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NOTES ON PERIODIC SOLUTIONS OF

DISCRETE STEADY STATE SYSTEMS

Gen-Qiang Wang and Sui Sun Cheng

Abstract: A three term discrete system is considered and periodic solutions are

found by means of a mountian pass theorem in the critical point theory.

1 – Introduction

In [5], discrete systems of the form

(1) ∆2Xn−1 + g(n, Xn) = 0 , n ∈ Z =
{

0,±1,±2, ...
}

,

where g ∈ C(Z×R
k, Rk) and there is a positive integer ω such that g(t+ω, X) =

g(t, X) for any (t, X)∈ Z×R
k, is considered and ω-periodic solutions are found

by means of critical point theory. Since the difference operator ∆ is defined

by ∆Xn = Xn+1− Xn, the above system reminds us of a second order differen-

tial system. Therefore, the above system emphasizes the importance of relative

changes of the state variables with respect to spatio or temporal changes. Such an

emphasis may, however, not be necessary in general. Consider for example ω ar-

tificial neuron units placed on the vertices of a regular ω polygon. Let x
(t)
n denote

the state value of the n-th neuron unit during the time period t ∈ {0, 1, 2, ...}.

Assume that each neuron unit is activated by its two neighbors so that the change

of state values between two consecutive time period is given by

x(t+1)
n − x(t)

n = x
(t)
n−1 + x

(t)
n+1− h(n, x(t)

n ) ,
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where f stands for the bias mechanism inherent in the n-th neuron unit, then

we have an evolutionary system of the form

x(t+1)
n − x(t)

n = x
(t)
n−1 + x

(t)
n+1 − h

(

n, x(t)
n

)

, n ∈ {1, 2, ..., ω} ,

x
(t)
0 = x(t)

ω ,

x
(t)
1 = x

(t)
ω+1 ,

for t = 0, 1, 2, ... . If we try to seek a ‘steady state’ solution
{

(x
(t)
1 , ..., x

(t)
ω )
}∞

t=0

such that x
(t)
n = xn for all t, then we need to find a solution of the steady state

system

0 = xn−1 + xn+1 − h(n, xn) , n ∈ {1, 2, ..., ω} ,

x0 = xω ,

x1 = xω+1 ,

or equivalently, to find an ω-periodic solution {xn}n∈Z of

xn−1 + xn+1 − h(n, xn) = 0 , n ∈ Z .

For this reason, we need to consider three-term discrete systems of the form

(2) Xn+1 + Xn−1 − f(n, Xn) = 0 , n ∈ Z ,

where f = (f1, f2, ..., fk)
† ∈ C(Z×R

k, Rk) and there is a fixed positive integer ω

such that f(n + ω, U) = f(n, U) for all (n, U) ∈ Z×R
k. We will assume through-

out that there exists a continuously differentiable function F ∈ C1(R×R
k, R) such

that ∇UF (n, U) = f(n, U) and F (n + ω, U) = F (n, U) for all (n, U) ∈ R×R
k,

where ∇U denotes the gradient operator in U . As usual, a solution {Xn}n∈Z

of (2) is a real vector sequence that renders (2) into an identity after substitu-

tion. It is said to be ω-periodic if Xn+ω = Xn for all n ∈ Z.

As in [5], we will employ some of the well known results in the critical point

theory to find ω-periodic solutions of (2). For general information on critical

point theory, we refer to [13, 14]. For additional information on discrete systems,

we refer to [1–12].

Note that if we let I : R
k → R

k be the identity map and let f(n, Xn) =

g(n, Xn) − 2 I(Xn), then (2) is reduced to (1). However, as will be seen in

Example 2, our results cannot be deduced from that in [5]. This is not surprising

since emphasis is shifted to interactions between state variables.
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2 – Existence criteria

The main result of this paper is the following.

Theorem 1. Suppose F (n, U) > 0 for n ∈ Z and U ∈ R
k. Suppose further

that

(G1) there are constants δ > 0 and α ∈ (0, 1) such that for any n ∈ Z and

U ∈ R
k satisfying |U | ≤ δ, we have F (n, U) ≤ α |U |2 and

(G2) there are constants ρ > 0, γ > 0 and β ∈ (1,∞) such that for any n∈Z

and U ∈ R
k satisfying |U | > ρ, we have F (n, U) > β |U |2 − γ.

Then (2) has at least one nontrivial ω-periodic solution.

Example 1. Let k = 1 and ω = 2. Set f(x) = 2a(2+sinπt)(x−sinx) where

a > 1, and set F (t, x) = 2a(2 + sin πt)(x2

2 + cos x− 1). Then f, F ∈ C(R, R) and

∇xF (t, x) = f(t, x). It is easy to see from lim
x→0

max
t∈R

|F (t, x)/x2|= 0 that (G1) is sat-

isfied. Since F (t, x) = 2a(2 + sinπt)(x2

2 + cosx − 1) > ax2 − 4a for (t, x) ∈ R
2,

if we take ρ > 0, β = a and γ = 4a, then (G2) is satisfied. Thus by Theorem 1,

(2) has at least one nontrivial 2-periodic solution.

