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Abstract. We prove that an outer action of a locally compact group G on a full factor M is
automatically strictly outer, meaning that the relative commutant ofM in the crossed product is
trivial. If moreover the image of G in the outer automorphism group OutM is closed, we prove
that the crossed product remains full. We obtain this result by proving that the inclusion of M
in the crossed product automatically has a spectral gap property. Such results had only been
proven for actions of discrete groups and for actions of compact groups, by using quite different
methods in both cases. Even for the canonical free Bogoljubov actions on free group factors or
free Araki–Woods factors, these results are new.
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1. Introduction and main results

To every strongly continuous action G Õ˛ M of a locally compact group G on
a von Neumann algebra M is associated the crossed product von Neumann algebra
M ÌG. Questions on how properties of the group action G Õ˛ M are reflected by
properties of the crossed productM ÌG or the inclusionM �M ÌG are among the
most fundamental questions in operator algebras. When G is a discrete group, several
of the basic questions are easy to answer. For instance, for discrete groups G, we have
that the relative M 0 \M ÌG is as small as possible, i.e. equal to the center Z.M/, if
and only if the action G Õ˛ M is properly outer: if g 2 G n ¹eº and b 2M are such
that b˛g.a/ D ab for all a 2M , then b D 0. In particular, for an action G Õ˛ M of
a discrete group G on a factor M , we have that M 0 \M ÌG D C1 if and only if the
action ˛ is outer, meaning that ˛g is an outer automorphism for every g 2 G n ¹eº.

When the acting groupG is no longer discrete, even these simple questions turn out
to be quite subtle. Following [20], a strongly continuous actionG Õ˛ M on a factorM
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is called strictly outer ifM 0 \M ÌGDC1. It is easy to see that a strictly outer action ˛
must be outer. The converse is however by no means true (see e.g. Example 8 below).
The main reason why crossed products by discrete groups are easier to study is the
availability of a Fourier series decomposition for elements x 2M ÌG: denoting by
EWM ÌG !M the canonical conditional expectation and denoting by .ug/g2G the
canonical unitary elements in M Ì G, we can define .x/g D E.xu�g/ and formally
write x D

P
g2G.x/gug . When G is no longer discrete, there typically is no normal

conditional expectation of M Ì G onto M and there is no way to define a Fourier
series decomposition.

To illustrate the subtleness of strict outerness, we mention here one of the funda-
mental results in modular theory for von Neumann algebras: by [4, Theorem 5.1], a
trace scaling action R Õ� N of the group R on a II1 factorN is strictly outer. Because
an inner automorphism is obviously trace preserving, a trace scaling action is outer, but
its strict outerness is one of the deepest results in modular theory, established in [4].

In our first main result, we prove that outerness and strict outerness are equivalent
for actions of a locally compact second countable (lcsc) group G on a full factor with
separable predual. Recall that a factor M with separable predual is called full if the
group InnM of inner automorphisms ofM is closed in the group of all automorphisms
AutM . When G is discrete, this result is trivial, as mentioned above. When G is
compact, this result was obtained recently in [1] using a method that is very specific
for compact groups, making use of the subalgebraMG of G-invariant elements, which
could very well be trivial when G is noncompact.

Our second main result concerns the fullness of the crossed productM ÌG whenG
is a lcsc group acting on a full factor M with separable predual. For such full factors,
one considers the Polish group OutM D AutM= InnM . When G is discrete and M
is a II1 factor, this question was solved by Vaughan Jones in [8, Theorem 1]. Jones
proved that if G Õ˛ M is an outer action of a discrete group G on a II1 factor M and
if the image ofG in OutM is closed, thenM ÌG is full. More precisely, Jones proved
that the inclusionM �M ÌG has w-spectral gap (see below) if and only if the image
of G in OutM is closed. For arbitrary full factors M , not necessarily of type II1, the
same equivalence was proven whenG is discrete in [6,9] (see also [11]), and whenG is
compact in [1]. The methods that were used in the discrete case and in the compact case
were rather disjoint. In our second main result, we prove the equivalence in complete
generality, for arbitrary full factors and locally compact groups, concluding the line of
research that started in [8].

Let N � M be an inclusion of von Neumann algebras with separable predual.
Generalizing [15, Section 2] beyond the II1 setting, we say thatN �M hasw-spectral
gap if for every bounded sequence an 2M satisfying anb � ban ! 0 �-strongly for
all b 2 N , there exists a bounded sequence dn 2 N 0 \M satisfying an � dn ! 0
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�-strongly. We say thatN �M has stablew-spectral gap if 1˝N � B.`2.N// x̋ M
has w-spectral gap.

Theorem A. Let G Õ˛ M be a strongly continuous action of a lcsc group G on a
factorM with separable predual. Assume thatM is full. Denote by� WAutM !OutM
the quotient homomorphism.
(1) If the action ˛ is outer, then ˛ is strictly outer.
(2) The following three properties are equivalent.

(a) The action ˛ is outer and the subgroup �.˛.G// of OutM is closed.
(b) The action ˛ is strictly outer and M �M ÌG has w-spectral gap.
(c) The action ˛ is strictly outer and M �M ÌG has stable w-spectral gap.
In particular, if ˛ is outer and �.˛.G// is a closed subgroup of OutM , then
M ÌG is a full factor.

Given an ultrafilter ! on N, we denote by P ! the Ocneanu ultrapower of a von
Neumann algebra P with separable predual. So, whenever G Õ˛ M is an outer action
on a full factor with �.˛.G// being a closed subgroup of OutM , Theorem A says in
particular thatM 0 \ .M ÌG/! DC1. But the result of Theorem A is stronger, because
it says that all bounded sequences an 2M ÌG that asymptotically commute with M
must be asymptotically scalar, without requiring that .an/n2N belongs to .M ÌG/! .

A wide class of examples to which Theorem A applies is given by the free
Bogoljubov actions on free Araki–Woods factors. To every orthogonal representation
U WR Õ HR is associated Shlyakhtenko’s free Araki–Woods factorM D �.HR; U /

00,
see [16]. Whenever dimRHR � 2, the von Neumann algebraM is a full factor. WhenU
is the trivial representation, this construction coincides with Voiculescu’s free Gaussian
functor and M Š L.FdimRHR/. The construction is functorial: to every orthogonal
transformation v 2 O.HR/ that commutes with U is associated the free Bogoljubov
automorphism ˛v of M .

We can then use Theorem A to provide the following sufficient condition for the
fullness of a free Bogoljubov crossed product. For discrete groups, this result was
proven in [5, Theorem A] for the free Gaussian case, and in [7, Theorem B] for free
Araki–Woods factors.

Corollary B. Let U WR Õ HR be a strongly continuous action of R by orthogonal
transformations of a separable real Hilbert space HR with dimRHR � 2. Denote by
M D �.HR; U /

00 the associated free Araki–Woods factor. Let G be a lcsc group. To
every strongly continuous orthogonal representation � WG ! O.HR/ that commutes
with U is associated the canonical action G Õ˛� M by free Bogoljubov automor-
phisms.
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(1) If � is faithful, then ˛� is strictly outer.
(2) If � is faithful and �.G/ � O.HR/ is closed, then M � M Ì˛� G has stable

w-spectral gap. In particular, M Ì˛� G is a full factor.

Note that the hypotheses of point 2 in Corollary B are automatically satisfied when�
is a faithful and mixing representation, e.g. when � is the left regular representation
onL2R.G/. More generally, if there exists a unit vector � 2HR such that h�.g/�; �i! 0

whenever g!1 inG, then�.G/ is a closed subgroup of O.HR/. So, whenG satisfies
the Howe-Moore property, e.g. when G is a connected noncompact simple real Lie
group with finite center like SL.n;R/, then for every orthogonal representation � ofG,
the subgroup �.G/ is closed.

It is very natural to try to generalize Theorem A to factors M that are not full,
replacing OutM in the hypotheses by the Polish group AutM=InnM . We discuss this
problem in Section 4 and relate this to several open questions and partial results for
outer actions of locally compact groups on factors M that are no longer full.

2. Proof of Theorem A

To prove Theorem A, we can no longer use Fourier decompositions as in the
discrete case, and we can no longer use the co-amenability approach of [1] which is too
specific to the compact case. Instead, we make substantial use of Hilbert bimodules.
Fix a factor M with separable predual.

