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Dedicated to Vaughan Jones, a truly inspirational friend, who left us some great memories

1. Preamble

The bispectral problem discussed in this paper has its origin in [24]. It is motivated,
as mentioned there, by an effort to understand and extend a remarkable phenomenon in
Fourier analysis on the real line: the operator of time-and-band limiting is an integral
operator admitting a second order differential operator with simple spectrum in its
commutator. This property, which gives a good numerical way to compute the eigen-
functions of the integral operator, was put to good use in a series of papers by D. Slepian,
H. Landau and H. Pollak at Bells Labs back in the 1960s (see [51,52, 59–63]) and is
of interest in one other contribution in this issue, see [21–23]. We are thankful to Luc
Haine, of Louvain-la-Neuve, Belgium who alerted one of us (A. G.) in November 2021
to a talk by Alain Connes in the series Mathematical Picture Language. This talk,
delivered on December 7, 2021, can be seen on YouTube and covers some of the
contents of his work with various collaborators on the zeta function and its relationship
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to the prolate spheroidal functions. For readers interested in this fascinating connection
there is no better way of learning about this than watching the lecture; see [20].

If one tries to extend this property beyond the Fourier case by adding a potential
V.x/ to the operator �. d

dx
/2 and replacing an expansion in exponentials by an expan-

sion in term of the eigenfunctions .x; z/ of�. d
dx
/2C V.x/ it appears plausible that a

certain property of these eigenfunctions  .x; z/ could play a useful role. This property
is now known as the bispectral property which will be formulated below. Its solution
in the scalar case was the purpose of [24].

The version of the bispectral problem that we discuss in this paper is a noncommu-
tative one, obtained by allowing all objects in the original formulation to be matrix
valued. The details are given later.

Now for a bit of history: one of us (A. G.) gave a couple of talks, one at Vanderbilt
in November 2013 and one in IMPA, Rio de Janeiro in March 2014 . The first talk
was at the invitation of Vaughan Jones and started by saying that the topic was most
likely of no interest to him. At some point in the talk Vaughan said “all of this is about
bi-modules and subfactors”. The second talk had both Vaughan and another one of
us (J. Z.) in the audience, there was some more mention of these topics and then in [31],
written in April 2014, a reference is made to a future joint paper with Vaughan “On
the bimodule structure of the bispectral problem”, in preparation. The occasion of this
second talk was a visit that Vaughan (and for part of it with Wendy) did to Argentina,
Uruguay and Brazil. In Buenos Aires he delivered one lecture, in Rio he delivered a
series of talks, but in Montevideo, besides giving a lecture, he was received in a private
audience by President Jose Mujica, described as “the world humblest head of state” by
Wikipedia. Vaughan, whose command of the Spanish language was quite lamentable,
had trouble understanding President Mujica.

The examples in this short paper [31] were discussed with Vaughan who showed
some level of interest, but we never managed to get him fully on board. Of course we
assumed that we always had time to get him into this project. The short paper [31] makes
three separate conjectures along with three different examples. These conjectures were
proved to be correct in the thesis of the second of us (B. V. C.) under the supervision
of J. Z.

And now that sadly we have no chance of benefiting from the insights that Vaughan
would have brought, we present the problem and some results to a wider audience in
the hope that someone may surmise what it was that Vaughan had in mind. Getting
someone involved in this effort would be a nice way of honoring his memory.
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2. Commuting integral and differential operators

The bispectral problem, introduced in the next section is motivated by the following
very concrete problem in signal communication: a signal of support in the interval
Œ�T;T � is transmitted over a channel that has bandwidth Œ�W;W �, i.e. all frequencies in
the signal beyond absolute value ofW cannot be sent over. A mathematical formulation
is as follows: an arbitrary signal in L2.R/ is chopped to the interval Œ�T; T � and then
its Fourier transform is chopped to the interval Œ�W;W �. Denoting for simplicity these
two chopping operations by T and W we are dealing with the operator

E D W F T;

where F stands for the Fourier transform. The spectral analysis of this operator, i.e.,
a look at its singular functions and singular values requires the consideration of the
operator E�E. It is easy to see that E�E is an integral operator acting in L2.�T; T /
whose kernel is given by

sinW.t � s/
t � s

and this bounded operator acts on a function in the space L2.�T; T / by

.Kf /.s/ D

Z T

�T

sinW.t � s/
t � s

f .t/ dt

for f 2 L2.�T; T / and s 2 .�T; T /. This K commutes with the operator

.Lf /.x/ D
�
�
d

dx

�
.T 2 � x2/

�df
dx

�
CW 2x2f .x/

defined on C 2 functions.
One can show that this densely defined operator has a unique selfadjoint extension

in L2.�T; T / with eigenfunctions and eigenvalues that depend on the parameter W .
Its eigenfunctions are known as the prolate spheroidal wave functions, since this is

one of the differential operators resulting in separating variables when solving for the
eigenfunctions of the Laplacian on a prolate spheroid.

