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Abstract. We explore an elementary construction that produces finitely presented groups with
diverse homological finiteness properties – the binary subgroups, B.†;�/ < G1 � � � � �Gm.
These full subdirect products require strikingly few generators. If each Gi is finitely presented,
B.†;�/ is finitely presented. When the Gi are non-abelian limit groups (e.g. free or surface
groups), the B.†;�/ provide new examples of finitely presented, residually-free groups that do
not have finite classifying spaces and are not of Stallings–Bieri-type. These examples settle a
question of Minasyan relating different notions of rank for residually-free groups. Using binary
subgroups, we prove that if G1; : : : ; Gm are perfect groups, each requiring at most r generators,
then G1 � � � � �Gm requires at most rblog2mC 1c generators.
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1. Introduction

In the study of infinite groups, the problem of deciding which finite subsets of a
given group G generate finitely presentable subgroups is notoriously difficult: there is
no algorithm that can solve this problem whenG is a direct product of two non-abelian
free groups for example [17]. Even when one knows that finite presentations exist,
constructing them can remain impossibly difficult [8].

In this article we will explore an elementary construction that provides a new source
of finitely presented subdirect products of groups; we call them binary subgroups. This
construction takes as input two positive integers m and r , an m-tuple of r-generator
groups with markings �D .�i W Fr � Gi /

m
iD1, and an r-tuple of finite sets of positive

integers † D .�1; : : : ; �r/, with each j�i j D m. It outputs a subgroup B.†; �/ <
G1 � � � � �Gm that is finitely presented if all of the Gi are finitely presented. B.†;�/
is constructed from the binary expansions of the elements of

S
�i . I hope to convince

https://creativecommons.org/licenses/by/4.0/
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the reader that this construction is an intriguing source of groups that merits further
study.

An important feature of the groups B.†; �/ is that they require strikingly few
generators: see Corollaries 1.3 and 1.4. The case where each Gi is free will be of
particular interest. Indeed the construction of B.†;�/ is motivated in large part by my
work with Howie, Miller and Short [4,5] exploring the structure of subgroups of direct
products of free groups, surface groups and limit groups. The VSP theorem from [5]
will play a prominent role in our discussion, as will homological finiteness properties.

In addition to economical generation and finiteness properties, we shall be concerned
with the co-nilpotency class of binary subgroups. Co-nilpotency is a characteristic of
finitely presented, residually free groups that originates in [7]; it played a prominent role
in [4, 5]. Let S < ƒ1 � � � � �ƒm be a finitely presented subgroup of a direct product
of non-abelian limit groups (e.g. free groups), and suppose that we have reduced to the
case where S intersects each ƒi non-trivially and the coordinate projections S ! ƒi

are onto (in other words, S is a full subdirect product). It is proved in [5] that in this
case S contains some term of the lower central series of a subgroup of finite index
D0 < ƒ1 � � � � �ƒm. If the first such term is cC1.D0/, then the co-nilpotency class
of S is defined to be c. Thus S has co-nilpotency class 0 if it is of finite index and it has
co-nilpotency class 1 if it is virtually the kernel of a map from a product of non-abelian
limit groups to an infinite abelian group. Groups of the latter kind are, by definition,
of Stallings–Bieri type; they have been extensively studied in connection with higher
finiteness properties [2, 20]. One of the achievements of [4] was to exhibit the first
examples of finitely presented, residually free groups whose co-nilpotency class is
greater than 1. The binary subgroups that we shall describe provide a more elementary
construction of such groups with a variety of co-nilpotency classes. For example, the
co-nilpotency classes of the groups B0.m/ and B1.m/ constructed below go to infinity
with m.

1.1. Paradigms: The binary subgroups B0.m/ and B1.m/. Before delving into
more technical matters, I want to illustrate the basic construction of this article with
explicit examples. We work with a free group of rank r , denoted by F , and fix a basis
¹a1; : : : ; arº. Throughout, Fm will denote the m-th direct power F � � � � � F .

We consider two subgroups B0.m/ < B1.m/ < F
m. The subgroup B0.m/ is gen-

erated by the rb1C log2mc elements aij defined as follows: consider the array A.m/
with m columns and b1C log2mc rows where column k is the binary expansion of k,
with units at the top; for j D 0; : : : ; blog2mc, let "j .m/ be the word in the alphabet
¹0; 1º that is the j -th row of A.m/ (so k D

P
j "j .k/2

j ); we treat "j .m/ as a multi-
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

"0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
"1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
"2 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
"3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
"4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Table 1
The binary array A.m/ for m D 18.

ai0 D (ai , 1, ai , 1, ai , 1, ai , 1, ai , 1, ai , 1, ai , 1, ai , 1, ai , 1)
ai1 D (1, ai , ai , 1, 1, ai , ai , 1, 1, ai , ai , 1, 1, ai , ai , 1, 1, ai )
ai2 D (1, 1, 1, ai , ai , ai , ai , 1, 1, 1, 1, ai , ai , ai , ai , 1, 1, 1)
ai3 D (1, 1, 1, 1, 1, 1, 1, ai , ai , ai , ai , ai , ai , ai , ai , 1, 1, 1)
ai4 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ai , ai , ai )

