
Enseign. Math. (2) 69 (2023), 381–397
DOI 10.4171/LEM/1056

© 2023 Fondation L’Enseignement Mathématique
Published by EMS Press

This work is licensed under a CC BY 4.0 license

An inequality for non-microstates free entropy dimension for
crossed products by finite abelian groups

Dimitri Shlyakhtenko

Abstract. For certain generating sets of the subfactor pair M � M Ì G where G is a finite
abelian group we prove an approximate inequality between their non-microstates free entropy
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1. Introduction

The famous Jones index [8] is the von Neumann algebra extension of the group-
subgroup index and is defined for any inclusion M0 � M1 of II1 factors. An open
question in von Neumann algebra theory is to find an analog of the Schreier’s formula
for the number of generators of finite-index subgroups of non-abelian free groups Fn.
For example, one expects that the “number of generators” of a finite-index subfactor
M0�M1DL.Fn/ should be 1C .n� 1/ŒM WN�. Indeed, specific subfactors ofL.Fr/
constructed via amalgamated free products [5, 6, 14–16] have sets of generators for
which such a formula holds. However, there is little that is known in general, even for
index 2.

Returning to group theory, letH � G be a finite-index inclusion of groups. Denot-
ing by ˇ2j .G/ the L2-Betti numbers of G one has the following generalization of
Schreier’s formula (see e.g. [12]):

ˇ
.2/
j .G/ D ŒG W H��1ˇ

.2/
j .H/:

(Schreier’s formula corresponds to the case j D 1 and involves the equality ˇ.2/1 .Fr/D

r � 1). A similar formula is true for finite-index inclusions of tracial algebras [21].
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Voiculescu’s free entropy dimension ı0 [22, 23] takes the value r on a set of
generators of L.Fr/; more generally, its value is related to L2 Betti numbers [2,13,18].
Therefore, one expects a statement of the following kind: given a finite index inclusion
M0 �M1, for any generating set S0 for M0 there exists a generating set for M1 (and
conversely, for any generating set S1 for M1 there exists a generating set S0 for M0)
so that

(1.1) ı0.S0/ � 1 D ŒM1 WM0�
�1.ı0.S1/ � 1/:

However, at present only inequalities of the form ı0.S1/ � ı0.S0/ are available [9].
In this paper we show that for very specific examples of subfactors, namely sub-

factors of the form M0 �M1 DM0 ÌG with G a finite abelian group, we can find
generators M0 and M1 for which the non-microstates free entropy dimension [25]
analog of (1.1) holds with an arbitrary small error. More precisely, we prove that given
" > 0 there exist generating sets S0 for M0 and S1 for M1 for which

ı?.S0/ � 1 D ŒM1 WM0�
�1.ı?.S1/ � 1/C ":

Our result is interesting in connection with the following question. Let H be a
finitely generated group, and let ˛ be an action of some infinite group G onH . Then it
is known [4, Theorem 6.8] that ˇ.2/1 .H Ì˛ G/D 0. In case thatG DZ andH is finitely
presented sofic, this implies that the von Neumann algebraM1 D L.H/Ì Z is strongly
one-bounded [7, 11, 18]; in particular for any generating S set of M1, ı0.S/ D 1. This
leads us to the following conjecture:

Conjecture 1. Let M0 be a finitely-generated von Neumann algebra, and let G be an
action of a infinite group on M0. Then M1 DM0 Ì˛ G is strongly 1-bounded.

If true, the conjecture has a somewhat surprising consequence: it would imply
non-isomorphism of free group factors. Indeed, let G be any infinite discrete group
so that L.G/ is R!-embeddable (e.g. G D Z or G amenable), and regard F1 as the
infinite free product of copies of Z indexed by G. Then G acts on this index set by
permutations and thus on F1; call this action ˛. One can easily see that the resulting
semi-direct product is Z �G, corresponding to the extension

e ! FjGj ! Z �G
e�id
! G ! e:

Thus,

M1 DM0 Ì˛ G D L.F1 Ì˛ G/ D L.Z �G/ Š L.Z/ � L.G/:
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The latter von Neumann algebra is known to be not strongly 1-bounded; in fact it has a
generating set whose free entropy dimension is strictly above 1. On the other hand, if
we were to assume that L.F1/ Š L.F2/ (or even finitely-generated), our conjecture
(for the specific group G) would imply that M1 is strongly 1-bounded and thus all of
its generating sets have free entropy dimension 1, which would be a contradiction.