Recall that a Hilbert M -M -bimodule MHM gives rise to the unital �-represent-
ation �H of M ˝max M

op on H given by

�H .a˝ b
op/� D a�b:

Recall thatMHM is said to be weakly contained inMKM if k�H .T /k � k�K.T /k

for all T 2M ˝max M
op.

Denote by L2.M/ the standard Hilbert space of M , which we view as the trivial
M -M -bimodule. View AutM as a Polish group. Whenever .X;�/ is a standard � -finite
measure space and �WX!AutM is a Borel map, we define theM -M -bimodule H .�/

by

(1) H .�/ D L2.M/˝ L2.X; �/ with .a � � � b/.x/ D �.x/�1.a/ �.x/ b

for all a; b 2M , x 2 X . When X is a singleton, and � is thus determined by a single
˛ 2 AutM , we denote by H .˛/ the correspondingM -M -bimodule. Its carrier Hilbert
space is L2.M/ and the bimodule action is given by a � � � b D ˛�1.a/�b.
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The following is the main technical lemma that is needed to prove Theorem A.

Lemma 1. Let M be a full factor with separable predual. Denote by � WAutM !
OutM the quotient homomorphism. Let .X;�/ be a standard � -finite measure space
and let �WX ! AutM be a Borel map.

If ˛ 2 Aut M is such that �.˛/ does not belong to the support of .� ı �/��
inside OutM , meaning that there exists an open set V � OutM with �.˛/ 2 V and
�..� ı �/�1.V// D 0, then H .˛/ is not weakly contained in H .�/.

Proof. Since H .˛�1/˝M H .˛/Š L2.M/ and H .˛�1/˝M H .�/ŠH .�0/, where
�0.x/D ˛�1 ı �.x/, we may assume that ˛D id. We can then choose a neighborhood V

of the identity in OutM such that �.�.x// 2 OutM n V for �-almost every x 2 X .
We choose V to be symmetric, i.e. V D V�1.

We distinguish three cases according to the type of M .

Type II1. By [8, Lemma 4], we can take " > 0 and a finite subset F �M such that
for all � 2 AutM n ��1.V/ and all b 2M , we have

"kbk22 �
X
a2F

kba � �.a/bk22:

By taking � D �.x/�1, x 2 X , and integrating this inequality with respect to �, we
obtain

"k�k2 �
X
a2F

k� � a � a � �k2

for all � 2 H .�/. But, since L2.M/ has an M -central vector, if L2.M/ was weakly
contained in H .�/, we would find a sequence of unit vectors �n 2 H .�/ such that
k�n � a � a � �nk ! 0. This contradicts the inequality above. We conclude that L2.M/

is not weakly contained in H .�/.

Type II1. Take p 2 M such that �.p/ D 1 where � is the semifinite trace of M .
By [6, Theorem 3.3], we can take " > 0 and a finite subset F � pMp such that for
all � 2 AutM n ��1.V/ and all b 2 �.p/Mp, we have

"kbk22 �
X
a2F

kba � �.a/bk22:

By taking � D �.x/�1, x 2 X , and integrating this inequality with respect to �, we
obtain

"k�k2 �
X
a2F

k� � a � a � �k2
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for all � 2 p �H .�/ � p. If L2.M/ was weakly contained in H .�/, then pL2.M/p D

L2.pMp/ would also be weakly contained in p �H .�/ � p as pMp-pMp-bimodules.
Thus, we would find a sequence of unit vectors �n 2 p �H .�/ � p such that

k�n � a � a � �nk ! 0:

This contradicts the previous inequality. We conclude that L2.M/ is not weakly con-
tained in H .�/.

Type III. This case is much more delicate and we need to use the technique of [10]. For
every faithful normal state ! on M , we denote by �! 2 L2.M/ the canonical positive
vector that implements !. Given two faithful normal states  and ' on M , we denote
by� ;' the relative modular operator (see [18, Theorem VIII.3.2 and Lemma IX.1.5]).
Recall that � ;' is a positive nonsingular operator and that �1=2 ;' is the closure of the
linear map b�' 7! � b, b 2M . Also, using Connes’ cocycle derivative,

�it ;' D ŒD W D'�t �
it
' D J ŒD' W D �tJ �

it
 :

In particular, �it ;'b�
�it
 ;' D �

 
t .b/ and �it ;'JbJ�

�it
 ;' D J�

'
t .b/J for all b 2 M ,

t 2 R. Given a state ' on M and � 2 AutM , we write �.'/ D ' ı ��1.
By [6, Theorem 3.2], there exists a faithful normal state ' 2M�, a constant " > 0

and a finite set F � M with a�' D �'a� for all a 2 F such that for all b 2 M and
all � 2 AutM n ��1.V/, we have

"kb�'k
2
�

X
a2F

kba�' � �.a/b�'k
2
C inf
�2RC

kb�' � ���.'/bk
2:

Denote �� D ��.'/;' . It follows that

"k�k2 �
X
a2F

k�a� � �.a/�k2 C inf
�2RC

k� � ��
1=2

�
�k2

for all � 2 AutM n ��1.V/ and all � in the domain of �1=2
�

.
Let� be the decomposable operator on H .�/ obtained by integrating x 7!��.x/�1 .

Then, we can integrate the previous inequality to obtain

(2) "k�k2 �
X
a2F

k� � a� � a � �k2 C inf
�2RC

k� � ��1=2�k2

for all � 2 H .�/ in the domain of �1=2.
Assume that L2.M/ is weakly contained in H .�/. We then find a state !'

on B.H .�// such that

!'.�H.�/.a˝ b
op// D ha�'b; �'i for all a; b 2M:



Spectral gap and strict outerness for actions on full factors 359

Since �it
�
�.b/��it

�
D �

�.'/
t .�.b// D �.�

'
t .b//, while �it

�
JbJ��it

�
D J�

'
t .b/J for

all b 2M , t 2 R and � 2 AutM , we get that

�it �H.�/.a˝ b
op/��it D �H.�/

�
�
'
t .a/˝ �

'
t .b/

op�:
We also have that h�'t .a/�'�

'
t .b/; �'i D ha�'b; �'i. We can thus apply the method

of [10, Lemma 4.1] and may assume that !' is strongly invariant under Ad�it .
By [10, Theorem 3.2], this means that !' belongs to the weak� closed convex hull

of E � B.H .�//�, where E is defined as the set of states ! on B.H .�// for which
there exists a net of unit vectors �i 2 H .�/ and a net of positive numbers �i > 0 such
that �i belongs to the domain of �1=2 for every i and

(3) hT �i ; �i i ! !.T / for all T 2 B.H .�//, and k�i � �i�1=2�ik ! 0:

Define the operator T 2 B.H .�// by

T D
X
a2F

�H.�/

�
a˝ 1 � 1˝ .a�/op���H.�/

�
a˝ 1 � 1˝ .a�/op�:

Since a�' D �'a� for all a 2 F , we get that !'.T /D 0. Since !' belongs to the weak�

closed convex hull of E , we can take ! 2 E such that !.T / � "=2, where " > 0 is as
in (2). Take a net of unit vectors �i 2 H .�/ and a net of positive numbers �i > 0 such
that �i belongs to the domain of�1=2 for every i and such that (3) holds. It follows that

lim
i

X
a2F

k�i � a
�
� a � �ik

2
D !.T / � "=2 and k�i � �i�

1=2�ik ! 0:

But then (2) leads to the contradiction that " � "=2.

The following lemma is an easy observation.

Lemma 2. Let M be a factor with separable predual. Let X be a locally compact
second countable Hausdorff space and let �WX ! AutM be a continuous map. Let �
be a � -finite Borel measure on X . If x 2 X belongs to the support of �, meaning that
�.U/ > 0 for all open sets U with x 2U, then H .�.x// is weakly contained in H .�/.

Proof. Choose a decreasing family of open sets Un � X that form a neighborhood
basis of x 2 X . Since �.Un/ > 0, we can choose Borel sets Vn � Un such that

0 < �.Vn/ < C1:

For every n, consider the unit vector �n 2 L2.X; �/ given by �n D �.Vn/�1=21Vn .
Whenever � 2 L2.M/ and a; b 2M , it follows from the continuity of � that

lim
n
h�H.�/.a˝ b

op/.� ˝ �n/; � ˝ �ni D h�H.�.x//.a˝ b
op/�; �i:
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Therefore,
k�H.�.x//.T /�k � k�H.�/.T /k k�k

for every T 2 M ˝max M
op and � 2 L2.M/, so that H .�.x// is weakly contained

in H .�/.