Table 2
The binary elements aij when m D 18.

index and, for each ai , define aij 2 F
m to be the element obtained by raising ai to this

multi-index, with the convention a1
i D ai and a0

i D 1 (the identity).
For example, when m D 18, we obtain Tables 1 and 2.
The subgroup B1.m/ < F

m is obtained from B0.m/ by adjoining the diagonal
elements ıi WD .ai ; : : : ; ai /,

B1.m/ D hB0; ı1; : : : ; ıri < F
m:

In our discussion of finiteness properties, the most natural ones to consider are finite
presentation, type FPk and weak FPk (written wFPk). A group G is of type FPk

if the trivial ZG-module Z has a projective resolution in which the modules up to
dimension k are finitely generated, and G has type wFPk if Hi .G0;Z/ is finitely
generated for all i � k and all subgroups G0 < G of finite index. Finite presentation
implies FP2 and FPk implies wFPk .

We use the standard notation for the lower central series of a group, 1.G/ D G

and cC1.G/ D ŒG; c.G/�. We also use the standard term rank and write d.G/ for
the cardinality of a smallest generating set for G.

Theorem 1.1. For r � 2;m � 3,
(1) the rank of B0.m/ < F

m is r.b1C log2mc/;
(2) the rank of B1.m/ < F

m is r.b2C log2mc/;
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(3) B0.m/ contains m�1.F
m/;

(4) B1.m/ contains c.F
m/, where c D d.m � 1/=2e;

(5) B0.m/ is finitely presented but not of type wFP3;
(6) if m � 4 then B1.m/ D F

m;
(7) if m � 5 then B1.m/ is finitely presented, type wFP3 but not wFP4;
(8) 8c 9 polynomial pc.t/ of degree c such that if m > pc.log2m/ and D0 < F

m is
of finite index, then c.D0/ 6� B1.m/.

One can replace F by a non-abelian limit group in this theorem – see Theorem 4.4.

The general binary subgroup B.†/ < Fm is obtained from † D .�1; : : : ; �r/ by
writing the binary expansions of the elements of each �i as the columns of an array, as
above – the i-th array Ai will have li rows where li D max¹b1C log2 xc j x 2 �iº;
the generators aij 2 B.†/ are obtained by raising ai to the multi-index given by the
j -th row of Ai (see Section 5 for more details).

Given anym-tuple of r-generator groups with markings .�i WF �Gi /
m
iD1, we take

the image ofB.†/ < Fm under the epimorphism�D .�1; : : : ;�m/ to defineB.†;�/.
With this notation we have:

Theorem 1.2. B.†; �/ < G1 � � � � � Gm contains the .m � 1/st term of the lower
central series and is closed in the profinite topology. Moreover, there is an algorithm
that, given †;� and finite presentations of G1; : : : ; Gm, will construct a finite present-
ation for B.†; �/. If the Gi are limit groups, then there is an algorithm that will
determine for each k � 2 whether B.†;�/ is of type wFPk .

The passage from B.†; �/ to B.†/ < Fm is an example of how one can push
forward subdirect products: see Sections 2.3 and 5.2, where we also examine the results
of pulling back subgroups.

1.2. Economical generation. Philip Hall [12] initiated the study of economical gen-
erating sets for direct powers of finite perfect groups. The theory was subsequently
developed extensively by Jim Wiegold [21] and others, and elements of it were extended
to cover infinite groups [22]: if G is finitely generated and perfect, then Gm requires
at most O.logm/ generators. Theorems 1.1 and 1.2 allow us to extend this statement
about d.Gm/ to direct products of distinct groups. For if G1; : : : ; Gm each require
at most r generators, then by pushing forward B0.m/ < F

m we obtain a subgroup
B < G1 � � � � � Gm with d.B/ � rb1C log2 mc that contains a term of the lower
central series of the product, and if the Gi are perfect then each term of the lower
central series is equal to the entire product.
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Corollary 1.3. If G1; : : : ; Gm are perfect and d.Gi / � r , then

d.G1 � � � � �Gm/ � rb1C log2mc:

For direct powers of finitely presented superperfect groups, the logarithmic growth
of d.Gm/ can be promoted to a polylogarithmic bound on the number of relators
needed to presentGm (see [3]), but we do not have such a result for more general direct
products.

1.3. Economical embeddings of residually free groups. In [5] an algorithm is
established that, given a finite presentation of a residually free groupG, will construct a
canonical embedding ofG into its existential envelope 9E.G/, which is a direct product
of finitely many limit groups (see Section 3 below for definitions). If G is centerless,
then the number of direct factors in 9E.G/ is the product rank of G, i.e. the largest
integer rkF .G/ such thatG contains a direct power of non-abelian free groups F rkF .G/

2 .
If a direct product of finitely many limit groups contains G then it contains 9E.G/ and
has at least rkF .G/ direct factors.

