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Irreducible inclusions of simple C �-algebras
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Abstract. The literature contains interesting examples of inclusions of simple C�-algebras
with the property that all intermediate C�-algebras likewise are simple. In this article we take
up a systematic study of such inclusions, which we refer to as being C�-irreducible by the
analogy that all intermediate von Neumann algebras of an inclusion of factors are again factors
precisely when the given inclusion is irreducible.

We give an intrinsic characterization of when an inclusion ofC�-algebras isC�-irreducible,
and use this to revisit known and exhibit new C�-irreducible inclusions arising from groups and
dynamical systems. Using a theorem of Popa one can show that an inclusion of II1-factors is
C�-irreducible if and only if it is irreducible with finite Jones index. We further show how one
can construct C�-irreducible inclusions from inductive limits, and we discuss how the notion
of C�-irreducibility behaves under tensor products.
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1. Introduction

Jones’ index of subfactors ([18]) and the subsequent classification of subfactors
of finite depth, are famous examples of the rich mathematical structure possessed by
inclusions of operator algebras. The classification of hyperfinite von Neumann factors
was an inspiration for the recently (almost) completed classification of simple nuclear
C �-algebras (the Elliott program), and the Jones theory of subfactors has likewise been
a model for understanding inclusions of C �-algebras, see for example [16].

Inclusions ofC �-algebras are ubiquitous in operator algebras, and are perhaps most
often encountered in C �-dynamics. If a group � acts on a C �-algebra A, then both A

and the groupC �-algebra of � are sub-algebras of the crossed product of A with �; and
the fixed-point algebra A� is a subalgebra of A. An inclusion of groups ƒ � � gives
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rise to an inclusion of group C �-algebras and von Neumann algebras, and, whenever �
acts on a given C �-algebra, also of their crossed products.

Given an inclusion B � A of C �-algebras, it is natural to consider the lattice of
intermediate C �-algebras. In some special cases of interest one can even classify these,
or one can show that each intermediate algebra shares properties with A and B. Perhaps
the best understood inclusions are those arising from crossed products: B � B Ìred � ,
where B is simple and the action � ÕB is outer. It is an easy consequence of classical
results of Kishimoto, Olesen–Pedersen from ca. 1980 that any intermediate C �-algebra
of these inclusions is simple, making the inclusionsC �-simple, see Section 5. Moreover,
there is a Galois-type correspondence between intermediate C �-algebras of such an
inclusion and subgroups of � as shown by Izumi [16], and Cameron an Smith [9]. A
similar Galois-type correspondence was established in [8] of intermediate C �-algebras
of the inclusion of a groupoid C �-algebra and its canonical Cartan subalgebra in terms
of sub-groupoids.

Amrutam and Kalantar show in [3] that the inclusionC �
�
.�/�AÌred � isC �-irre-

ducible under certain “mixing” conditions on the action, and Amrutam and Ursu proved
a Galois correspondence for the intermediate C �-algebras of these inclusions under
some further conditions. In Theorem 5.12 we improve the first mentioned result,
giving a necessary and sufficient condition for the inclusion C �

�
.�/ � A Ìred � to be

C �-irreducible.
Izumi–Longo–Popa established in [17] a Galois correspondence between interme-

diate von Neumann algebras of the inclusion MG �M and subgroups of G, where M

is a factor and G is a compact group equipped with a minimal action on M. Izumi
established in [16] a similar Galois correspondence for the inclusion A� � A arising
from an outer action of a finite group � on a unital simple C �-algebra A. In particular,
the inclusion A� � A is C �-irreducible.

Another Galois correspondence was established by Suzuki [31], who proved that
any intermediate C �-algebra of an inclusion C.Y / Ì � � C.X/ Ì � is of the form
C.Z/ Ì � (under suitable conditions explained in Section 2 below).

The purpose of this paper is to explain when an inclusion of C �-algebras is
C �-irreducible, i.e., has the property that all intermediate C �-algebras are simple,
and to provide (new) examples of such inclusions. We expect that the lattice of inter-
mediate C �-algebras of such inclusions will exhibit a more rigid structure allowing for
a better understanding; and, indeed as described above, complete classifications of the
lattice of intermediate C �-algebras of C �-irreducible inclusions have been obtained
in several cases of interest. In Section 3 we give an intrinsic characterization of when
an inclusion of simple C �-algebras is C �-irreducible. The condition states that an
inclusion B � A of unital C �-algebras is C �-irreducible if and only if each non-zero
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positive element in A is full relatively to B (as defined in Section 3). This condition is
clearly sufficient for C �-irreducibility, and we prove it is also necessary.

Being C �-irreducible is a stronger property than the usual notion of irreducibility
of an inclusion, namely that the relative commutant is trivial. In Section 4 we consider
when an inclusion of von Neumann factors is C �-irreducible. By a theorem of Popa,
this happens for an inclusion of II1-factors if and only if the inclusion is irreducible (in
the usual sense) and of finite Jones’ index. In Section 5 we consider when inclusions
arising from groups and dynamical systems are C �-irreducible, and we revisit here
some of the results mentioned above.

We show in Section 6 how to construct C �-irreducible inclusions from inductive
limits. In particular, we give examples of C �-irreducible inclusions of UHF-algebras.
The construction involves the relative position of finite dimensional sub-C �-algebras
inside another finite dimensional C �-algebra, and leads to the notion that we call
everywhere non-orthogonal subalgebras.

Finally, in Section 7, we show how C �-irreducible inclusions behave under taking
tensor products. We begin in Section 2 by explaining in more detail some key examples
that motivated this paper.

2. Inclusions of C �-algebras and their intermediate C �-algebras

This section contains a review of some results on inclusions of C �-algebras that
prompted me to formalize the idea of a C �-irreducible inclusion and to write this paper.
We focus in particular on results that provide an analog of the Galois correspondence
stating that all intermediate C �-algebras of a given inclusion share common properties
or arise in a certain way. One famous example of this situation is found in the tensor
splitting theorem below by Ge and Kadison on intermediate von Neumann factors of
an inclusion of tensor products, as well as a C �-analog of this result.

Theorem 2.1 (Ge–Kadison [13]). Let M be a von Neumann factor, let N be an
arbitrary von Neumann algebra, and let P be a von Neumann algebra such that

M x̋C � P �M x̋N :

Then P DM x̋N0 for some von Neumann subalgebra N0 of N .

In the theorem above x̋ denotes the (spatial) von Neumann algebra tensor product.
We let˝ denote the minimal C �-tensor product.

Let A and B be a unital C �-algebras. For each ' 2 A� there exists a bounded
linear map R' WA˝B ! B, called a slice map, satisfying R'.a˝ b/ D '.a/b for
a 2 A and b 2 B. The C �-algebra A is said to have Wassermann’s property (S) if
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for each unital inclusion B0 � B of C �-algebras and for each x 2 A˝B, one has
x 2 A˝B0 if and only if R'.x/ 2 B0 for all ' 2 A�, cf. [34]. Wassermann proved
in [35] that all nuclear C �-algebras have property (S).

The result below was obtained independently by Zsido [37] and Zacharias [36].

Theorem 2.2 (Zacharias, Zsido). Let E be a unital C �-algebra. Then E is simple
and has property (S) of Wassermann if and only if for each unital C �-algebra B and
each intermediate C �-algebra E ˝C �D � E ˝B, one has D D E ˝B0 for some
sub-C �-algebra B0 of B.

This theorem immediately implies simplicity of any intermediate C �-algebra of
an inclusion E ˝B � E ˝A, where E is simple and has property (S) and B � A is
C �-irreducible, cf. Theorem 7.1. Indeed, any such intermediate C �-algebra will be of
the form E ˝D for some C �-algebra B � D � A. Hence D is simple, so E ˝D is
also simple by Takesaki’s theorem.

Describing all intermediate C �-algebras of inclusion of the more general form

B1 ˝B2 � A1 ˝A2;

when Bj � Aj are C �-irreducible, j D 1; 2, is more tricky. We shall give partial
results about such inclusions in Section 7.

We now turn to inclusions arising from dynamical systems. We already mentioned
in the introduction inclusions of C �-algebras arising from crossed products, and we
shall get back to those examples in Section 5. Suzuki [31] established another Galois-
type correspondence between intermediate locally compact Hausdorff spaces equipped
with an action of a fixed group � , and of their associated crossed product C �-algebras:

Theorem 2.3 (Suzuki [31, Theorem 2.3]). Let � be a discrete group with the approxim-
ation property (AP) of Haagerup and Kraus. LetX and Y be locally compact Hausdorff
spaces with free �-actions for which there is a surjective continuous �-equivariant
map Y ! X . It follows that the map Z 7! C0.Z/ Ìred � is a bijection from the lattice
of �-spaces Z between X and Y to the lattice of intermediate C �-algebras of the
inclusion C0.X/ Ìred � � C0.Y / Ìred � .

In other words, each intermediate C �-algebra

C0.X/ Ìred � � D � C0.Y / Ìred �

is of the form D D C0.Z/ Ìred � for some �-equivariant intermediate C �-algebra

C0.X/ � C0.Z/ � C0.Y /;

under the assumption of Theorem 2.3.
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We mention also the following result on the existence of “tight inclusions” from [31]
establishing situations where the lattice of intermediate C �-algebras is trivial for non-
trivial reasons:

Theorem 2.4 (Suzuki [31, Theorem 5.1]). Let A be a simple C �-algebra that tensori-
ally absorbs the Cuntz algebra O1. Then A admits an endomorphism � for which the
inclusion �.A/ � A on the one hand is non-trivial in the sense that there is no condi-
tional expectation A! �.A/, while on the other hand it has no proper intermediate
C �-algebras, i.e., the inclusion is tight.

Suzuki has more results about tight inclusions in [32].
A discrete group � is said to be C �-simple if its reduced group C �-algebra C �

�
.�/

is simple. Amrutam and Kalantar prove in [3, Theorem 1.1] that for certain actions of a
C �-simple group � on a unital C �-algebra A, each intermediate C �-algebra D of the
inclusionC �

�
.�/�AÌred � is simple. As a corollary they obtain that for each minimal

action of a C �-simple group � on a compact Hausdorff space X , each intermediate
C �-algebra C �

�
.�/ � D � C.X/ Ìred � is simple. In Theorem 5.12 we extend these

results and provide a (partly) new proof based on the techniques developed here.
Amrutam and Ursu [4] consider the more general situation of a group � acting

minimally on compact Hausdorff spaces X and Y , where Y is a �-invariant factor
of X , ensuring that we have a �-equivariant inclusion C.Y / � C.X/. They show that
if C.Y / Ìred � is simple, then so is each intermediate C �-algebra of the inclusion

C.Y / Ìred � � C.X/ Ìred �;

cf. [4, Theorem 1.5]. If one further assumes that � has property (AP) and the action is
free, then Suzuki’s Theorem 2.3 implies that any such intermediate C �-algebra is of
the form C.Z/ Ìred � , which again yields simplicity.