Also the following lemma is straightforward.

Lemma 3. LetM be a von Neumann algebra,H a Hilbert space and an 2M x̋ B.H/
a bounded sequence satisfying an.1 ˝ T / � .1 ˝ T /an ! 0 �-strongly for every
compact operator T 2K.H/.

Then for any unit vector � 2 H with associated vector state !� on B.H/, the
bounded sequence dn D .id˝!�/.an/ in M satisfies an � dn ˝ 1! 0 �-strongly.

Proof. Fix a unit vector � 2 H . Assume that M � B.K/. Take � 2 K and � 2 H
arbitrary. Define the rank one operator T 2K.H/ by T .�/ D h�; �i �. Then,

an.�˝ �/ D an.1˝ T /.�˝ �/ and .dn ˝ 1/.�˝ �/ D .1˝ T /an.�˝ �/:

It follows that k.an � dn ˝ 1/.� ˝ �/k ! 0. So, an � dn ˝ 1 ! 0 strongly. By
symmetry, also a�n � d�n ˝ 1! 0 strongly and the lemma is proven.

We are then ready to prove Theorem A.

Proof of Theorem A. We define ˛WM !M x̋ L1.G/W˛.a/.g/ D ˛g�1.a/, so that
M Ì G is realized as the von Neumann subalgebra of M x̋ B.L2.G// generated
by ˛.M/ and the unitary operators 1˝ �g , g 2 G, where �g is the left translation
by g. We thus denote by ˛.M/ the canonical copy ofM insideM ÌG. We also denote
by � the left Haar measure on G.

For every nonnegligible Borel setA� G, we denote by H .A/ theM -M -bimodule
associated with the map A! AutM Wg 7! ˛g and the Haar measure � on A, as in (1).
We denote by �AWM ˝max M

op ! B.H .A// the corresponding �-homomorphism.

(1) Write N D ˛.M/0 \M x̋ B.L2.G//. We claim that N D 1˝L1.G/. Note
that 1˝ L1.G/ � N and

(4) .1˝ L1.G//0 \N D ˛.M/0 \M x̋ L1.G/ D 1˝ L1.G/;

because M is a factor. In particular, Z.N / � 1˝ L1.G/. To prove the claim, it thus
suffices to show that 1˝ L1.G/ � Z.N /, because it then follows from (4) that

N � Z.N /0 \N � .1˝ L1.G//0 \N � 1˝ L1.G/:

Fix a compact subset K � G. It thus suffices to prove that 1˝ 1K 2 Z.N /.
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Since Z.N / � 1 ˝ L1.G/, we can take a Borel set A � G such that K � A
and such that 1˝ 1A is the central support of 1˝ 1K in N . We have to prove that
�.A n K/ D 0. Define the closed set L � G as the support of the measure �jA on
the locally compact second countable space G, meaning that L is the smallest closed
subset of G with the property that �.A n L/ D �jA.G n L/ D 0. Choose g 2 L. By
Lemma 2, the M -M -bimodule H .g/ is weakly contained in H .A/ Š H .G; �jA/.
Viewing N as the algebra of boundedM -M -bimodular maps on H .G/, it follows that
the M -M -bimodules H .K/ and H .A/ are quasi-equivalent. Thus, H .g/ is weakly
contained in H .K/. Since K � G is compact, .� ı ˛/.K/ � OutM is compact, and
thus closed. By Lemma 1, we must have that�.˛g/ 2 �.˛.K//. Since� ı ˛ is injective,
it follows that g 2 K. Since g 2 L was arbitrary, we have proven that L � K. Since
�.A n L/ D 0, also �.A nK/ D 0 and the claim is proven.

To prove the first part of the theorem, take T 2 ˛.M/0 \M Ì G. By the claim
above, T D 1˝ F for some F 2 L1.G/. Denote by Ug 2 U.L2.M// the canonical
unitary implementation of the automorphism ˛g . By definition, the elements ofM ÌG
commute with the unitary operators Uh ˝ �h, where �h denotes the right regular repre-
sentation on L2.G/. It follows that F 2 L1.G/ commutes with all right translations,
so that F 2 C1.

(2) The implication (c)) (b) is trivial. To prove that (b)) (a), assume that (a)
does not hold. If ˛ is not outer, we find a unitary a 2U.M/ and an element g 2G n ¹eº
such that d D ˛.a/.1˝ �g/ commutes with ˛.M/. Then the constant sequence d says
that (b) does not hold. If ˛ is outer, but �.˛.G// is not closed in OutM , we can choose
a sequence gn !1 in G such that �.˛gn/! id in OutM . So we find a sequence
an 2U.M/ such that ˇn D Ad an ı ˛gn ! id in AutM . Write dn D ˛.an/.1˝ �gn/.
Let b 2 M be arbitrary. Since ˇn ! id in AutM , we have that ˇ�1n .b/ � b ! 0

strongly. Then also

˛.b/dn � dn˛.b/ D dn ˛.ˇ
�1
n .b/ � b/! 0 strongly.

Also, ˇn.b�/! b� strongly, so that

.˛.b/dn � dn˛.b//
�
D d�n ˛.b

�
� ˇn.b

�//! 0 strongly.

We have thus proven that dn˛.b/� ˛.b/dn! 0 �-strongly for all b 2M . Assume that
tn 2 C such that dn � tn1! 0 �-strongly. Choose an arbitrary unit vector � 2 L2.M/

and an arbitrary compact neighborhood K of e in G. Since gn ! 1, we get that
gnK \K D ; for all n large enough. So, for large enough n, we get that

hdn.� ˝ 1K/; � ˝ 1Ki D 0:

We conclude that tn ! 0. So, dn ! 0 �-strongly. This is impossible because dn is a
sequence of unitary operators. So, (b) does not hold.
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We now prove the difficult implication (a) ) (c). So, assume that ˛ is outer
and that �.˛.G// is closed in OutM . Let H be a separable Hilbert space and an 2
B.H/ x̋ .M ÌG/ a sequence such that kank � 1 for all n and

an.1˝ ˛.b// � .1˝ ˛.b//an ! 0 �-strongly

for all b 2 M . We have to prove the existence of a bounded sequence fn 2 B.H/
such that an � fn ˝ 1! 0 �-strongly. We again make use of the bimodules H .A/ as
introduced in the beginning of the proof, together with the corresponding �-represent-
ations �A of M ˝max M

op on L2.M/˝ L2.A/.
Since G and OutM are Polish groups and � ı ˛WG ! OutM is a continuous

homomorphism with closed range, the map � ı ˛ is closed.

Step A. We prove that for every open subset U � G with complement L D G nU,
the sequence Xn 2 B.H/ x̋ M x̋ B.L2.G// defined by

Xn D .1˝ 1˝ 1L/an.1˝ 1˝ 1U/

converges to 0 strongly.
Fix a unit vector � 2 H and write Yn D Xn.� ˝ 1 ˝ 1/. Note that kYnk � 1

for all n. We have to prove that Y �n Yn converges to 0 weakly. Assume that this is
not the case. After passage to a subsequence, we may assume that Y �n Yn converges
weakly to a nonzero S 2M x̋ B.L2.U//. Because an.1˝ ˛.a//� .1˝ ˛.a//an! 0

�-strongly for all a 2 M , we have that .1˝ �L.T //Yn � Yn�U.T /! 0 �-strongly
for all T 2M ˝max M

op.
For all �; � 2 L2.M/˝ L2.U/, we have that

h.Y �n Yn�U.T / � �U.T /Y
�
n Yn/�; �i D h.Yn�U.T / � .1˝ �L.T //Yn/�; Yn�i

C hYn�; ..1˝ �L.T
�//Yn � Yn�U.T

�//�i;

so that Y �n Yn�U.T / � �U.T /Y
�
n Yn ! 0 weakly for all T 2M ˝max M

op. It follows
that S commutes with �U.T /, so that S 2M x̋ B.L2.G//\ ˛.M/0. By 1, we get that
S D 1˝ F , where F 2 L1.U/ is not essentially zero. We can then choose a compact
subset K � U and a C > 0 such that �.K/ > 0 and F.x/ � C�1 for all x 2 K.