While we are unable to even come close to proving the conjecture, we are able
to show that if M0 is finitely-generated and in addition M0 Š M2�2.M0/ and G D
.Z=2Z/˚1, then for any " > 0, M1 has generating sets with free entropy dimension
bounded by 1 C ". The proof is reminiscent of Gaboriau’s proof [3] and it is this
connection that inspired us to study the behavior of free entropy dimension under
crossed products.

2. Estimates on non-microstates free entropy dimension

2.1. Special generators for crossed product subfactors. Let M be a II1 factor and
let ˛ be a properly outer action of a finite abelian groupG onM . Consider the inclusion
of factors

MG
�M �M Ì˛ G;

where MG is the fixed point algebra for the action ˛. It follows from Takai–Takesaki
duality [19, 20] that M Ì˛ G Š MjGj�jGj.M

G/ , and moreover that the inclusion
MG �M is isomorphic to an inclusion of the formMG �MG Ì˛0 yG, where yG is the
group dual of G and ˛0 is a certain action related to the dual action of yG on M Ì˛ G.

Assume now that M is finitely generated; thus also M Ì˛ G is finitely generated.
Since MjGj�jGj.MG/ Š M Ì˛ G we also know that MG is finitely generated. Let
X D .X1; : : : ;Xd / be a set of generators forMG . Denote by yug 2MG Ì yG, g 2 yG, the
unitaries implementing ˛0. Using the isomorphism .MG �M/� .MG �MG Ì˛0 yG/,
we may view these unitaries as elements ofM . Then the setX [ .yug/g2 yG generatesM .
Furthermore, if we denote by ug 2 M Ì˛ G, g 2 G, the unitaries implementing ˛,
then X [ .yug/g2 yG [ .ug/g2G form a generating set of M Ì˛ G. Note that we have
the following relations:

ugXju
�
g D Xj ; g 2 G; j D 1; : : : ; d;

ug yuhu
�
g D hg; hiyuh; g 2 G; h 2 yG;

where we use h� ; �i to denote the pairing between the elements of G and its dual yG.

2.2. Estimates on non-microstates free entropy dimension ı?. In this paper it will
be convenient to work with a non-selfadjoint version of free entropy dimension. Given
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non-commutative random variables Y in a tracial von Neumann algebra M and a
sub-algebra B �M , let A D �- alg.Y;B/ and let C be a circular element free from A;
we normalize C so that �.C �C/ D 2. Consider the derivation

@Y WA! span¹ACAC AC �Aº

determined by the Leibniz rule and by @Y .Y / D C , @Y .Y �/ D C �, @Y .b/ D 0 for all
b 2 B . The vector J.Y W B/ 2 L2.A; �/, if it exists, is called the conjugate variable
to Y and is uniquely determined by

hJ.Y W B/; P iL2.A/ D hC
�; P iL2.A�W �.C//; 8P 2 A:

Given ¹Yi W i 2 I º, the free entropy dimension is then determined by

ı?.Yi W i 2 I / D 2jI j � lim inf
t!0

t
X
i2I

J �Y ti W �Y tj W j 2 I n ¹iº��22;
where Y ti D Yi C

p
tCi and ¹Ci W i 2 I º are circular elements �-free form ¹Yi W i 2 I º.

It is not hard to see that our definition is equivalent to the usual definition of ı? for
self-adjoint variables (implicitly introduced in [25], see also [2, Section 4]), in that

ı?.Yi W i 2 I / D ı
?
s:a:.Re Yi ; Im Yi W i 2 I /:

Lemma 2. Suppose that ˛ is an action of a finite abelian group G on a tracial von
Neumann algebraM , and suppose that Yj 2M , j 2 I are (not necessarily self-adjoint)
generators of M . Let C .g/j , g 2 G be circular elements �-free from M , and extend ˛
to

W �.Yi W i 2 I / �W
�.C

.g/
i W i 2 I; g 2 G/

by setting ˛g.C .g
0/

i / D C
.gg0/
i . Let finally Y tj D Yj C

p
tC

.e/
j , where e 2 G is the

neutral element. Let
� tj D J

�
Y tj W

�
Y ti W i 2 I n ¹j º

��
be the free conjugate variables.

