J.
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Lemma 5.2. Let A � X n @X be a closed submanifold with boundary of the same
dimension as X and P DM.�A/. Then

E.AI J/ D PE.XI J/ j L2.A; � j A/

and we also have isometric isomorphisms of E=K.AI J/ and �.P /E=K.XI J/�.P /.

If J � C�n by Theorem 5.1 (c), the center of E=K.XI J/ being �.M.C.X/// to an
open setU �X there, corresponds a closed two-sided idealE=K.U;XIJ/ ofE=K.XIJ/
which can be defined as follows. IfA� X is a Borel set let PA be the projectionM.�A/,
where �A is the indicator function. We define E=K.U;XI J/ to be the closure of[

K��U

�.PK/E=K.XI J/�.PK/;

where K �� U denotes the fact that K � U is a compact subset.

Lemma 5.3. (a) IfKj��U , then j 2N are such thatKj�
ı

KjC1 and
S
j2N Kj DU ,

then E=K.U;XI J/ is the closure of[
j2N

�.PKj
/E=K.XI J/�.PKj

/:

(b) If f 2 C.X/ is such that f �1.0/ D X n U , then E=K.U;XI J/ is the closure of

�.M.f //E=K.XI J/:

(c) E=K.U;XI J/ is the closed two-sided ideal of E=K.XI J/ generated by

¹�.M.f // j f 2 C.X/; f j X n U D 0º:

Proof. (a) Part (a) is obvious since every compact setK��U is contained in someKj .

(b) LetKjD¹x 2X j jf .x/j � 1=j º. SinceKj��U and kjPKj
M.f / �M.f /kj!0,

we easily get
�.M.f //E=K.XI J/ � E=K.U;XI J/:

Also,

�.M.f //E=K.XI J/ � �.M.f //�.PKj
/E=K.XI J/�.PKj

/

� �.PKj
/E=K.XI J/�.PKj

/

and (a) gives the converse inclusion.

(c) Since �.M.f // is in the center of E=K.XI J/ we have that �.M.f //E=K.XI J/
is a two-sided ideal and we can also use (b) to get (c).
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We shall look at the case when the open set U D X nN where N is a submanifold
satisfying certain conditions so that we can use tubular neighborhood results ([13])
when describing E=K.U;XI J/. We shall assume N is a compact submanifold without
boundary in X (thus, N \ @X D ;). Using a tubular neighborhood of N and an
orthogonal structure on the vector bundle from which it arises (see [13, pp. 116–117])
the open disk-subbundle of radius " > 0 yields an open neighborhood N" of N so that
the closure xN" is a compact submanifold of X with boundary @N" � X n @X.

Note thatK" D X nN" is then a compact manifold with boundary @N" [ @X. Since
0 < "1 < "2) N"1

� N"2
and

T
">0N" D N , we can use Lemma 5.3 (a) which says

that if J � C�n , then E=K.X nN;XI J/ is the closure of[
">0

�.P"/E=K.XI J/�.P"/;

where P" DM.XXnN"
/.

Of course, the preceding union can be taken over " 2 ¹1=j j j 2 Nº. Then by
Lemma 5.2, �.P"/E=K.XI J/�.P"/ identifies with E=K.X nN"I J/. Remark also that
the assumption J� C�n guarantees that these are C �-algebras or at least closed subalge-
bras of a Banach algebra isomorphic to aC �-algebras. This gives thatE=K.X nN;XI J/
is isomorphic to the inductive limit of the C �-algebras which are isomorphic to the
E=K.X nN1=j I J/. We record this as the next lemma.

Lemma 5.4. Let N be a compact submanifold without boundary of X and assume
J � C�n . Then the ideal E=K.X nN;XI J/ is a Banach algebra which is isomorphic
to the inductive limit of the C �-algebras isomorphic to E=K.X n N1=j I J/ for the
1=j -neighborhoods of N constructed above.

Next we shall take a look at the effect of connected sums of smooth manifolds on
the associated algebras E=K.XI J/ when J � C�n .

