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Wasserstein distance and metric trees
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Abstract. We study the Wasserstein (or earthmover) metric on the space P.X/ of probability
measures on a metric space X . We show that, if a finite metric space X embeds stochastically
with distortion D in a family of finite metric trees, then P.X/ embeds bi-Lipschitz into `1

with distortion D. Next, we re-visit the closed formula for the Wasserstein metric on finite
metric trees due to Evans–Matsen (2012). We advocate that the right framework for this formula
is real trees, and we give two proofs of extensions of this formula: one making the link with
Lipschitz-free spaces from Banach space theory, the other one algorithmic (after reduction to
finite metric trees).
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A la mémoire de Vaughan, ami et bon vivant

1. Introduction

Embeddings of metric spaces, especially discrete metric spaces like graphs, into
the Banach spaces `1 D `1.N/ or L1 D L1.Œ0; 1�; dx/, form a well-established part
of metric geometry, with applications ranging from computer science to topology: we
refer to [19], [7, Part I], or [22, Chapter 1]. In this paper we will be concerned with
embeddings of Wasserstein spaces, that we now recall.

Let .X; d/ be a metric space and let P1.X/ be the space of probability measures �
on X with finite first moment, i.e.Z

X

d.x0; x/ d�.x/ < C1

for some (hence any) base-point x0 2 X . For compact X , the space P1.X/ coincides
with the space P.X/ of all probability measures on X .

The Wasserstein metric is a distance function on P1.X/. Intuitively, given �; � 2
P1.X/, the distance Wa.�; �/ represents the amount of work necessary to transform �

https://creativecommons.org/licenses/by/4.0/
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into �. More precisely, a probability measure � 2 P.X �X/ is a coupling between �
and � if its marginals are � and �, i.e. �.A/ D �.A �X/ and �.A/ D �.X � A/ for
any Borel subset A � X . And the Wasserstein distance Wa.�; �/ is defined as

Wa.�; �/ D inf
°Z
X�X

d.x; y/ d�.x; y/ W � coupling between � and �
±
:

Note that X embeds isometrically in P1.X/ by x 7! ıx (the Dirac mass at x). See [23,
Chapter 5] or [25, Chapter 7] for more on the Wasserstein distance, also called
Kantorovich–Rubinstein distance or earthmover distance (EMD) in computer sci-
ence papers. We denote by Wa.X/ the space P1.X/ endowed with the Wasserstein
distance, and call it the Wasserstein space of X . For a coupling � , the cost of � is the
quantity

R
X�X

d.x; y/ d�.x; y/.
If .X; d/ is a metric space and B is a Banach space, we say that X embeds bi-

Lipschitz in B with distortion at most D � 1 if there exists f WX ! B such that, for
all x; x0 2 X :

.x; x0/ � kf .x/ � f .x0/kB � D � d.x; x
0/:

Let Y D .Yi ; di /i2I be a finite family of metric spaces. We say that a metric space
.X; d/ embeds stochastically in Y with distortion D � 1 if there exists non-negative
numbers .pi /i2I summing up to 1, and maps fi WX ! Yi (for each i 2 I ) such that:
� Each fi is non-contracting, i.e. for every x; y 2 X , we have

di .fi .x/; fi .y// � d.x; y/:

� For every x; y 2 X , we haveX
i2I

pidi .fi .x/; fi .y// � D � d.x; y/:

The above definition has a natural probabilistic interpretation: a metric spaceX embeds
stochastically in Y with distortionD, if there is a randomly chosen metric space Y 2 Y

and a randomly chosen non-contracting map f WX ! Y such that for all x; y 2 X :

E.dY .f .x/; f .y/// � D � d.x; y/:

The first aim of this paper is to prove the following result:

Theorem 1.1. Assume that the finite metric space .X; d/ embeds stochastically with
distortionD into a finite family of finite metric trees. Then Wa.X/ embeds bi-Lipschitz
into `1 with distortion at most D.
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Here, by a metric tree, we mean a tree T D .V;E/ endowed with a positive weight
functionwWE!R>0We 7!we . For x;y 2 V we denote by Œx;y� the set of edges on the
unique path from x to y and we endow V with the distance dT .x; y/ D

P
e2Œx;y�we .