The strategy of proof used in both the Amrutam–Kalantar and the Amrutam–Ursu
papers rely on clever generalizations of the Powers’ averaging property, which in its
original form states that

�0.x/ � 1 2 conv¹u�s xus W s 2 �º

for each x 2 C �
�
.�/, when � is a free group (on two or more generators), where �0 is

the canonical trace on C �
�
.�/, and where ¹utºt2� is the unitary representation of �

in C �
�
.�/. This, in turn, implies that C �

�
.�/ is simple with unique trace. It was later

shown independently by Haagerup [14], and Kennedy [19], that the Powers averaging
property above, in fact, characterizes C �-simple groups � .
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3. Irreducible inclusions of C �-algebras

Here is the main definition of this paper:

Definition 3.1. A unital inclusion B � A of simple unital C �-algebras is said to be
C �-irreducible if each intermediate C �-algebra B �D �A is simple. (The inclusion
B � A is unital if the unit of A belongs to B.)

It will be shown in Remark 3.8 below that any C �-irreducible inclusion B � A is
irreducible (in the sense that B 0 \A D C), while the converse is not true in general,
even under the additional assumption that A and B are simple. In some instances,
irreducibility and C �-irreducibility do agree, see for example Theorem 5.8, and see
also Theorem 4.4.

Further justification of the terminology of Definition 3.1 will be given in the next
section. We proceed to give an intrinsic description of C �-irreducible inclusions. First
we need the following:

Lemma 3.2. Let A be a unital C �-algebra and let W be a subset of A. Let a 2 AC,
and suppose that there exist x1; : : : ; xn 2 span.W/ such that

nX
jD1

x�j axj � 1A:

Then there exist w1; : : : ; wm 2 W such that
Pm
jD1w

�
j awj � 1A.

Proof. It suffices to show that for each x 2 span.W/ there exist w1; : : : ; wk 2W such
that

Pk
jD1w

�
j awj � x

�ax. Write x D
P`
jD1 �jwj , with wj 2W and �j 2 C. Since

v�aw C w�av � v�av C w�aw for all v;w 2 A, we get

x�ax D
X̀
i;jD1

.�jwj /
�a.�iwi / � `

X̀
jD1

j�j j
2w�j awj :

Upon repeating eachwj at least ` � j�j j2 times, and after relabelling thewj ’s, we obtain

x�ax �

kX
jD1

w�j awj ;

as desired.

An element a in a C �-algebra A is full if it is not contained in any proper closed
two-sided ideal of A. The following lemma is elementary and well known; see, e.g., [30,
Exercise 4.8] for (i)) (ii), and use Lemma 3.2 to see that (ii)) (iii).
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Lemma 3.3. The following conditions are equivalent for each positive element a in a
unital C �-algebra A:
(i) a is full in A,
(ii) there exist x1; : : : ; xn 2 A such that

Pn
jD1 x

�
j bxj � 1A,

(iii) there exist unitaries u1; : : : ; um 2 A such that
Pm
jD1 u

�
j buj � 1A.

Definition 3.4. Let B � A be a unital inclusion of C �-algebras. A positive element
a 2 A is said to be full relatively to B if there exist elements x1; : : : ; xn 2 B such that

nX
jD1

x�j axj � 1A:

The property of being relatively full as defined above can be reformulated as
follows:

Lemma 3.5. Let B �A be a unital inclusion of C �-algebras. Let W be a subset of B

such that span.W/ is dense in B. Then the following conditions are equivalent for each
positive element a 2 A:
(i) a is full relatively to B,
(ii) there exist x1; : : : ; xn 2 B such that

Pn
jD1 x

�
j axj is invertible in A,

(iii) there exist w1; : : : ; wm 2 W such that
Pm
jD1w

�
j awj � 1A,

(iv) there exist unitaries u1; : : : ; um 2 B such that
Pm
jD1 u

�
j auj � 1A.

Proof. (iv)) (i)) (ii) are trivial, and (iii)) (iv) follows from the fact that any
unital C �-algebra is the span of its unitary elements.

(ii)) (iii). Note that the sum
Pn
jD1 x

�
j axj is invertible if and only if

nX
jD1

x�j axj � ı � 1A

for some ı > 0. Approximate each xj by elements yj 2 span.W/ close enough so that

nX
jD1

y�j ayj � .ı=2/ � 1A:

Multiplying each yj by .ı=2/�1=2 we obtain that
Pn
jD1 y

�
j ayj � 1A. It now follows

from Lemma 3.2 that (iii) holds for suitable w1; : : : ; wm 2 W .

The next result connects the notion of relative fullness to the usual notion of
fullness.
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Proposition 3.6. Let B � A be a unital inclusion of C �-algebras. A positive element
a 2A is full relatively to B if and only if a is full (in the usual sense) in the C �-algebra
C �.B; a/ generated by B and a.

Proof. If a is full relatively to B, then a is full in C �.B; a/ (e.g., by Lemma 3.3).
Suppose conversely that a is full in C �.B; a/. Let W be the set of elements in

C �.B; a/ of the form w D b1ab2 � � � br�1abr , with r � 1 and bj 2 B. As we may
take b1 and/or br to be 1B , we see that span.W/ is dense in C �.B; a/.

By Lemma 3.5 there exist w1; : : : ; wm 2 W such that

mX
jD1

w�j awj � 1A:

To complete the proof we show that whenever w D b1ab2 � � � br�1abr 2 W , with
bj 2 B, then there exists x 2 B such that x�ax � w�aw. There is nothing to prove
if r D 1. For r � 2 we may write w D vab, where v 2 W and b 2 B. Now,

w�aw D b�av�avab

D b�a1=2
�
a1=2v�ava1=2

�
a1=2b

� ka1=2v�ava1=2k b�ab D x�ax;

when x D ka1=2v�ava1=2k1=2b 2 B.

For the next result, that characterizes C �-irreducible inclusions, recall that a
C �-algebra is said to have property (SP) (for small projections) if each non-zero
hereditary sub-C �-algebra contains a non-zero projection. Clearly, all C �-algebras of
real rank zero (and hence all von Neumann algebras) have property (SP).

When a is a positive element in a C �-algebra A and " > 0, let .a � "/C denote
the positive part of the self-adjoint element a � " 1A.

Proposition 3.7. A unital inclusion B � A of C �-algebras is C �-irreducible if and
only if each non-zero positive element A is full relatively to B.

If A has property (SP), then it suffices to verify that each non-zero projection in A

is full relatively to B.

Proof. Take an intermediate C �-algebra B � D � A. If each non-zero positive ele-
ment A is full relatively to B, then each non-zero positive element of D is full in D ,
whence D is simple. Suppose, conversely, that B � A is a C �-irreducible inclusion.
Let a 2 A be a non-zero positive element. Then a is full in the (necessarily simple)
intermediate C �-algebra C �.B; a/, so a is full relatively to B by Proposition 3.6.
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Suppose finally that A has property (SP). Let a be a non-zero positive element
in A and choose 0 < " < kak. Then .a � "/C is non-zero and positive, so the heredit-
ary sub-C �-algebra .a � "/CA.a � "/C contains a non-zero projection p, which by
assumption is full relatively to B. As a � "p, it follows that a is full relatively to B.

Remark 3.8. If B�A is aC �-irreducible inclusion ofC �-algebras, then B 0 \ADC,
i.e., the inclusion is irreducible. Indeed, if B 0 \A ¤ C and if a is a positive non-zero
and non-invertible element in B 0 \A, then a is not full inC �.B; a/, cf. Proposition 3.6
and Lemma 3.5, and C �.B; a/ is therefore is a non-simple intermediate C �-algebra.
(More generally, C �.B; a/ is non-simple whenever a 2 B 0 \A is non-zero and non-
invertible.)

In particular, if E and B are unital simple C �-algebras with B ¤C, then E ˝C �

E ˝B is not irreducible and hence not C �-irreducible. Also, there are no non-trivial
C �-irreducible inclusions of finite dimensional C �-algebras.

The converse does not hold, even under the additional (necessary) assumption
that A and B are simple, see Example 5.14. For another example, any irreducible
inclusion N �M of II1 factors with infinite Jones index fails to be C �-irreducible,
cf. Theorem 4.4 below.

Remark 3.9. Neither irreducibility nor C �-irreducibility are “transitive” in the sense
that if C � B � A are unital inclusions of C �-algebras such that C � B and B � A

are irreducible, respectively, C �-irreducible, then one cannot conclude that C � A

has the same property.
Consider, for an example, an irreducible inclusion N �M of II1 factors with finite

Jones index, and let M1 D .M [ ¹eN º/
00 be the standard construction of Jones. Then

M �M1 is irreducible and

ŒM1 WM� D ŒM W N � <1:

Hence, N �M and M�M1 are bothC �-irreducible by Theorem 4.4, but N 0 \M1¤

C1 (since eN 2N 0\M1), so N �M1 is not irreducible, and hence notC �-irreducible.
Here is another example: Take a unital simple C �-algebra B and an outer action ˛

of a cyclic group Zd on B. Let y̨ be the dual action of bZ=d on B Ì˛ Zd . Then
B �B Ì˛ Zd and B Ì˛ Zd � .B Ì˛ Zd /Ìy̨ cZd areC �-irreducible by Theorem 5.8.
However, by Takai duality the inclusion B � .B Ì˛ Zd / Ìy̨ cZd is conjugate to the
inclusion B ˝ 1d � B ˝Md , which is not C �-irreducible, cf. Remark 3.8 above.

The proof of the second part of the lemma below is essentially identical with the
proof of [29, Proposition 2.2].
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Lemma 3.10. Let B � A an inclusion of unital C �-algebras. Suppose that B is
simple, and let a 2A be positive. Then a is full in B if there exist x 2B and a positive
non-zero element b 2 B such that either b � x�ax or kb � x�axk < kbk.

Proof. Note first that b is full in B by simplicity of B, so if b � x�ax, then x�ax,
and hence a, are full relatively to B.

Suppose that kb � x�axk < kbk. Set ı D kb � x�axk, and choose ı < " < kbk.
Choose a continuous function 'WRC ! RC which is zero on Œ0; ı� and 1 on Œ";1/.
Then

.b � "/C D '.b/.b � "/C'.b/ � '.b/.b � ı � 1A/'.b/ � '.b/x
�ax'.b/:

The latter claim now follows from the former.

We conclude this section by reviewing some related properties of unital inclusions
of C �-algebras:

Definition 3.11. A unital inclusion B � A of C �-algebras is said to have the relative
Dixmier property if CB.a/ \ C �1B ¤ ; for all a 2 A, where CB.a/ denotes the
closure of the convex hull of ¹u�au W u 2 U.B/º.

It was shown in [15] that a unital simple C �-algebra A has the Dixmier property
(i.e., CA.a/ \C �1A ¤ ; for all a 2 A), if and only if A has at most one tracial state.

Clearly, if B � A has the relative Dixmier property, then both A and B have
the Dixmier property. Moreover, if A has a tracial state � , then this trace must be
unique, its restriction to B is a unique trace on B, and CB.a/ \C �1B D ¹�.a/�1Bº

for all a 2 A.
Popa proved in [27, Theorem 2.1] that B � A has the relative Dixmier property

if (i) B has the Dixmier property, (ii) the inclusion has finite index with respect to some
conditional expectation EWA! B (i.e., there exists � > 0 such that E.a/ � �a for
all a 2 AC), and (iii) �'.B/0 \ �'.A/00 D C for some state ' on A (and where �' is
the associated GNS representation). Condition (i) is also necessary, but condition (ii) is
not (see [27, Corollary 4.1] and also Theorem 5.8). If B � A has the relative Dixmier
property, then B 0 \A D C, which is weaker than condition (iii).