What other naturally appearing integral operators allow for commuting differential
operators? Two other examples are the Bessel and Airy kernels, as in the work of Tracy
and Widom [65, 66] in the context of Random Matrix Theory. For the Bessel case, see
also [37,59]. There are other examples, but the search is nowhere close to finished. The
bispectral property, to be formulated below was put forward in [24] as an important
ingredient in the search for more examples of this commuting property.
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3. The bispectral problem

The problem was posed and solved in [24]. It is as follows: Find all nontrivial
instances where a function  .x; z/ satisfies

L
�
x;

d

dx

�
 .x; z/ �

�
�

� d
dx

�2
C V.x/

�
 .x; z/ D z .x; z/

as well as

B
�
z;
d

dz

�
 .x; z/ �

� MX
iD0

bi .z/
� d
dz

�i�
 .x; z/ D ‚.x/ .x; z/:

All the functions V.x/; bi .k/;‚.x/ are, in principle, arbitrary except for smoothness
assumptions. Notice that hereM is arbitrary (finite). The operator L could be of higher
order, but in [24] attention is restricted to order two.

The complete solution is given as follows:

Theorem. If M D 2, then V.x/ is (except for translation) either c=x2 or ax, i.e. we
have a Bessel or an Airy case. If M > 2, there are two families of solutions:
(a) L is obtained from L0 D �.

d
dx
/2 by a finite number of Darboux transformations

.L D AA� ! zL D A�A/. In this case V is a rational solution of the Korteweg–
de Vries hierarchy of equations. Here A is a first order differential operator.

(b) L is obtained fromL0D�. ddx /
2C

1
4x2 after a finite number of (rational) Darboux

transformations.

In all cases we have a solution of the ad-conditions, a complicated system of
nonlinear differential equations. These conditions are necessary and sufficient. Notice
that the solutions organize themselves into nice manifolds.

The simplest example of case (a) follows from L0 D �.
d
dx
/2 by two Darboux

transformations, one gets the operator

L2 D �
� d
dx

�2
C
6.x4 C 12t3x/

.x3 � t3/2
:

In this case‚.x/D x4 � 4t3x and the differential operator in the spectral parameter is

B2

�
z;
d

dz

�
D

�
�

� d
dz

�2
C
6

z2

�2
C 4it3

� d
dz

�
:

The potential in the operator L2 D �. ddx /
2 C V.x; t/ above satisfies the KdV

equation.
It was later observed by Magri and Zubelli (see [73]) that in case (b) we are dealing

with rational solutions of the Virasoro equations (i.e. master symmetries of KdV).
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The bigger picture became more apparent in the work [74] where it is shown that the
generic rational potentials that decay at infinity and remain rational by all the flows
of the master-symmetry KdV hierarchy are bispectral potentials for the Schrödinger
operator.

In case (a) the space of common solutions has dimension one, and in case (b) it
has dimension two. One refers to these as the rank one and rank two situations.

Observe that the “trivial cases” when M D 2 are self-dual in the sense that since
the eigenfunctions  .x; z/ are functions either of the product xz or of the sum x C z,
one gets B by replacing z for x in L. The bispectral involution introduced in [68]
shows how this can be adapted in the “higher order cases”.

4. The noncommutative version of the bispectral problem

A first noncommutative (or matrix) version of the bispectral problem was considered
in J. Zubelli’s PhD thesis at Berkeley, see also [70–72] in the situation where both
the physical space and spectral operators act on the same side of the eigenfunction
and the eigenvalues are both scalar valued. Later on, several other versions were
considered; see [8,28,31,36,49,58] and references therein. The noncommutative version
of the bispectral problem displayed interesting connections with soliton equations
as well. Indeed, in [72] it was shown that a large class of rational solutions to the
AKNS hierarchy [1] led to matrix differential operators that displayed the bispectral
property. Among the important equations in Mathematical Physics that are covered
by the AKNS hierarchy one finds the modified KdV and the nonlinear Schrödinger
equation. The matrix differential operator that appeared in this case was in turn related
to Dirac operators. The connection between bispectrality and another important topic
in Mathematical Physics, namely Huygens’ principle in the strict sense [6] turned out
to appear also in the context of Matrix Bispectrality. Indeed, in [16–19], it was shown
that rational solutions to the AKNS hierarchy led to Dirac operators which satisfy
Huygens’ principle in the strict sense. In other words, the fundamental solutions of
the perturbed Dirac equation in a suitably high space-time dimension had its support
precisely on the surface of the light cone and not in its interior. Another interesting
connection between Matrix Bispectrality to soliton equations of Mathematical Physics
was explored in [58].

