PORTUGALIAE MATHEMATICA Vol. 64 Fasc. 1 – 2007 Nova Série

SPECTRA IN BANACH AND LOCALLY CONVEX ALGEBRAS

A.K. GAUR

Recommended by A.F. Santos

This paper is dedicated to Professor J.R. Giles

Abstract: We present a counterexample to the converse of results on approximate point spectra. A norm inequality in terms of a distance function is established for a quotient bounded operator on a locally convex Hausdorff space on the set of complex numbers.

1 - Introduction

In this article, we follow the notation and terminology of [1], [3] and [7]. Following [3] and [7], we define the left and right approximate point spectra (LPS and RPS, respectively) of *n*-tuples $(x_1, x_2, \ldots, x_n) \in X$, where X is a Banach algebra, as:

$$LPS(x_1, \dots, x_n) = \left\{ (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \inf_{\|y\|=1} \sum_{i=1}^n \|\lambda_i y - x_i y\| = 0 \right\},$$
$$RPS(x_1, \dots, x_n) = \left\{ (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \inf_{\|y\|=1} \sum_{i=1}^n \|y\lambda_i - yx_i\| = 0 \right\}.$$

Received: November 10, 2005.

AMS Subject Classification: 46H05, 46J10, 46J99, 46K99.

Keywords: locally convex algebra; approximate spectra; point spectra; quotient bounded operator.

The left and right Harte spectra of $(x_1, \ldots, x_n) \in X$ (*LHS* and *RHS* respectively) are defined below as:

$$LHS(x_1, \dots, x_n) = \left\{ (\lambda_1, \dots, \lambda_n) : \sum_{i=1}^n X(x_i - \lambda_i) \neq X \right\},$$
$$RHS(x_1, \dots, x_n) = \left\{ (\lambda_1, \dots, \lambda_n) : \sum_{i=1}^n (x_i - \lambda_i) X \neq X \right\}.$$

We note that in [7], $\{LHS\} \cup \{RHS\} = H_s$, where H_s is Harte's spectrum.

Remark 1.1. We present a modified version of Theorem 2 in [3] in the following theorem. \Box

Theorem 1.2. Let $x, y \in X$ and $LPS(x) \subseteq RPS(x)$. Then, if x y = 1, y x = 1 where 1 is the unit element of the algebra X.

Proof: Let x y = 1. Then, (yx)(yx) = y(xy)x = y(1)x = yx which shows that (yx) is an idempotent. If $yx = \mu$, then we will show that $\mu = 1$. Now, for each $x_0 \in X$, $||x_0|| = ||x_0 \cdot 1||$

$$|x_0|| = ||x_0 \cdot 1||$$

= $||x_0 x y|| \le ||x_0 x|| \cdot ||y||$
 $\implies ||x_0|| - ||x_0 x|| ||y|| \le 0$

which imples that zero does not belong to RPS(x) by the definition of RPS(x). Since $LPS(x) \subset RPS(x)$, we have $0 \notin LPS(x)$. In this case, there is a positive ϵ with

$$0 < \epsilon \leq \frac{\|x x_0\|}{\|x_0\|} , \qquad \forall x_0 \in X .$$

On the other hand,

$$1 \cdot x = (x y) (x) = x (y x) = x \mu$$

implying that $x = x\mu$. Further simplification yields:

$$x - x\mu = 0 \implies x(1-\mu) = 0$$

 $\implies ||x(1-\mu)|| = 0$

Now, we have

$$\|x(1-\mu)\| \ge \epsilon \|1-\mu\| \quad (\text{since } \epsilon \|x_0\| \le \|xx_0\|)$$
$$\implies \epsilon \|1-\mu\| \le 0$$

which is only possible if $\mu = 1$.

SPECTRA IN BANACH AND LOCALLY CONVEX ALGEBRAS

13

The motivations for the following example are the semigroups of generators (see Remark 12.3 in [8, p. 364]) and the algebra $\ell'(\cdot)$ [2, p. 54]. This example produces a counterexample to the converse of Theorem 1.2.