Observe that B �A has the relative Dixmier property if and only ifCB.a/\B¤;

for all a 2 A, and B has the Dixmier property. Neither of these two properties hold in
general forC �-irreducible inclusions B �A. Indeed, one can constructC �-irreducible
inclusions B � A where B has unique trace and A has more than one trace (use, e.g.,
Theorem 5.12 or Theorem 5.8), and for such inclusions we must have CB.a/\B ¤ ;

for some a 2 A; and one can use Theorem 5.8 to construct the inclusion such that B

has more than one trace, in which case B does not have the Dixmier property. It follows
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easily from Lemma 3.5 and Proposition 3.7 that B � A is C �-irreducible if and only
if CB.a/ contains an invertible element (in A) for each non-zero positive element
a 2 A. This proves the following:

Proposition 3.12. A unital inclusion B � A of C �-algebras is C �-irreducible if it
has the relative Dixmier property and A has a faithful tracial state.

Definition 3.13. A unital inclusion B � A of C �-algebras with a conditional expect-
ation EWA! B is said to have the pinching property if for each non-zero positive
element a 2 A and each " > 0 there exists a contraction h 2 B such that

kh�ah � h�E.a/hk � " and kh�E.a/hk � kE.a/k � ":

Definition 3.14. A unital inclusion B � A of C �-algebras is said to have the relative
excision property with respect to a state  on A if there is a net ¹h˛º of positive
elements in B satisfying

kh˛k D 1 and lim̨ kh1=2˛ ah1=2˛ �  .a/h˛k D 0

for all a 2 A.

Kwasniewski and Meyer consider in [21] a related version of the pinching property
leading to their notion of aperiodic inclusions, meaning an inclusion B � A of C �-
algebras for which for each a 2 A, each non-zero hereditary sub-C �-algebra H of A,
and each " > 0 there exists x 2HC with kxk D 1 and b 2B such that kxax � bk < ".
They show, under some additional assumption on the inclusion, that aperiodicity of
B �A implies that B “detects ideals” of all intermediateC �-algebras of the inclusions,
which in particular implies C �-irreducibility when B is simple, see [21, Theorems 7.2
and 7.3].

Definition 3.14 is a relative version of the usual excision property for a state  on
a C �-algebra A, in which the net ¹h˛º resides in A. The excision property is known
to hold for all pure states, and more generally for all states in the weak� closure of the
pure states, and hence for all states if the C �-algebra is antiliminal, see [1].

The relative excision property behaves well with respect to tensor products, see
Proposition 7.2, and holds in some naturally occurring cases, see, e.g., Lemma 5.7. It
would be interesting to understand which states satisfy the relative excision property
with respect to a given inclusion B � A.

Proposition 3.15. Let B � A be a unital inclusion of C �-algebras which either has
the pinching property with respect to some faithful conditional expectation EWA! B,
or has the relative excision property with respect to a faithful state  on A. If, in
addition, B is simple, then B � A is C �-irreducible.
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Proof. Assume first B � A has the pinching property with respect to a faithful condi-
tional expectation EWA! B. Let a 2 A be non-zero and positive. Then we can find
a contraction h 2 B such that

kh�ah � h�E.a/hk <
1

2
kE.a/k � kh�E.a/hk:

Hence, a is full relatively to B, by Lemma 3.10.
Assuming instead that B �A has the relative excision property for a 2A non-zero

and positive, take h 2 BC with khk D 1 such that

kh1=2ah1=2 �  .a/hk < k .a/hk:

Then, again by Lemma 3.10, we conclude that a is full relatively to B.

Izumi proved in [16, Theorem 3.3] that if B �A is a unital inclusion ofC �-algebras
with a conditional expectation EWA! B of finite index, and if A, respectively, B

is simple, then B, respectively, A, is a finite direct sum of simple C �-algebras. In
particular, if the inclusion B � A is irreducible, then A is simple if and only if B is
simple. This proves the following:

Corollary 3.16 (Izumi). A unital inclusion B � A of C �-algebras of finite index with
respect to some conditional expectation EWA! B is C �-irreducible if and only if it
is irreducible.

4. Irreducible inclusions of von Neumann algebras

An inclusion N �M of von Neumann factors is irreducible if N 0 \MDC. Since
P 0 \P � N 0 \M D C for each intermediate von Neumann algebra N � P �M,
each such von Neumann algebra P is a factor. This analogy with C �-irreducible
inclusions goes further as shown in the remark below and in Theorem 4.4.

Remark 4.1. An inclusion N � M of von Neumann factors is irreducible if and
only if _

u2U.N /

u�pu D 1

for each non-zero projection p 2M. Indeed,
W
u2U.N / u

�pu is easily seen to belong
to N 0 \M; and if p 2 N 0 \M, then

W
u2U.N / u

�pu D p.
By Proposition 3.7 and Lemma 3.5, N �M is C �-irreducible if and only if for

each non-zero projection p 2M there exist finitely many unitaries u1; : : : ; un 2 N

such that
nX

jD1

u�j puj � 1:
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Now,
Pn
jD1 u

�
j puj � 1 implies

Wn
jD1 u

�
j puj D 1, while

Wn
jD1 u

�
j puj D 1 does not

even imply that
Pn
jD1 u

�
j puj is invertible. Nonetheless, the following question may

still have a positive answer.

Question 4.2. Is an inclusion N � M of von Neumann factors C �-irreducible if
and only if for each non-zero projection p 2 M there exist finitely many unitaries
u1; : : : ; un 2 N such that

Wn
jD1 u

�
j puj D 1?

Definition 4.3. A state � on a von Neumann algebra M is singular if for each non-zero
projection p 2M there exists a non-zero projection q � p in M such that �.q/ D 0.

A maximality argument shows that if � is a singular state on M, then for each
projection p 2M, there is a family .pi /i2I of pairwise orthogonal non-zero projections
in M satisfying p D

P
i2I pi and �.pi / D 0 for all i 2 I . Hence the restriction of �

to each corner pMp is non-normal.
The theorem below is essentially a restatement of the main result from Popa’s

paper [26]. I thank Adrian Ioana for pointing this out to me and also for explaining
how to obtain (i)) (iii) via results of Pop [25] and Popa [26].

Theorem 4.4 (Popa). The following conditions are equivalent for any inclusion N �M

of II1-factors with separable predual.
(i) N �M is C �-irreducible,
(ii) N �M has the relative Dixmier property,
(iii) N �M is irreducible with finite Jones index.

Proof. The equivalence of (ii) and (iii) is [26, Theorem 2.1] by Popa.

(i)) (iii). Suppose that N �M is C �-irreducible. Then N 0 \M D C, as observed
in Remark 3.8. We must show that ŒM W N � <1.

Let � denote the tracial state on M and on N . Following the proof of Pop [25,
Proposition 3.3], we first show that there is no singular state � on M which extends the
trace on N . Indeed, as shown in [25, Proposition 3.3], if such a state � exists, then there
is a singular positive N -bimodular map EWM ! L2.N ; �/ extending the identity
map on N . Being singular implies that there exists a non-zero projection e 2M with
E.e/ D 0. Since N �M is C �-irreducible we can find unitaries u1; : : : ; un in N

such that
Pn
jD1 u

�
j euj � 1M. This leads to the contradiction:

1M D E.1M/ � E

� nX
jD1

u�j euj

�
D

nX
jD1

u�jE.e/uj D 0:

On the other hand, Popa shows in [26, p. 763] that if ŒM W N � D1, then there exists a
singular state � on M that extends the trace on N , so we conclude that ŒM W N � <1.
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We include for completeness a brief sketch of Popa’s argument from [26]. It was
shown in [24] that

ŒM W N ��1 D sup¹� � 0 W EN .x/ � �x; 8x 2MCº;

whereEN is the canonical trace preserving conditional expectation onto N . Assuming,
to reach a contradiction, that ŒM WN �D1, Popa constructs, for each n � 1, a positive
element an 2M such that EN .an/ D 1N and �.s.an// � 2�n, where s.an/ denotes
the support projection of an. Define, for each n � 1, a (normal) state  n on M by
 n.x/ D �.xan/, x 2M. Then

 n.y/ D �.yan/ D �.yEN .an// D �.y/

for all y 2 N .
Let  be a weak� accumulation point of the sequence ¹ nº. Then  .y/D �.y/ for

all y 2 N . Set pm D
W1
nDm s.an/. Then ¹pmº is a decreasing sequence of projections

in M with limit
V1
nD1 pn D 0, because

�
� 1^
nD1

pn

�
D inf

n
�.pn/ � inf

n

1X
jDn

�.s.aj // � inf
n
2�nC1 D 0:

On the other hand,

 n.s.an// D �.s.an/an/ D �.an/ D 1

for all n� 1, so n.pm/D 1 for all n�m, which implies that .pm/D 1 for allm� 1.
Thus, 1 � pn ! 1M while  .1 � pn/ D 0, which shows that  is singular.

(ii)) (i) holds by Proposition 3.12.

The condition of finite index appearing in Theorem 4.4 above does not carry over to
general unital inclusions of simple C �-algebras B �A as noted in [26, Corollary 4.5],
see also Example 5.4, Theorem 5.8 and Proposition 7.2.

Remark 4.5. It follows from Popa’s theorem (the equivalence of (ii) and (iii) in the
theorem above) that if Ni �Mi , i D 1; 2, are inclusions of II1-factors with the relative
Dixmier property, then N1 x̋N2 �M1 x̋M2 also has the relative Dixmier property;
and further that this fails for infinite tensor products.

Question 4.6. Is each irreducible inclusion N �M of type III factors C �-irreducible?
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5. Inclusions arising from groups and dynamical systems

Inclusions of both von Neumann algebras and C �-algebras arise from groups and
dynamical systems in several interesting ways. In Section 2 we already mentioned
results of Amrutam–Kalantar and Amrutam–Ursu stating when inclusions of the form
C �
�
.�/ � A Ìred � and C.Y / Ìred � � C.X/ Ìred � are C �-irreducible. We shall

here add further related examples to the list. At the end of the section we revisit the
Amrutam–Kalantar theorem.

Inclusions arising from subgroups. We consider in this subsection the case of an
inclusion ƒ � � of discrete groups, which gives rise to inclusions L.ƒ/ � L.�/ and
C �
�
.ƒ/ � C �

�
.�/ of the associated finite von Neumann algebras, respectively, their

reduced group C �-algebras.
We say that � is an icc group relatively to ƒ if ¹tst�1 W t 2 ƒº is infinite for all

s 2 � n ¹eº. This condition implies that both ƒ and � are icc, and hence that both
L.ƒ/ and L.�/ are II1-factors. We first note the following straightforward result:

Proposition 5.1. The following conditions are equivalent for any inclusion ƒ � � of
discrete groups:
(i) � is an icc group relatively to ƒ,
(ii) L.ƒ/0 \L.�/ D C,
(iii) C �

�
.ƒ/0 \ C �

�
.�/ D C.