We learned Theorem 1.1 from the paper [14] by P. Indyk and N. Thaper, who get
a less precise O.D/ for the distortion of the embedding into `1, and provide a rather
frustrating comment that prompted our desire to provide a direct proof of Theorem 1.1.1

It was shown by J. Fakcharoenphol, S. Rao and K. Talwar (see [11, Theorem 2])
that any finite metric space on n points embeds stochastically with distortion O.logn/
into a family of finite metric trees (and this bound is optimal). Using this it was shown
by F. Baudier, P. Motakis, G. Schlumprecht and A. Zsák ([2, Corollary 8]) that, for X
a finite metric space on n points, the lamplighter metric space La.X/ embeds into `1

with distortion O.logn/ D O.log log jLa.X/j/. Using the same result from [11], our
Theorem 1.1 immediately implies:

Corollary 1.2. For any finite metric space X on n points, the Wasserstein space
Wa.X/ embeds bi-Lipschitz into `1 with distortion O.logn/.

Combining with the isometric embeddingX!Wa.X/Wx 7! ıx , we get as corollary
a celebrated result by J. Bourgain [4].2

Corollary 1.3. Any finite metric space on n points, embeds bi-Lipschitz into `1 with
distortion O.logn/.

It turns out that on finite metric trees there is a remarkable closed formula for
the Wasserstein distance. It originated in papers in computer science in 2002 and
probably earlier: see Charikar [5], for measures supported on the leaves of the tree.3
For general probability measures on a finite metric tree, the formula appears in a paper
in biomathematics (see S. N. Evans and F. A. Matsen [9, Section 2]). We believe it
deserves to be better known in mathematical circles. To understand it, let T D .V;E/
be a metric tree, fix a base-vertex x0 2 V (so that T appears as a rooted tree). Any
edge e 2 E separates T into two half-trees, and we denote by Te the set of vertices of
the half-tree NOT containing x0: if we view the tree as hanging from the root, Te is
the subtree hanging below the edge e.

1We provide the comment for completeness: “The embedding can be seen as resulting from a combination
of the following two results:
1. The result of [5], who (implicitly) showed that the techniques of [16] imply the following: if a metricM

can be probabilistically embedded into trees with distortion c, then the EMD overM can be embedded
into `1 with distortionO.c/.

2. The result of [6] who showed that the Euclidean metric over ¹1; : : : ; �ºd can be probabilistically
embedded into trees with distortionO.d log�/. Again that result is implicit in that paper.”

2Of course all the difficulty becomes hidden in [11]!
3A proof for this special case appears in [17, Lemma 3.1].
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Theorem 1.4. Let T D .V;E/ be a finite, rooted metric tree. Then for �; � 2 P.V /:

(1) Wa.�; �/ D
X
e2E

wej�.Te/ � �.Te/j:

This formula has numerous implications, we state two of them: first, the right-hand
side is independent of the choice of the root; second, it shows that the Wasserstein
metric on P1.T / is a L1-metric (see Lemma 2.4 below).

Our second aim in this paper is to give two new proofs of Theorem 1.4. The first
one advocates that the right framework for Theorem 1.4 is real trees: by exploiting a
connection with the theory of Lipschitz-free spaces from Banach space theory, we will
extend the result to metric trees with countably many vertices. The second proof is by
double inequality: the inequality

Wa.�; �/ �
X
e2E

wej�.Te/ � �.Te/j

follows by considering the canonical embedding of the tree into `1 and its barycentric
extension to P1.V /. The converse inequality is proved by first reducing to finite metric
trees and, for those, given �; � 2 P.V /, by providing an algorithmic construction of a
coupling � with Z

V�V

d.x; y/ d�.x; y/ D
X
e2E

wej�.Te/ � �.Te/j:

We emphasize that it is a rather unique situation to enjoy a closed formula like (1)
for the Wasserstein space of a finite graph. Even for simple graphs like cycles, such
a formula is not known (see, however, [18] where an approximation is obtained for
a cycle by deleting one edge and reducing to a linear tree). For the n-dimensional
Hamming cube Hn, it was shown by S. Khot and A. Naor (see [15, Corollary 2]) that
Wa.Hn/ embeds bi-Lipschitz into L1 with distortion �.n/ (it was known previously
that Wa.Hn/ embeds into L1 with distortion O.n/, see [5, 14]). This illustrates the
curious phenomenon of a family of spaces embedding isometrically in L1, but with
Wasserstein spaces embedding poorly.

The paper is organized as follows. In Section 2 we prove Theorem 1.1, taking
Theorem 1.4 for granted. Sections 3 and 4 present our two proofs of Theorem 1.4,
suitably generalized to metric trees with countably many vertices (see Theorem 3.3).
Finally, the appendix provides a comparison between various �-algebras of sets on a
real tree, that appeared in the literature.
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2. Stochastic embeddings

We will prove Theorem 1.1 by means of a series of lemmas. The first one is [2,
Lemma 3], to which we also refer for the proof.