Define Zn D Yn.1˝ 1KF �1=2/. Note that kZnk � C 1=2 for all n. We still have
that

.1˝ �L.T //Zn �Zn�K.T /! 0 �-strongly

for all T 2 M ˝max M
op. By construction, Z�nZn ! 1˝ 1K weakly. For any T 2

M ˝max M
op and every � 2 L2.M/˝ L2.K; �/, we have

jh�K.T /�; �i D jh.1˝ 1K/�K.T /�; �ij D lim
n
jhZ�nZn�K.T /�; �ij
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� lim sup
n

C 1=2 kZn�K.T /�k k�k

D lim sup
n

C 1=2 k.1˝ �L.T //Zn�k k�k

� C k�L.T /k k�k
2:

So, the homomorphism �L.T / 7! �K.T / is well defined and continuous. We thus
conclude that H .K/ is weakly contained H .L/. Choose k 2 K in the support of �jK ,
meaning that �.K \W/ > 0 for every open subset W � G with k 2W . By Lemma 2,
H .˛k/ is weakly contained in H .K/ and is thus weakly contained in H .L/.

Since L � G is a closed subset and � ı ˛ is a closed map, �.˛.L// is a closed
subset of OutM and �.˛k/ 62 �.˛.L//. The weak containment of H .˛k/ in H .L/

thus contradicts Lemma 1. This concludes the proof that Xn converges to 0 strongly.

Step B. If U � G is open and �. xU nU/ D 0, then

an.1˝ 1˝ 1U/ � .1˝ 1˝ 1U/an ! 0 �-strongly:

Write V D G n xU. Applying Step A to the open sets U and V , we get that the
sequences .1˝ 1˝ 1V /an.1˝ 1˝ 1U/ and .1˝ 1˝ 1U/an.1˝ 1˝ 1V / converge
to 0 strongly. Since 1V D 1 � 1U in L1.G/, it follows that

an.1˝ 1˝ 1U/ � .1˝ 1˝ 1U/an

D .1˝ 1˝ 1V /an.1˝ 1˝ 1U/ � .1˝ 1˝ 1U/an.1˝ 1˝ 1V /! 0

strongly. The same holds for the sequence a�n, so that step B is proven.

Step C. For every bounded continuous function F WG ! C, we have that

an.1˝ 1˝ F / � .1˝ 1˝ F /an ! 0 �-strongly.

Fix a continuous function F WG! .0; 1/. It suffices to prove that an.1˝ 1˝ F /�
.1 ˝ 1 ˝ F /an ! 0 �-strongly. Choose a probability measure �1 on G such that
�1 � �. Define the probability measure � on R by �D F�.�1/. Fix an arbitrary " > 0.
Since � has at most countably many atoms, which all belong to .0; 1/, we can choose
0 D t0 < t1 < � � � < tk D 1 such that �.¹tiº/ D 0 for all 0 � i � k and ti � ti�1 < "
for all 1 � i � k. Define, for 1 � i � k, the open subsets

Ui D ¹g 2 G j ti�1 < F.g/ < tiº:

Since �.¹tiº/ D 0 for all i and since �1 � �, we get that �. xUi nUi / D 0 for all
1 � i � k. Also, defining

F0 D

kX
iD1

ti1Ui
;
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we get that kF � F0k < ". By Step B,

an.1˝ 1˝ F0/ � .1˝ 1˝ F0/an ! 0 �-strongly:

So, for every " > 0, the sequence an.1˝ 1˝F /� .1˝ 1˝F /an! 0 lies at operator
norm distance less than 2" of a sequence that converges to 0 �-strongly. So, step C is
proven.

Step D. Define the unitary U 2 B.L2.M// x̋ L1.G/ by U.h/ D Uh for all h 2 G.
Then, there exists a sequence dn 2 B.H ˝ L2.M// such that kdnk � 1 for all n and
.1˝ U/an.1˝ U

�/ � dn ˝ 1! 0 �-strongly.
Write bn D .1˝U/an.1˝U �/. Let F 2 C0.G/. Since U commutes with 1˝ F ,

it follows from step C that

bn.1˝ 1˝ F / � .1˝ 1˝ F /bn ! 0 �-strongly:

Since an 2 B.H/ x̋ .M ÌG/, we have that an commutes with 1˝Ug ˝ �g for every
g 2 G and n 2 N. Thus, bn commutes with 1˝ 1˝ �g for all n 2 N and g 2 G.
Denoting by C �� .G/ the reduced C�-algebra given by the right regular representation
of G, we find that

bn.1˝ 1˝ T / D .1˝ 1˝ T /bn

for all T 2 C �� .G/. Since the operator norm closed linear span of C0.G/ C �� .G/
equals K.L2.G//, it follows that bn.1˝ 1˝ T / � .1˝ 1˝ T /bn ! 0 �-strongly
for all T 2K.L2.G//. Step D then follows from Lemma 3.

Step E. With U and dn as in step D, the sequence cn 2 B.H ˝ L2.M// x̋ L1.G/,
given by cn D .1˝ U �/.dn ˝ 1/.1˝ U/, satisfies

cn.1˝ b ˝ 1/ � .1˝ b ˝ 1/cn ! 0 �-strongly

for all b 2M .
Since an.1˝ ˛.b// � .1˝ ˛.b//an ! 0 �-strongly and ˛.b/ D U �.b ˝ 1/U ,

the sequence dn satisfies dn.1˝ b/ � .1˝ b/dn ! 0 �-strongly for all b 2M . Take
� 2 H ˝ L2.M/ and � 2 L2.G/ arbitrary. Then,

k.cn.1˝ b ˝ 1/ � .1˝ b ˝ 1/cn/.�˝ �/k
2(5)

D

Z
G

j�.g/j2 k..1˝ U �g /dn.1˝ Ug b/ � .1˝ b U
�
g /dn.1˝ Ug//�k

2 dg:

For every fixed g 2 G and b 2M , we have that dn.1˝ ˛g.b//� .1˝ ˛g.b//dn! 0

strongly. Conjugating with U �g , also

.1˝ U �g /dn.1˝ Ug b/ � .1˝ b U
�
g /dn.1˝ Ug/! 0 strongly.

It then follows from the dominated convergence theorem that the sequence in (5) tends
to 0. We have proven that cn.1˝ b ˝ 1/� .1˝ b ˝ 1/cn! 0 strongly for all b 2M .
By symmetry, also c�n.1˝ b ˝ 1/ � .1˝ b ˝ 1/c�n ! 0 strongly and Step E follows.
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End of the proof. By Step D, the sequence cn in Step E satisfies an�cn!0 �-strongly.
Since an 2B.H/ x̋ .M ÌG/�B.H/ x̋ M x̋ B.L2.G//, we have that an commutes
with 1˝ JbJ ˝ 1 for all b 2M . Therefore,

cn.1˝ JbJ ˝ 1/ � .1˝ JbJ ˝ 1/cn ! 0 �-strongly

for every b 2M . SinceM is a full factor, [10, Theorem A] says that the operator norm
closed linear span of M JMJ contains K.L2.M//. The previous observation and
Step E then imply that

cn.1˝ T ˝ 1/ � .1˝ T ˝ 1/cn ! 0 �-strongly

for every T 2K.L2.M//. Since cn 2 B.H ˝L2.M// x̋ L1.G/, Lemma 3 provides
a sequence Fn 2 B.H/ x̋ 1 x̋ L1.G/ such that kFnk � 1 for all n and cn � Fn! 0

�-strongly.
Then also an � Fn ! 0 �-strongly. Conjugating with 1˝ U , which commutes

with Fn, and using step D, we find that dn ˝ 1 � Fn ! 0 �-strongly. Fix a unit vector
� 2 L2.G/ and denote by !� the corresponding vector state on B.L2.G//. Define the
sequence fn 2 B.H/ such that

fn ˝ 1 D .id˝ id˝!�/.Fn/:

Then, kfnk� 1 for all n2N. Since dn˝ 1�Fn! 0 �-strongly, also dn � fn˝ 1! 0

�-strongly. Conjugating with 1˝U �, it follows from Step D that an � fn˝ 1˝ 1! 0

�-strongly. So (c) holds.

3. Free Bogoljubov actions and proof of Corollary B

Corollary B is an immediate consequence of Theorem A and the following result
on free Araki–Woods factors. We expected that Proposition 4 would be well known
and available in the literature, but this does not seem to be the case, not even in the case
of the free Gaussian functor (i.e. Bogoljubov transformations of free group factors).