In [18], Ashot Minasyan proved that if d.G/ D k, then 9E.G/ is a product of at
most exp.C"k

2C"/ limit groups, where " > 0 is arbitrary and C" is a constant that goes
to infinity with ". He asked if this upper bound could be improved to a polynomial
in k. Theorem 1.1 answers his question in the negative: one cannot do better than an
exponential function of k. To see this, note that parts (3) and (4) of the theorem imply
that B0.m/ and B1.m/ both have product rank m.

Corollary 1.4. There exist sequences of finitely presented, centerless, residually-free
groupsB.m/ with product rank rkF .B.m//Dm requiring only d.B.m//DO.logm/
generators.

This article is organised as follows. In Section 2 we gather some basic facts about
nilpotent groups and subdirect products, and state the VSP theorem. In Section 3 we
recall some elements of the theory of residually free groups and present the results
that we need from [4,5, 13, 14] relating finiteness properties of subdirect products to
coordinate projections. Section 4 contains the proof of Theorem 1.1. In Section 5 we
discuss the general construction of binary subgroups, the process of pushing them
forward and pulling them back, and certain redundancies in the general construction.
In the final section we discuss possible variations, open questions, and directions for
future work, including an enticing connection with coding theory.
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2. Preliminaries

2.1. Nilpotent groups. With the exception of Proposition 2.2, the material in this
section is standard and can be found in Chapter 11 of the classical reference [11].
The terms of the lower central series of a group G are defined by 1.G/ D G and
nC1.G/ D ŒG; n.G/�. If cC1.G/ D 1 but c.G/ ¤ 1, then G is said to be nilpotent
of class c. The free nilpotent group of class c and rank k is N.k; c/ WD Fk=cC1.Fk/;
every k-generator nilpotent group of class at most c is a quotient of this group.

If ¹a1; : : : ; akº is a basis for Fk , then the basic commutators Œai1 ; : : : ; ain � of
weight n project under the natural map Fk ! Fk=nC1.Fk/ to a basis of the free
abelian group n.Fk/=nC1.Fk/, the rank of which is given by the Witt formula

Wn.k/ D
1

n

X
d jn

�.d/kn=d ;

where �.d/ is the Möbius function. By making repeated use of this observation, we
see that N.k; c/ is a polycyclic group whose Hirsch length (cohomological dimension)
is h.k; c/ D

Pc
iD1 Wi .k/. A simple induction then shows that every subgroup of

N.k; c/ requires at most h.k; c/ generators. The crude approximation Wn.k/ � k
n

gives h.k; c/ �
Pc

iD1 k
i , which is all that we shall need for the polynomial in the last

item of Theorem 1.1.

Lemma 2.1. IfH is a subgroup of a k-generator nilpotent group G of class at most c,
then d.H/ � h.k; c/.

Proof. By choosing an epimorphismN.k; c/� G and replacingH with its preimage
inN.k; c/ we may assume that G D N.k; c/, and this case is covered by the preceding
discussion.

The following is the main output that we require from this subsection.

Proposition 2.2. Let ƒ1; : : : ; ƒm be finitely generated groups each of which maps
onto a non-abelian free group. Suppose D D ƒ1 � � � � �ƒm has a k-generator sub-
group S that contains c.D0/, where D0 < D is a subgroup of finite index. Then
m � h.k; c/=Wc.2/.

Proof. The hypothesis yields a surjectionD � Fm
2 which maps i .D/ onto i .F2/

m.
We composeD � Fm

2 with the canonical surjection Fm
2 � N.2; c/m. Let xS and xD0

be the images of S andD0 under this composition. Then d. xS/ � k and xS is a nilpotent
group of class at most c containing c. xD0/. The latter has finite index in the m-th
direct power of c.F2/=cC1.F2/, which is a free abelian group of rankmWc.2/, hence
d.c. xD0// D mWc.2/. Therefore, mWc.2/ � h.k; c/; by Lemma 2.1.
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The following well-known facts are proved by induction on the nilpotency class.

Lemma 2.3. Let N be a finitely generated nilpotent group. A subset ‚ � N gener-
ates N if and only if the image of ‚ in the abelianization N ab D H1.N;Z/ gener-
ates N ab.

Lemma 2.4. If a nilpotent group N is generated by a finite set of elements of finite
order, then N is finite.

2.2. Subdirect products and the VSP theorem. A subgroup of a direct product
S < G1 � � � � �Gm is termed a subdirect product if S projects onto each Gi ; it is a
full subdirect product if, in addition, S \Gi ¤ 1 for all i . If one wishes to understand
the finitely generated subgroups of direct products of groups drawn from a class that
is closed under the taking of finitely generated subgroups, then one can reduce to the
study of full subdirect products by projecting away from factors where S \Gi D 1

and replacing each Gj by the projection of S to Gj ; free groups form one such class
and limit groups form another.

We refer the reader to [7] for a more thorough account of subdirect products.
The results of the present paper rely heavily on the following theorem from [5].