Lemma 2.1. Assume that the metric space .X; d/ embeds stochastically in Y D

.Yi ; di /i2I with distortionD, and that for every i 2 I the space Yi embeds bi-Lipschitz
into `1 with distortion Ci . Then X embeds bi-Lipschitz into `1 with distortion at
most CD, where C D maxi2I Ci .

The second lemma was suggested to us by F. Baudier.

Lemma 2.2. If the finite metric space .X;d/ embeds stochastically into YD .Yi ;di /i2I

with distortion D, then Wa.X/ embeds stochastically into .Wa.Yi //i2I with distor-
tion D.

Proof. For i 2 I , let pi � 0 and fi WX! Yi be realizing the stochastic embedding with
distortionD ofX into Y. Consider then .fi /�WP.X/! P.Yi /W� 7! .fi /�.�/, where
.fi /�.�/ denotes the push-forward of the measure �. We claim that the stochastic
embedding with distortion D of Wa.X/ into the family .Wa.Yi //i2I is realized by
the pi ’s and the .fi /�’s; to see this, we check the two points in the definition of a
stochastic embedding. Fix �; � 2Wa.X/.
� Fix i 2 I . Let �i be a coupling between .fi /�.�/ and .fi /�.�/ such that

Wa..fi /�.�/; .fi /�.�// D
X

y;y02Yi

dYi
.y; y0/�i .y; y

0/:

For y 2 Yi n fi .X/, we haveX
y02Yi

�i .y; y
0/ D .fi /�.�/.y/ D �.f

�1
i .y// D 0;

hence�i .y;y0/D 0 for every y0 2 Yi . So�i vanishes outside of fi .X/� fi .X/. Hence,
we may define �i 2 P.X �X/ by �i .x; x0/ D �i .fi .x/; fi .x0// and �i is a coupling
between � and �. Then

Wa..fi /�.�/; .fi /�.�// D
X

y;y02Yi

dYi
.y; y0/�i .y; y

0/

D

X
x;x02X

dYi
.fi .x/; fi .x

0//�i .fi .x/; fi .x
0//

D

X
x;x02X

dYi
.fi .x/; fi .x

0//�i .x; x
0/ �

X
x;x02X

d.x; x0/�i .x; x
0/ �Wa.�; �/;

where the first inequality follows from the fact that fi is non-contracting. So .fi /� is
non-contracting as well.
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� Let � 2 P.X �X/ be a coupling between � and � such that

Wa.�; �/ D
X

x;x02X

d.x; y/�.x; x0/:

Set �i D .fi � fi /�.�/ 2 P.Yi � Yi /. Then �i is a coupling between .fi /�.�/ and
.fi /�.�/ andX

i2I

pi Wa..fi /�.�/; .fi /�.�// �
X
i2I

pi
X

y;y02Yi

dYi
.y; y0/�i .y; y

0/

D

X
i2I

pi
X

x;x02X

dYi
.fi .x/; fi .x

0//�i .fi .x/; fi .x
0//

D

X
i2I

pi
X

x;x02X

dYi
.fi .x/; fi .x

0//�.x; x0/

D

X
x;x02X

�.x; x0/
X
i2I

pidYi
.fi .x/; fi .x

0//

� D �
X

x;x02X

�.x; x0/d.x; x0/ D D �Wa.�; �/;

where the second inequality follows from the fact that the fi ’s provide a stochastic
embedding. This concludes the proof.

Combining Lemmas 2.1 and 2.2 we immediately get:

Corollary 2.3. If the finite metric space .X; d/ embeds stochastically into Y D

.Yi ; di /i2I with distortion D, and each Wa.Yi / embeds bi-Lipschitz in `1 with distor-
tion Ci , then Wa.X/ embeds bi-Lipschitz into `1 with distortion at most CD, where
C D maxi2I Ci .

To prove Theorem 1.1, in view of Corollary 2.3, it is therefore enough to observe:

Lemma 2.4. If T D .V;E/ is any finite metric tree, then Wa.T / embeds isometrically
into `1.

Proof. Fix a root x0 2 V and, for any edge e 2 E, let Te � V be defined as in the
Introduction. The map

Wa.T /! `1.E/W� 7! .e 7! we�.Te//

is an isometric embedding of Wa.T /, by Theorem 1.4.

This concludes the proof of Theorem 1.1 (taking Theorem 1.4 for granted).
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3. First proof of Theorem 1.4

3.1. Lipschitz-free spaces. For a metric space .X; d/ with a base-point x0 2 X , we
denote by Lip0.X/ the Banach space of Lipschitz functions on X vanishing at x0,
endowed with the Lipschitz norm. The space Lip0.X/ has a canonical pre-dual, called
the Lipschitz-free space of X (see e.g. [26, Chapter 2], [22, Chapter 10]) and denoted
by F .X/: it is the closed linear subspace of the dual space Lip0.X/� generated by the
point evaluations ıx .x 2 X n ¹x0º/.