For each h 2 yG, denote by . xC .h/j /� the projection of .C .e/j /� on to the linear
subspace of

span
®
˛g..C

.e/
j /�/ W g 2 G

¯
consisting of vectors x satisfying ˛g.x/ D hg; hix.

Then

(2.1) � tj D jGj t
�1=2EW �.Y t

i
Wi2I/..

xC
.h/
j /�/; 8h 2 yG;
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and also

h� tj ; .
xC
.h/
j /�i D

1

jGj
h� tj ; .C

.e/
j /�i D

t1=2

jGj
k� tj k

2
2; 8j 2 I; h 2

yG:

In particular, if we denote by x� t;.h/j the projection of � tj onto the subspace of

span¹˛g.� tj / W g 2 Gº

consisting of vectors x satisfying ˛g.x/ D hg; hix, then

kx�
t;.h/
j k

2
2 D

1

jGj
k� tj k

2; j 2 I; h 2 yG;

hx�
t;.h/
j ; .C

.e/
j /�i D

t1=2

jGj
k� tj k

2
2;

so that all of the orthogonal components x� t;.h/j in the decomposition � tj D
P
h2 yG
x�
t;.h/
j

have the same length and the same inner product with .C .e/j /�. (It is worth noting that
x�
t;.h/
j … W �.Y ti W i 2 I / since that algebra is not invariant under the action ˛.)

Proof. By [17], we may assume that there exists a family of free creation operators `.g/j ,
ỳ.g/
j satisfying, for all g; g0 2 G, j; j 0 2 I , y 2M ,

.`
.g/
j /�y`

.g0/
j 0 D .

ỳ.g//�y ỳ
.g0/
j 0 D ıgDg0ıjDj 0�.y/;

. ỳ
.g/
j /�y`

.g0/
j 0 D .`

.g//�y ỳ
.g0/
j 0 D 0;

and so that C .g/j D `
.g/
j C .

ỳ.g/
j /�. The action ˛ can be extended by putting

˛g.`
.g0/
j / D `

.gg0/
j and ˛g. ỳ

.g0/
j / D ỳ

.g�1g0/
j :

Denote by

x̀.h/
j D

1

jGj

X
g2G

hg; hi˛g.`
.e/
j /;

xz̀.h/
j D

1

jGj

X
g2G

hg; hi˛g. z̀
.e/
j /

the projections of `.e/j (respectively, ỳ.e/j ) onto the linear subspace of span¹`.g/j W g 2Gº

(resp., span¹ỳ.g/j W g 2 Gº) consisting of vectors x satisfying ˛g.x/ D hg; hix; in this
way we get that

xC
.h/
j D x̀

.h/
j C .

xỳ.h/
j /�:
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We can now verify the following equations:

.x̀
.h/
j /�y x̀

.h0/
j 0 D .

xỳ.h/
j /�y

xỳ.h
0/

j 0 D jGj
�1ıhDh0ıjDj 0�.y/;

.
xỳ.h/
j /�y x̀

.h0/
j 0 D .

x̀.h//�y
xỳ.h
0/

j 0 D 0:

From this it follows that . xC .h/j W j 2 I; h 2 yG/ is a family of free circular operators (of
variance jGj�1) which are free from M . Since for each j 2 I ,

C
.e/
j D

X
h2 yG

xC
.h/
j ;

it follows from [25] and the equalities J.Cj / D C �j , J. xC .h/j / D jGj. xC
.h/
j /� that

� tj D J
�
Yj C

p
tC

.e/
j W

�
Y ti W i 2 I n ¹j º

��
D J

��
Yj C

p
t
X
h0¤h

xC
.h0/
j

�
C
p
t xC

.h/
j W

�
Y ti W i 2 I n ¹j º

��
D EW �.Y t

j
Wj2I/J

�
p
t xC

.h/
j W

�
Yj C

p
t
X
h0¤h

xC
.h0/
j

�
[
�
Y ti W i 2 I n ¹j º

��
D jGj t�1=2EW �.Y t

j
Wj2I/..

xC
.h/
j /�/;

the last equality by freeness. This gives (2.1). On the other hand,

� tj D t
�1=2EW �.Y t

j
Wj2I/.C

.e/
j /:

It follows that

h� tj ; .C
.e/
j /�i D h� tj ; EW �.Y t

j
Wj2I/..C

.e/
j /�/i

D t1=2h� tj ; �
t
j i

D jGj�1h� tj ; EW �.Y t
j
Wj2I/..

xC
.h/
j /�/i

D jGj�1h� tj ; .
xC
.h/
j /�i;

which readily implies the remaining statements of the lemma.