Moreover, L.ƒ/ � L.�/ is C �-irreducible if and only if � is an icc group relatively
to ƒ and Œ� W ƒ� <1.

Proof. (i)) (ii). If T 2 L.ƒ/0 \ L.�/, then the function s 7! .T ıe/.s/, s 2 � ,
is constant on each ƒ-conjugacy class (where ¹ıtºt2� is the standard orthonormal
basis for `2.�/). Hence .T ıe/.s/ D 0 for s ¤ e. This implies that T D cI , where
c D .T ıe/.e/.

(ii)) (iii) follows from the fact that L.ƒ/0 D C �
�
.ƒ/0 and C �

�
.�/ � L.�/.

(iii)) (i). If S WD ¹t�1st W t 2ƒº is finite for some s ¤ e, then aD
P
t2S ut belongs

to C �
�
.ƒ/0 \ C �

�
.�/ and a … C, where �W t 7! ut is the left-regular unitary represent-

ation of � on `2.�/.
The last claim follows from Theorem 4.4 combined with the equivalence of (i)

and (ii) and the fact that ŒL.�/ W L.ƒ/� D Œ� W ƒ�.

We proceed to consider when an inclusion of discrete groups gives rise to a
C �-irreducible inclusion of their reduced group C �-algebras. This is much more
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subtle than the corresponding question for von Neumann algebras covered in the pro-
position above. First, the reduced group C �-algebra of an icc group need not be simple,
and second, even when ƒ and � both are C �-simple and � is icc relatively to ƒ, it is
still not the case that C �

�
.ƒ/ � C �

�
.�/ is C �-irreducible, although this is true whenƒ

is normal in � .
We remind the reader of the recently developed deep characterization of C �-simple

groups. The breakthrough came with the paper by Breuillard–Kalantar–Kennedy–
Ozawa [7], where the equivalence of (i) and (ii) below was established (among many
other results). It was followed up by Haagerup [14], who proved the equivalence of (ii),
(iii) and (iv), which was independently discovered by Kennedy [19], who moreover
added conditions (v) and (vi) to the list.

Theorem 5.2 (Breuillard–Kalantar–Kennedy–Ozawa, Haagerup, Kennedy). The fol-
lowing conditions are equivalent for a discrete group �:
(i) � is C �-simple,
(ii) � acts freely on its Furstenberg boundary @F � ,
(iii) �0 belongs to the weak� closure of ¹s:' W s 2 �º for each state ' on C �

�
.�/,

(iv) � satisfies the Powers averaging property: for all " > 0 and for all s1; : : : ; sn 2
� n ¹eº there exist t1; : : : ; tm 2 � such that



 1m mX

kD1

ut�1
k
sj tk





 < "
for j D 1; : : : ; n.

(v) � has no non-trivial amenable residually normal subgroups,
(vi) � has no non-trivial amenable uniformly recurrent subgroups.

Condition (iv) is equivalent to the following more standard formulation of the
Powers averaging property: for all " > 0 and for all x 2C �

�
.�/ there exist t1; : : : ; tm 2 �

such that 



 1m mX
kD1

u�tkxutk � �0.x/ � 1





 < ":
A few words about the terminology of the theorem. As before, �0 denotes the

canonical trace on C �
�
.�/. If ' is a state on C �

�
.�/ and s 2 � , then s:' denotes the

state .s:'/.x/ D '.u�s xus/, x 2 C �� .�/.
A subgroup ƒ of a group � is residually normal1 if there is a finite subset F

of � n ¹eº such that F \ t�1ƒt ¤ ; for all t 2 � . Let Sub.�/ denote the compact

1Group theorists say thatƒ is a confined subgroup in this case.
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Hausdorff space of all subgroups of � (viewed as a closed subset of the compact Cantor
space P .�/D ¹0; 1º� of all subsets of �). The group � acts on Sub.�/ by conjugation.
A uniformly recurrent subgroup is a minimal closed �-invariant subspaceX of Sub.�/.
It is amenable if all subgroups in X are amenable, and it is trivial if X is the singleton
consisting of the trivial group ¹eº.

Analogous to the situation in Proposition 5.1, natural relative versions of the condi-
tions in Theorem 5.2 suggest themselves as candidates for ensuring C �-irreducibility
of the reduced C �-algebras of the inclusion of groups. I thank Mehrdad Kalantar for
suggesting the present formulation of (ii), which is an adjustment of our first version
of this condition.

Theorem 5.3. Consider the following conditions for an inclusionƒ � � of C �-simple
groups.
(i) The inclusion C �

�
.ƒ/ � C �

�
.�/ is C �-irreducible,

(ii) there is a topologically free boundary action �ÕX such that for each probability
measure � on X , the weak� closure of the orbit ƒ:� contains a point mass ıx for
some x 2 X on which � acts freely,

(iii) �0 belongs to the weak� closure of ¹s:' W s 2 ƒº for each state ' on C �
�
.�/,

(iv) �0 belongs to the weak� closure of conv¹s:' W s 2 ƒº for each state ' on C �
�
.�/,

(v) � has the Powers averaging property relatively to ƒ: for all " > 0 and for all
s1; : : : ; sn 2 � n ¹eº there exist t1; : : : ; tm 2 ƒ such that



 1m mX

kD1

ut�1
k
sj tk





 < "
for j D 1; : : : ; n,

(vi) the inclusion C �
�
.ƒ/ � C �

�
.�/ has the relative Dixmier property.

Then (ii)) (iii)) (iv), (v)) (vi)) (i), and (i)) (vi) if Œ� W ƒ� <1.

Condition (v) is in the papers [2] and [33] referred to asƒ being a plump subgroup
of � , and it can equivalently be expressed as

�0.x/ � 1 2 conv¹u�t xut W t 2 ƒº

for all x 2 C �
�
.�/.

In [33], Ursu proved a number of reformulations of (v) in the case where ƒ is
normal in � , including that the action � Õ @Fƒ is free2. This implies that (ii) holds,

2The action ƒ Õ @Fƒ extends uniquely to an action � Õ @Fƒ, when ƒ is normal in � , cf. [23,
Lemma 21].
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and hence entails that conditions (ii)–(v) above all are equivalent when ƒ is normal
in � .

In [5], Erik Bedos and Tron Omland further proved that, in fact, all conditions (i)–
(vi) above are equivalent whenƒ is normal in � and, moreover, that (i) holds if and only
if � andƒ are C �-simple and � is icc relatively toƒ, i.e., that C �

�
.ƒ/0 \ C �

�
.�/ D C.

Moreover, if ƒ is C �-simple and � is icc relatively to ƒ, then � is automatically
C �-simple. We thus have a complete understanding of when normal inclusions of
C �-simple groups give rise to C �-irreducible inclusions of their reduced C �-algebras.

Bedos and Omland proved in the same paper that one can find a (necessarily non-
normal and infinite index) inclusionƒ� � ofC �-simple groups such that the inclusion
C �
�
.ƒ/ � C �

�
.�/ is irreducible not C �-irreducible.

Proof. (ii)) (iii). The proof is almost identical to the proof of “(i)) (ii)” of [14,
Theorem 4.5]. Take a state ' on C �

�
.�/, extend it to a state on C.X/Ìred � , and let �

be the restriction of  to C.X/. By assumption there is a net ¹siº in ƒ such that si :�
converges in the weak� topology to a point-evaluation ıx for some x 2 X on which �
acts freely. Upon passing to a subnet we may assume that ¹si : º converges to some
state  0 on C.X/ Ìred � . Let '0 be the restriction of  0 to C �

�
.�/. Since � acts freely

on x it follows from [14, Lemma 3.1] that '0 D �0. Hence, (iii) holds.

(iii)) (iv) is trivial.

(iv)) (v) is a standard Hahn–Banach argument, cf. the proof of (iii)) (iv)) (v)
of [14, Theorem 4.5].

(v)) (iv). Let x1; : : : ; xn 2 C �� .�/ and " > 0 be given. Repeated application of (v)
shows that there exist m � 1 and t1; : : : ; tm 2 ƒ such thatˇ̌̌̌

�0.xj / � 1 �m
�1

mX
kD1

u�tkxjutk

ˇ̌̌̌
< ";

for j D 1; : : : ; n. It follows thatˇ̌̌̌
�0.xj / �m

�1

mX
kD1

.tk :'/.xj /

ˇ̌̌̌
< "

for all states ' on C �
�
.�/. This proves that (iv) holds.

(v)) (vi) is trivial, and (vi)) (i) follows from Proposition 3.15, since C �
�
.�/ has a

faithful trace.
For the last claim, suppose that (i) holds and that Œ� W ƒ� <1. Then the canonical

conditional expectation EWC �
�
.�/! C �

�
.ƒ/ has finite index. Moreover, (i) implies

that L.ƒ/0 \L.�/ D C, cf. Proposition 5.1 and Remark 3.8. Lastly, C �
�
.ƒ/ has the
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Dixmier property (being simple with a unique tracial state), so it follows from [27,
Theorem 2.1] (cf. the comments below Definition 3.11) that (vi) holds.

Example 5.4. For each (non-empty) index set I , let FI denote the free group with
generating set I . If I � J and jI j � 2, then the inclusion C �

�
.FI / � C �� .FJ / is C �-

irreducible. Indeed, Powers proved in his influential paper [28] that C �
�
.FI / is simple

whenever jI j � 2 (he actually only considered the case jI j D 2, but the general result
clearly follows from his proof). [28, Theorem 1] precisely states that (iv) of Theorem 5.2
holds for �DF2. Inspection of his proof of this theorem (via [28, Lemmas 3–6]) shows
that condition (v) of Theorem 5.3 holds with � D FJ and ƒ D FI , as long as jI j � 2.

Further examples of inclusions of C �-simple groups ƒ � � for which ƒ is a
plump subgroup of � , and hence C �

�
.ƒ/ � C �

�
.�/ is C �-irreducible, can be found

in [33, Section 5]. It would be interesting to expand the dictionary of such inclusions
of groups even further.

Question 5.5. Which of the “missing” implications in Theorem 5.3 hold?

Condition (i) of Theorem 5.3 does not imply that Œ� W ƒ� <1, and we do not
know if the implication (i)) (iv) holds in general without assuming finite index.

Question 5.6. For which (C �-irreducible) inclusions C �
�
.ƒ/ � C �

�
.�/ is it the case

that all intermediate C �-algebras are of the form C �
�
.…/ for some intermediate group

ƒ � … � �?

Inclusions arising from crossed products. An action � Õ B of a group � on a
simple C �-algebra B gives in a canonical way rise to two inclusions of C �-algebras,
namely B �B Ìred � and C �

�
.�/�B Ìred � . The first class of inclusions is very well

understood, but for completeness of the exposition we review when such inclusions
are C �-irreducible and what we know about their intermediate C �-algebras. Part (i)
of the following lemma is contained in [22, Lemma 7.1], see also [20]. Recall that an
automorphism on a unital simple C �-algebra is properly outer if it is not inner.