Example 1.3. Let X be the algebra ℓ' over G, where G is a semigroup of generators g_1, g_2 and g_3 . An element of X can be given by

$$x = \sum \lambda g$$
, $g \in G$ and $\lambda \in \mathbb{C}$.

The norm of x is given by

$$||x|| = \sum |\lambda| ||g||_G \le \infty.$$

We remark that λ depends on a particular vector g in G. With this construction, X is a Banach algebra with generators g_1, g_2 and g_3 . If e is the identity of G, then we let $||e||_G = 1$. We also let

$$||g^k||_G = (k!)^{-1}, \quad \forall g \in G.$$

If $k_1 \ge 1$, $k_2 \ge 1$ and $k_3 \ge 1$, then

$$||g_1^{k_1}|| = (k_1!)^{-1}$$
$$||g_2^{k_2}|| = (k_2!)^{-1}$$
$$||g_3^{k_3}|| = (k_3!)^{-1}.$$

In addition,

$$||g_1 g_2||_G \le ||g_1||_G ||g_2||_G$$
, for $g_1, g_2 \in G$.

This algebra is a non-trivial algebra since there are no idempotents except for those that are trivial. This is not difficult to prove as we see below. \Box

Proof: Let $\mu \in X$. Then, by definition,

$$\mu \,=\, \sum_{g\in G} \lambda_g \,g \,\,.$$

Then, $\mu^2 = \mu$ implies either $\mu = 0$ or $\mu = 1$. To see this, let $g_1 g_2 = g$. Then

$$\lambda_g = \sum_{g_1g_2=g} \lambda_{g_1}\lambda_{g_2} , \quad \forall g \in G$$
$$\implies \lambda_g = \lambda_{g_1}\lambda_1 + \lambda_1$$

and

$$\lambda_{g_2} = \lambda_{g_3} = 0 \; .$$

By mathematical induction, we have

$$\lambda_g = \lambda_1 \lambda_g + \lambda_g \lambda_1$$
$$\implies \lambda_g = 0, \quad \forall g \neq 1$$
$$\implies \mu = 0 \text{ or } \mu = 1.$$

Since $\mu y = y$, it follows that $\mu = yx = 1$, if xy = 1. Thus, for all $x \in X$, we have shown that whenever xy = 1, yx = 1.

Now, consider

$$\| (g_1 + g_2) g_2^{k_1} \| = \| g_1 g_2^{k_1} + g_2^{k_1 + 1} \|$$

$$\leq \| g_1 g_2^{k_1} \| + \| g_2^{k_1 + 1} \| .$$

A simple calculation shows that

$$\left\| \left(g_1 + g_2 \right) g_2^{k_1} \right\| \le \left\| g_2^{k_1} \right\| \left(\frac{2}{1+k_1} \right)$$

By the definition of LPS, we have zero belonging to $LPS(g_1 + g_2)$. If

$$x - \lambda = x_1 g_1 + x_2 g_2 + x_3 g_3$$

then the following inequality holds

$$2\|x(g_1+g_2)\| \ge \|x\|$$

implying that $0 \notin RPS(g_1 + g_2)$, which shows that the converse of Theorem 1.2 is not true in general.

2 – Spectra of quotient bounded operators

Let E be a locally convex Hausdorff space over the field of complex numbers. Let S(E) be the family of seminorms such that $S(E) = \{s_{\alpha} : \alpha \in I\}$. The topology on E is induced by S(E). For a given S, we denote by $Q_S(E)$ the algebra of quotient bounded operators on E. That is,

$$Q_S(E) = \left\{ T \colon s_\alpha(Ta) \le K_\alpha s_\alpha(a), \ a \in E, \ \alpha \in I \right\} \,.$$