Theorem 2.5 (The VSP theorem [5]). Let S < D D G1 � � � � �Gm be a subgroup of
a direct product of finitely presented groups. If the projection pij .S/ < Gi �Gj has
finite index for all 1 � i < j � m, then
(1) S is finitely presented;
(2) m�1.D0/ < S for some D0 < D of finite index;
(3) S is closed in the profinite topology on D.
Moreover, there is an algorithm that, given finite presentations of the groups Gi and a
finite set ‚ � D generating S , will construct a finite presentation h‚ j Ri for S .

Item (1) of this theorem is considerably deeper than item (2), the latter being an
instance of the following general observation [7].

Lemma 2.6. Let k � 2 and let G1; : : : ; Gm be groups. If S < D D G1 � � � � � Gm

projects onto each k-tuple of factors, then c.D/ < S where c D d.m � 1/=.k � 1/e.

To prove this, one first notes that since S projects onto each factor, S \ Gi is
normal in Gi , so it is enough to show that S \Gi contains all iterated commutators
Œx1; : : : ; xc�. And such commutators can be obtained explicitly from the hypothesis;
for example, when m D 3 and k D 2, one has

.Œx; y�; 1; 1/ D Œ .x;�; 1/; .y; 1;�/ �:
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Corollary 2.7. Let k � 2. If G1; : : : ; Gm are finitely generated and S < D D G1 �

� � � � Gm projects onto each pair of factors, then the projection of S to a k-tuple of
factors T DGi1 � � � � �Gik will be surjective if and only if the composition S ! T !

T ab D H1.T;Z/ is surjective.

Proof. The subgroup S contains m�1.D/, and hence the image of S in T contains
m�1.T /, so S ! T is surjective if and only if S ! T=m�1.T / is surjective. The
result now follows from Lemma 2.3.

Corollary 2.8. LetG1; : : : ;Gm be finitely generated groups, each of which is generated
by elements of finite order. If S <DDG1 � � � � �Gm projects onto each pair of factors,
then S has finite index in D.

Proof. The subgroup S contains m�1.D/ and Lemma 2.4 tells us that D=m�1.D/

is finite.

Remark 2.9 (Algorithms). Corollary 2.7 makes the process of determining whether
a subgroup S of a direct product of finitely presented groups maps onto all k-tuples
of factors algorithmically decidable, provided one has the a priori knowledge that S
projects to each pair of factors. Similarly, the problem of deciding if S projects to a
subgroup of finite index in each k-tuple of factors is decidable given this knowledge.

2.3. Pushing forward and pulling back. Given an m-tuple of group epimorphisms
�i WHi � Gi , the push-forward of a subgroup S < H1 � � � � � Hm is its image
�.S/ < G1 � � � � �Gm under � D .�1; : : : ; �m/. The pull-back of a subgroup T <
G1 � � � � �Gm is ��1.T /.

The following lemma is immediate from the definitions.

Lemma 2.10. If S < G1 � � � � �Gm projects to k-tuples of factors, then so does any
pull-back or push-forward of S . And if S contains the c-th term of the lower central
series of the product, then so does any pull-back or push-forward of S .

3. Residually free groups, limits groups and coordinate projections

A groupG is residually free if for every g 2 G X ¹1º there exists a homomorphism
�WG ! F , with F free, such that �.g/ ¤ 1; and G is fully residually free if for every
finite set S �G there is a homomorphismG! F that is injective on S . Finitely gener-
ated, fully residually free groups are more commonly called limit groups, reflecting the
powerful geometric approach to their study initiated by Sela [19] et seq. This important
and much-studied class of groups contains free groups (obviously), free abelian groups,
and the fundamental groups of all closed surfaces of euler characteristic at most �2.
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The study of finitely presented, residually free groups � reduces to the study of
subdirect products of limit groups because there is a canonical (and algorithmic)
embedding � ,! 9E.�/ where 9E.�/, the existential envelope of � , is a direct product
of limit groups [1, 5]. (At most one of the direct factors is abelian, and the intersection
of � with this is the centre of � .) The following theorem is therefore an important
tool in classifying which residually free groups are finitely presented. This is the main
result of [4]. The first item provides a converse to the VSP theorem in the setting of
limit groups, while the second item points to the key role that finiteness properties play
in understanding residually free groups.

Theorem 3.1 ([5]). Let S < D D ƒ1 � � � � �ƒm be a full subdirect product, where
the ƒi are non-abelian limit groups.
(1) If S is finitely presented, then the projection pij .S/ < ƒi �ƒj has finite index

for 1 � i < j � m.
(2) If S is not of finite index in D, then S is not of type wFPm.

Point (2) was improved upon by Kochloukova [13] and Kuckuck [14], who tied
the finiteness properties of S more closely to projections to k-tuples. The following
statement combines their results.

Theorem 3.2 ([13, 14]). For 2 � k � m, a full subdirect product of non-abelian limit
groups S < ƒ1 � � � � �ƒm projects to a subgroup of finite index in each k-tuple of
factors ƒi.1/ � � � � �ƒi.k/ if and only if S is of type wFPk .