Let X;Y be two compact smooth manifolds of the same dimension n and X # Y their
connected sum. Then the construction of the connected sum gives two points x 2X n @X,
y 2 Y n @Y, open sets U; V � X # Y so that U [ V D X # Y, and diffeomorphisms

˛WU ! X n ¹xº; ˇWV ! Y n ¹yº; 
 WU \ V ! .0; 1/ � Sn�1:

Moreover, there are continuous functions f; gWX # Y! Œ0;1/ so that

f �1..0;1// D U; g�1..0;1// D V; f C g D 1; and pr1 ı 
 D f j U \ V:

Lemma 5.5. We have

E=K.U;X # YI J/C E=K.V;X # YI J/ D E=K.X # YI J/;

E=K.U;X # YI J/ \ E=K.V;X # YI J/ D E=K.U \ V;X # YI J/:
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Proof. Lemma 5.3 (b) gives

�
�
M.f /

�
E=K.X # YI J/ � E=K.U;X # YI J/;

�
�
M.g/

�
E=K.X # YI J/ � E=K.V;X # YI J/

and we have f C g D 1, which yields the first equality. Since

kf 1=kf � f k ! 0 and kg1=kg � gk ! 0 as k !1;

we see that Lemma 5.3 (b) implies that .�.M.f 1=k///k�1 and .�.M.g1=k///k�1 are
approximate units of the ideals E=K.U;X # YI J/ and E=K.V;X # YI J/, respectively.
Then .�.M.f 1=k//�.M.g1=k///k�1 is an approximate unit for

E=K.U;X # YI J/ \ E=K.V;X # YI J/:

Again by Lemma 5.3 (b), we have

�
�
M.f 1=k/

�
�
�
M.g1=k/

�
D �

�
M
�
.fg/1=k

��
2 E=K.U \ V;X # YI J/;

so that

E=K.U;X # YI J/ \ E=K.V;X # YI J/ � E=K.U \ V;X # YI J/:

The opposite inclusion is obvious.

With these preparations we apply the Mayer–Vietoris exact sequence [12] to this
situation.

K0.E=K.U \ V;X # YI J//
K0.E=K.U;X # YI J//

˚K0.E=K.V;X # YI J//
K0.E=K.X # YI J//

K1.E=K.X # YI J//
K1.E=K.U;X # YI J//

˚K1.E=K.V;X # YI J//
K1.E=K.U \ V;X # YI J//

We will work more on identifying the terms of this exact sequence so that it relates the
groups Kj .E=K.X # YI J// to groups which no longer involve X # Y.

Lemma 5.6. With the notation introduced and the assumption J � C�n , the diffeomor-
phisms ˛; ˇ; 
 give rise to isomorphisms

E=K.U;X # Y; J/ ' E=K.X n ¹xº;XI J/;

E=K.V;X # Y; J/ ' E=K.Y n ¹yº;YI J/;

E=K.U \ V;X # YI J/ ' E=K..0; 1/ � Sn�1; Œ0; 1� � Sn�1I J/:
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Proof. We can apply Lemma 5.4 to E=K.X n ¹xº;XI J/ with N D ¹xº and the tubular
neighborhood arising from the local coordinates chosen for the connected sum gluing.
LetKj DX nN1=j and ˛�1.Kj /DLj � U . Then E=K.X n ¹xº;XIJ/ is the inductive
limit of E=K.Kj IJ/ and E=K.U;X # YIJ/ is the inductive limit of the E=K.Lj IJ/. The
diffeomorphism ˛ produces an isomorphism of the inductive limits. The identification
of E=K.V;X # YI J/ and E=K.Y n ¹yº;YI J/ using ˇ is clearly completely analogous.

For the last assertion let now Kj D Œ1=2j; 1 � 1=2j � � S
n�1 and Lj D 
�1.Kj /.

Then Kj and Lj are compact submanifolds with boundary of Œ0; 1� � Sn�1 and X # Y,
respectively, which do not intersect the boundaries of these. Using Lemmas 5.2 and 5.3,
we get that E=K.U \ V;X # YI J/ and E=K.U \ V;X # YI J/ are then identified with
the inductive limit of the E=K.Kj I J/ and respectively of the E=K.Lj I J/ and these
are isomorphic via isomorphisms induced by 
 .

With the identifications provided by the preceding lemma, the reader can further
pursue this and work out what the inclusions

E=K.U \ V;X # YI J/ � E=K.U;X # YI J/;

E=K.U \ V;X # YI J/ � E=K.V;X # YI J/;

E=K.U;X # YI J/ � E=K.X # YI J/;

E=K.V;X # YI J/ � E=K.X # YI J/

will correspond to in terms of

E=K.X n ¹xº;XI J/; E=K.Y n ¹yº;YI J/; E=K..0; 1/ � Sn�1; Œ0; 1� � Sn�1I J/:

In the end, we get an exact sequence which we record as the next theorem.