Lemma 5.7. Let B be a unital simple infinite dimensional C �-algebra, and let � be
a discrete group with an outer action on B. Let EWB Ìred � ! B be the canonical
conditional expectation.
(i) For each non-zero positive element a 2 B Ìred � and each " > 0 there exists a

positive contraction h 2 B such that

khah � hE.a/hk � " and khE.a/hk � kE.a/k � ":

In particular, B � B Ìred � has the pinching property (Definition 3.13) with
respect to E.
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(ii) For each non-zero hereditary sub-C �-algebra B0 � B, for each finite subset
F � BÌred� , and for each " > 0 there exists a positive element h 2 B0 with

khk D 1 and kh.a �E.a//hk � "

for all a 2 F .
(iii) The inclusion B �B Ìred � has the relative excision property (cf. Definition 3.14)

with respect to each state  on B Ìred � that factors through E.

Proof. Let t 7! ut , t 2 � , denote the unitary representation of � in the crossed product
B Ìred � . Then A0 WD span¹But W t 2 �º is dense in B Ìred � . To see that (i) follows
from [22, Lemma 7.1], note that we may assume that a 2 A0.

(ii) We may assume that F �A0. Moreover, by replacing each a 2 F with a �E.a/,
we may further assume that E.a/ D 0. In the case where F D ¹a1º is a singleton, we
can use [22, Lemma 7.1] (with a0 any non-zero positive element in B0) to find positive
elements h1; h01 2 B0 with kh1k D kh01k D 1 such that

h1h
0
1 D h

0
1 and kh1a1h1k � ":

If F D ¹a1; a2º, then take a positive elements h2; h02 in h01Bh
0
1 with kh2k D kh02k D 1

such that
h2h
0
2 D h

0
2 and kh2a2h2k � ";

and note that we still have kh2a1h2k � ". Continue like this until all elements in F

have been exhausted.

(iii) Let " > 0 and a finite subset F of A be given. Write  D � ıE for some state �
on B. Since B is simple and infinite dimensional, � can be excised. It follows that
there is a non-zero hereditary sub-C �-algebra B0 � B such that

kh1=2E.a/h1=2 � �.E.a//hk � "=2

for all positive h in B0 with khk D 1, and for all a 2 F .
By (ii) we can find a positive element h 2 B0 such that

kh1=2.a �E.a//h1=2k � "=2

for all a 2 F , and khk D 1. It follows that kh1=2ah1=2 �  .a/hk � " for all a 2 F .
This proves that  has the relative excision property as desired.

The theorem below is essentially a corollary to [22, Lemma 7.1] (= Lemma 5.7 (i)
above). The implication (ii)) (i) also follows from Theorem 5.9 below. It is curious
that (i) and (iii) are equivalent, while this is not the case in the situation of Theorem 5.12
below, cf. Example 5.14.
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Theorem 5.8. Let B be a unital simple C �-algebra, and let � be a discrete group
acting on B. Then the following conditions are equivalent:
(i) B � B Ìred � is C �-irreducible,
(ii) the action � Õ B is outer,
(iii) B 0 \ .B Ìred �/ D C.

Proof. (ii)) (i) follows from Lemma 5.7 and Lemma 3.10, and (i)) (iii) holds for
all inclusions, cf. Remark 3.8.

(iii)) (ii). Denote the action � Õ B by ˛, and suppose that ˛t is inner for some
t ¤ e. Then there is a unitary u 2 B such that uxu� D ˛t .x/ D utxu�t for x 2 B. It
follows that u�ut 2 .B Ìred �/ \B 0, and u�ut … C by construction of the crossed
product C �-algebra.

As mentioned in the introduction, there is a Galois correspondence between inter-
mediate C �-algebras of the inclusions considered in Theorem 5.8 above and subgroups
of � , cf. the theorem below, which is due to Izumi [16], in the case where � is finite,
and to Cameron–Smith [9], in the general case.

Theorem 5.9 (Izumi–Cameron–Smith). Let B be a unital simple C �-algebra, and
let � be a discrete group acting outerly on B. Then each intermediate C �-algebra D

of the inclusion B � B Ìred � is of the form D D B Ìred ƒ for some subgroup ƒ
of � .

With his permission we give a simple proof, due to Sorin Popa, of this theorem in
the case where B has the Dixmier property (i.e., has at most one tracial state). The
proof uses the following lemma, of independent interest, that is embedded in the proof
of [27, Corollary 4.1]:

Lemma 5.10 (Popa). Let B be a unital simple C �-algebra with the Dixmier property,
let ˛1; : : : ;˛n be properly outer3 automorphisms on B, let b1; : : : ; bn 2B, and let " > 0.
Then there exist m � 1 and unitaries v1; : : : ; vm 2 B such that



 1m mX

jD1

vj bi˛i .vj /
�





 < "; i D 1; 2; : : : ; n:

It seems likely that this lemma holds more generally than stated in the lemma (and
the footnote).

3The definition of proper outerness in Popa’s paper is not the usual one in the context of C�-algebras,
where any outer automorphism on a simple unitalC�-algebra is properly outer. Popa needs his automorphisms
to have the property that their extension to the bi-dual B�� of B are properly outer in the von Neumann
sense, i.e., outer in each invariant central summand.
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Proof of Theorem 5.9. (In the case where B has the Dixmier property and the action
satisfies the condition of the lemma above.) Denote the action of � on B by ˛, and let
t 7! ut , t 2 � , be the unitary representation of � in the crossed product.

For each x 2 B Ìred � , written formally as x D
P
t2� atut , with at 2 B, let

supp.x/ be the set of those t 2 � for which at ¤ 0. It suffices to show that us 2
C �.B; x/ whenever x 2 B Ìred � and s 2 supp.x/. Indeed, if D is an intermediate
C �-algebra, then let ƒ be the subgroup of � spanned by

S
x2D supp.x/. It then easily

follows from the claim above that D D B Ìred ƒ.
Take x 2 B Ìred � , s 2 supp.x/, and " > 0. As above, write

x D
X
t2�

atut

with as ¤ 0. By simplicity of B, which implies that B is algebraically simple, there
are n � 1 and elements c1; : : : ; cn; d1; : : : ; dn 2 B such that 1 D

Pn
iD1 ciasdi . Set

y D

nX
iD1

cix˛
�1
s .di /:

Then y 2 C �.B; x/, and y D
P
t2� btut , with bt 2 B and bs D 1.

Choose y0 2 B Ìred � such that ky � y0k � "=3 and such that F WD supp.y0/ is
finite. Write y0 D

P
t2F b

0
tut for some b0t 2 B, and note that k1 � b0sk � "=3. Use

Lemma 5.10 to find unitaries v1; : : : ; vm in B such that



m�1 mX
jD1

vj b
0
t˛ts�1.vj /

�





 � "�3jF j��1
for all t 2 F n ¹sº. It then follows that



 1m mX

jD1

vj .y0 � b
0
sus/˛s�1.vj /

�





 � "=3;
and hence that



 1m mX

jD1

vjy˛s�1.vj /
�
� us





 D 



 1m mX
jD1

vj .y � us/˛s�1.vj /
�





 � ":
Since

Pm
jD1 vjy˛s�1.vj /

� belongs toC �.B; x/, we conclude that us 2 C �.B; x/.

Example 5.11. For 2 � n <1 consider the Cuntz algebra On and its sub-C �-alge-
bra Bn isomorphic to the UHF-algebra of type n1, which arises as the fixed point
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algebra under the canonical circle action of On. LetEWOn!Bn be the canonical con-
ditional expectation (obtained by integrating with respect to the circle action). Then E
is faithful and has the pinching property, cf. [11] (use the projection Q constructed in
the proof of Proposition 1.7). Hence, Bn � On is C �-irreducible.

It is well known that On D C
�.Bn; s1/, and that the isometry s1 induces a (non-

unital) endomorphism � on Bn by �.b/ D s1bs�1 . In this sense we can write On as a
crossed product Bn Ì� N over the semigroup N. Similar to the situation of Theorem 5.9,
each proper intermediate C �-algebra of the inclusion Bn � On is equal to Bn Ì� dN

for some d � 2. This claim can be proved using the same methods as in the proof
of Theorem 5.9 presented above (details can be found on the website of the author).
The crossed product Bn Ì� dN is equal to C �.Bn; s

d
1 / and also to the fixed-point

algebra O
Z=d
n with respect to the order d automorphism on On given by sj 7! !sj ,

where ! is a primitive d th root of the unit.

We end this section by considering inclusions of the form C �
�
.�/ � B Ìred � , and

we offer in the theorem below a sharpening of [3, Theorem 1.1].

Theorem 5.12. Let � be a discrete countable C �-simple group acting on a unital
C �-algebra B. Then the following conditions are equivalent:
(i) C �

�
.�/ � B Ìred � is C �-irreducible,

(ii) for each non-zero positive a 2 B there exist t1; : : : ; tn 2 � such that
nX

jD1

u�tj autj � 1B ;

(iii) each state � on B is �-faithful, i.e., if �.u�t aut / D 0 for some positive a 2 B

and for all t 2 � , then a D 0,
(iv) there exists � 2 Prob.�/ such that each �-stationary state � on B is faithful.

A state � on B is �-stationary if � � � D �, where � � � D
P
t2� �.t/ t:� is the

convolution of � by �, and where .t:�/.a/ D �.u�t aut / for t 2 � and a 2 B.
It was shown in [3, Theorem 1.1] that (iv)) (i) holds with the extra assumption

that � is C �-simple (i.e., the canonical trace �0 on C �
�
.�/ is the only �-invariant state

on C �
�
.�/). The condition in [3, Theorem 1.1] is hence formally stronger than the

condition in (iv). As shown in the proof of (iii)) (iv) below, one can in (iv) take any
� 2 Prob.�/ as long as the support of � generates � as a semigroup.

In the case of an abelian C �-algebra B condition (ii) above is equivalent to the
action being minimal (cf. [3, Corollary 1.2]). In general, condition (ii) implies minim-
ality of the action, and it can be viewed as a strong “mixing property”. Recall that it
was shown in [7, Theorem 1.8] that B Ìred � is simple whenever � is C �-simple and
the action � Õ B is minimal.
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It was shown in [2] that each intermediate C �-algebra of the inclusion C �
�
.�/ �

B Ìred � is of the form B Ìred � for some �-invariant sub-C �-algebra of B if � has
the approximation property (AP) of Haagerup and Kraus, and if the kernel of the action
� Õ B is a plump subgroup (i.e., that condition (v) of Theorem 5.3 holds). This
provides yet another example showing that C �-irreducible inclusions are “rigid”.

The assumption of countability of� is only used to prove the implication (iv))(iii).