In the present paper we take the bi-module structure of the problem into account
and let the operators act on different sides as well as allow both eigenvalues to be
matrix valued.

We consider triplets .L; ;B/ satisfying the equations

(1) L .x; z/ D  .x; z/F.z/ . B/.x; z/ D �.x/ .x; z/
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with L D L.x; d
dx
/, B D B.z; d

dz
/ linear matrix differential operators, i.e.

L D

lX
iD0

ai .x/ �
� d
dx

�i
 ;  B D

mX
jD0

� d
dz

�j
 � bj .z/:

The functions

ai WU � C !MN .C/; bj WV � C !MN .C/;

F WV � C !MN .C/; � WU � C !MN .C/;

and the nontrivial common eigenfunction

 WU � V � C2
!MN .C/

are in principle compatible sized meromorphic matrix valued functions defined in
suitable open subsets U; V � C.

A triplet .L; ;B/ satisfying (1) is called a bispectral triplet.
The study of the structure of the algebra of possible �.x/ going with a fixed

bispectral  .x; z/ was first raised in [14] and analyzed in [45,64]; see also [9] and [75].
We consider now the examples and conjectures given in [31] as well as their

validation and further description given in [67].
For the benefit of the reader we give a few definitions before giving some explicit

results in the next section.

Definition 1. Let K be a field, C be a K-algebra, A a subring of C and S � C . We
define

A � hSi D spanK

² nY
jD1

sj j s1; : : : ; sn 2 S [ A; n 2 N

³
;

where the noncommutative product is understood from left to right, i.e.

nC1Y
jD1

sj WD

� nY
jD1

sj

�
snC1;

for n D 0; 1; 2; : : : : For completion,
Q0
jD1 sj WD 1.

The set A � hSi is called the subalgebra generated by S over A and we call an
element f 2 A � hSi a noncommutative polynomial with coefficients in A and set of
variables S .



Matrix bispectrality and noncommutative algebras 341

Definition 2. Let C be a noncommutative ring and A a subring of C . We say that
an element ˛ 2 C is integral over A if there exists a noncommutative polynomial f
with coefficients in A such that f .˛/ D 0. Furthermore, we say that ˇ 2 C is integral
over ˛ 2 C if ˇ is integral over A � h˛i. Finally, ˛ and ˇ are associated integral if ˛ is
integral over ˇ and ˇ is integral over ˛.

In order to characterize the algebraic structure of bispectrality in the present non-
commutative context, we start with the following definitions.

Definition 3. Let K be a field, we denote by Khx� j � 2 ƒi the free algebra generated
by the letters x�, � 2 ƒ, i.e.

Khx� j � 2 ƒi D
M
F�ƒ;
F finite

M
�2F

K � x�:

Definition 4. Let A be a K-algebra. A presentation for an algebra A is a triple
.Khx� j � 2 ƒi; f; I / such that I � A is an ideal and f WKhx� j � 2 ƒi=I ! A

is an isomorphism. Furthermore, we say that A is finitely generated if there exists a
presentation with ƒ finite and finitely presented if there exists a presentation with ƒ
finite and the ideal I is generated by finitely many elements.

5. Three examples

Take for ‰.x; z/ the matrix valued function

‰.x; z/ D exz

 
z � 1=x 1=x2

0 z � 1=x

!
and consider all instances of matrix-valued polynomials �.x/ and differential opera-
tors B (with matrix coefficients bi .z/) such that

‰B �

mX
iD1

� d
dz

�i
‰ bi D �.x/‰.x; z/:

In this case, one has
L‰ D �z2‰

with

L D �
� d
dx

�2
C 2

 
1=x2 �2=x3

0 1=x2

!
:

In other words, for this specific differential operator in the variable x we are asking
for all bispectral “partners” of L.
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One finds that one such pair .B; �/ is given by

B D
� d
dz

�3
� 3

� d
dz

�2
�
1

z
C 3

� d
dz

�
�
1

z2
C 3

 
0 1=z2

0 0

!
;

and �.x/ the scalar-valued polynomial

�.x/ D x3:

The set of all possible �.x/ is given by the following subalgebra A. The complete
statement is given by the following theorem.