Henceforth, we shall abbreviate the phrase “projects to a subgroup of finite index
in” to “virtually surjects to”.

4. Proof of Theorem 1.1

With the results of the previous sections in hand, most of the assertions of The-
orem 1.1 will follow once we verify that B0.m/ < F

m surjects to pairs of factors but
does not virtually surject certain triples, while B1.m/ < Fm surjects all triples of
factors but does not virtually surject certain 4-tuples.

Notation. We write Li Š F for the i -th summand of Fm throughout this section.

4.1. Proof that B0.m/ < F m projects onto pairs of factors. Consider columns p
and q of the array A.m/, with p < q. Since p < q, there is at least one bit in the binary
expansion of p where it has 0 while q has 1; if this place is bit k, then in row k we have
."k.p/; "k.q//D .0; 1/, hence aik projects to .1; ai / 2 Lp �Lq . Since p ¤ 0, there is
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also a non-zero bit in its expansion; if this is place l , then ."l.p/;"l.q//2 ¹.1;0/; .1;1/º,
hence ail maps to either .ai ; 1/ or .ai ; ai / in Lp � Lq . In either case, we see that
¹.ai ; 1/; .1; ai /; .ai ; ai /º is contained in the projection of B0.m/. This holds for
i D 1; : : : ; r and all 1 � p < q � m, so B0.m/ projects onto each pair of factors, as
claimed.

Remark 4.1. Having worked through the above proof with the original notation, we
shall abbreviate several of the similar proofs that follow by noting that the essential
feature ofA.m/was that the subgroupC <Zm generated by the row vectors "i projects
onto the summands Z2 < Zm corresponding to each pair of coordinates.

In the spirit of the above remark, the key fact for the following lemma is that the
projection of C to Z3 � 1 < Zm only has dimension 2.

Lemma 4.2. B0.m/ < F
m does not virtually surject to certain triples of factors.

Proof. The non-zero entries in columns 1; 2; 3 are concentrated in two rows, namely "0

and "1, so the projection of B0.m/ to H1.L1 � L2 � L3;Z/ Š Z3r has rank at most
(in fact, exactly) 2r .

4.2. Proof that B1.m/ < F m projects to triples. Consider columns p < q < s of
the array A.m/. The essential point to prove this time is that we get a basis for Z3

by adjoining the element .1; 1; 1/ (coming from ıi D .ai ; : : : ; ai /) to the elements
."j .p/; "j .q/; "j .s//j obtained by reading the entries in columns p; q; s in each row
of the array.

Since p < s, there is at least one place in the binary expansion of p where it has 0
while s has 1; if this place is bit k, then from columns p; q; s of row k we have either
.0; 1; 1/ or .0; 0; 1/. Similarly, as p < q, in some row we get either .0; 1; 1/ or .0; 1; 0/.
If we get two distinct vectors from this argument, then together with .1; 1; 1/ (coming
from ıi ) they will span Z3. This fails if we get .0; 1; 1/ twice, in which case we use the
condition q < s to get a vector .1; 0; 1/ or .0; 0; 1/: adding either to ¹.1; 1; 1/; .0; 1; 1/º
gives a basis for Z3.

Lemma 4.3. Ifm � 5 then B1.m/ < F
m does not virtually surject to certain 4-tuples

of factors.

Proof. We focus on columns 2 to 5 of the array A.m/ and argue that the projection of
B1.m/ < F

m to Z WD H1.L2 � L3 � L4 � L5;Z/ Š Z4r only has rank 3r .
To see this, consider the rank-4 summand Z1 < Z that is spanned by the images of

.a1; 1; 1; 1/, .1; a1; 1; 1/, .1; 1; a1; 1/, .1; 1; 1; a1/. The only rows of A.m/ that have
non-zero entries in columns 2; 3; 4; 5 are "0; "1; "2, where we have

.0; 1; 0; 1/; .1; 1; 0; 0/; .0; 0; 1; 1/:
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Thus the projection of ha1j j j D 0; 1; 2; : : :i toZ1 has rank 3. The diagonal element ı1

contributes .1; 1; 1; 1/, but we already have this as the sum of the images of a11 and a12.
A similar argument applies to the summand Zi < Z corresponding to the generator
ai 2 F . Thus the image of B1.m/ in Z has rank 3r , as claimed.

4.3. The remainder of the proof. In the light of the preceding results in this section,
items (3) and (4) of Theorem 1.1 are covered by Lemma 2.6, while items (5) and (7)
are covered by Theorems 2.5 and 3.2. We shall prove the remaining items in order.

Let k D b1C log2mc. We defined B0.m/ by taking a generating set aij with rk
elements, so certainly

d.B0.m// � rk:

To see that d.B0.m// D rk, we observe that B0.m/ maps onto a direct product of k
copies of F D Fr : the desired map is the coordinate projection onto ƒŒ2� WD L1 �

L2 �L4 � � � �L2k�1 ; in this projection, aij maps to ai 2L2j . This proves assertion (1)
of the theorem.