Theorem 3. LetX be an arbitrary generating set forMG , and letX [ .yug/g2 yG be the
generating set forM and X [ .yug/g2 yG [ .ug/g2G be the generating set forM Ì˛ G
as constructed in Section 2.1. Then for any " > 0, there exists a � > 0, so that

ı?
�
.�Xi W i 2 I / [ .�yuh W h 2 yG/ [ .ug W g 2 G/

�
� 1(2.2)

� jGj�1
�
ı?.Yi W i 2 I / � 1

�
C ":
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Proof. Let I D ¹1; : : : ; dº t yG; for i 2 I , set Yi D Xi if i 2 ¹1; : : : ; dº and Yi D yuh
if i D h 2 yG. Let also !i WG ! C be given by !i .g/ D 1 if i 2 ¹1; : : : ; dº and
!i .g/ D hg; hi if i D h 2 yG. We then have the following relations:

ugYiu
�
g D !i .g/Yi ; i 2 I; g 2 G:

For i 2 I , let Ci be a circular system, free from W �.Yi W i 2 I; ug W g 2 G/, and for
g 2 G, let C 0g be another circular system free from W �.Yi ; Ci W i 2 I; ug W g 2 G/.
We then have

ı?
�
X [ .yuh/h2 yG [ .ug/g2G

�
D 2

�
d C j yGj C jGj

�
� lim inf

t!0
t

�X
j2I

J �Yj CptCj W �Yi W i 2 I n ¹j º� [ �ug CptC 0g W g 2 Gº��22
C

X
g2G

J �ug CptC 0g W .Yi W i 2 I / [ �ug0 CptC 0g0 W g0 2 G n ¹gº��22�:
Denote by Mt the von Neumann algebra W �.Yj C

p
tCj W j 2 I / and by yMt the

von Neumann algebra W �.Mt ; ug C
p
tC 0g0 W g 2 G/.

Using [25], we note thatJ �ug CptC 0g0 W �Yi W i 2 I n ¹j º� [ �ug0 CptC 0g0 W g0 2 G n ¹gº��22
�
J �ug CptC 0g W �u0g CptC 0g0 W g0 2 G n ¹gº��22

and by [13], we get that

2jGj � lim inf
t!0

t
X
g2G

J �ug CptC 0g W �u0g CptC 0g0 W g0 2 G n ¹gº��22
D ı�.ug W g 2 G/ D ˇ

.2/
1 .G/ � ˇ

.2/
0 .G/C 1 D 1 � jGj�1:

Let �tj D J.Yj C
p
tCj W .Yi W i 2 I n ¹j º/ [ .ug C

p
tC 0g W g 2 G// and set

� tj D J.Yj C
p
tCj W .Yi W i 2 I n ¹j º//. For h 2 yG, denote by xC .h/j the projection

of Cj onto the subspace of span¹ugCju�g W g 2 Gº consisting of vectors x, so that
¹ug.x/u

�
g D hg; hixº. Let also

x�
.h/
j D t�1=2E yMt

.. xC
.h/
j /�/:

Then by applying Lemma 2 with C .e/j D Cj , C .g/j D ugCju
�
g , we have

� tj D jGj t
�1=2EMt

.. xC
.h/
j /�/:
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It follows that˝
t1=2�tj ; .

xC
.e/
j /�

˛
D
˝
E yMt

.C �j /; .
xC
.e/
j /�

˛
D
˝
C �j ; E yMt

. xC
.e/
j /�

˛
D

D
C �j ; jGj

�1
X
g2G

E yMt

�
ug. xC

.e/
j /�u�g

�E
D

D
C �j ; jGj

�1
X
g2G

E yMt

�
.ug C t

1=2C 0g/.
xC
.e/
j /�.ug C t

1=2C 0g/
�
�E
CO.t1=2/

D

D
C �j ; jGj

�1
X
g

ugE yMt
. xC

.e/
j /�u�g

E
CO.t1=2/

D

D
jGj�1

X
g

u�gC
�
j ug ; E yMt

. xC
.e/
j /�

E
CO.t1=2/

D
˝
. xC

.e/
j /�; E yMt

. xC
.e/
j /�

˛
D
˝
E yMt

. xC
.e/
j /�; E yMt

. xC
.e/
j /�

˛
CO.t1=2/

D kE yMt
. xC

.e/
j /k22 CO.t

1=2/:

Similarly, letting x� t;.e/j be as in Lemma 2, we have that˝
E yMt

. xC
.e/
j /; t1=2x�

t;.e/
j

˛
D

D
E yMt

. xC
.e/
j /; t1=2jGj�1

X
g2G

ug�
t
ju
�
g

E
D

D
jGj�1

X
g2G

u�gE yMt
. xC

.e/
j /ug ; t

1=2� tj

E
D
˝
E yMt

. xC
.e/
j /; t1=2� tj

˛
CO.t1=2/:

Using this and E yMt
.� tj / D �

t
j , and Lemma 2, we obtain the inequality

kE yMt
. xC

.e/
j /k2 �

hE yMt
. xC

.e/
j /; t1=2x�

t;.e/
j i

kt1=2x�
t;.e/
j k2

D
hE yMt

. xC
.e/
j /; t1=2� tj i

kt1=2x�
t;.e/
j k2

CO.t1=2/

D
hC

.e/
j ; � tj i

jGj�1=2k� tj k2
CO.t1=2/ D

t1=2jGj�1k� tj k
2
2

jGj�1=2k� tj k2
CO.t1=2/

D
t1=2

jGj1=2
k� tj k2 CO.t

1=2/;

so that˝
t1=2�tj ; .

xC
.e/
j /�

˛
D kE yMt

. xC
.e/
j /k22 CO.t

1=2/ � t jGj�1k� tj k
2
2 CO.t

1=2/:

We now claim that for all but one h 2 yG, ht1=2�tj ; . xC
.h/
j /�i is almost 2jGj�1.

Let us use the notation x.t/ 2 yMt CO.t
 / to signify that there exists an element

y.t/ 2 yMt , so that
kx.t/ � y.t/k2 D O.t

 /:
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Since .ug C
p
tC 0g/.Yj C

p
tCj /.ug C

p
tC 0g/

� 2 yMt and Yj C
p
tCj 2 yMt , we

have that

.ug C
p
tC 0g/.Yj C

p
tCj /.ug C

p
tC 0g/

�
� !j .g/.Yj C

p
tCj / 2 yMt :

Thus, also
p
t
�
C 0gYju

�
g C ugYj .C

0
g/
�
� !j .g/Cj C ugCju

�
g

�
2 yMt CO.t/:

Hence,

C 0gYju
�
g C ugYj .C

0
g/
�
� !j .g/Cj C ugCju

�
g 2

yMt CO.t
1=2/:

Since u�gug D 1, we similarly deduce

C 0gu
�
g C ug.C

0
g/
�
2 yMt CO.t

1=2/;

so that, noting that ug 2 yMt CO.t
1=2/

.C 0g/
�
C u�gC

0
gug 2

yMt CO.t
1=2/:

This gives

C 0gYju
�
g � ugYju

�
gC
0
gug � !j .g/Cj C ugCju

�
g 2

yMt CO.t
1=2/:

Projecting onto eigenspaces for the G action given by conjugation by ug (noting
again that ug 2 yMt CO.t

1=2/) gives us for all h 2 yG,

. xC 0/
.h�!�1

j
/

g Yju
�
g � ugYju

�
g
xC
0.h�!�1

j
/

g ug �!j .g/ xC
.h/
j C ug xC

.h/
j u�g 2Mt CO.t

1=2/:

We note also that

. xC 0g/
.h�!�1

j
/
ug D hh; g

�1
i!j .g/ � ug. xC

0/.h/g

and
ug xC

.h/
j u�g D hh; gi

xC
.h/
j ;

whence

. xC 0/
.h�!j /
g Yju

�
g � hh; g

�1
i!j .g/ugYju

�
gug
xC
0.h�!j /
g

C
�
hh; gi � !j .g/

�
xC
.h/
j 2Mt CO.t

1=2/:
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It follows that

ht1=2�tj ; .
xC
.h/
j /�i D hE yMt

.Cj /; xC
.h/
j i

D hCj ; E yMt
. xC

.h/
j /i

D

X
h02 yG

h xC
.h0/
j ; E yMt

. xC
.h/
j /i

D h xC
.h/
j ; E yMt

. xC
.h/
j /i CO.t1=2/

D kE yMt
. xC

.h/
j /k22 CO.t

1=2/

� max
g

ˇ̌̌̌�
xC
.h/
j ;