Proposition 4. Let U WR Õ HR be a strongly continuous action by orthogonal trans-
formations of a separable real Hilbert space HR with dimR HR � 2. Denote by
M D �.HR;U /

00 the associated free Araki–Woods factor, which is a full factor. Denote
by � WAutM ! OutM the canonical quotient homomorphism.

Define the closed subgroup G D ¹v 2 O.HR/ j vUt D Utv for all t 2 R º of
O.HR/. For every v 2 G , denote by ˛v the associated Bogoljubov automorphism
ofM . Then, the homomorphism G ! OutM Wv 7! �.˛v/ is injective, has closed range
and is a homeomorphism onto this range.



A. Marrakchi and S. Vaes 366

Note that Proposition 4 covers in particular the case where Ut D 1 for all t 2 R.
Then,

M D �.HR; U /
00
Š L.FdimRHR/

and every v 2 O.HR/ defines the free Bogoljubov automorphisms ˛v of M . Propo-
sition 4 then says that O.HR/ ! Out M is injective, with closed range and is a
homeomorphism onto this range.

Also note that, with the notation of Proposition 4, the transformations Ut belong
to G . Therefore, Proposition 4 also reproves the result that Connes’ �-invariant of a
free Araki–Woods factor �.HR; U /

00 equals the weakest topology on R that makes the
map t 7! Ut continuous. This was proven in [17, Corollary 8.6] when U is not weakly
mixing and in [19, Théorème 2.7] in general.

Before proving Proposition 4, we need a few elementary lemmas.
The first lemma is proven by Popa’s spectral gap method. The proof is very similar

to the proof of [14, Lemma 2.2]. For completeness, we provide the details adapting the
proof to a type III setting.

Lemma 5. For i 2 ¹1; 2º, let .Mi ; 'i / be von Neumann algebras with a faithful normal
state, and with a separable predual. Define .M; '/ D .M1; '1/ � .M2; '2/ and let
E1WM !M1 be the canonical '-preserving conditional expectation. LetP �M1 be a
von Neumann subalgebra that is the range of a faithful normal conditional expectation.
Assume that P has no amenable direct summand.

If xn 2M is a bounded sequence and ˛nWP !M1 is a sequence of faithful, unital,
normal �-homomorphisms such that xna � ˛n.a/xn ! 0 strongly for all a 2 P , then
xn �E1.xn/! 0 strongly.

Proof. For every von Neumann algebra .Q;!/ with a faithful normal state, we denote
by L2.Q; !/ the standard Hilbert space for Q realized by completing Q with respect
to the scalar product hx; yi D !.y�x/. As a Q-bimodule, we have

a � b � c D ab�!
�i=2.c/

for all a; b; c 2M with c being sufficiently analytic.
Fix a faithful normal conditional expectation EWM1 ! P and choose a faithful

normal state  1 on M1 satisfying  1 ı E D  1. Define the faithful normal state  
on M by  D  1 ıE1. Denote

M 	M1 D ¹x 2M j E1.x/ D 0º:

We also write
M ıi D ¹a 2Mi j 'i .a/ D 0º:
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Whenever w 2 M is defined as an alternating product of elements in M ı1 and M ı2 ,
starting and ending with a ‘letter’ from M ı2 , for all a; b 2M1, we have

E1.w
�awb/ D '1.a/'.w

�w/b

so that
hawb;wi D  .w

�awb/ D '1.a/ 1.b/'.w
�w/:

It follows that there exists an M1-bimodular isometry

U WL2.M 	M1;  /! K D
�
L2.M1; '1/˝ L

2.M1;  1/
�˚1

;

where the M1-bimodule structure on K is given by the left action in the first tensor
factor L2.M1; '1/ and the right action in the second tensor factor L2.M1;  1/.

Write yn D xn � E1.xn/ 2 M 	M1. Note that yn is still a bounded sequence
inM satisfying yna � ˛n.a/yn! 0 strongly for all a 2 P . Define the bounded linear
maps

YnWL
2.P;  1/! KWYn.a/ D U.yna/:

Note that supn kYnk � supn kynk<C1. Take � > 0 such that kYnk � � for all n 2N.
By construction, Yn.� � a/ D Yn.�/ � a for all � 2 L2.P;  1/ and a 2 P . Also by
construction,

k˛n.a/ � Yn.b/ � Yn.a � b/k ! 0

for all a; b 2 P . Given a 2 P , the sequences k˛n.a/k and kYnk are bounded, so that

k˛n.a/ � Yn.�/ � Yn.a � �/k ! 0

for all a 2 P and � 2 L2.P;  1/.
Define the �-representations �nWP ˝alg P

op ! B.K/ by

�n.a˝ b
op/� D ˛n.a/ � � � b:

Note that k�n.T /k D k�.T /k for every T 2 P ˝alg P
op, where � is given by the

coarse P -bimodule. Also define

"WP ˝alg P
op
! B.L2.P;  1// W ".a˝ b

op/� D a � � � b:

We have proven that

(6) �n.T /Yn � Yn".T /! 0 strongly for every T 2 P ˝alg P
op.
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We claim that Yn ! 0 strongly. Let S 2 B.L2.P;  1//C be any weak limit point of
the bounded sequence Y �n Yn. Since

h.Y �n Yn".T / � ".T /Y
�
n Yn/�; �i D h.Yn".T / � �n.T /Yn/�; Yn�i

C hYn�; .�n.T
�/Yn � Yn".T

�//�i;

it follows from (6) that S commutes with ".T / for all T 2P ˝alg P
op. Thus, S 2Z.P /.

For all �; � 2 L2.P;  1/ and T 2 P ˝alg P
op, we get that

jhS".T /�; �ij � lim sup
n
jhY �n Yn".T /�; �ij D lim sup

n
jhYn".T /�; Yn�ij

� � k�k lim sup
n
kYn".T /�k D � k�k lim sup

n
k�n.T /Yn�k

� �2 k�k k�k k�.T /k:

We conclude that kS".T /k � �2 k�.T /k for all T 2 P ˝alg P
op. If S is nonzero, it

follows that P has an amenable direct summand. So, S D 0 and the claim that Yn! 0

strongly is proven.
Since yn D Yn.1/, we have proven that kynk2; ! 0. Thus, yn ! 0 strongly.

Proposition 6. For i 2 ¹1; 2º, let .Mi ; 'i / be a von Neumann algebra with a faithful
normal state and separable predual. Assume that .M1; '1/ has no amenable direct sum-
mand and that M2 ¤ C1. Denote by Aut.Mi ; 'i / the Polish group of state preserving
automorphisms.

Define .M; '/ D .M1; '1/ � .M2; '2/. Then M is a full factor. Denote by

� WAutM ! OutM

the natural quotient homomorphism. Then, the homomorphism

� WAut.M1; '1/ � Aut.M2; '2/! OutM W �.˛; ˇ/ D �.˛ � ˇ/

is faithful, has closed range and is a homeomorphism onto this range.

Proof. It suffices to prove the following statement: if ˛n 2 Aut.M1; '1/ and ˇn 2
Aut.M2; '2/ are sequences of state preserving automorphisms such that

Ad u�n ı .˛n � ˇn/! id

for some sequence of unitaries un 2M , then ˛n! id, ˇn! id and un � '.un/1! 0

�-strongly. By taking ˛n D ˇn D id, this then says in particular that M is full.
Denote by Ei WM !Mi the canonical '-preserving conditional expectation. For

every a 2M1, we have that una � ˛n.a/un ! 0 strongly. It follows from Lemma 5
that un �E1.un/! 0 strongly.
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Write vn D .˛n � ˇn/�1.u�n/. Then also Ad v�n ı .˛�1n � ˇ�1n /! id. Applying the
previous paragraph, it follows that

kvn �E1.vn/k2;' ! 0:

Since ˛n � ˇn is state preserving and commutes with E1, we conclude that

ku�n �E1.u
�
n/k2;' ! 0;

so that u�n � E1.u�n/! 0 strongly. In combination with the previous paragraph, we
have proven that un �E1.un/! 0 �-strongly.