The proof of item (2) is similar. In this case, to see that B1.m/ requires at least
r.k C 1/ generators we prove that its projection to the abelianization of ƒŒ2� � L3

is surjective. The new difficulty that we face is that in the rank-3 summand of Vi <

H1.L1 �L2 �L3;Z/ corresponding to the basis element ai 2 F , the only contributors
among the aij are ai0 and ai1, who contribute .1; 0; 1; 0; : : :/ and .0; 1; 1; 0; : : :/
respectively. But the element ıi

Q
j >1 a

�1
ij contributes .1; 1; 1; 0; : : :/ to ƒŒ2� � L3,

ensuring that the image of B1.m/ contains Vi . And aij maps to ai 2 L2j for j > 1,
as before. Thus, B1.m/ maps onto H1.ƒ

Œ2� � L3;Z/ Š Zr.kC1/, so

d.B1.m// � r.k C 1/:

The proof of item (6) is similar to that of item (2). The three rows of A.4/ are
.1; 0; 1; 0/, .0; 1; 1; 0/, .0; 0; 0; 1/, and together with ı D .1; 1; 1; 1/ these span Z4. In
the spirit of Remark 4.1, this translates easily into the fact that B1.4/ contains each
of the 4r generators of F 4. Alternatively, we can observe (i) that B1.4/ maps onto
H1.F

4;Z/ because it contains each of the r summands Z4 corresponding to a choice
of basis vector, and (ii) B1.4/ contains ŒF 4; F 4�, by Lemma 2.6.

Item (8) is an immediate consequence of (2) and Proposition 2.2. In more detail,
since h.r; c/ �

Pc
iD1 r

i and b2C log2mc > log2m, it suffices to define

pc.t/ D
1

Wc.2/

cX
iD1

t i :
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4.4. Binary subgroups of direct products of limit groups. Let ƒ1; : : : ; ƒm be non-
abelian limit groups, and suppose that there exist epimorphisms �i WFr ! ƒi that
induce an isomorphism on abelianizations. Of particular interest is the case where
each ƒi is the fundamental group of a closed surface of genus g, with r D 2g and
�i WFr ! ƒi a standard choice of generators. Let Bj .mI�/ < D D ƒ1; : : : ; ƒm be
the image of Bj .m/ under � D .�1; : : : ; �m/.

Theorem 4.4. With the above notation, for all non-abelian limit groups ƒi such that
�i WFr ! ƒi induces an isomorphism on H1.�;Z/:
(1) the rank of B0.mI�/ is r.b1C log2mc/;
(2) the rank of B1.mI�/ is r.b2C log2mc/;
(3) B0.mI�/ contains m�1.D/;
(4) B1.mI�/ contains c.D/, where c D b1C .m � 1/=2c;
(5) B0.mI�/ is finitely presented but not of type wFP3;
(6) if m � 4 then B1.mI�/ D D;
(7) if m � 5 then B1.mI�/ is finitely presented, type wFP3 but not wFP4;
(8) 8c 9 polynomial pc.t/ such that if m > pc.log2m/ and D0 < ƒ1 � � � � �ƒm is

of finite index, then c.D0/ 6� B1.m/.

The polynomial pc.t/ depends only on c, not the particular ƒi considered: again
we may take pc.t/ D

1
Wc.2/

Pc
iD1 t

i .

Proof. The proofs of Theorem 1.1 and the supporting results were crafted so that they
extend mutatis mutandis to this setting.

In fact, our earlier proofs apply to more general settings: the interested reader will
have little difficulty in verifying the following observations. (Lemma 2.10 is needed
here.)

Addenda 4.5. (i) If one drops the requirement that � induces an isomorphism on
H1.�;Z/, then items (3), (4), (6) and (8) of Theorem 4.4 remain valid while the
equalities in (1) and (2) are replaced by inequalities

d.Bj .mI�// � r.bj C 1C log2mc/:

The positive assertions in (5) and (7) remain valid but the negative assertions may
fail.

(ii) If one weakens the hypotheses further, requiring only that eachƒi is an r-generator
finitely presented group that maps onto a non-abelian free group, then the same
set of conclusions as in (i) remains valid.
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(iii) If one weakens the hypotheses yet again, requiring only that each ƒi is an
r-generator finitely presented group, then the only additional item to become
invalid is (8).

5. Binary subgroups: The general construction

We maintain the notation that F is the free group of rank r with basis ¹a1; : : : ; arº.
First we consider arbitrary binary subgroups of direct powers of free groups.

Definition 5.1. Letm� 2 and r � 2 be integers. For iD1; : : : ; r , let �iD.xi1; : : : ;xim/

be a list of distinct positive integers. Let li D maxk b1C log2 xikc. We associate to �i

the li -by-m matrix AŒ�i � whose k-th column is the binary expansion of xik . More
precisely, the .j; k/-entry of AŒ�i � is "j .k/ if xik D

P
j "j .k/2

j . We treat the j -th
row of AŒ�i � as a multi-index and define aij 2 F

m by raising the generator ai 2 F to
this multi-index (cf. Table 2).