For � 2 P1.X/, the linear form f 7!
R
X
f .x/ d�.x/ defines an element of the

dual Lip0.X/�: this way we get an embedding of Wa.X/ into Lip0.X/�. When X is
a complete separable metric space, it can be shown that this is actually an isometric
embedding of Wa.X/ into F .X/ (see [21, Theorem 1.13] or [20, Section 2]).

3.2. Real trees. Let x; y be points in a metric space .T; d/. We say that an arc from x

to y is the image of an injective continuous map � W Œ0; 1�! T such that �.0/ D x and
�.1/ D y. A geodesic segment from x to y is the image of an isometric embedding
� W Œ0;d.x;y/�! T such that �.0/D x and �.d.x;y//D y. We say that .T;d/ is a real
tree if, for every x;y 2 T , there is a unique arc from x to y, which moreover is a geodesic
segment. In that case, there is a unique isometry �xy W Œ0; d.x; y/� with �xy.0/ D x
and �xy.d.x; y// D y. Equivalently, .T; d/ is a real tree if and only if T is a geodesic
metric space which is 0-hyperbolic in the sense of Gromov (see [3, Lemma 2.13] for
the equivalence).

For x; y 2 T , we set Œx; y� DW Im.�xy/ and call it the segment between x and y.
A point x 2 T is a branching point if T n ¹xº has at least 3 connected components;
we denote by Branch.T / the set of branching points of T . Fix a base-point x0 2 T .
For x 2 T , we set

Tx D ¹y 2 T W x 2 Œx0; y�º D ¹y 2 T W d.x0; y/ D d.x0; x/C d.x; y/ºI

so letting T hang from the root x0, the set Tx is the part of T lying below x.
Following A. Godard [12], we say that a subset A � T is measurable if, for every

x; y 2 T , the set ��1xy .A/ is Lebesgue-measurable in Œ0; d.x; y/�. On the � -algebra G

of measurable subsets, there is a unique measure � such that �.Œx; y�/ D d.x; y/: we
call � the length measure4. It is defined as follows: for Œx; y� a segment in T , let �xy
denote Lebesgue measure on Œ0; d.x; y/�. Then, for A 2 G , ifR � T is a finite disjoint
union of segments, say R D

Sk
iD1Œxi ; yi �, we set

�R.A/ D

kX
iD1

�xiyi
.��1xiyi

.A//:

4See the appendix below for a comparison of various � -algebras associated with real trees.
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Finally, we set

(2) �.A/ D sup
R2R

�R.A/;

where R is the set of subsets of T that can be expressed as finite disjoint unions of
segments.

For A a closed subset of T containing x0, still following [12], we define a function
LAWA! RC by

LA.a/ D inf¹d.a; x/ W x 2 A \ Œx0; aŒº:

So LA.a/ > 0 if and only if a is isolated in A \ Œx0; a�. We then define a measure �A
on A by

�A D �jA C
X
a2A

LA.a/ıa:

In [12, Theorem 3.2], it is proved that, ifA is a closed subset of T containing Branch.T /,
then F .A/ is isometrically isometric to L1.A; �A/.

Assume from now on that the real tree T is complete and separable. Then by the
previous subsection, forA a closed subset of T containing Branch.T /, the space Wa.A/
isometrically embeds into L1.A;�A/. This embedding is not written explicitly in [12];
by making it explicit we get a closed formula for the Wasserstein distance on closed
subsets of real trees.

Proposition 3.1. Let .T; d/ be a complete, separable real tree and let A be a closed
subset of T containing Branch.T /. For �; � 2Wa.A/, we have

(3) Wa.�; �/ D
Z
A

j�.Tx \ A/ � �.Tx \ A/j d�A.x/:

Proof. By the proof of [12, Theorem 3.2], the map

ˆWL1.A; �A/! Lip0.A/Wg 7!
�
a 7!