Write xnDE1.un/. Note that kxnk�1 for all n. SinceM2¤C1, we can fix b2M2

with '2.b/ D 0 and '2.b�b/ D 1. Since u�nˇn.b/un ! b weakly and un � xn ! 0

strongly, we get that x�nˇn.b/xn ! b weakly, and thus E2.x�nˇn.b/xn/! b weakly.
The left hand side equals j'1.xn/j2 ˇn.b/. Therefore,

hj'1.xn/j
2 ˇn.b/; bi D hE2.x

�
nˇn.b/xn/; bi ! hb; bi D 1:

Since j'1.xn/j � 1 and jhˇn.b/; bij � 1 because ˇn is state preserving, we conclude
that j'1.xn/j ! 1. Since kxnk � 1 for all n, this implies that xn � '1.xn/1 ! 0

�-strongly. It thus follows that un � '.un/1! 0 �-strongly.
Then also Ad un ! id, so that ˛n � ˇn ! id. By restricting to Mi , it follows that

˛n ! id and ˇn ! id.

Lemma 7. Let HR be a separable infinite dimensional real Hilbert space. Let Vn 2
O.HR/ such that .Vn/n2N is weakly convergent. Let N 2 N. There exist orthonormal
vectors ¹e1; : : : ; eN º, orthonormal vectors ¹f1; : : : ; fN º and Wn 2 O.HR/ such that

(7)
Wnei D ei andWnVnei ! fi in norm for every i 2 ¹1; : : : ; N º, and
.Rei CRfi / ? .Rej CRfj / for all i; j 2 ¹1; : : : ; N º with i ¤ j .

An analogous result holds for a weakly convergent sequence of unitaries on a separable
infinite dimensional Hilbert space.

Proof. Let Vn ! T weakly. Note that kT k � 1. Inductively choose unit vectors
¹e1; : : : ; eN º such that whenever i < j , we have that ej ? ¹ei ; Tei ; T �ei ; T �Teiº.
Define �k;n D Vnek � Tek and define ˛k � 0 such that ˛2

k
D 1 � kTekk

2. By con-
struction,

Vnek D Tek C �k;n; �k;n ! 0 weakly, and k�k;nk ! ˛k :

When i ¤ j , we have that Vnei ? Vnej . Also, Tei ? Tej by construction. Therefore,
for i ¤ j , we have

0 D hVnei ; Vnej i D hTei ; �j;ni C h�i;n; Tej i C h�i;n; �j;ni:

Since �k;n ! 0 weakly, it follows that h�i;n; �j;ni ! 0.
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Define K as the linear span of all the vectors ei and Tei with i 2 ¹1; : : : ; N º.
Let L D K?. Since �k;n ! 0 weakly, kPK�k;nk ! 0. Put �k;n D PL�k;n, so that
k�k;n � �k;nk ! 0. It follows in particular that k�k;nk ! ˛k and that h�i;n; �j;ni ! 0

when i ¤ j .
Choose orthonormal vectors ¹g1; : : : ; gN º in L. By the Gram–Schmidt procedure,

we can choose Wn 2 O.HR/ such that Wn� D � for all � 2 K and Wn�k;n ! ˛kgk
in norm. By construction,

WnVnek ! Tek C ˛kgk in norm.

Define fk D Tek C ˛kgk . By construction, the conclusion of the lemma holds.

Proof of Proposition 4. WhenHR is finite dimensional, the group G is compact. By [7,
Lemma 3.2], every ˛v with v 2 O.HR/ n ¹1º is an outer automorphism of M and the
proposition follows. We thus assume that HR is infinite dimensional.

The spectral measure class of the orthogonal representation .Ut /t2R is a symmetric
measure class on R that we denote by �.

Case 1. There is no a � 0 such that the measure class� is concentrated on ¹�a;aº. We
can then choose a Borel set U1 �R such that U1D�U1 and such that both U1 and its
complement U2 D R nU1 have positive measure. Make this choice such that 0 2U2.
Denote by H i

R � HR the spectral subspace corresponding to Ui . We have HR D

H 1
R˚H

2
R and G D G1 � G2. Then the free Araki–Woods factor .M;'/D �.HR;U /

00

is the free product of the free Araki–Woods factors .Mi ; 'i / D �.H
i
R; U /

00. Since
0 62U1, we have that dimRH

1
R � 2, so thatM1 has no amenable direct summand. Since

G D G1 � G2, we identify G with a closed subgroup of Aut.M1; '1/ � Aut.M2; '2/.
Proposition 4 then follows from Proposition 6.

Case 2. The measure class � is concentrated on ¹�a; aº for some a � 0. Let Vn 2 G

be a sequence such that �.˛Vn/! id. We have to prove that Vn! 1weakly. Passing to
a subsequence, we may assume that Vn ! T weakly and we have to prove that T D 1.
Take unitaries un 2 U.M/ such that Ad u�n ı ˛Vn ! id.

We claim that there exist 2-dimensional real subspaces K1R; K
2
R � HR and a

sequenceWn 2 G with the following properties: the subspacesKjR are globally invariant
under .Ut /t2R, we have K1R ? K

2
R, writing KR D K

1
R CK

2
R, we have that Wn� D �

for all � 2 KR and n 2 N, and

WnVn� ! F � in norm for all � 2 KR,

where F WKR ! HR is an isometry that commutes with .Ut /t2R and satisfies�
K1R C F.K

1
R/
�
?
�
K2R C F.K

2
R/
�
:
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When a D 0, we have that Ut D 1 for all t 2 R. In that case, the claim follows
from Lemma 7, by taking K1R D Re1 CRe2 and K2R D Re3 CRe4.

When a>0, write �Dexp.a/. We can then identify the complexificationHRCiHR

with a Hilbert space of the form H ˚ xH , where H is a (complex) Hilbert space,

Ut .�; x�/ D .�
it�; ��itx�/ and HR D ¹.�; x�/ j � 2 Hº:

Then, G is identified with U.H /, with every unitary V 2 U.H / giving rise to the
orthogonal transformation of HR defined by restricting V ˚ xV to HR. So, we view
Vn 2 G as the sequence Vn ˚ xVn.

By the complex version of Lemma 7, we can choose orthonormal vectors ¹e1; e2º
and ¹f1; f2º in H , and unitaries Wn 2 U.H / such that Wnei D ei for all n 2 N and
i 2 ¹1; 2º, whileWnVnei ! fi in norm. Also, .Ce1CCf1/? .Ce2CCf2/. We can
now define KiR � HR by

KiR D ¹.zei ; zei / j z 2 Cº

and use the orthogonal transformations Wn ˚ xWn. Again, the claim is proven.
Write LiR D K

i
R C F.K

i
R/. Define L0R D .L

1
R CL

2
R/
?. We find the free product

decomposition
.M; '/ D .M0; '0/ � .M1; '1/ � .M2; '2/;

where Mi D �.L
i
R; U /

00. Denote by Ei WM ! Mi the canonical '-preserving con-
ditional expectation. For i 2 ¹1; 2º, we also have the subalgebras Pi �Mi given by
Pi D �.K

i
R;U /

00. Note that there exists a faithful normal conditional expectation ofMi

onto Pi . Since KiR is 2-dimensional, the von Neumann algebra Pi is a nonamenable
factor.

The restriction ofF toKiR gives rise to the state preserving embeddingˇi WPi!Mi .
Write vn D ˛Wn.un/. Since Ad u�n ı ˛Vn ! id, we get that

k˛Vn.a/un � unak2;' ! 0 for all a 2M .

Since ˛Wn is state preserving and Wn� D � for all � 2 KiR, it follows that

k˛WnVn.a/vn � vnak2;' ! 0 for all a 2 Pi .

Since WnVn� ! F � for all � 2 KiR, we get that

(8) k˛WnVn.a/ � ˇi .a/k2;' ! 0 for all a 2 Pi .

Since k' ı Ad u�n ı ˛Vn � 'k ! 0 and since ' is invariant under ˛Wn and ˛WnVn , we
get that k' ı Ad v�n � 'k2;' ! 0. It then follows from (8) that

k˛WnVn.a/vn � ˇi .a/vnk2;' ! 0 for all a 2 Pi .
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We thus conclude that

kˇi .a/vn � vnak2;' ! 0 for all a 2 Pi .

By Lemma 5, we get that kvn � Ei .vn/k2;' ! 0. Since E1.E2.x// D '.x/1 for
all x 2M , we conclude that

kvn � '.vn/1k2;' ! 0:

Since ˛Wn is state preserving, it follows that kun � '.un/1k2;' ! 0. In particular,

j'.un/j ! 1:

This means that un � '.un/1! 0 �-strongly. Thus, Adun! id. Then also ˛Vn ! id,
from which it follows that Vn ! 1 strongly, so that T D 1.

