PORTUGALIAE MATHEMATICA Vol. 64 Fasc. 1 – 2007 Nova Série

SPECTRA IN BANACH AND LOCALLY CONVEX ALGEBRAS

A.K. Gaur

Recommended by A.F. Santos

This paper is dedicated to Professor J.R. Giles

Abstract: We present a counterexample to the converse of results on approximate point spectra. A norm inequality in terms of a distance function is established for a quotient bounded operator on a locally convex Hausdorff space on the set of complex numbers.

1 – Introduction

In this article, we follow the notation and terminology of [1], [3] and [7]. Following [3] and [7], we define the left and right approximate point spectra (LPS and RPS, respectively) of n-tuples $(x_1, x_2, \ldots, x_n) \in X$, where X is a Banach algebra, as:

$$
LPS(x_1,...,x_n) = \left\{ (\lambda_1,..., \lambda_n) \in \mathbb{C}^n : \inf_{\|y\|=1} \sum_{i=1}^n \|\lambda_i y - x_i y\| = 0 \right\},
$$

$$
RPS(x_1,...,x_n) = \left\{ (\lambda_1,..., \lambda_n) \in \mathbb{C}^n : \inf_{\|y\|=1} \sum_{i=1}^n \|y \lambda_i - y x_i\| = 0 \right\}.
$$

Received: November 10, 2005.

AMS Subject Classification: 46H05, 46J10, 46J99, 46K99.

Keywords: locally convex algebra; approximate spectra; point spectra; quotient bounded operator.

The left and right Harte spectra of $(x_1, \ldots, x_n) \in X$ (*LHS* and *RHS* respectively) are defined below as:

$$
LHS(x_1,...,x_n) = \left\{ (\lambda_1,...,\lambda_n) : \sum_{i=1}^n X(x_i - \lambda_i) \neq X \right\},
$$

$$
RHS(x_1,...,x_n) = \left\{ (\lambda_1,...,\lambda_n) : \sum_{i=1}^n (x_i - \lambda_i) X \neq X \right\}.
$$

We note that in [7], $\{LHS\} \cup \{RHS\} = H_s$, where H_s is Harte's spectrum.

Remark 1.1. We present a modified version of Theorem 2 in [3] in the following theorem. \square

Theorem 1.2. Let $x, y \in X$ and $LPS(x) \subseteq RPS(x)$. Then, if $x y = 1, y x = 1$ where 1 is the unit element of the algebra X.

Proof: Let $xy = 1$. Then, $(yx)(yx) = y(xy)x = y(1)x = yx$ which shows that (yx) is an idempotent. If $yx = \mu$, then we will show that $\mu = 1$. Now, for each $x_0 \in X$,

$$
||x_0|| = ||x_0 \cdot 1||
$$

= $||x_0 \cdot xy|| \le ||x_0 \cdot x|| \cdot ||y||$
 $\implies ||x_0|| - ||x_0 \cdot x|| ||y|| \le 0$

which imples that zero does not belong to $RPS(x)$ by the definition of $RPS(x)$. Since $LPS(x) \subset RPS(x)$, we have $0 \notin LPS(x)$. In this case, there is a positive ϵ with

$$
0 < \epsilon \leq \frac{\|x\,x_0\|}{\|x_0\|} \,, \qquad \forall \, x_0 \in X \,.
$$

On the other hand,

$$
1 \cdot x = (x y)(x) = x(yx) = x\mu
$$

implying that $x = x\mu$. Further simplification yields:

$$
x - x\mu = 0 \implies x(1 - \mu) = 0
$$

$$
\implies \|x(1 - \mu)\| = 0.
$$

Now, we have

$$
||x(1 - \mu)|| \ge \epsilon ||1 - \mu|| \quad \text{(since } \epsilon ||x_0|| \le ||x x_0||)
$$

$$
\implies \epsilon ||1 - \mu|| \le 0
$$

which is only possible if $\mu = 1$.

SPECTRA IN BANACH AND LOCALLY CONVEX ALGEBRAS 13

The motivations for the following example are the semigroups of generators (see Remark 12.3 in [8, p. 364]) and the algebra $\ell'(\cdot)$ [2, p. 54]. This example produces a counterexample to the converse of Theorem 1.2.

Example 1.3. Let X be the algebra ℓ' over G, where G is a semigroup of generators g_1, g_2 and g_3 . An element of X can be given by

$$
x = \sum \lambda g
$$
, $g \in G$ and $\lambda \in \mathbb{C}$.

The norm of x is given by

$$
||x|| = \sum |\lambda| ||g||_G \leq \infty.
$$

We remark that λ depends on a particular vector q in G. With this construction, X is a Banach algebra with generators g_1, g_2 and g_3 . If e is the identity of G, then we let $||e||_G = 1$. We also let

$$
||g^k||_G = (k!)^{-1} , \quad \forall g \in G .
$$

If $k_1 \geq 1$, $k_2 \geq 1$ and $k_3 \geq 1$, then

$$
||g_1^{k_1}|| = (k_1!)^{-1}
$$

$$
||g_2^{k_2}|| = (k_2!)^{-1}
$$

$$
||g_3^{k_3}|| = (k_3!)^{-1}
$$

In addition,

$$
||g_1 g_2||_G \le ||g_1||_G ||g_2||_G, \quad \text{for} \quad g_1, g_2 \in G.
$$

.

This algebra is a non-trivial algebra since there are no idempotents except for those that are trivial. This is not difficult to prove as we see below.