. xC 0/
.h�!j /
g Yju

�
g � hh; g

�1i!j .g/ugYj xC
0.h�!j /
g C .hh; gi � !j .g// xC

.h/
j

k. xC 0/
.h�!j /
g Yju�g � hh; g

�1i!j .g/ugYj xC
0.h�!j /
g C .hh; gi � !j .g// xC

.h/
j k

�ˇ̌̌̌2
CO.t1=2/

D 2jGj�1 max
g

j!j .g/ � hh; gij
2

j!j .g/ � hh; gij2 C 4kYj k2
CO.t1=2/:

Thus, if h ¤ !j , we have

ht1=2�tj ; .
xC
.h/
j /�i �

2jGj�1

1C �
CO.t2/;

where

� D sup
j;h

min
g

4kYj k
2
2

j!j .g/ � hh; gij2
D C sup

j

kYj k
2
2;

where C is some constant that only depends on G.
We can now compute, using that �tj D t

�1=2E yMt
.C �j /,

lim inf
t!0

t
X
j2I

J �Yj CptCj W �Yi W i 2 I n ¹j º� [ �ug CptC 0g W g 2 Gº��22
D lim inf

t!1

X
j2I

ht1=2�tj ; t
1=2�tj i D lim inf

t!1

X
j2I

ht1=2�tj ; C
�
j i

D lim inf
t!0

X
h2 yG

X
j2I

ht1=2�tj ; .
xC
.h/
j /�i CO.t1=2/

� 2jI j
�
jGj � 1

�
jGj�1.1C �/�1 C lim inf

t!0

X
j2I

jGj�1tk� tj k
2
2 CO.t

1=2/

� 2jI j
�
jGj � 1

�
jGj�1.1C �/�1 C 2jI jjGj�1 � jGj�1ı?.Yi W i 2 I /

D 2jI j.1C �/�1 � 2jI jjGj�1.1C �/�1 C 2jI jjGj�1 � jGj�1ı?.Yi W i 2 I /

D 2jI j.1C �/�1 � jGj�1ı?.Yi W i 2 I /C 2I jGj
�1
�
1 � .1C �/�1

�
:
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Putting all this together gives us

ı?
�
.Yi W i 2 I / [ .ug W g 2 G/

�
D 2jI j C 2jGj

� lim inf
t!0

"X
j2I

J �Yj CptCj � W �Yi W i 2 I n ¹j º� [ �ug CptC 0g W g 2 G�22
C

X
g2G

J �ug CptC 0g W �Yi W i 2 I n ¹j º� [ �ug0 CptCg0 W g0 2 G n ¹gº��22
#

� 2jI j C 2jGj � 2jI j.1C �/�1 C jGj�1ı?.Yi W i 2 I / � 2I jGj
�1
�
1 � .1C �/�1

�
� 2jGj C 1 � jGj�1

D jGj�1ı?.Yi W i 2 I /C 1 � jGj
�1
C 2jI j

�
1 � jGj�1

��
1 � .1C �/�1

�
:

Thus,

ı?
�
.Yi W i 2 I / [ .ug W g 2 G/

�
� 1

� jGj�1ı?.Yi W i 2 I / � jGj
�1
C 2jI j

�
1 � jGj�1

��
1 � .1C �/�1

�
D jGj�1.ı?.Yi W i 2 I / � 1/C 2jI j

�
1 � jGj�1

��
1 � .1C �/�1

�
:

Suppose now we rescale Yi by replacing Yi with �Yi . Then

ı?.Yi W i 2 I / D ı
?.�Yi W i 2 I /;

so that we get

ı?
�
.�Yi W i 2 I / [ .ug W g 2 G/

�
� 1

� jGj�1
�
ı?.Yi W i 2 I / � 1

�
C 2jI j

�
1 � jGj�1

��
1 � .1C �2�/�1

�
:

Thus, choosing � small enough, we can ensure that

ı?
�
.�Yi W i 2 I / [ .ug W g 2 G/

�
� 1 � jGj�1

�
ı?.Yi W i 2 I / � 1

�
C ";

as claimed.