4. Questions, comments and counterexamples

We start by providing the following easy examples of outer actions that are not
strictly outer.

Example 8. First, if M is a factor of type III0 whose T -invariant is trivial and if '
is a faithful normal state on M , the action R Õ�' M by modular automorphisms is
outer, but the crossed product M Ì�' R is not even a factor. In particular, �' is not
strictly outer.

Second, if � is a countable abelian group and � Õˇ .X;�/ is an essentially free,
probability measure preserving, weakly mixing action, then the dual action ˛ ofK D y�
on the crossed product II1 factor M D L1.X/ Ìˇ � is outer, but again, the crossed
product M Ì˛ K Š L1.X/ x̋ B.`2.�// is not even a factor.

Note that in Example 8, the actions on M are by approximately inner automor-
phisms: in [2, Proposition 3.9] (see also [12, Corollary 6.24]), it was proven that every
modular automorphism of a type III0 factor is approximately inner, while in the second
example, it follows from the Rohlin lemma (see [13]) that for every ! 2 K, there
exists a sequence of unitaries un 2 U.L1.X; �// such that ˇg.un/ � !.g/un ! 0

�-strongly for every g 2 � . Then, Ad u�n ! ˛! in AutM .
In combination with Theorem A, this thus leads naturally to the following question,

asking whether actions by not approximately inner automorphisms are automatically
strictly outer.

Question 9. Let G Õ˛ M be a strongly continuous action of a lcsc group G on a
factor M with separable predual. Denote by � WAutM ! AutM=InnM the natural
quotient homomorphism.

Does the faithfulness of � ı ˛ imply that ˛ is strictly outer?
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One should not expect to give an easy proof for a positive answer to Question 9.
Indeed, when M is a II1 factor, G D R and R Õ˛ M is a trace scaling action, the
relative commutant theorem [4, Theorem 5.1] says that the action ˛ is strictly outer.
Since ˛ is trace scaling, it is trivial that the homomorphism from R to AutM=InnM
is faithful. Therefore, a positive answer to Question 9 also has to cover the notoriously
difficult relative commutant theorem in modular theory.

In the very specific case of a tensor product action with one of the tensor factors
being full, the following result provides a positive answer to Question 9.

Proposition 10. LetG Õ˛ N andG Õˇ M be strongly continuous actions of a locally
compact group G on factors N and M . Consider the diagonal action 
g D ˛g ˝ ˇg
of G on N x̋ M .

If ˇ is strictly outer, then 
 is strictly outer.

Proof. Define


 WN x̋ M ! N x̋ M x̋ L1.G/ W 
.d/.g/ D 
g�1.d/;

so that .N x̋ M/ Ì
 G is the von Neumann subalgebra of N x̋ M x̋ B.L2.G//

generated by 
.N x̋ M/ and 1˝ 1˝ L.G/. We similarly define

ˇWM !M x̋ L1.G/;

so thatM Ìˇ G is the von Neumann subalgebra ofM x̋ B.L2.G// generated by ˇ.M/

and 1˝ L.G/.
Denote by N � B.H/ the standard representation of N and let .Ug/g2G be the

canonical implementation of the action ˛. Define the unitaryU 2B.H/ x̋ 1 x̋ L1.G/
by U.g/ D Ug ˝ 1. Then,

(9) � W .N x̋ M/ Ì
 G ! B.H/ x̋ .M Ìˇ G/ W �.T / D UT U �

is a well-defined �-homomorphism satisfying

�.
.a˝ b// D a˝ ˇ.b/ and �.1˝ 1˝ �g/ D Ug ˝ 1˝ �g

for all a 2 N , b 2M , g 2 G. Let a 2 
.N x̋ M/0 \ .N x̋ M/ Ì
 G. Then, �.a/ is
an element of B.H/ x̋ .M Ìˇ G/ that commutes with 1˝ ˇ.M/. Since ˇ is strictly
outer, we conclude that �.a/ D b ˝ 1˝ 1 for some b 2 B.H/.

Since �.a/ commutes with N ˝ 1˝ 1, we get that b D JcJ with c 2 N . Since a
belongs toN x̋ M x̋ B.L2.G//, we get that a commutes with JdJ ˝ 1˝ 1 for every
d 2 N . Note that U.JdJ ˝ 1˝ 1/U � belongs to B.H/ x̋ 1 x̋ L1.G/ and is given
by the function g 7! J˛g.d/J ˝ 1. Since �.a/ D JcJ ˝ 1˝ 1 commutes with all
these operators, we conclude that c 2 Z.N / D C1. Thus, a 2 C1.
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In Theorem A, we have proven that crossed productsM Ì˛ G are full wheneverM
is full and the homomorphism G ! OutM is faithful and has closed range. In light
of Question 9, it is natural to try to prove a similar result without assuming that M is
full, under the hypothesis that the homomorphism G ! AutM=InnM is faithful and
has closed range. One may expect that this condition should be sufficient to prove that
centralizing sequences of M Ì˛ G (see below for terminology) are equivalent with
asymptotically G-invariant centralizing sequences in M . This leads to the following
question, for which we again provide positive evidence in the case of a product action
(see Proposition 12).

Recall that a centralizing sequence in a von Neumann algebra N with separable
predual is a sequence an 2 N satisfying supn kank <C1 and k! � an � an � !k ! 0

for every ! 2 N�. A centralizing sequence .an/n2N is said to be trivial if there exists
a bounded sequence tn 2 C such that an � tn1! 0 �-strongly. Note that a factor N
with separable predual is full if and only if all centralizing sequences in N are trivial.

Question 11. Let G Õ˛ M be a strongly continuous action of a lcsc group G on a
factor M with separable predual. Denote by � WAutM ! AutM=InnM the natural
quotient homomorphism. Make the following assumptions.
� The homomorphism � ı ˛ is faithful and has closed image.
� Every centralizing sequence an 2M satisfying ˛g.an/ � an ! 0 �-strongly for

every g 2 G, is trivial.

Does it follow that M ÌG is a full factor?

Question 11 is much more challenging than Question 9. While Question 9 is trivial
for discrete groups G (because then every outer action is strictly outer), Question 11
is even open when G is a discrete group and M is a II1 factor. The problem is that
we have no analogue of Lemma 1 when M is no longer full. The only positive result
in this direction is provided by [3, Theorem 3.1] saying that for a II1 factor M and a
single automorphism ˛ 2 AutM , we have that the trivial bimodule L2.M/ is weakly
contained in H .˛/ if and only if ˛ is approximately inner. Even for a countable
family of automorphisms, this is not clear: assume that ˛n 2 AutM , n 2 N, is a
sequence of automorphisms of a II1 factor M . Assume that the identity id does not
belong to the closure of ¹�.˛n/ j n 2 Nº, where � WAutM ! AutM=InnM is the
quotient homomorphism. Can we conclude that the trivial bimodule L2.M/ is not
weakly contained in

L
n2N H .˛n/? When M is of type II1 or type III, the situation

is even more delicate, since then Lemma 1 is no longer true. For instance, when ˛ is a
trace scaling automorphism of the hyperfinite II1 factor M , the bimodules L2.M/

and H .˛/ are weakly equivalent, but ˛ is not approximately inner.
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As in Proposition 10, we give a positive answer to Question 11 in the case of
product actions.

Proposition 12. Let G Õ˛ N and G Õˇ M be strongly continuous actions of a lcsc
group G on factors N and M with separable predual. Denote by 
g D ˛g ˝ ˇg the
diagonal action of G on N x̋ M . Consider the following two statements.
(1) .N x̋ M/ Ì
 G is a full factor.
(2) Every centralizing sequence an 2 N satisfying ˛g.an/ � an ! 0 �-strongly for

every g 2 G, is trivial.
Then, .1/) .2/. If ˇ is strictly outer and that M �M Ìˇ G has stable w-spectral
gap, then also .2/) .1/.

From Theorem A, it thus follows that the two statements in Proposition 12 are
equivalent when G Õ˛ N is an arbitrary action and G Õˇ M is an action on a full
factor for which the resulting homomorphism G ! OutM is faithful and has closed
image.