Theorem 5.2. The Mayer–Vietoris exact sequence gives rise to an exact sequence

K0.E=K..0; 1/ � S
n�1;

Œ0; 1� � Sn�1
I J//

K0.E=K.X n ¹xº;XI J//

˚K0.E=K.Y n ¹yº;YI J//
K0.E=K.X # YI J//

K1.E=K.X # YI J//
K1.E=K.X n ¹xº;Xj I J//

˚K1.E=K.Y n ¹yº;YI J//

K1.E=K..0; 1/ � S
n�1;

Œ0; 1� � Sn�1
I J//

We begin the concluding remarks for this section with two K-theory ([4, 12])
consequences of Theorem 5.1.

If the dimension n of X is � 3, the homomorphism

‰WE=K.XIC�n /! �
�
M
�
L1.X; �/

��
;

so that
‰ j �

�
M
�
L1.X; �/

��
D id�.M.L1.X;�///

has immediately the following K-theory consequences.
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Corollary 5.1. Assume n D dimX � 3. Then

K0
�
L1.XI�/

�
' ¹f 2 L1.X; �/ j f .X/ � Zº

is isomorphic to a direct summand of K0.E=K.X; J// and the isomorphism is also
with respect to the order structure. We also have that

K1
�
E=K.XI J/

�
' K1.ker‰/:

By Theorem 5.1, if J � C�n , we have that �.M.C.X/// ' C.X/ is the center of
E=K.XI J/. This yields a homomorphism

ZWC.X/˝ E=K.XI J/! E=K.XI J/;

where the left-hand side has a norm equivalent to that of the tensor product of the
C �-algebras C.X/ and p.E.XI J// and which maps f ˝ 1 to �.M.f // and 1˝ T
to T . Moreover, if �WC.X/˝ C.X/! C.X/ is the restriction to the diagonal then

Z ı .�˝ id/ D Z ı .id˝Z/:

This can then be used to get that K0.E=K.XI J// is a K0.C.X//-module and a similar
reasoning with C.X/˝ C.S1/ and E=K.XI J/˝ C.S1/ gives that the Z=2Z graded
K�.E=K.XI J// is a K�.C.X//-module, which is certainly not a new thing about the
center of a C �-algebra p.E.XIC�n // so that we deal with C �-algebras.

Corollary 5.2. K�.E=K.XI J// is a K�.C.X//-module when J � C�n .

Remark 5.1. The fact that Theorem 5.1 (c) identifies the center ofE=K.XIJ/withC.X/
when J � C�n means that E=K.XI J/ is a C.X/-algebra in the sense of G. G. Kas-
parov [16], a notion which was generalized by E. Kirchberg [17] to so-called X-algebra
or algebra over a topological space. This suggests that when studying the K-theory
of E=K.XI J/ it may be natural to consider K-groups which take the X-structure into
account (see [1, 17, 20]). Note however that with E=K.XI J/ one will have to deal with
a rather different class of X-algebras than those in [1, 7, 17, 20], algebras which are
non-separable and far from bundles. However, at least when X has no boundary, the
action of the diffeomorphism group of X on E=K.XI J/ provides some homogeneity.

Remark 5.2. From these considerations about E=K.XIJ/ it seems that certain aspects
with operations, like performing connected sums may be somewhat manageable. On
the other hand in the simple cases when X is a sphere or a ball or a product of spheres
and balls there is a lot of mystery about the E=K.XIJ/. On the analysis side the smooth
functions on X which arise from the bicommutant mod J construction in Section 4 is
certainly an important analytic question about E=K.XI J/.
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Remark 5.3. Since the smooth algebra D.�; J/ depends only on E.� I J/, we see that
D.� I J/, where � is a m-tuple of multiplication operators from an embedding of X
into Rm, does not depend on the choice of the embedding. Thus, we get an algebra
D.XI J/ which depends only on X. If the dimension of X is > 0, we also have that

D.XI J/ \K D ¹0º:

Thus, D.XI J/ and D=K.XI J/ are isomorphic if dimX > 0.
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