Let † D .�1; : : : ; �r/. We define B.†/ < Fm to be the subgroup generated by
¹aij j 1 � i � r; 1 � j � liº.

Example 5.2. B0.m/ is the group one gets by taking �1 D � � � D �r and xik D k.
B1.m/ is the group one gets by taking �1 D � � � D �r and xik D 2k C 1.

The proof in Section 4.1 that B0.m/ surjects pairs of factors applies equally well
to B.†/.

Lemma 5.3. The projection of B.†/ < Fm to each pair of factors is surjective.

From the VSP theorem we deduce:

Proposition 5.4. The group B.†/<Fm is finitely presented and contains m�1.F
m/.

Remark 5.5 (Algorithms). Following Remark 2.9, with Lemma 5.3 in hand we see
that there is an algorithm that allows one to explore, for each k, whether B.†/ < Fm

(virtually) projects onto all k-tuples of factors and hence to bound the higher finiteness
properties and co-nilpotency class of B.†/ using Theorem 3.2 and Lemma 2.6.

5.1. Pushing forward and the proof of Theorem 1.2. The following defines the
most general binary subgroups that we consider.

Definition 5.6. Let†D .�1; : : : ; �r/ be as in definition 5.1 and let .�i WF � Gi /
m
iD1

be anm-tuple of r-generator groups. We defineB.†;�/ to be the image inG1�� � ��Gm

of B.†/ < Fm under the epimorphism � D .�1; : : : ; �m/.
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We invoke the VSP theorem once more – in tandem with Lemma 2.10 and Rem-
ark 2.9 it yields the following theorem.

Theorem 5.7. For allm-tuples of finitely presented r-generator groups .�i WF�Gi /
m
iD1

and all r-tuples † of lists of m distinct positive integers, the subgroup B.†; �/ <
G1 � � � � �Gm DWD is finitely presented, closed in the profinite topology, and contains
m�1.D/. Moreover, there is an algorithm that, given finite presentations ofG1; : : : ;Gm,
will construct a finite presentation forB.†;�/. And for each k � 2 there is an algorithm
that will determine ifB.†;�/ (virtually) surjects all k-tuples of factorsGi1 � � � � �Gik .

This completes the proof of Theorem 1.2, because the additional assertion con-
cerning finiteness properties of limit groups is covered by Theorem 3.2.

5.2. Pulling back. Let B.†;�/ < G1 � � � � �Gm be as above. Given any m-tuple of
epimorphisms .�i WHi ! Gi /

m
iD1, with the groups Hi finitely presented, we consider

the pull-back ��1B.†;�/ < E WDH1 � � � � �Hm. In the light of Lemma 2.10 and the
VSP theorem, we see that ��1B.†;�/ will again be finitely presented, closed in the
profinite topology, and contain m�1.E/. And there is an algorithm that, given finite
presentations of H1; : : : ;Hm, will construct a finite presentation for ��1B.†;�/.

This construction is of particular interest in the case where the Hi are limit groups
and the Gi are free groups. We shall explore it further in [6].

5.3. Redundancy, variations and standard forms. It is natural to wonder to what
extent B.†/ < Fm determines †. Deciding isomorphism among the groups B.†/
does not seem to be a trivial matter. It is clear that † is not uniquely determined:
permuting the order of the sets �i corresponds to permuting the chosen basis of F ,
and in the case � D �1 D � � � D �m permuting the order of the elements in � merely
permutes the direct factors of F . (One might remove these ambiguities by insisting
on a standard form in which the �i and their elements are listed in a natural order.)
Beyond this, even in the case � D �1 D � � � D �r there are further redundancies: if
no column of the matrix AŒ�� contains an entry 1 in both of the rows j1 and j2, then
one can replace row j1 by the sum of these rows to obtain AŒ� 0� with � 0 ¤ � . This
operation leaves B.†/ invariant, merely changing the preferred generating set aij by
performing the Nielsen move aij1

7! aij1
aij2

for each i .
An important point to note is that when we perform such row operations, we are

constrained by wanting to work within the context of integer matrices with entries
in ¹0; 1º. If we were to work instead over the field with 2 elements, then we would
be free to perform row operations; we could then carry out Gaussian elimination to
transform the matrix AŒ�� into a canonical form without altering B.†/. This freedom
can be gained at the expense of switching from the free group F D Fr to the free
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productWr of r copies of Z=2Z. One might be tempted to think that this switch would
lead to a neater theory, and it would certainly tighten the connection with binary linear
codes, but the following observation shows that this alternative is useless if one is
interested in constructing groups with exotic finiteness properties.

We fix an epimorphismF!Wr and extend it coordinate-wise to obtain�WFm!W m
r :

Proposition 5.8. For all choices of †, the subgroup B.†;�/ < W m
r is of finite index.

Proof. Follows immediately from Lemma 5.3 and Corollary 2.8.