Proof. We use the same notation as in the beginning of the proof of Proposition 12.
We first prove that .1/) .2/. Take a centralizing sequence an 2 N satisfying

˛g.an/ � an ! 0 �-strongly for every g 2 G. It follows from the dominated con-
vergence theorem that 
.an ˝ 1/ � an ˝ 1 ˝ 1 ! 0 �-strongly. We get for every
! 2 .N x̋ M x̋ B.L2.G///� with respect to the norm of .N x̋ M x̋ B.L2.G///�
that

k! � 
.an ˝ 1/ � ! � .an ˝ 1˝ 1/k ! 0;

k
.an ˝ 1/ � ! � .an ˝ 1˝ 1/ � !k ! 0;

k! � .an ˝ 1˝ 1/ � .an ˝ 1˝ 1/ � !k ! 0:

It follows that k! � 
.an˝ 1/� 
.an˝ 1/ �!k!0 for all!2.N x̋ M x̋ B.L2.G///�.
A fortiori, .
.an ˝ 1//n2N is a centralizing sequence in .N x̋ M/ Ì
 G. By (1), the
sequence .
.an˝ 1//n2N is trivial, so that also the centralizing sequence an 2N must
be trivial.

We then prove the more subtle converse implication .2/) .1/, assuming that ˇ is
strictly outer and that ˇ.M/ �M Ìˇ G has stable w-spectral gap. Fix a centralizing
sequence an 2 .N x̋ M/ Ì
 G. We may assume that kank � 1 for all n. We use the
homomorphism � defined in (9). Since .an/n2N is centralizing, we get that

�.an/.1˝ ˇ.b// � .1˝ ˇ.b//�.an/! 0 �-strongly

for every b 2 M . Since ˇ.M/ � M Ìˇ G has stable w-spectral gap and trivial
relative commutant, we find a sequence bn 2 B.H/ such that kbnk � 1 for all n
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and �.an/ � bn ˝ 1˝ 1! 0 �-strongly. It follows that

an � U
�.bn ˝ 1˝ 1/U ! 0 �-strongly:

Denote by � a left Haar measure onG. Fix a Borel set V �G with 0< �.V/ <C1.
Denote by !V the vector state on B.L2.G// given by the unit vector �.V/�1=21V . Fix
a normal state ! 2M�. Since an 2 N x̋ M x̋ B.L2.G//, define the sequence cn 2 N
by cn D .id˝! ˝ !V /.an/. Since an �U �.bn˝ 1˝ 1/U ! 0 �-strongly, we define

dn D �.V/
�1

Z
V

U �g bnUg dg

and conclude that cn � dn ! 0 �-strongly. Note that kdnk � 1 for all n 2 N.
We claim that bn � dn ! 0 �-strongly. For every g 2 G, we have that

.1˝ 1˝ ��g/an.1˝ 1˝ �g/ � an ! 0 �-strongly:

Applying � , it follows that

.U �g ˝ 1˝ �
�
g/�.an/.Ug ˝ 1˝ �g/ � �.an/! 0 �-strongly.

Since �.an/ � bn ˝ 1 ˝ 1 ! 0 �-strongly, we conclude that U �g bnUg � bn ! 0

�-strongly for every g 2 G. The claim then follows from the dominated convergence
theorem.

Since cn � dn ! 0 �-strongly, it follows from the claim above that cn � bn ! 0

�-strongly. Then also an � U �.cn ˝ 1˝ 1/U ! 0 �-strongly. Note that

U �.cn ˝ 1˝ 1/U D 
.cn ˝ 1/:

Since .an/n2N is a centralizing sequence in .N x̋ M/ Ì
 G and since 
.N x̋ 1/ is
a von Neumann subalgebra, it follows that .cn/n2N is a centralizing sequence in N .
Since an asymptotically commutes with 1˝ 1˝ �g , we also get that ˛g.cn/� cn! 0

�-strongly for every g 2 G. By the assumption of (2), we find a bounded sequence
tn 2 C such that cn � tn1! 0 �-strongly. Then also an � tn1! 0 �-strongly and
statement (1) is proven.

Remark 13. Consider the setting of Proposition 12. We have actually proven the
following two statements.

(1) Whenever .an/n2N is a centralizing sequence in N satisfying ˛g.an/ � an ! 0

�-strongly for every g 2 G, the sequence an˝ 1 is centralizing in .N x̋ M/Ì
 G.

(2) Assume that ˇ is strictly outer and that M �M Ìˇ G has stable w-spectral gap.
Then, for every centralizing sequence .bn/n2N in .N x̋ M/ Ì
 G, there exists a
sequence .an/n2N as in 1 such that bn � an ˝ 1! 0 �-strongly.
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In [8, Theorem 6], Jones proved that if Z Õ˛ M is an outer action on a full II1
factor then the crossed product M Ì˛ Z is full if and only if the image of Z in OutM
is closed. In general, assume that G is a countable group and G Õ˛ M is an outer
action on a factor M with separable predual. In [11, Theorem A], the following two
implications are proven.

(1) If M is full and the image of G in OutM is closed, then M Ì˛ G is full.

(2) If G is amenable andM Ì˛ G is full, thenM is full and the image of G in OutM
is closed.

In Theorem A, we have proven that statement (1) still holds for lcsc groups G. As
the following example shows, statement (2) is wrong for locally compact G. But a
weaker variant of statement (2) might still be true for lcsc groups, see Question 15.

Example 14. Let K be an infinite compact abelian group and let � � K be any
countable dense subgroup. Choose a strongly continuous outer action K Õˇ N of K
on a full factor N , e.g. the Bogoljubov action of K on L.F1/ associated with the left
regular representation of K as we recalled in Section 3. We restrict ˇ to an action
of � on N and define M D N Ìˇ � . Denote G D y� and define ˛ D b̌ as the dual
action of G on M . Since N � M ˛, we get that .M ˛/0 \M D C1 and it follows
that ˛ is strictly outer. Note that G is a second countable compact abelian group. The
crossed productM Ì˛ G ŠN x̋ B.`2.�// is a full factor. Nevertheless,M is not a full
factor. This follows by taking a sequence gn 2 � such that gn !1 in � and gn ! e

in K, so that ˛gn ! id in AutN . We claim that the associated unitaries ugn 2 M
form a nontrivial centralizing sequence in M . Denote by N � B.H/ the standard
representation of N and let .Ug/g2� be the canonical implementation of the action ˇ.
Then,M D N Ìˇ � can be viewed as the von Neumann subalgebra of B.H/ x̋ L.�/
generated by N ˝ 1 and the unitary operators Ug ˝ �g , g 2 � . Since ˛gn ! id, we
have Ugn ! 1 �-strongly. Since the unitaries 1˝ �g commute with B.H/ x̋ L.�/, it
follows that the sequence Ugn ˝ �gn is centralizing for N Ìˇ � .

Question 15. Let G be an amenable lcsc group and let G Õ˛ M be an outer action
on a full factor M with separable predual. Assume that M Ì˛ G is full. Does it follow
that the image of G in OutM is closed?

Remark 16. Finally observe that Example 14 and Question 15 are quite subtle. In
Example 14, the factor M Ì˛ G is full and thus, there is no nontrivial centraliz-
ing sequence .an/n2N in M satisfying ˛g.an/ � an ! 0 �-strongly for all g 2 G.
On the other hand, whenever ƒ � G is a countable subgroup, it follows from [11,
Theorem 3.3] that there exists a nontrivial centralizing sequence .an/n2N in M
satisfying ˛g.an/ � an ! 0 �-strongly for all g 2 ƒ. This can be seen as follows.
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Choose an ultrafilter ! on N and denote by M! the Ocneanu ultrapower. Then,
M 0 \M! is a diffuse von Neumann algebra with a faithful normal state ' given by
limn!! an D '.a/1 weakly for every element a 2M 0 \M! represented by a central-
izing sequence .an/n2N . The canonical action ƒ Õ˛ M 0 \M! is thus '-preserving.
Since ƒ is an abelian group, it follows from [11, Theorem 3.3] that this action is not
strongly ergodic. Using a diagonal argument, we then find the required centralizing
sequence.

It then also follows that there exists a nontrivial centralizing net .ai /i2I in M
satisfying ˛g.ai /� ai ! 0 �-strongly for all g 2 G. Since the dominated convergence
theorem fails for nets, we cannot deduce that .ai /i2I defines a nontrivial centralizing
net in M Ì˛ G, which would have been absurd.
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