Corollary 1. Suppose F (n, U) > 0 for any n ∈ Z and U ∈ R
k. Suppose

further that

(G3) F (n, U) = o(|U |2) as U → 0 and

(G4) there are constants R1 > 0 and α1 > 2 such that for any n ∈ Z and

U ∈ R
k satisfying |U | > R1,

〈

U,∇UF (n, U)
〉

> α1F (n, U) > 0 .

Then (2) has at least one nontrivial ω-periodic solution.

Corollary 2. Suppose k = 1. Suppose further that

(G5)

∫ x

0
f(n, t) dt > 0 for any n ∈ Z and x ∈ R,

(G6) f(n, x) = o(x) as x → 0 and

(G7) there are constants R1 > 0 and α1 > 2 such that for any n ∈ Z and

x ∈ R satisfying |x| > R1,

x f(n, x) > α1

∫ x

0
f(n, u) du > 0 .

Then (2) has at least one nontrivial ω-periodic solution.
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Before turning to the proof of our results, let us first show that our results

are different from those in [5].

Example 2. Consider a scalar equation of the form

(3) xn+1 + xn−1 − 3(xn)3/2 = 0 , n ∈ Z .

We assert that (3) has at least one nontrivial 4-periodic solution. Indeed, here

f(n, x) = 3x3/2 and F (n, x) = 6
5 x5/2. It is easy to see that lim

x→0
max
n∈Z

|F (n,x)/x2|=0

and that (G1) is satisfied. If we take ρ > 0, β = 6/5 and γ > 0, then (G2) is

satisfied. Thus by Theorem 1, (3) has at least one nontrivial 4-periodic solution.

However, if we rewrite (3) in the form (1), then g(n, x) = 3x3/2−2x. In this

case, the conditions of the main Theorem in [5] are not satisfied, for otherwise

there is G, such that ∇UG(n, U) = g(n, U), G(n, x) > 0 for n ∈ Z and x ∈ R and

G(n, 0) = 0 for n ∈ Z. Thus G(n, x) = 6
5 x

5

2 − x2, which is contrary to the fact

that G(n, x) > 0 for n ∈ Z and x ∈ R.

The spirit of the proof of Theorem 1 is similar to that of the main theorem

in [5] but we use a mountain pass theorem instead of a linking theorem. For

the sake of completeness, we give a complete proof as follows. First, for any

U = (U1, ..., Uk), V = (V1, ..., Vk) ∈ R
k, their inner product is 〈U, V 〉 =

∑k
i=1 UiVi

and the norm of V is |V |= 〈V, V 〉1/2. Let S be the set of all real vector sequences

X = {Xn}n∈Z where Xn = (Xn1, Xn2, ..., Xnk)
† ∈ R

k. For any X,Y ∈ S and a, b∈R,

aX + bY is defined by aX + bY = {aXn + bYn}n∈Z. Then S is a linear space.

Let Eω be the set of all ω-periodic vector sequences in S. When endowed with

the norm ‖ · ‖Eω
and inner product 〈·, ·〉Eω

defined by

(4) ‖X‖Eω
=

(

ω
∑

n=1

|Xn|
2

)1/2

,

and

〈X, Y 〉Eω
=

ω
∑

n=1

〈Xn, Yn〉

for any X={Xn}n∈Z, Y ={Yn}n∈Z in Eω, the pair
(

Eω, 〈·, ·〉Eω

)

is a Hilbert space.

We now formulate our problem as a critical point problem. Consider the

functional I defined on Eω by

(5) I(X) =
ω
∑

n=1

{

〈Xn+1, Xn〉 − F (n, Xn)
}

, X ∈ Eω .
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Since Eω is linearly homeomorphic to R
ωk, I can be viewed as a continuously

differentiable functional defined on the finite dimensional Hilbert space R
ωk

by taking X0 = Xω and Xω+1 = X1. In particular, the Frechet derivative I ′(X)

is zero if, and only if, ∂I(X)
∂Xn,l

= 0 for all n ∈ {1, ..., ω} and l ∈ {1, ..., k}. Since

(6)
∂I(X)

∂Xn,l
=
{

Xn,l + Xn−1,l − fl(n, Xn)
}

, 1≤ n≤ω, 1≤ l≤ k ,

we see that I ′(X) = 0 if, and only if,

(7) Xn+1 + Xn−1 − f(n, Xn) = 0 , n ∈ {1, ..., ω} .

That is, X ∈ Eω is a critical point of I (i.e. I ′(X) = 0) if, and only if, X is an

ω-periodic solution of (2).