Proof. (ii)) (i). Take a non-zero positive element b 2 B Ìred � . We must prove
that b is full relatively to C �

�
.�/. Note that E.b/ 2 B is positive and non-zero, where

EWB Ìred � ! B is the canonical conditional expectation.
Consider the dense subset A0 D span¹aut W a 2B; t 2 �º of B Ìred � . Assuming

that (ii) holds, we can find s1; : : : ; sm 2 � such that
Pm
jD1 u

�
sj
E.b/usj � 1B . Set

b0 D
Pm
jD1 u

�
sj
busj . Then

E.b0/ D

mX
jD1

E.u�sj busj / D

mX
jD1

u�sjE.b/usj � 1B :

Find b00 2 A0 such that E.b00/ D E.b0/ � 1B and kb0 � b00k < 1=3.
It was shown in [3, Lemma 2.1] that



1n nX

jD1

u�tj aurutj





� kak



1n nX
jD1

ut�1
j
rtj





;
for each a 2 B and all r; t1; : : : ; tn 2 � . Combining this estimate with Theorem 5.2
shows that one can find elements t1; : : : ; tn 2 � such that



1n nX

jD1

u�tj .b
00
�E.b00//utj





 < 1=3:
Hence, 1

n

Pn
jD1 u

�
tj
b00utj �

2
3
� 1B , so 1

n

Pn
jD1 u

�
tj
b0utj �

1
3
� 1B . This shows that b0,

and hence b, are full relatively to C �
�
.�/, so (i) holds.

(iii)) (ii). Suppose that (ii) fails and take a positive non-zero element a 2B witness-
ing the failure of (ii). Then, for each finite subset F � � , the element

P
t2F u�t aut is

non-invertible, so the set T .F / of all states � on B for which �.u�t aut / D 0 for all
t 2 F , is non-empty. Hence, T D

T
F T .F / is also non-empty (the intersection is

over all finite subsets F of �) and any state � in T will satisfy �.utau�t / D 0 for all
t 2 � . This shows that (iii) fails.

(iii)) (ii) is trivial, and (ii)) (i) follows from Lemma 3.5.
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(iii)) (iv). Let a 2 B be positive. For � 2 Prob.�/ and for each state � on B we
have .� � �/.a/ D 0 if and only if �.u�t aut / D 0 for all t 2 supp.�/. Note also that
supp.�k/ is the set of all t 2 � that can be written as a product of k elements from
supp.�/. Hence, if � is �-stationary, then �.a/ D 0 if and only if �.u�t aut / D 0 for
all t in the semigroup generated by supp.�/.

Thus, if (iii) holds, and if we take � 2 Prob.�/ such that supp.�/ D � (or such
that the semigroup generated by supp.�/ is �), then all �-stationary states on B are
faithful.

(iv)) (iii). Suppose that (iii) does not hold, and let � 2 Prob.�/. Let a 2 B be a
non-zero positive element for which there exists a state � on B such that �.u�t aut /D 0
for all t 2 � . Then .�k � �/.a/ D 0 for all k � 0. Set

�n D n
�1

nX
kD1

�k � �;

and let �0 be a weak� accumulation point for the sequence ¹�nº1nD1. Then �0 is �-
stationary and non-faithful, since �0.a/ D 0. Hence, (iv) does not hold.

The example below shows that C �-irreducibility and usual irreducibility (trivial
relative commutant) are not equivalent properties for the class of inclusions covered by
Theorem 5.12. We first need an elementary lemma, whose proof is left to the reader
(the given estimate is hardly best possible, but suffices for our purposes).

Lemma 5.13. Let A be a unital C �-algebra, let x 2 A, and let f1; f2; f3 2 A be
pairwise orthogonal projections. Then

kxk � 2

3X
jD1

k.1 � fj /x.1 � fj /k:

Example 5.14. We show here that any C �-simple group � admits an action on the
Cuntz algebra O1 such that the inclusion C �

�
.�/ � O1 Ìred � is irreducible, but not

C �-irreducible, while both algebras of the inclusion are simple.
Choose an action of � on N such that for each finite subset F � N there exists

t 2 � such that t:F \ F D ; (e.g., take the action � Õ � given by left multiplica-
tion, and identify the latter copy of � with N). Let ˛ denote the action of � on O1

given by ˛t .sk/ D st:k for k 2 N and t 2 � , where ¹skº1kD1 are the canonical gen-
erators of O1. Set ek D sks

�
k
. Then ¹ekº1kD1 are pairwise orthogonal projections,

and ˛t .ek/ D et:k . We conclude that (ii) in Theorem 5.12 does not hold with a D e1,
so C �

�
.�/�O1 Ìred � is not C �-irreducible.

Since � is icc, being C �-simple, it follows that

C �� .�/
0
\ .O1 Ìred �/ D O�

1:
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We claim that O�
1 D C. Take x 2 O�

1. Let A0 be the dense �-algebra generated by
the isometries ¹skº1kD1. Let " > 0, and choose y 2 A0 with kx � yk � ". Then there
is a finite set F of multi-indices in

S
`�0 N` such that

y D ˛0 � 1C y0; y0 D
X

.�;�/2G

˛�;� s�s
�
� ; ˛0; ˛�;� 2 C;

where G D .F � F / n ¹.;;;/º. Let F � N be the union of the supports of the multi-
indices in F . Set e D

P
k2F ek . Then s� D es� and s�� D s�� e for all �; � 2 F n ¹;º.

It follows that

.1 � e/.y � ˛0 � 1/.1 � e/ D .1 � e/y0.1 � e/ D 0:

Choose t1; t2 2 � such that the sets F; t1:F; t2:F are pairwise disjoint. Set fj D
˛tj .e/ D

P
k2tj :F

ek . Then

.1 � fj /.y � ˛0 � 1/.1 � fj / D ˛tj
�
.1 � e/.˛�1tj .y/ � ˛0 � 1 � y C ˛0 � 1/.1 � e/

�
;

so
k.1 � fj /.y � ˛0 � 1/.1 � fj /k � k˛

�1
tj
.y/ � yk � 2"

for j D 1; 2. By Lemma 5.13, we conclude that ky � ˛0 � 1k � 8". This shows that
dist.x;C/ � 9", so x 2 C.

6. Inductive limits

In this section we consider when a unital inclusion of C �-algebra arising from
inductive limits is C �-irreducible. The general set-up is as follows: Given a commutat-
ive diagram:

(6.1)
B1

�1 //

�1
��

B2
�2 //

�2
��

B3
�3 //

�3
��

� � � // B

�
��

A1
�1 // A2

�2 // A3
�3 // � � � // A

where B and A are the inductive limit C �-algebras of the sequence of C �-algebras in
the first, respectively, the second row. We will assume that all maps in the diagram are
injective. Let �m;nWBn!Bm and �1;nWBn!B denote the (composed) connecting
maps, and likewise for �m;nWAn ! Am and �1;nWAn ! A.

We say that the diagram is regular if �n.Bn/ D An \ �
�1
1;n.�.B// for all n � 1.

If all maps in the diagram above are the inclusion mappings, then this condition
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reads: Bn D An \B. Using this notation we always have Bn � An \B, and we can
make any diagram as above regular by replacing Bn with An \B. If one just assumes
that An \BnC1 D Bn for all n � 1, then it follows that An \ .

S1
kD1 Bk/ D Bn for

all n � 1.
For an example of a non-regular diagram take any inductive limit representing A

with non-surjective connecting mappings �n, and set B1 DC, Bn DAn�1, �n D �n�1,
and �n D �n�1 for n � 2. Then � is surjective (so the resulting inclusion is trivial), but
the inclusions �nWBn ! An are non-trivial.

Suppose that we are given A as the inductive limit as in (6.1) and a unital inclusion
�WB ! A. Then B arises as in (6.1) if and only if �.B/ D

S1
nD1 �.B/ \ �1;n.An/,

in which case one can take Bn D �
�1
1;n.�.B// � An for n � 1, which, in addition,

will make the diagram (6.1) regular.

Lemma 6.1. Let B � A be a unital inclusion of C �-algebras and let A0 be a dense
sub-�-algebra of A closed under continuous function calculus. Then B � A is C �-
irreducible if each non-zero positive element in A0 is full relatively to B.

Proof. Let a be a non-zero positive element in A and find a positive element a0 2 A0

with ı WD ka � a0k < ka0k. Choose ı < " < ka0k. As in the proof of Lemma 3.10
we find that

.a0 � "/C � '.a0/a'.a0/:

By assumption, and because .a0 � "/C is a non-zero positive element in A0, there
exist x1; : : : ; xn 2 B such that

nX
jD1

x�j .a0 � "/Cxj � 1A:

It follows that
Pn
jD1 y

�
j ayj � 1A, when yj D '.a0/xj 2 B.

It is a well-known and heavily used fact that one can construct simple C �-algebras
as the inductive limit A D lim

�!
An of possibly non-simple C �-algebras An. One just

has to make sure that each non-zero element in any of the C �-algebras An eventually
becomes full in Am for some m � n. A similar result holds for constructing C �-
irreducible inclusions:

Proposition 6.2. Suppose we are given a system as in (6.1). Then �WB ! A is C �-
irreducible if and only if for each n � 1 and each non-zero positive element a 2 An

there exists m � n such that �m;n.a/ 2 Am is full relatively to �m.Bm/.
In particular, if each inclusion �nWBn!An isC �-irreducible, then so is �WB!A.
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Proof. We show that each non-zero positive element a0 in A0 WD
S1
nD1 �1;n.An/�A

is full in B, cf. Lemma 6.1. Write a0 D �1;n.a/ for some n � 1 and some non-zero
positive element a 2 An. By assumption we may find m � n and x1; : : : ; xk 2 Bm

with
Pk
jD1 �m.xj /

��m;n.a/�m.xj / � 1Am
. Set yj D �1;m.xj / 2 B. Then

kX
jD1

�.yj /
�a0 �.yj / D �1;m

� kX
jD1

�m.xj /
��m;n.a/�m.xj /

�
� 1A;

as desired.
Conversely, suppose that �WB ! A is C �-irreducible, and let a 2 An be a non-

zero positive element. Then a0 WD �1;n.a/ is full relatively to �.B/, so there exist
y1; : : : ; yk 2 B so that

kX
jD1

�.yj /
�a0 �.yj / � 2 � 1A:

Find m � n and x1; : : : ; xk 2 Bm such that �1;m.xj / is close enough to yj to ensure
that

Pk
jD1�1;m.xj /

�a0�1;m.xj / � 1A. Then, by injectivity of the connecting map-
pings in (6.1), we have

kX
jD1

�m.xj /
��m;n.a/�m.xj / � 1Am

:

Proposition 6.3. Given a diagram as in (6.1), and suppose that for each n � 1 there
is a conditional expectation EAn;Bn

of An onto Bn making each square

An
�n //

EAn;Bn

��

AnC1

EAnC1;BnC1

��

Bn
�n // BnC1

commutative. Then (6.1) is regular and there is a conditional expectation EWA! B

commuting with each EAn;Bn
for n � 1.

Proof. For ease of notation suppose that all maps�n, �n and �n are inclusion mappings.
By the commutativity assumption, the conditional expectations EAn;Bn

extend to a
contractive positive linear mapE0W

S1
nD1An!