Theorem 1. Let � be the sub-algebra of M2.C/Œx� of the form 
r110 r120
0 r110

!
C

 
r111 r121
0 r111

!
x C

 
r112 r122
r111 r222

!
x2

C

 
r113 r123

r222 C r
11
2 � r

12
1 r223

!
x3 C x4p.x/;

wherep 2M2.C/Œx� and all the variables r110 ; r120 ; r111 ; r121 ; r112 ; r222 ; r113 ; r123 ; r223 2C.
Then � D A. Moreover, for each � we have an explicit expression for the operator B .

Furthermore, we have the presentation A D C � h˛0; ˛1 j I D 0i with the ideal I
given by

I WD h˛20 ; ˛
3
1 C ˛0˛1˛0 � 3˛1˛0˛1 C ˛0˛

2
1 C ˛

2
1˛0i .

This is an example of an algebra with an integral element over a nilpotent one.
For the next example, take for  .x; z/ the matrix-valued function

 .x; z/ D

264 d

dx
�

0B@1=x �1=x2 1=x3

0 1=x �1=x2

0 0 1=x

1CA
375 exzI

D exz

0B@z � 1=x 1=x2 �1=x3

0 z � 1=x 1=x2

0 0 z � 1=x

1CA :
Here one can see that

L D �z2 

with

L D �
� d
dx

�2
C 2

0B@1=x2 �2=x3 3=x4

0 1=x2 �2=x3

0 0 1=x2

1CA :
The results in this case about the set of all possible �.x/ are given below.
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Theorem 2. Let � the sub-algebra of M3.C/Œx� of the form0B@r110 r120 r130
0 r220 r230
0 0 r110

1CAC
0B@ r111 r121 r131
r220 � r

11
0 r221 r231

0 r220 � r
11
0 r111 C r

23
0 � r

12
0

1CA x
C

0B@ r112 r122 r132
r221 � r

11
1 � r

23
0 C r

12
0 r222 r232

r220 � r
11
0 r221 � r

11
1 r112 C r

23
1 � r

12
1

1CA x2
C

0B@ r113 r123 r133
r213 r223 r233

r221 � 2r
11
1 � r

23
0 C r

12
0 r323 r333

1CA x3
C

0B@ r114 r124 r134
r214 r224 r234

r323 C r
21
3 � r

22
2 � r

11
2 C r

12
1 r224 r334

1CA x4
C

0B@ r115 r125 r135
r215 r225 r235

r324 C r
21
4 � r

33
3 � r

22
3 � r

11
3 C r

23
2 C r

12
2 � r

13
1 r325 r335

1CA x5 C x6p.x/;
where p 2M3.C/Œx� and all the variables r110 ; r120 ; : : : ; r335 2 C are arbitrary.

Then, � D A and for each � we have an explicit expression for the operator B .
Furthermore, we have the presentation A D C � h˛2; ˛3 j I D 0i with

I D h˛32 ; ˛
2
3 � ˛3; .˛3˛2/

2˛3 � 4˛3˛
2
2˛3i .

This is an example of an algebra with nilpotent and idempotent associated elements.
As the last example we consider a case when both "eigenvalues" F and � are matrix

valued. Let

 .x; z/ D
exz

.x � 2/xz

 
x3z2�2x2z2�2x2zC3xzC2x�2

xz
1
x

xz�2
z

x2z � 2xz � x C 1

!
and

L D

 
0 0

0 1

!
�

� d
dx

�2
C

 
0 1

.x�2/x2

�
1
x�2

0

!
�

� d
dx

�
C

0@� 1
x2.x�2/2

x�1
x3.x�2/2

2x�1
x.x�2/2

�
2x2�4xC3
x2.x�2/2

1A ;
then L D  F with

F.z/ D

 
0 0

0 z2

!
:



F. A. Grünbaum, B. D. Vasquez and J. P. Zubelli 344

It is easy to check that  B D � for

B D
� d
dz

�3
�

 
0 0

1 0

!
C

� d
dz

�2
�

 
0 0

�
2zC1
z

0

!

C

� d
dz

�
�

 
1 0

2.z�1/

z2 1

!
C

 
�z�1 0

6z�3 z�1

!
and

�.x/ D

 
x 0

x2.x � 2/ x

!
:

In this case we characterize the algebra A of all polynomial F such that there exist
L D L.x; d

dx
/ with L D  F as follows:

Theorem 3. Let � be the sub-algebra of M2.C/Œz� of the form 
a 0

b � a b

!
C

 
c c

a � b � c �c

!
z C

 
a � b � c c C a � b

d e

!
z2

2
C z3p.z/;

where p 2 M2.C/Œz� and all the variables a; b; c; d; e are arbitrary. Then � D A.
Furthermore, we have the presentation A D C � h�1; �3; �4; �5 j I D 0i with