6. Connections and challenges

The group B0.m/ has the minimum number of generators among the binary sub-
groups of Fm. It is striking that one only needs to add r additional generators to
obtain B1.m/, which surjects all triples of factors and therefore has stronger finite-
ness properties. It is natural to ask what the minimum number of generators is for
a binary subgroup that surjects 4-tuples of factors, 5-tuples, etc. More generally, it
might be interesting to explore the nature of small collections of integers † such that
B.†/ < Fm maps onto k-tuples of factors, where k < m is fixed. In particular, one
might count such collections and explore the asymptotics of the counting functions.

Note that Corollary 2.7 reduces these issues to problems in linear algebra over Z;
in the case † D .�; : : : ; �/, one would just be exploring submatrices of AŒ��, and the
problem is so natural that it has surely been studied in other contexts. Note too that
Theorem 3.2 provides a direct connection with the homological finiteness properties
of B.†/. The challenge of understanding how the co-nilpotency class of B.†/ varies
with † seems harder.

6.1. Binary codes. It seems likely that some answers to the type of question raised
above might be found by exploring the link to linear codes that I shall now sketch. I am
grateful to Ben Green for suggesting this connection, and I am grateful to Yonathan
Fruchter for further conversations about it.

A binary linear code of lengthm is a linear subspace C of the vector space Fm
2 ; the

rank of the code is the dimension of C . The dual code C? < Fm
2 consists of the vectors

orthogonal to C with respect to the usual inner product x:y D
P
xiyi . The non-zero

vectors in C are called codewords, and the minimum Hamming distance of a codeword
from the zero vector is the weight of the code. A linear code of length m, dimension k
and weight d is called an Œm; k; d �-code. Such codes have been intensively studied in
the context of error correction in computer science and communication.

Each of the arrays that we used to define binary subgroups B < Fm defines a
binary code of length m: we take C to be the span of the rows of the array, read as
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elements of Fm
2 . Conversely, given an Œm; k; d �-code with basis c1; : : : ; ck , we define

the k �m array (matrix) whose rows are the vectors ci to be AŒ��, thereby defining �
and hence BŒC � WD B.†/ < Fm

r , where † D .�; : : : ; �/. (More generally, given an
r-tuple of codes, we could take a basis for each code to obtain matrices AŒ�i � defining
.�1; : : : ; �r/ – but for the purposes of this discussion the first case is enough.)

Let C0.m/ < Fm
2 be the code defined by the array for B0.m/ < F

m (see Table 1).
The argument that we used in Section 4.1 to prove that B0.m/ < F

m does not surject
the triple of factors L1 � L2 � L3 < Fm shows that C0.m/ does not project onto
F3

2 � 0 < Fm
2 . Indeed it shows that .1; 1; 1; 0; : : : / is orthogonal to C0.m/, hence

the dual code C0.m/
? has weight at most 3. In fact, it has weight exactly 3, because

if there were a vector y 2 C0.m/
? whose only non-zero coordinates were i and j ,

then the projection of B0.m/ < F
m to Li � Lj (even H1.Li � Lj ; F2/) would not

be surjective. Likewise, the dual of the linear code C1.m/ < Fm
2 corresponding to

B1.m/ < F
m has weight 4. (In retrospect, one sees that B0.m/ and B1.m/ correspond

to the Hadamard and extended Hadamard codes, which are dual to the Hamming and
extended Hamming codes, whose weights are well known to be 3 and 4.) In general,
if a code C has length m and the weight of the dual code C? is d 0 > 2 then the
corresponding binary subgroup BŒC � < Fm fails to project onto some d 0-tuple of
factors in Fm and hence is not of type wFPd 0 .

These observations suggest that in order to produce binary subgroups B < Fm

with a small number of generators and strong finiteness properties, one should turn
to the literature on coding theory in search of Œm; k; d � binary codes with k small
and the weight d 0 of the dual code large, keeping in mind that we are obliged to work
over Z rather than F2 (cf. Proposition 5.8). Yonathan Fruchter has made progress in this
direction (private communication) and points out the relevance of selective families
and superimposed codes [9].

6.2. Kähler groups. The work of Delzant and Gromov [10] highlighted the important
role that subdirect products of surface groups play in the struggle to understand which
finitely presented groups are fundamental groups of compact Kähler manifolds. In a
subsequent article, Claudio Llosa Isenrich and I will exploit the constraints that he
established in [16] to investigate whether binary subgroups of direct products of surface
groups can be Kähler.

6.3. Implementation. Picking up on the theme of Corollary 2.7 and Remarks 2.9
and 5.5, I would be interested to know how practical it is to implement the algorithms
whose existence is discussed in this article, in particular the algorithm that takes as
input a list � ofm distinct positive integers and gives as output (1) a finite presentation
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of the binary subgroup B < Fm
2 that it defines, and (2) the maximum k such that B is

of type wFPk .
For (1), it would be necessary to implement a special case of the Effective 1-2-3

theorem from [5] – cf. [15].
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