Z
Œx0;a�\A

g.x/ d�A.x/
�

is an isometric isomorphism which is weak�-weak� continuous, so its transpose ˆ�

realizes the desired isometric isomorphism F .A/! L1.A; �A/. Denoting by �Œx;y�
the characteristic function of the interval Œx; y�, the previous formula may be re-written:

.ˆ.g//.a/ D

Z
A

�Œx0;a�.x/g.x/ d�A.x/:

For � 2Wa.A/, we compute ˆ�.�/. For g 2 L1.A; �A/, we have

.ˆ�.�/; g/ D .�;ˆ.g//

D

Z
A

.ˆ.g//.a/ d�.a/ D

Z
A

�Z
A

�Œx0;a�.x/g.x/ d�A.x/
�
d�.a/:
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As the real tree T is separable, the measure �A is � -finite, and since � is a probability
measure we may appeal to the Fubini theorem to exchange integrals5:

.ˆ�.�/; g/ D

Z
A

g.x/
�Z
A

�Œx0;a�.x/ d�.a/
�
d�A.x/

D

Z
A

g.x/�.Tx \ A/ d�A.x/:

Since this holds for every g 2 L1.A; �A/ we deduce that, for almost every x 2 A:

.ˆ�.�//.x/ D �.Tx \ A/:

Equation (3) follows.

Remark 3.2. When A D T , Proposition 3.1 becomes, for T a complete separable real
tree and �; � 2Wa.T /:

(4) Wa.�; �/ D
Z
T

j�.Tx/ � �.Tx/j d�.x/:

When T is the geometric realization of a finite metric tree, equation (4) appears
as [9, equation (5)]; the proof is different.

Theorem 3.3. Let T D .V;E/ be a rooted metric tree with countably many vertices.
Then for �; � 2 P1.V /:

Wa.�; �/ D
X
e2E

wej�.Te/ � �.Te/j:

Proof. Fix �; � 2 P1.V /. For an edge e, let eC; e� be the vertices of e, chosen so that
d.x0; e

C/ < d.x0; e
�/. Then on the arc ŒeC; e�� the function x 7! j�.Tx/ � �.Tx/j

is constant, equal to j�.Te/ � �.Te/j. So by formula (4):

Wa.�; �/ D
X
e2E

Z
ŒeC;e��

j�.Tx/ � �.Tx/j d�.x/

D

X
e2E

wej�.Te/ � �.Te/j:

4. Second proof of Theorem 1.4

We now proceed with our second proof.

5There are well-known counterexamples to Fubini when one of the measures is not �-finite, we refer
e.g. to the Wikipedia entry on the Fubini theorem.
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4.1. Lipschitz maps to Banach spaces.

Proposition 4.1. Let .X; d/ be a metric space, and let E be a Banach space. Any
C -Lipschitz map ˇWX ! E extends canonically to a C -Lipschitz map žWWa.X/!
EW� 7! ž.�/ defined as the barycenter of ˇ.X/ with respect to �, i.e.

ž.�/ D

Z
X

ˇ.x/ d�.x/:

Proof. Let x0 be a base-point in X . Composing ˇ with a translation in E, we may
assume that ˇ.x0/ D 0. Then, as kˇ.x/ � ˇ.y/k � C � d.x; y/ for any x; y 2 X , we
get

kˇ.x/k � C � d.x0; x/;

hence
k ž.�/k �

Z
X

kˇ.x/k d�.x/ � C

Z
X

d.x0; x/ d�.x/ < C1:

So ž is well defined.
To check that ž is C -Lipschitz, observe that for �; � 2 P1.X/ and � a coupling

between � and �, we have

k ž.�/ � ž.�/k D



 Z

X

ˇ.x/ d�.x/ �

Z
X

ˇ.y/ d�.y/





D




 Z
X�X

ˇ.x/ d�.x; y/ �

Z
X�X

ˇ.y/ d�.x; y/





�

Z
X�X

kˇ.x/ � ˇ.y/k d�.x; y/ � C

Z
X�X

d.x; y/ d�.x; y/:

The result follows by taking the infimum over all couplings � .

Remark 4.2. Observe that, if ˇ in Proposition 4.1 is bi-Lipschitz, in general its
extension ž is not. Indeed take E D R, and let X � R be any subset with at least 3
elements, the inclusion ˇWX ! R is isometric, but ž is not even injective.

Let T D .V; E/ be a metric tree; we denote by �Œx;y� the characteristic function
of the set of edges in Œx; y�. There is a well-known isometric embedding ˇW V !
`1.E;w/Wx 7! �Œx0;x� (it is hard to locate the first appearance of this embedding in the
literature: we learned it from [13]). By Proposition 4.1, we extend it to a 1-Lipschitz
map žWP1.V /! `1.E;w/. Ultimately we will see that ž is isometric. For the moment
we prove:

Proposition 4.3. Let T D .V;E/ be a metric tree. For �; � 2 P1.V /:

k ž.�/ � ž.�/k1 D
X
e2E

wej�.Te/ � �.Te/j �Wa.�; �/:
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Proof. The inequality follows from Proposition 4.1, we focus on the equality. But,

k ž.�/ � ž.�/k1 D
X
e2E

wej ž.�/.e/ � ž.�/.e/j:

So it is enough to prove that ž.�/.e/ D �.Te/. So we compute:

ž.�/.e/ D
X
x2V

ˇ.x/.e/�.x/ D
X
x2V

�Œx0;x�.e/�.x/ D
X
x2Te

�.x/ D �.Te/

as �Œx0;x�.e/ D 1 if and only if x 2 Te .