I D h�21 � �1; �
2
4 ; �4�5; �4�1 C �4�3 � 2�4 � �5�4 � �

2
5 ;

�23 � �3 C �5 � 3�3�4�3�5 � �1�4 � �5�1;

�3�1 � �1 � �4 �
1

2
�4�1 C

1

2
�4�3 C �5�1 �

1

2
�5�4 C

1

2
�25 C �3�4 � �1�5 � �3�5;

�1�3 � �3 C �4 C �5 �
3

2
�4�1 C

3

2
�4�3 � 2�5�1 �

3

2
�5�4 C

3

2
�25 C 3�3�4 C �3�5;

�5�3 � �4�1 C �4�3 � �5�1 � �5�4 C �
2
5 ; �5�1�5 � �

2
5 �1 � �5�4;

�5�4�1 � �
3
5 C �5�1�4 C �

2
5 �1; �4�1�5 C �4�3�5 � �

3
3 ; �5�3�4 C �5�1�4i:

This is an example of an algebra with two integer elements over one nilpotent
and one idempotent. This is linked to the spin Calogero systems whose relation with
bispectrality can be found in [7, 49].

Theorems 1, 2 and 3 give positive answers to [31, Conjectures 1, 2 and 3] about
three bispectral full rank 1 algebras. Moreover, these algebras are Noetherian and
finitely generated because they are contained in the N �N matrix polynomial ring
MN .KŒx�/ (See [67]).

We close this section by remarking the important role played by Darboux transfor-
mations, which goes back to [24] and [73]. Indeed, the three examples in this section
are instances of rational Darboux transformations from the scalar matrix exponential
functions. All such Darboux transformations were shown to be bispectral in [28, Theo-
rems 1.1 and 1.2].
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6. A few extensions of the problems discussed above

Since one of the goals of this paper is to serve as an “invitation” to look at this
problem extended to a wider audience, we give a road map with some selected ref-
erences. Indeed, the bispectral problem has many different incarnations, and in our
opinion we are still far from having a unified theory.

In the scalar case here are some early papers that should be mentioned are [2–5,28,
47, 50, 68, 69].

One natural issue concerns the numerical aspects involving the prolate spheroidal
functions. In this case, the reader may want to consult the book [54].

Another direction concerns, the purely discrete (actually finite) version of time-
band-limiting. In an effort to better understand the commuting property in question,
one of us looked at the case when the real line is replaced by the N roots of unity;
see [29] as well as [55, 56]. [29, expression (11)] contains a small typo: the r.2/ in the
denominator should be replaced by r.1/.

Moving on to the discrete-continuous version of the bispectral problem, we have that
for the scalar case, involving orthogonal polynomials satisfying differential equations
the problem had already been considered by S. Bochner (and even earlier). A very
good introduction to this is given in [48] and its references. See also [30, 33–35].

For the matrix valued case there are two sources of early examples, one resulting
from the theory of matrix valued spherical functions (see [38–43]), and another one;
see [25–27]. See also [36] as well as [8, 53, 57].

Solutions of the bispectral problem can be used to obtain integral operators which
reflect some ordinary differential operator in the sense of (for instance) [10]. This fact
generalizes the commuting property in the scalar case. It would be interesting to see
whether this could be extended to the matrix case.

In the (noncommutative) matrix case, by considering operators in the physical
and spectral variables acting from opposite directions, we maintain the Ad-conditions
that played a substantial role in [24]. In this case, this leads to the embedding of
the bispectral algebras of eigenvalues into the matrix polynomial algebra MN .CŒx�/;
see [67].

Another natural direction would be to look for a characterization for algebras
relating to the spin-Calogero system for matrices of arbitrary size of matrix N . The
examples N D 1 and N D 2 were generalized to arbitrary matrix size N and was
characterized as a subalgebra ofMN .CŒx�/ using a family of maps ¹Pkºk2N satisfying
some nice properties such as translation and a product rule similar to the Leibniz rule;
see [67].

Finally, let us go back to the original problem. We recall that both in the scalar and in
the matrix case the motivation behind the bispectral problem was a desire to understand
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“what is behind” the remarkable commutativity property between the operator of time-
and-band limiting in the Fourier, Bessel and Airy cases. It was hard to suspect that this
problem would have connections with many of the recent developments in integrable
systems. There has been some progress in connecting the bispectral problem with the
commutativity property mentioned above, and here again – at least in the scalar case –
there are some connections with Integrable systems; see, for instance, [10–13, 32]. For
connections between the bispectral problem and the commuting property, see [15, 44,
46].
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