LetZ1; : : : ;Zn be generators of a tracial von Neumann algebra, it would be natural
to expect that ı?.Z1; : : : ; Zn/ is an algebraic invariant: if Z01; : : : ; Z

0
n0 is another set

of generators for the (non-closed) algebra �-alg.Z1; : : : ; Zn/, then ı?.Z1; : : : ; Zn/ D
ı?.Z01; : : : ; Z

0
n0/. In particular, one expects that for any non-zero numbers �1; : : : ; �n,

(2.3) ı?.Z1; : : : ; Zn/ D ı
?.�1Z1; : : : ; �nZn/:

If this were true, then we could combine the inequality in Theorem 3 with the equality

ı?
�
.�Yi W i 2 I / [ .ug W g 2 G/

�
D ı?

�
.Yi W i 2 I / [ .ug W g 2 G/

�



D. Shlyakhtenko 392

to deduce that

ı?
�
.Yi W i 2 I / [ .ug W g 2 G/

�
� 1 � jGj�1

�
ı?.Yi W i 2 I / � 1

�
C "

for all " > 0, and conclude that

ı?
�
.Yi W i 2 I / [ .ug W g 2 G/

�
� 1 � jGj�1

�
ı?.Yi W i 2 I / � 1

�
:

However, to our embarrassment, we could not find a proof of (2.3). Note, however, that
when �-alg.Z1; : : : ; Zn/ is isomorphic to a group algebra, then algebraic invariance
holds [13].

The difficulty in the proof of Theorem 3 arises from the complicated form that the
relationu�gYiugD!i .g/Yi takes when we substituteugC

p
tC 0g forug andYi C

p
tCi

for Yi . If we instead redefine yMt asW �.Mt ; ug W g 2 G/ and set �tj D t
�1=2E yMt

.Cj /,
then it is easy to show that

kx�
t;.h/
j k

2
2 D 2t

�1
jGj�1

if h ¤ !j . Indeed, since now ug 2 yMt we see that

yMt 3 ug.Yi C
p
tCg/u

�
g � !i .g/.Yi C

p
tCg/ D

p
t .ugCgu

�
g � !i .g/Cg/;

so that ugCgu�g � !i .g/Cg 2 yMt . Decomposing into orthogonal components accord-
ing to h 2 yG then gives that .hh; gi � !j .g// xC .h/j 2 yMt , so that xC .h/j 2 yMt whenever
h ¤ !j ; thus

x�
t;.h/
j D t�1=2E yMt

.. xC
.h/
j /�/ D t�1=2. xC

.h/
j /�;

and the claimed equality on the norm follows from k xC .h/j k
2
2 D 2jGj

�1. Note also that,
using Lemma 2,

J
�
Yj C

p
tCj W ¹Yi C

p
tCi W i 2 I n ¹j ºº

�
D jGj t�1=2EW �.Y t

i
Wi2I/..

xC
.h/
j /�/

D jGj t�1=2EW �.YiC
p
tCi Wi2I/

.x�
t;.!j /

j /

so that as in the proof of the theorem

kx�
t;.!j /

j k
2
2 � jGj

�1t
J �Yj CptCj W ¹Yi CptCi W i 2 I n ¹j ºº�22:
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Using this, we get the following inequality:

2jI j � t
X
i2I

J �Yi CptCi W �Yj W j 2 I n ¹I º� [ .ug W g 2 G/�22
D 2jI j � t

X
j2I

X
h2 yG

kx�
t;.h/
j k

2
2

D 2jI j � t
X
j2I

X
h2 yGn¹!j º

2t�1jGj�1 � t
X
j2I

kx�
t;.!j /

j k
2
2

� 2jI j � 2jI j
�
jGj � 1

�
jGj�1

� t
X
j2I

jGj�1t
J �Yj CptCj W ¹Yi CptCi W i 2 I n ¹j ºº�22

D jGj�1
�
2jI j � t

X
j2I

t
J �Yj CptCj W ¹Yi CptCi W i 2 I n ¹j ºº�22�:

Taking lim inf of both sides gives us

(2.4) ı?
�
.Yi W i 2 I / j .ug W g 2 G/

�
� jGj�1ı?.Yi W i 2 I /;

where we define a kind of “relative non-microstates free entropy dimension”

ı?
�
.Yi W i 2 I / j .ug W g 2 G/

�
D 2jI j � lim inf

t
t
X
i

J �Yi CptCi W �Yj W j 2 I n ¹iº� [ .ug W g 2 G/�22:
Based on the analogy with the behavior of the microstates free entropy dimension [10],
and since ı�.ug W g 2 G/ D 1 � jGj�1 (see [13]), one would expect that

ı?
�
.Yi W i 2 I / j .ug W g 2 G/

�
C
�
1 � jGj�1

�
D ı?