Our aim now is to prove that the inequality in Proposition 4.3 is actually an equality,
i.e. for metric trees T D .V; E/ with countably many vertices we wish to prove the
reverse inequality

(5)
X
e2E

wej�.Te/ � �.Te/j �Wa.�; �/:

[21, Theorem 1.13] implies that the set of finitely supported probability measures
is dense in .P1.V /;Wa/. Of course Wa.�; �/WP1.V / � P1.V /! R is continuous, and

P1.V / � P1.V /! RW .�; �/ 7!
X
e2E

wej�.Te/ � �.Te/j

is continuous too, as an immediate consequence of Proposition 4.3. So to show (5) we
may restrict for finitely supported measures, i.e. we may restrict to finite metric trees.

4.2. An algorithm for finite metric trees. Let T D .V; E/ be a finite metric tree.
Recall from the proof of Theorem 3.3 that if e 2 E is an edge, we write eC and e�

its two extremities chosen so d.x0; eC/ < d.x0; e�/, moreover if v; w 2 V , we say
that w is a descendant of v if v 2 Œx0; w� (notice that a vertex is its own descendant)
and we say that w is a child of v - and that v is the parent of w - if w is a descendant
of v and Œv;w� D ¹w; vº. If v 2 V we write Tv for the half tree with set of vertices the
set of all descendants of v, hence Tx0

D T and if e 2 E, then Te D Te� .
To show that

Wa.�; �/ �
X
e2E

wej�.Te/ � �.Te/j

we provide an algorithm which transforms a probability measure �0, initially set to �
into �. In parallel, this algorithm keeps track of a variable (here a matrix)

� 0 D .� 0.x; y//x;y2V WD .�
0
x;y/x;y2V

that, all the way through the running of the algorithm, provides a coupling between �
and �0. When the algorithm stops we will have �0 D � and the cost of the coupling � 0
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will be
P
e2E wej�.Te/� �.Te/j. This algorithm runs in two phases; intuitively speak-

ing the first phase brings up (towards the root) the excess of mass from those subtrees Te
with �.Te/ > �.Te/, and the second phase let that mass fall (towards the leaves) in the
subtrees Te with�.Te/ < �.Te/. Still intuitively, for every vertex x, the quantity � 0x;y is
the mass attributed by �0 to x coming from y; the coupling remembers where the mass
comes from. We consider that the vertices of T are numbered with 1; 2; : : : ; n WD jV j,
in such a way that given two vertices that are at distinct depths in the tree, the deeper
one is associated with a lower number than the other. The algorithm is such that it
moves first the mass coming from vertices with a low number.

Algorithm.
% Initialization:
�0  �.
for all v

� 0v  
E0

� 0v;v  �.v/

end for
M  0 % This variable is used just for the proof
% Phase (1):
for N depth level, from the deeper up to 1:

for all Te subtree whose root e� is at depth N : % Loop (�)
if �0.Te/ > �.Te/ then

% “we bring .�0.Te/ � �.Te// up one level”:
x  .�0.Te/ � �.Te//

�0.e�/ �0.e�/ � x % and simultaneously
�0.eC/ �0.eC/C x.
j  min¹k W

Pk
iD1 �

0
e�;i � xº

for i < j
� 0
eC;i
 � 0

eC;i
C � 0e�;i

end for
� 0
eC;j
 � 0

eC;j
C .x �

Pj�1
nD1 �e�;n/

� 0e�;j  � 0
eC;j
� .x �

Pj�1
nD1 �e�;n/

for all i < j
�e�;i  0

end for
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end if
M  M C 1

end for
end for
% Phase (2):
for N depth level from 0 to the deepest level in the tree�1:

for all T subtree whose root r is at depth N :

let s1; : : : ; sn be the sons of r
if �0.r/ > �.r/:

for i D 1; : : : ; n % Loop (��):
if �.Tsi / > �0.Tsi /:

% “We let .�.Tsi / � �0.Tsi // fall one level”:
x  .�.Tsi / � �

0.Tsi //

�0.si / �0.si /C x % and simultaneously
�0.r/ �0.r/ � x.
j  min¹k W

Pk
nD1 �r;n � xº

for k < j

�si ;k  �si ;k C �r;k

end for
�si ;j  �si ;j C .x �

Pj�1
nD1 �r;n/

�r;j  �si ;j � .x �
Pj�1
nD1 �r;n/

for k < j
�r;k  0

end for
end if
M  M C 1

end for
end if

end for
end for

We must now prove that the algorithm works as intended, that is:
� that � 0 is always a coupling between � and �0;
� second, that when the algorithm terminates we have �0 D �;
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� finally, that the cost of � 0 is
P
e2E we j �.Te/ � �.Te/ j.