SPECTRA IN BANACH AND LOCALLY CONVEX ALGEBRAS

15

If $K_{\alpha} = K$, then by [5], we have $B_S(E)$ denoting the algebra of bounded operators on E. We say $Q_S(E)$ is a unital l.m.c. algebra where the seminorm

$$S_0 = \left\{ s_{0_\alpha} \colon \alpha \in I \right\}$$

and

$$s_{0_{\alpha}}(T) = \sup \left\{ s_{\alpha}(Ta) \colon s_{\alpha}(a) \le 1, \ a \in E \right\}.$$

Also, the norm of an operator $T \in B_S(E)$ is given by

$$||T||_S = \sup \left\{ s_{0_{\alpha}}(T) \colon \alpha \in I \right\} \,.$$

For each $\alpha \in I$, let N_{α} denote the null space of s_{α} . Then, the quotient space $\frac{E}{N_{\alpha}}$ is denoted by E_{α} . Through [5] it is known that the algebra E_{α} is a normed algebra such that for each a_{α} in E_{α} , $||a + N_{\alpha}||_{\alpha} = s_{\alpha}(a)$. Let \overline{E}_{α} , denote the completion of E_{α} . We note that $(Ta)_{\alpha} = T_{\alpha} a_{\alpha}$, for each $\alpha \in I$ and for each $a \in E$.

If $s_{\alpha}^2 = (a, a)_{\alpha}$, $a \in E$, then the adjoint of an operator $T \in Q_S(E)$ is T^* . In other words, for each $\alpha \in I$ and $a, b \in E$, $(Ta, b)_{\alpha} = (a, T^*b)_{\alpha}$. Obviously, \overline{E}_{α} becomes a Hilbert space and $(\overline{T}_{\alpha})^*$ is the adjoint operator of \overline{T}_{α} , where \overline{T}_{α} is the continuous extension of T_{α} on \overline{E}_{α} . See [5] and [9].

By [1], the spectrum of $T \in Q_S(E)$ is denoted by SP(T). That is,

$$SP(T) = \left\{ \lambda : (\lambda I - T) \text{ is not invertible} \right\}$$

Let $SP_{\alpha}(\overline{T}_{\alpha})$ denote the spectrum of \overline{T}_{α} in \overline{E}_{α} . Then, by [5], we have

$$SP(T) = \bigcup_{\alpha} \left\{ SP_{\alpha}(\overline{T}_{\alpha}) \right\}$$

The following theorem is an easy consequence of the definitions involved. Compare this theorem with Harte's spectrum in [7].

Theorem 2.1. If SP_a and SP_r are the approximate and residual spectra of $T \in Q_S(E)$ respectively, then $SP(T) = SP_a(T) \cup SP_r(T)$.

Proof: Let $\lambda \notin SP_a \cup SP_r$. Then

$$\lambda \in \left(SP_a \cup SP_r\right)^c$$

which implies that

$$\lambda \in SP_a^c \cap SP_r^c$$

By the definition of an approximate spectrum and since $\lambda \notin SP_a$, there exists an inverse operator which is continuous with

$$s_{\alpha}\left((T-\lambda I)^{-1}c\right) \leq K_{\alpha}s_{\alpha}(c) , \qquad \alpha \in I$$

$$c \in \text{range of } (T-\lambda I) = R(T-\lambda I) .$$

Let $b \in E$. Then, there exists a sequence

$$\{a_n\}$$
 s.t. $Ta_n - \lambda a_n = b_n \rightarrow b$.

This is possible because the range of $(T - \lambda I)$ is dense. Hence, the sequence $\{a_n\}$ with $a_n = (T - \lambda I)^{-1} b_n$ is convergent. Thus, the continuity of $(T - \lambda I)$ implies that $b = (T - \lambda I)a$. This implies that $R(T - \lambda I) = E$ and $\lambda \in SP^c$.

Theorem 2.2. Let *E* be a separated locally convex space and $T \in Q_S(E)$. Then, SP_a is non-empty if and only if for a given $\alpha \in I$ and a sequence $\{a_n\} \in E$ we have $s_{\alpha}((T - \lambda I)a_n) \to 0$.