Let H be a real Banach space. A continuously differentiable functional J ∈

C1(H, R) is said to satisfy the Palais–Smale condition (P-S condition) if any

sequence {un} ⊂ H for which {J(un)} is bounded and J ′(un) → 0 as n → ∞

possesses a convergent subsequence in H.

Lemma 1 (14, Mountain Pass Theorem 2.7). Let H be a real Banach space

and I a real continuously differentiable functional that satisfies the P-S condition.

If I is bounded from above in E, then I possesses a critical value c = sup
x∈E

I(x).

Lemma 2. If (G2) holds, then the functional I defined by (5) is bounded

from above in Eω.

Proof: According to (G2), if we let

γ1 = max
{

∣

∣F (n, U) − β |U |2 + γ
∣

∣ : n∈Z, |U | ≤ ρ
}

and γ′ = γ +γ1. Then for any n ∈ Z and U ∈ R
k, we have

(8) F (n, U) > β |U |2 − γ′ .

By (5) and Cauchy’s inequality we see that for any X ∈ Eω,

I(X) =
ω
∑

n=1

{

〈Xn+1, Xn〉 − F (n, Xn)
}

≤
ω
∑

n=1

|〈Xn+1, Xn〉| −
ω
∑

n=1

F (n, Xn)

≤ ‖X‖2
Eω

−
ω
∑

n=1

(

β |Xn|
2−γ′

)

= ‖X‖2
Eω

−
ω
∑

n=1

(

β |Xn|
2−γ′

)

= (1−β) ‖X‖2
Eω

+ γ′ω .

Since β >1 by (G2), for any X∈Eω, we have I(X)≤ γ′ω. The proof is complete.
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Lemma 3. If (G2) holds, then the functional I defined by (5) satisfies the

P-S condition.

Proof: Let
{

I(X(i))
}∞

i=1
be a sequence bounded from below, that is, there

exists a positive constant M such that

−M ≤ I(X(i)) , i = 1, 2, ... .

In view of the proof Lemma 2, it is easy to see that

−M ≤ I(X(i)) ≤ (1−β) ‖X(i)‖2
Eω

+ γ′ω ,

which implies that

‖X(i)‖2
Eω

≤ (β−1)−1 (M + γ′ω) .

That is, {X(i)} is a bounded sequence in the finite dimensional space Eω. Hence

{X(i)} has a convergent subsequence. The proof is complete.

We now turn to the proof of Theorem 1. First of all, we can easy to see that

I(0) = 0. It suffices to find a nontrivial critical point of the functional I defined

by (5). By Lemma 2 and Lemma 3, we see that the conditions of Lemma 1 hold.

Thus I possesses a critical value c0 = supx∈Eω
I(x). Let X0 be a critical point of I

in Eω such that I(X0) = c0. We claim that c0 > 0. Indeed, by the assumption (G1)

and Lemma 2, for any constant vector sequence X = {V}
n∈Z

satisfying ‖X‖Eω
= δ,

I(X) =
ω
∑

n=1

{

Xn+1Xn − F (n, Xn)
}

> ‖X‖2
Eω

−
ω
∑

n=1

F (n, Xn)

> ‖X‖2
Eω

− α
ω
∑

n=1

|Xn|
2 = (1−α) ‖X‖2

Eω

= σ > 0 ,

where σ = (1 − α) δ2 > 0. Thus c0 = supX∈Eω
I(X) > σ > 0. Since I(0) = 0,

X0 6=0. Thus X0 is a nontrivial ω-periodic solution of (2). The proof is complete.

We now turn to the proof of Corollary 1. It is easy to see that if (G3) holds,

then the condition (G1) of Theorem 1 is true. From (G4), we have

(9)

〈

U

|U |
,
∇UF (n, U)

F (n, U)

〉

>
α1

|U |
for n∈Z and |U |> R1 .
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Thus
d lnF (n, U)

d |U |
>

α1

|U |
,

which implies

(10)
d

d |U |

(

lnF (n, U) − α1 ln |U |
)

> 0 for n∈Z and |U |> R1 .

Let

φ = min
{

lnF (n, U) − α1 ln |U | : n∈Z and |U |= R1

}

.

By (9),

lnF (n, U) − α1 ln |U | > φ for n∈Z and |U |> R1 .

That is

F (n, U) > β1 |U |α1 for n∈Z and |U |> R1 ,

where β1 = exp(φ). Let ρ1 > R1 satisfying β1 ρα1−2
1 > 1. Then for n ∈ Z and

|U | > ρ1,

F (n, U) > β1 |U |α1−2 |U |2 > β |U |2 ,

where β = β1 ρα1−2
1 > 1. Thus the condition (G2) of Theorem 1 holds. The proof

is complete.

Finally, the proof of Corollary 2 follows from Corollary 1 by taking

F (t, x) =

∫ x

0
f(t, x) dx.
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