S1
nD1Bn, which again, by continuity,

extends to a conditional expectation EWA ! B commuting with the EAn;Bn
. If

a 2 An \B, then a D E.a/ D EAn;Bn
.a/ 2 Bn, so (6.1) is regular.
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If B � A is an inclusion of finite dimensional C �-algebras, then B 0 \A D C

implies B D A, so the inclusion can never be C �-irreducible, unless it is trivial. One
can still construct C �-irreducible inclusions of AF-algebras using the more general
setting of Proposition 6.2, that simplifies a bit further in the case of inductive limits of
finite dimensional C �-algebras.

Lemma 6.4. Let B � A be a unital inclusion of finite dimensional C �-algebras B

and A. Let EWA! A \B 0 be the conditional expectation defined by

E.x/ D

Z
U.B/

uxu� d�.u/; x 2 A;

where � is the Haar measure on U.B/. The following conditions are equivalent for
each positive element a 2 A:
(i) a is full relatively to B,
(ii) E.a/ is invertible,
(iii) no non-zero projection p 2 A \B 0 is orthogonal to a.

Proof. Note first that E defined in the lemma indeed is a conditional expectation onto
A \B 0.

(ii)) (i). Approximate E.a/ by finite Riemann sums to obtain an invertible positive
element in conv¹uau� W u 2 U.B/º that witnesses that a is full relatively to B.

(i)) (iii). Choose elements x1; : : : ; xn 2 B such that
Pn
jD1 x

�
j axj � 1A. Let p 2

A \B 0 be non-zero. Then

0 ¤ p �

nX
jD1

x�j papxj ;

so p is not orthogonal to a.

(iii)) (ii). To show thatE.a/ is invertible it suffices to show that pE.a/p ¤ 0 for all
non-zero projections p 2A\B 0. By the definition ofE we have pE.a/p D E.pap/.
Since E is faithful and pap ¤ 0 by (iii) we conclude that pE.a/p ¤ 0.

One can replace projections in Lemma 6.4 (iii) with positive elements.
Say that two sub-C �-algebras B1 and B2 of a common C �-algebra A are every-

where non-orthogonal if no pair of non-zero positive elements b1 2B1 and b2 2B2 are
orthogonal to each other. For example, the C �-algebras B1 ˝ 1 and 1˝B2 are every-
where non-orthogonal in B1 ˝B2 for any pair of (non-zero) C �-algebras B1 and B2.
On the other hand, B is everywhere non-orthogonal to itself if and only if B D C

(since otherwise B contains pairwise orthogonal non-zero positive elements).
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Corollary 6.5. Suppose we are given a system as in (6.1) and that each C �-algebra
An and Bn are finite dimensional. Then �WB ! A is C �-irreducible if the algebras
�n.An/ � AnC1 and AnC1 \ �nC1.BnC1/

0 � AnC1 are everywhere non-orthogonal
for all n � 1.

Proof. This follows immediately from Proposition 6.2 and Lemma 6.4.

Lemma 6.6. Let k � d � 2 be integers. Then there exists a unitary u inMd ˝Mk such
that the C �-algebras Md ˝ 1k and u�.Md ˝ 1k/u are everywhere non-orthogonal
in Md ˝Mk .

Proof. Choose a projection f 2Mk of dimension d and choose a unital �-homomor-
phism �WMd ! fMkf . The two (unital) �-homomorphismsMd !Md ˝Mk given
by x 7! x ˝ 1k and x 7! 1d ˝ �.x/C x ˝ .1k � f / are unitarily equivalent, and
hence there exists a unitary u 2Md ˝Mk such that

u�.x ˝ 1k/u D 1d ˝ �.x/C x ˝ .1k � f /

for all x 2Md . Since

.x ˝ 1k/
�
1d ˝ �.y/C y ˝ .1k � f /

�
D x ˝ �.y/C xy ˝ .1k � f /

is non-zero for all non-zero x; y 2Md , it follows that Md ˝ 1k and u�.Md ˝ 1k/u

are everywhere non-orthogonal.

Remark 6.7. In the situation of Lemma 6.6, if d; k � 2 are integers and there exists a
unitary u in Md ˝Mk such that the C �-algebras Md ˝ 1k and u�.Md ˝ 1k/u are
everywhere non-orthogonal, then k2 � d C 1, as we shall show below.

For each unit vector x 2 Cd , let px be the 1-dimensional projection onto Cx. If
u 2Md ˝Mk is as claimed, then u�.px ˝ 1k/u.py ˝ 1k/ ¤ 0, and hence

.px ˝ 1k/u.py ˝ 1k/ ¤ 0

for all unit vectors x;y2Cd . Let ¹�j ºk
2

jD1 be a basis forM �
k

and set uj D.idd ˝ �j /.u/
2Md . Then .px ˝ 1k/u.py ˝ 1k/ ¤ 0 if and only if there exists j such that

pxujpy D .idd ˝ �j /
�
.px ˝ 1k/u.py ˝ 1k/

�
¤ 0;

which in turns is equivalent to hujy; xi ¤ 0. If this holds for all non-zero x 2 Cd ,
then uj , 1 � j � k2, must satisfy

span¹ujy W 1 � j � k2º D Cd
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for all unit vectors y 2 Cd . This clearly implies that k2 � d . At closer inspection we
can improve this estimate to k2 � d C 1, since for any j ¤ j 0 there exists a unit vector
y 2 Cd such that ujy and uj 0y are proportional.

The smallest number k for which the conclusion of Lemma 6.6 holds for a given
d � 2, must therefore satisfy

p
d C 1 � k � d . I leave it as a curious problem to

narrow down this interval, or to derive an exact formula for k. Relatedly, the smallest
number m of matrices A1; : : : ; Am 2Md for which span¹Aj y W 1 � j � mº D Cd

for all unit vectors y 2 Cd , satisfies d C 1 � m � k2 by the argument above.

Theorem 6.8 below is an application of Corollary 6.5 and Lemma 6.6. The theorem
and its proof provide a recipe for how to construct C �-irreducible inclusions of UHF-
algebras, and, we expect, also of simple AF-algebras.

Theorem 6.8. Let A and B be UHF-algebras so that B admits a unital embedding
into A. Then there exists a C �-irreducible embedding �WB ! A.

Proof. Choose sequences ¹knº1nD1 and ¹`nº1nD1 of integers � 2, such that kn is a
proper divisor in `n for all n � 1, and A D

N1
nD1M`n

and B D
N1
nD1Mkn

. Write
`nD kndn. Upon replacing knC1 with knC1knC2 � � �knCm for somem� 1, and likewise
for `nC1 – which does not change B or A – we may assume that knC1 � d1d2 � � � dn.

We construct a commuting diagram:

(6.2)

Mk1

�1

��

// Mk1
˝Mk2

�2

��

// Mk1
˝Mk2

˝Mk3

�3

��

// � � � // B

�

��

M`1
// M`1

˝M`2
// M`1

˝M`2
˝M`3

// � � � // A

where the horizontal maps are the canonical ones x 7! x ˝ 1knC1
, respectively, x 7!

x ˝ 1`nC1
, and where the vertical maps �n will be defined to be unital �-homomor-

phisms such that the two algebras

(6.3)
�nC1.Mk1

˝ � � � ˝MknC1
/0 \M`1

˝ � � � ˝M`nC1
;

M`1
˝ � � � ˝M`n

˝ 1`nC1

are everywhere non-orthogonal. This will ensure that �WB ! A is C �-irreducible, cf.
Corollary 6.5.

Choose �1 to be any unital �-homomorphism. Suppose that n � 1 and that �n has
been constructed. We proceed to construct �nC1. Set k D k1k2 � � � kn, ` D `1`2 � � � `n,
and d D d1d2 � � �dn, so that `D dk. IdentifyMk1

˝ � � �˝Mkn
withMk andM`1

˝ � � �

˝M`n
with Mk ˝Md in such a way that �n.x/ D x ˝ 1`. Identify M`nC1

with
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MknC1
˝MdnC1

. In this notation, the nth square in the diagram (6.2) above takes the
form:

Mk

�nDidk˝1d

��

idk˝1knC1
// Mk ˝MknC1

�nC1Didk˝j

��

Mk ˝Md idk˝idd˝1knC1
˝1dnC1

// Mk ˝Md ˝MknC1
˝MdnC1

where the �-homomorphism j WMknC1
!Md ˝MknC1

˝MdnC1
is defined as follows

ensuring that equation (6.3) holds. Choose a unitary u 2 Md ˝MknC1
such that

Md ˝ 1knC1
and u�.Md ˝ 1knC1

/u are everywhere orthogonal. Set

j.x/ D u�.1d ˝ x/u˝ 1dnC1

for x 2MknC1
. Then

�nC1.Mk ˝MknC1
/ DMk ˝ u

�.1d ˝MknC1
/u˝ 1dnC1

:

The commutant of this algebra is 1k ˝ u�.Md ˝ 1knC1
/u˝MdnC1

, which by the
choice of u is everywhere non-orthogonal to

Mk ˝Md ˝ 1knC1
˝ 1dnC1

DM`1
˝ � � � ˝M`n

˝ 1`nC1
;

as desired.

Remark 6.9. It seems plausible that the conclusion of Theorem 6.8 holds more gener-
ally for any pair of infinite dimensional simple unital AF-algebras A and B whenever
the latter admits a unital embedding into the former.

Remark 6.10. While AF-algebras are completely classified by their orderedK0-group,
the question of classifying inclusions B � A of UHF-algebras (or AF-algebras) is far
more subtle (even under the extra assumptions such as C �-irreducibility). An inclusion
B ! A between AF-algebras induces a map K0.B/! K0.A/ which classifies the
inclusion up to approximate unitary equivalence. To understand the inclusion (up to
conjugacy) we will need a classification of the inclusion map up to unitary equivalence.

It is well known that sub-C �-algebras of an AF-algebra need not be AF. Black-
adar ([6]) constructed an example of a Z=2-action ˛ of the CAR-algebra A so that
the fixed point algebra A˛ is not AF (in fact, A˛ is a Bunce–Deddens algebra). The
inclusion A˛ � A is C �-irreducible and of index 2. This example still leaves open the
following question (that probably has a negative answer):
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Question 6.11. Let B � A be a C �-irreducible inclusion of simple AF-algebras. Is it
true that every intermediate C �-algebra is also AF? 4

Example 6.12. Here is another – more conceptual – example of C �-irreducible inclu-
sions of UHF-algebras (that admits many generalizations): Let B D

N1
nD1Mkn

.C/

be a UHF-algebra with respect to some sequence ¹knº of integers � 2. Let d � 2
be an integer and choose an outer action of Zd on B with the property that it leaves
invariant each finite dimensional sub-C �-algebra

NN
nD1Mkn

.C/ of B. One can for
example take ˛ D

N1
nD1Adun

, where un is a unitary inMkn
.C/ of order d , and such

that ukn is non-scalar when k D 1; 2; : : : ; d � 1. It then follows from Theorem 5.8 that
B � B Ì Zd is C �-irreducible. Moreover,

B Ì Zd D lim
�!

� NO
nD1

Mkn
.C/ Ì Zd

�
;

and
NN
nD1Mkn

.C/ÌZd is isomorphic to the direct sum of d copies of
NN
nD1Mkn

.C/,
so B Ì Zd is an AF-algebra.