�
.Yi W i 2 I / [ .ug W g 2 G/

�
;

but this equality is not known at present.
Subtracting jGj�1 from both sides of (2.4) we arrive at the following:

Remark 4. Let X be an arbitrary generating set for MG , and let X [ .yug/g2 yG be the
generating set for M and X [ .yug/g2 yG [ .ug/g2G be the generating set for M Ì˛ G
as constructed in Section 2.1. Then, with Yi as above, we have�
ı?
�
.Yi W i 2 I / j .ug W g 2 G/

�
C
�
1 � jGj�1

��
� 1 � jGj�1

�
ı?.Yi W i 2 I / � 1

�
:

3. Some applications

Corollary 5. Suppose that G is a finite abelian group acting properly outer on a
factorM . Suppose thatMG is generated by d elements. ThenM Ì˛ G has a generating
set S satisfying ı0.S/ � .2d C 2/jGj�1 C 1.
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Proof. If jGj D 1, there is nothing to prove, so let us assume that jGj � 2. By Theorem 3
we have, for every " > 0, the existence of � > 0 so that

ı?
�
�X [ .�yug/g2 yG [ .ug/g2G

�
� 1 � jGj�1 �

�
ı?
�
�X [ .yuh/h2 yG

�
� 1

�
C ";

where X is any generating set for MG . We can thus assume that jX j � d . Moreover,

ı?
�
�X [ .yuh/h2 yG

�
� ı?.�X/C ı?

�
.yuh/h2 yG

�
� 2d C 1 � j yGj�1;

since yG is abelian [13].
Let " D j yGj�1. Then by Theorem 3, there exists some � > 0 so that, if we set

S D X [ .yug/g2 yG [ .ug/g2G , then (2.2) holds. Combining this with the remarkable
inequality between microstates and non-microstates free entropy [1] and invariance
of ı0 under algebraic changes of variables [24], we obtain

ı0.S/ D ı0
�
�X [ .�yug/g2 yG [ .ug/g2G

�
� ı?

�
�X [ .�yug/g2 yG [ .ug/g2G

�
� jGj�1

�
2d C 1 � j yGj�1

�
C 1C "

D 2d jGj�1 C jGj�1 � jGj�2 C 1C jGj�1

� .2d C 2/jGj�1 C 1 D .2d C 2/jGj�1 C 1:

as claimed.

Theorem 6. Let M be a finitely generated factor, and assume that M ŠM2�2.M/

and that ˛ is a properly outer action of G D .Z=2Z/˚1 on M . Then for every " > 0
there exists a finite generating set S for M Ì˛ G so that ı0.S/ � 1C ".

Proof. Suppose that M is generated by d elements. Choose m so that

2�m.2d C 2mC 2/ < ":

Denote by Gm the subgroup of G generated by first m copies of Z=2Z. Then
MGm ŠN ÌGm, whereN is a II1 factor, so thatM2m�2m.N /ŠM . Thus, by assump-
tion, N ŠM , so N can be generated by d elements. Thus,MGm is generated a set S 0

of at most d Cm elements. Applying now Corollary 5, we deduce that there exists a
generating set S1 for M ÌGm, so that

ı0.S1/ � 2
�m.2d C 2mC 2/C 1I

moreover, S1 includes the set S0 consisting of generators of Gm.
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The group G is an infinite abelian group whose topological dual is isomorphic to
the Cantor set. Thus the von Neumann algebra of G is generated by a single unitary w.
Let S2 be that unitary. Then S D S0 [ S1 [ S2 is a generating set for M Ì˛ G.

By the hyperfinite inequality for ı0 [10], we have

ı0.S/ D ı0.S1 [ S2 [ S0/ � ı0.S1 [ S0/C ı0.S2 [ S0/ � ı0.S0/

� 2�m.2d C 2mC 2/C 1C 1 � ı.S0/:

Since S0 generates Gm, which is a finite abelian group, ı0.S0/ D 1 � jGmj
�1 D

1 � 2�m (see [10, 23]). Substituting this into the inequality above gives

ı0.S/ � 2
�m.2d C 2mC 2/C 1 � .1 � 2�m/

D 2�m.2d C 2mC 2/C 1 < 1C ";

as claimed.
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