Proof: By the definition of SP_a , for each $\alpha \in I$, provided that $\lambda \notin SP_a$, there exists a $K_{\alpha} > 0$ with

$$K_{\alpha}s_{\alpha}(a) \leq s_{\alpha}(Ta) , \quad a \in E .$$

This yields the following inequality: for $a_{\alpha} \in E_{\alpha}$,

$$K_{\alpha} \|a_{\alpha}\|_{\alpha} \leq \|T_{\alpha}a_{\alpha}\|_{\alpha}$$
.

This shows that zero does not belong to $SP_a(\overline{T}_\alpha)$ for all $\alpha \in I$. In any case, the inequality $K_\alpha s_\alpha(a) \leq s_\alpha(Ta)$ holds.

Since $\{a_n\}$ is a sequence in E, we have

$$s_{\alpha}\left((T-\lambda I)a_{n}\right) \geq K_{\alpha}s_{\alpha}(a_{n})$$

$$\implies s_{\alpha}\left((T-\lambda I)a_{n}\right) \to 0.$$

The other implication follows from the fact that

$$SP_a(T) = \bigcup_{\alpha} \left\{ SP_a(\overline{T}_{\alpha}) \right\} . \blacksquare$$

Remark 2.3. $SP_p(T) \subset \bigcup_{\alpha} \{SP_p(\overline{T}_{\alpha})\}.$

Theorem 2.4. Let E be a complete, separated, locally convex space and let bSP denote the boundary of the spectrum. Then,

$$SP_a(T) \supset bSP(T) \cap SP(T)$$
.

Proof: In the case of a normed algebra, the boundary of the spectrum of an operator is contained in the spectrum if the space is separated. In our case, it is easy to see that if $\lambda \in bSP(T) \cap SP(T)$, then for $\alpha \in I$, $\lambda \in SP(\overline{T}_{\alpha})$. Therefore, there exists an open ball B, such that $\lambda \in B$. In fact, B is a subset of $SP(\overline{T}_{\alpha})$ which implies that B is contained in SP(T) and hence λ is not a boundary point of SP(T). Thus, $\lambda \in SP_a(\overline{T}_{\alpha})$. The proof of the theorem follows from Theorem 2.2 and the fact that $\lambda \in SP_a(\overline{T}_{\alpha})$. That is, $\lambda \in SP_a(T)$.

Remark 2.5. If $T \in B_S(E)$ such that $||T||_S = |\lambda|$, where λ belongs to the spatial numerical range V(E, P, T) (see [5]), then $\lambda \in SP_a(T)$. This is a straightforward application of Theorem 2.2 and the definition of V(E, P, T). We also remark that for $T \in Q_S(E)$ (where E is separated) that

$$\bigcup_{\alpha} \left\{ SP_a(\overline{T}_{\alpha}) \right\} = SP_a(T) . \square$$

In the next theorem, we establish a bound for the norm of T^{-1} with respect to the seminorm S in terms of the distance between the origin and the closure of $V(E, S, T) = \overline{V(T)}$. If A is a subset of \mathbb{C} , then we denote the distance between the origin and A by d(A, 0).

Theorem 2.6. Let *E* be a complete, locally convex space and let $T \in Q_s(E)$. Suppose that the set $\overline{V(E, S, T)} = \overline{V(T)}$ does not contain zero. Then, $T^{-1} \in B_S(E)$ and

$$||T^{-1}||_S\left(d(\overline{V(T)},0)\right) \le 1.$$

Proof: Let $0 \notin \overline{V(T)}$. Then, by known results in [4] and [5], zero is in the spectral radius $\rho(\overline{T}_{\alpha})$ of \overline{T}_{α} for each $\alpha \in I$. Also, for $a_{\alpha} \in \overline{E}_{\alpha}$, the following inequality holds:

$$||T_{\alpha}^{-1}a_{\alpha}||_{\alpha} \leq ||T_{\alpha}^{-1}|| ||a_{\alpha}||_{\alpha}$$