Proof. A probability measure on a tree T is determined by the measure attributed to
all subtrees Te . To see that �0 D � when the algorithm terminates, we thus show that
�0.Te/ D �.Te/ for all subtree Te:
� If �.Te/D �.Te/ then neither phase (1) nor (2) modifies �0.Te/D �.Te/D �.Te/
(even though the distribution may vary).
� If �.Te/ > �.Te/ then phase (1) removes the adequate quantity of mass from
�0.Te/ so that once phase (1) is over we have �0.Te/ D �.Te/. Then phase (2) does
not change the quantity �0.Te/ D �.Te/ (even though it could change the distribution
on that subtree).
� If �.Te/ < �.Te/ phase (1) does not change the quantity �0.Te/ D �.Te/ (even
though it could change the distribution on that subtree). We write �N for the mea-
sure �0 after all subtrees whose root is at depth N have been treated by phase (2)
(N going from 0 to the deepest level in the tree �1). Then we proceed by induction
on N , assuming eC is at depth N . The initial step consists in seeing that �ND0, the
measure �0 just after phase (1), is a probability measure on T ; � being one too it
follows �ND0.T / D �.T / D 1. For the induction step, we write e� D v1; : : : ; vm the
children of eC and assume that (induction hypothesis) for all i D 1; : : : ; m:

�N .TeC/ D �.TeC/ D �
N .eC/C

mX
iD1

�N .Tvi
/ D �.eC/C

mX
iD1

�.Tvi
/:

Since phase (1) is over �N .Tvi
/ � �.Tvi

/, hence �N .eC/ � �.eC/. Then, phase (2)
of the algorithm modifies:

�NC1.vi / D �
N .vi /C .�.Tvi

/ � �N .Tvi
//:

And:

�NC1.Tvi
/ D �N .Tvi

/ � �N .vi /C �
NC1.vi /

D �N .Tvi
/ � �N .vi /C �

N .vi /C .�.Tvi
/ � �N .Tvi

//

D �.Tvi
/:

Then we have the desired fact for i D 1.

Eventually when the algorithm stops �0 D �.
The measures �0 and � 0 are modified only during loops (�) and (��), we write �M

and �M for the values of �0 and � 0 after M rounds through loops (�) or (��). Then
�M D .�M .x; y//x;y2V WD .�

M
x;y/x;y2V is a coupling between � and �M : just after
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initialization, it is clear that � 0 D �0 is a coupling between � and �0 D �, it follows
by induction that �M is a coupling between � and �M (treating separately the case
where moving from M to M C 1 is done during phase (1) and the case where this
move is done during phase (2)). About the cost of the coupling, if moving from M

to M C 1 is done during phase (1), in loop (�) we have:X
x;i

d.x; i/�MC1x;i D

X
x

X
i

d.x; i/�MC1x;i

D

X
i

d.s; i/�MC1s;i C

X
i

d.r; i/�MC1r;i C

X
x¤r;s

X
i

d.x; i/�Mx;i

D

X
i<j

d.s; i/.�Ms;i C �
M
r;i /C d.s; j /

�
�Ms;j C

�
x �

j�1X
nD1

�Mr;n

��

C

X
i>j

d.s; i/�Ms;i C
X
i<j

d.r; i/ � 0C d.r; j /

�
�Mr;j �

�
x �

j�1X
nD1

�Mr;n

��
C

X
i>j

d.r; i/�Ms;i C
X
x¤r;s

X
i

d.x; i/�Mx;i

D

X
x;i

d.x; i/�Mx;i C .d.s; j / � d.r; j //

�
x �

j�1X
nD1

�Mr;n

�
C

X
i<j

.d.s; i/ � d.r; i//�Mr;i

D

X
x;i

d.x; i/�Mx;i C x � .d.s; j / � d.r; j //

D

X
x;i

d.x; i/�Mx;i C x � d.s; r/:

Where we have used that d.s; j / � d.r; j / D d.s; r/, and that every i such that �Mr;i
contributes to the sum

P
i<j .d.s; j / � d.r; j //�

M
r;i is such that

d.s; i/ � d.r; i/ D d.s; j / � d.r; j / D d.s; r/ � 0:

Each vertex i such that �Mr;i ¤ 0 is (non-strictly) below r in the rooted-tree (since �Mr;i
is the mass �M in r coming from i ; we let the reader check it formally). Then those
vertices i such that �Mr;i contributes to the sum

P
i<j .d.s; i/ � d.r; i//�

M
r;i are (non-

strictly) below r and for those we have d.s; i/ � d.r; i/, and then

d.s; i/ � d.r; i/ D d.s; r/

since s is the father of r . By definition of j , �Mr;j ¤ 0 and thus j is (non-strictly)
below r , hence

d.s; j / � d.r; j / D d.s; r/ � 0:



M. Mathey-Prevot and A. Valette 330

If moving from M to M C 1 is done during phase (2), in loop (��), we conclude
similarly that the cost of the coupling is increased by x � d.si ; r/. During phase (1)
excess measure is always brought up one level at the time, in the loop (�) we thus
always have

x D �0.T / � �.T / D �.T / � �.T /:

And phase (1) brings up excess measure exactly from those subtrees Te with �.Te/ >
�.Te/. During phase (2) measure is always brought down one level at the time, in the
loop (��) we thus always have

x D �0.Ti / � �.Ti / D �.Ti / � �.Ti /:

And phase (2) brings down adequate quantity of measure exactly in those subtrees Te
with �.Te/ < �.Te/. Since just after initialization � 0 has null cost, the cost of it at the
end of the algorithm is thus X

e2E

wej�.Te/ � �.Te/j:

Remark 4.4. Let .X; d/ be a Polish metric space. For �; � 2 P1.X/, we have from
the Kantorovich–Rubinstein duality:

Wa.�; �/ D sup
°Z
X

f .x/ d�.x/ �

Z
X

f .x/ d�.x/
±
;

where the supremum is taken over all 1-Lipschitz functions f (see [25, Theorem 1.3];
see also [8] for a short proof). We observe that, for a finite metric tree, our second
proof of Theorem 1.4 does not appeal to Kantorovich–Rubinstein duality (in contrast
e.g. with the proof in [9]).

A. � -algebras on real trees

Let .T; d/ be a real tree. Apart from Godard’s construction from [12] of the
� -algebra G recalled above, we are aware of other constructions of �-algebras on T
and of corresponding length measures:
� The � -algebra � generated by segments, see [24].
� The Borel � -algebra B generated by open subsets, see [10] for compact real trees,

then for locally compact real trees in [1].

All these constructions have in common that the length measure of a segment Œx; y� is
exactly d.x; y/. In order to clarify the relation between � ;B and G , we also introduce
the �-algebras B0 generated by open balls (so that B0 � B) and x� obtained by
completing � with respect to �-negligible subsets.

The following proposition explains our choice to work with Godard’s � -algebra G .
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Proposition A.1. Let T be a real tree.
(1) We have � � B0 � G and x� � G .
(2) If T is separable then B0 D B and x� D G .

Proof. (1) To show that � � B0, fix x; y 2 T and let .zn/n>0 be a dense sequence
in Œx; y�. Then the equality

Œx; y� D
\
m�1

� [
n>0

B.zn; 1=m/
�

shows that Œx; y� 2 B0. Now, let B be an open ball in T . For any x; y 2 T , the
intersection B \ Œx; y� is convex in Œx; y�, so it is a sub-interval in Œx; y�. In particular,
B \ Œx; y� is Lebesgue-measurable in Œx; y�, so B 2 G .

The inclusion x� � G follows from the fact that G is complete, as can be seen from
the definitions.

(2) The equality B0 D B holds in every separable metric space (any open set being
then a countable union of open balls).

To prove the inclusion G � x� , we consider the subset T 0 DW
S
x;y2T �x; yŒ and its

complement L D T n T 0: the latter is the set of leaves of T . For every segment Œx; y�
we have L \ Œx; y� � ¹x; yº, so that L 2 G ; moreover �.L/ D 0 by equation (2).

Then we takeA 2 G . To showA 2 x� we use separability: letD be a countable subset
of T . It is easy to see that T ı D

S
x;y2D �x; yŒ which implies that T ı is x�-measurable,

as well as its complement L. On the one hand, A \ L � L and �.L/ D 0, then
A \ L is �-negligible, and thus x�-measurable. On the other hand, A \ T ı 2 x� since
A \ �x; yŒ 2 x� for all x; y 2 T because the � -algebra of Lebesgue-measurable subsets
is the completion of the � -algebra generated by sub-intervals, i.e. A\ �x; yŒ 2 x� . This
concludes the proof.
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