We conclude this section by showing that any unital inclusion B � A of AF-
algebras (simple or not) admits an inductive limit decomposition as in (6.1). For
sub-C �-algebras A;B of a common C �-algebra E , write B �ı A if dist.b;A/ � ı
for all b in the unit ball of B.

We shall use the following powerful theorem of Christensen:

Theorem 6.13 (Christensen [10]). Let E be a unital C �-algebra, let A;B be unital
sub-C �-algebras of E , with B finite dimensional, let 0 < ı < 10�4, and assume
that B �ı A. Then there exist a unitary element u 2 E such that uBu� � A and
k1 � uk � 120 ı1=2.

The lemma below is standard AF-algebra knowledge. It is an easy consequence of
Christensen’s theorem above, but can be proved directly with less heavy machinery
using stable relations of matrix units.

Lemma 6.14. Given a unital inclusion B � E , where B is finite dimensional and E is
an AF-algebra, and given a finite subset F � E , and " > 0. Then there exists a unital
finite dimensional intermediate C �-algebra B � A � E such that and dist.f;A/ < "
for all f 2 F .

4This question has subsequently been answered in the negative in [12].
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We shall need Christensen’s theorem in the following adaption:

Lemma 6.15. Given an integer n � 1 and " > 0. Then there exists ı > 0 such that
whenever E is a unital AF-algebra with unital finite dimensional sub-C �-algebras

B1 � B2 � � � � � Bn � Aj ; j D 1; 2;

satisfying A1 �
ı A2, then there exist a unitary u 2 E with k1� uk � ", uA1u

� �A2,
and uBju

� D Bj for 1 � j � n.

Proof. We prove this by repeated applications of Christensen’s theorem as follows.
For ı > 0 (to be determined below), set 
nC1 D 120 ı1=2 and define �j > 0 and 
j > 0,
1 � j � n, inductively as follows: �j D 120 .2
jC1/1=2 and 
j D 
jC1 C �j . Choose
0 < ı < 10�4 such that 
1 � " and such that 2
j < 10�4 for 2 � j � n.

At step one use Christensen’s theorem to find a unitaryu0 2E with k1�u0k� 
nC1
and u0A1u

�
0 � A2. Then Bn �

2
nC1 u0Bnu
�
0 . Note that Bn and u0Bnu

�
0 both are

sub-C �-algebras of A2. Hence, there exists a unitary vn 2 A2 with

k1 � vnk � �n and vnBnv
�
n D u0Bnu

�
0 :

Set un D v�nu0. It follows that

unBnu
�
n D Bn; unA1u

�
n � A2; and k1 � unk � 
n:

For the next step, note that Bn�1 �
2
n unBn�1u

�
n and Bn�1; unBn�1u

�
n both are

sub-C �-algebras of Bn. Hence, there exists a unitary vn�1 in Bn with

vn�1Bn�1v
�
n�1 D unBn�1u

�
n and k1 � vn�1k � �n�1:

The unitary element un�1D v�n�1un then satisfies un�1Bju�n�1DBj for j D n� 1;n,
un�1A1u

�
n�1 � A2, and k1 � un�1k � 
n�1.

Continue like this until we have arrived at a unitary u22E satisfying u2Bju�2DBj

for 2 � j � n, u2A1u
�
2 � A2, and k1 � u2k � 
2. Then B1 �

2
2 u2B1u
�
2 and

B1; u2B1u
�
2 are both sub-C �-algebras of B2. Hence, there exists a unitary v1 in B2

with
v1B1v

�
1 D u2B1u

�
2 and k1 � v1k � �1:

The unitary element u WD u1 D v�1u2 then has the desired properties.

Proposition 6.16. Let B � A be a unital inclusion of AF-algebras. Then there exist
an increasing sequence ¹Anº

1
nD1 of finite dimensional sub-C �-algebras of A such that

A D

1[
nD1

An and B D

1[
nD1

.An \B/:

In particular, with Bn D An \B, the inclusion B � A arises from a diagram as
in (6.1) with all Bn and An finite dimensional.
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Proof. Let ¹Bnº
1
nD1 be an increasing sequence of finite dimensional sub-C �-algebras

of B whose union
S1
nD1 Bn is dense in B, and choose a dense sequence ¹anº1nD1

in A. For each n � 1 we find a finite dimensional C �-algebra zAn and a unitary un 2A

such that

(a) un zAnu
�
n �

zAnC1,

(b) Bn �
zAn,

(c) unBju
�
n D Bj for 1 � j � n,

(d) k1 � unk � 2�n,

(e) dist.aj ; zAn/ < 1=n for 1 � j � n.

To start, it follows from Lemma 6.14 that we can find a finite dimensional sub-C �-
algebra zA1 of A satisfying (b) and (e).

Suppose that n � 1 and that we have found zA1; zA2; : : : ; zAn and unitaries u1; : : : ;
un�1 as above. (If n D 1, then no unitary uj has been found yet.) Choose ı > 0 as in
Lemma 6.15 corresponding to our given n� 1 and to "D 2�n. Use Lemma 6.14 to find
a finite dimensional sub-C �-algebra zAnC1 of A satisfying (b), (e) and zAn �

ı zAnC1,
and then use Lemma 6.15 to find a unitary un 2 A satisfying (a), (c) and (d).

Set vn D limN!1 uNuN�1 � � � un (the sequence converges by (d)). Then vn is
a unitary element in A and kvn � 1k � 2�nC1. Set An D vn zAnv

�
n . Then Bn � An

by (b) and (c). As vnC1 D vnun, we see from (a) that An � AnC1 for all n � 1. Since

dist.aj ;An/ � dist.aj ; zAn/C kaj � vnaj v
�
nk � 1=nC 2kvn � 1kkaj k

for 1 � j � n, we conclude that
S1
nD1 An is dense in A. Finally,

S1
nD1.An \B/ is

dense in B because Bn � An \B. This completes the proof.

7. Tensor products

We investigate here how the property of being C �-irreducible behaves under form-
ing tensor products. Using the theorem of Zacharias and Zsido (Theorem 2.2) we
already mentioned (and proved) the following:

Theorem 7.1. Let B � A be a C �-irreducible inclusion and let E be a unital simple
C �-algebra with Wassermann’s property (S). Then E ˝B � E ˝A is C �-irreducible.

Recall that all nuclearC �-algebras have property (S). The Zacharias–Zsido theorem
further says that the map D 7! E ˝D gives a bijection between the set of intermediate
C �-algebras of the inclusion B � A and the set of intermediate C �-algebras of the
inclusion E ˝B � E ˝A.
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It follows in particular that whenever you have a C �-irreducible inclusion, one
can arrange to make it Z-stable, O1-stable, O2-stable etc upon tensoring by Z, O1,
and O2, respectively.

Proposition 7.2. Let Bi �Ai , i 2 I , be a (finite or infinite) family of unital inclusions
of C �-algebras. Set B D

N
i2I Bi and A D

N
i2I Ai .

(i) If each Bi � Ai has the relative Dixmier property with respect to some faithful
tracial state �i on Ai , then B � A also has the relative Dixmier property with
respect to the faithful tracial state � D˝i2I �i . In particular, the inclusion B �A

is C �-irreducible.
(ii) If each Bi �Ai has the relative excision property with respect to a faithful state i

on Ai for each i 2 I , then B �A has the excision property relatively to the faithful
state  D ˝i2I  i on A. In particular, if each Bi is simple, then the inclusion
B � A is C �-irreducible.

Proof. Denote by �i2IBi and �i2IAi the set of elementary tensors of the form
˝i2I ci with ci 2 Bi , respectively, ci 2 Ai , and with ci ¤ 1 for only finitely many
i 2 I . Note that A is the closure of the span of�i2IAi , and similarly for B.

(i) For each i 2 I , set Ei D conv¹Adu W u 2U.Bi /º and let E be the set of self-maps
on A of the form E D ˝i2IEi , where Ei 2 Ei and Ei ¤ idAi

for at most finitely
many i 2 I . LetX be the set of elements a 2A for which the relative Dixmier property
holds in the following sense: for each " > 0 there exists E 2 E such that

kE.a/ � �.a/ � 1k < ":

The assumption that each inclusion Bi � Ai has the relative Dixmier property
implies that�i2IAi � X . Secondly, since each E 2 E maps�i2IAi into itself, we
conclude that also the span of �i2IAi is contained in X . Finally, as X is closed, it
follows that X D A.

(ii) By assumption we can, for each i 2 I , find nets ¹h.˛; i/º˛ (indexed over the same
upwards directed set) of positive elements in Bi with kh.˛; i/k D 1 such that

lim̨ kh.˛; i/1=2ah.˛; i/1=2 �  i .a/ h.˛; i/k D 0; a 2 Ai :

For each finite subset I0 of I and each ˛ set h.˛; I0/D˝i2I zh.˛; i/, where zh.˛; i/D
h.˛; i/ when i 2 I0, and where zh.˛; i/ D 1Bi

when i … I0. Then ¹h.˛; I0/º.˛;I0/ is a
net of positive elements in B with kh.˛; I0/k D 1 and

lim
.˛;I0/

kh.˛; I0/
1=2ah.˛; I0/

1=2
�  .a/ h.˛; I0/k D 0; a 2 A;

thus proving that  can be excised relatively to B.

The claims about C �-irreducibility in both (i) and (ii) follow from Proposition 3.15.
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The lattice of intermediate sub-C �-algebras between
N
i2I Bi �

N
i2I Ai con-

tains all C �-algebras of the form
N
i2I Di , with Bi � Di � Ai . However, not all

intermediate sub-C �-algebras are of this form. If I D ¹1; 2º and Bi � Ai are strict
unital inclusions of C �-algebras, then, for example, C �.B1 ˝ A2;A1 ˝ B2/ is a
proper intermediate C �-algebra, which is not a tensor product of intermediate C �-alge-
bras. A possible generalization of the tensor splitting theorem to this situation could be
that each intermediate C �-algebra of the inclusion

N
i2I Bi �

N
i2I Ai is generated

by C �-algebras of the form
N
i2I Di , with Bi � Di � Ai .

Question 7.3. Let Bi � Ai , i 2 I , be a (finite or infinite) family of C �-irreducible
unital inclusions of C �-algebras. Is it true that

N
i2I Bi �

N
i2I Ai is also C �-irre-

ducible?

Proposition 7.2 answers this question in the affirmative under somewhat stronger
conditions on the inclusions Bi � Ai . In particular, if Ni �Mi , i 2 I , are (proper)
inclusions of II1-factors with ŒMi W Ni � <1 for all i 2 I , then the inclusionO

i2I

Ni �

O
i2I

Mi

is C �-irreducible, cf. Theorem 4.4, (where the tensor products are the minimal C �-
tensor product). If I is finite, then the inclusion

SO
i2I

Ni �
SO
i2I

Mi

of II1-factors is also C �-irreducible, while this fails when I is infinite, because the
inclusion has infinite Jones index.

Note also that it suffices to answer Question 7.3 when jI j D 2. An easy induction
argument will namely then settle the cases where the index set is finite, and the general
case will finally follow from Proposition 6.2.

Acknowledgements. I thank Pierre de la Harpe, Adrian Ioana, Mehrdad Kalantar,
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