In fact, by the relation between $\|\cdot\|_{\alpha}$ and seminorms s_{α} , we have for $\alpha \in I$

$$s_{\alpha}(T^{-1}) \leq \|\overline{T}_{\alpha}^{-1}\|_{\alpha}$$

Hence, by the connection between the spatial and the algebraic numerical ranges in \overline{E}_{α} (see [1]), we have zero not belonging to $\overline{V(\overline{T}_{\alpha})}$. Combining the above facts, we have

$$\begin{aligned} \|\overline{T}_{\alpha}^{-1}\|_{\alpha} \left(d\left(\overline{V(\overline{T}_{\alpha})}, 0\right) \right) &\leq 1 \leq d\left(\overline{V(\overline{T}_{\alpha})}, 0\right) \cdot \left(d\left(\bigcup_{\alpha} \overline{V(\overline{T}_{\alpha})}, 0\right) \right)^{-1} \\ &\leq \left(d\left(\overline{V(T)}, 0\right) \right)^{-1}. \end{aligned}$$

Now $s_{\alpha}(T^{-1}) \leq \|\overline{T}_{\alpha}^{-1}\|_{\alpha} \implies s_{\alpha}(T^{-1}) \cdot d(\overline{V(T)}, 0) \leq 1$, for each α , which shows that $T^{-1} \in B_S(E)$ and the required inequality holds.

Remark 2.7. If r(T) and $\rho(T)$ denote the numerical and spectral radii of T respectively, then

$$r \in \left[\frac{\|T\|_S}{2}, \, \|T\|_S\right] \,.$$

This can easily be verified by previously known results and the following relation

$$\|\overline{T}_{\alpha}\|_{\alpha} \leq 2 r(\overline{T}_{\alpha})$$
 .

Remark 2.8. For more on these inequalities and estimates, refer to [6] and [10]. \Box

ACKNOWLEDGEMENTS – The author is grateful to the referee for his input in improving the clarity of the paper.

REFERENCES

- BONSALL, F.F. and DUNCAN, J. Numerical ranges of operators on normed spaces and elements of normed algebras, *London Math. Soc. Lecture Note Series 2*, Cambridge, 1971. MR 0288583.
- [2] DOUGLAS, R.G. Banach Algebra Techniques in Operator Theory, Academic Press, 1972. MR 0361893.
- [3] GAUR, A.K. Commutativity modulo radical and spectra in L.M.C. algebras, Miss. J. of Math. Sci., 15 (2003), 1–7. MR 2003m:46076.

- [4] GILES, J.R.; JOSEPH, G.; KOEHLER, D.O. and SIMS, B. On numerical ranges of operators on locally convex spaces, J. Austral. Math. Soc., 20 (1975), 468–482. MR 0385598.
- [5] GILES, J.R. and KOHELER, D.O. On numerical ranges of elements of locally m-convex algebras, Pac. J. Math., 49 (1973), 79–91. MR0336342.
- [6] GAUR, A.K. and KOVARIK, Z.V. Norms on unitizations of Banach algebras, Proc. Amer. Math. Soc., 117 (1993), 111–113. MR 93c:46082.
- [7] HARTE, R.E. Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A, 72 (1972), 89–107. MR0326394.
- [8] HILLE, E. and PHILLIPS, R.S. Functional analysis and semigroups, Amer. Math. Soc., Reprinted Ed., 1985. MR 0423094.
- [9] JOSEPH, G.A. Boundedness and completeness in locally convex spaces and algebras, J. Austral. Math. Soc., 24 (1977), 50–63. MR 0512300.
- [10] PALMER, T.W. *Review of [6]*. MR 93c:46082.

A.K. Gaur, Department of Mathematics, Duquesne University, Pittsburgh, Pennsylvania 15282 – USA E-mail: gaur@mathcs.duq.edu