Proof: Let $\mu \in X$. Then, by definition,

$$
\mu = \sum_{g \in G} \lambda_g g \; .
$$

Then, $\mu^2 = \mu$ implies either $\mu = 0$ or $\mu = 1$. To see this, let $g_1 g_2 = g$. Then

$$
\lambda_g = \sum_{g_1 g_2 = g} \lambda_{g_1} \lambda_{g_2} , \quad \forall g \in G
$$

$$
\implies \lambda_g = \lambda_{g_1} \lambda_1 + \lambda_1
$$

and

$$
\lambda_{g_2} = \lambda_{g_3} = 0 \ .
$$

By mathematical induction, we have

$$
\lambda_g = \lambda_1 \lambda_g + \lambda_g \lambda_1
$$

\n
$$
\implies \lambda_g = 0, \quad \forall g \neq 1
$$

\n
$$
\implies \mu = 0 \text{ or } \mu = 1.
$$

Since $\mu y = y$, it follows that $\mu = yx = 1$, if $xy = 1$. Thus, for all $x \in X$, we have shown that whenever $xy = 1$, $yx = 1$.

Now, consider

$$
||(g_1+g_2) g_2^{k_1}|| = ||g_1 g_2^{k_1} + g_2^{k_1+1}||
$$

\n
$$
\leq ||g_1 g_2^{k_1}|| + ||g_2^{k_1+1}||.
$$

A simple calculation shows that

$$
\|(g_1+g_2) g_2^{k_1}\| \leq \|g_2^{k_1}\| \left(\frac{2}{1+k_1}\right).
$$

By the definition of LPS, we have zero belonging to $LPS(g_1+g_2)$. If

$$
x - \lambda = x_1 g_1 + x_2 g_2 + x_3 g_3
$$

then the following inequality holds

$$
2\|x(g_1+g_2)\| \ge \|x\|
$$

implying that $0 \notin RPS(g_1 + g_2)$, which shows that the converse of Theorem 1.2 is not true in general.

2 – Spectra of quotient bounded operators

Let E be a locally convex Hausdorff space over the field of complex numbers. Let $S(E)$ be the family of seminorms such that $S(E) = \{s_{\alpha}: \alpha \in I\}$. The topology on E is induced by $S(E)$. For a given S, we denote by $Q_S(E)$ the algebra of quotient bounded operators on E. That is,

$$
Q_S(E) = \left\{ T : s_\alpha(Ta) \le K_\alpha s_\alpha(a), \ a \in E, \ \alpha \in I \right\}.
$$

SPECTRA IN BANACH AND LOCALLY CONVEX ALGEBRAS 15

If $K_{\alpha} = K$, then by [5], we have $B_{S}(E)$ denoting the algebra of bounded operators on E. We say $Q_S(E)$ is a unital l.m.c. algebra where the seminorm

$$
S_0 = \left\{ s_{0_\alpha} : \, \alpha \in I \right\}
$$

and

$$
s_{0_{\alpha}}(T) = \sup \Big\{ s_{\alpha}(Ta) : s_{\alpha}(a) \le 1, a \in E \Big\} .
$$

Also, the norm of an operator $T \in B_S(E)$ is given by

$$
||T||_S = \sup \Big\{ s_{0_\alpha}(T) : \alpha \in I \Big\} .
$$

For each $\alpha \in I$, let N_{α} denote the null space of s_{α} . Then, the quotient space $\frac{E}{N_{\alpha}}$ is denoted by E_{α} . Through [5] it is known that the algebra E_{α} is a normed algebra such that for each a_{α} in E_{α} , $\|a + N_{\alpha}\|_{\alpha} = s_{\alpha}(a)$. Let \overline{E}_{α} , denote the completion of E_{α} . We note that $(Ta)_{\alpha} = T_{\alpha} a_{\alpha}$, for each $\alpha \in I$ and for each $a \in E$.

If $s^2_{\alpha} = (a, a)_{\alpha}, \ a \in E$, then the adjoint of an operator $T \in Q_S(E)$ is T^* . In other words, for each $\alpha \in I$ and $a, b \in E$, $(Ta, b)_{\alpha} = (a, T^*b)_{\alpha}$. Obviously, \overline{E}_{α} becomes a Hilbert space and $(\overline{T}_{\alpha})^*$ is the adjoint operator of \overline{T}_{α} , where \overline{T}_{α} is the continuous extension of T_{α} on \overline{E}_{α} . See [5] and [9].

By [1], the spectrum of $T \in Q_S(E)$ is denoted by $SP(T)$. That is,

$$
SP(T) = \left\{ \lambda : \ (\lambda I - T) \text{ is not invertible} \right\}
$$

.

Let $SP_{\alpha}(\overline{T}_{\alpha})$ denote the spectrum of \overline{T}_{α} in \overline{E}_{α} . Then, by [5], we have

$$
SP(T) = \bigcup_{\alpha} \{ SP_{\alpha}(\overline{T}_{\alpha}) \} .
$$

The following theorem is an easy consequence of the definitions involved. Compare this theorem with Harte's spectrum in [7].

Theorem 2.1. If SP_a and SP_r are the approximate and residual spectra of $T \in Q_S(E)$ respectively, then $SP(T) = SP_a(T) \cup SP_r(T)$.

Proof: Let $\lambda \notin SP_a \cup SP_r$. Then

$$
\lambda \in \left(SP_a \cup SP_r \right)^c
$$

which implies that

$$
\lambda \in SP_a^c \cap SP_r^c .
$$

By the definition of an approximate spectrum and since $\lambda \notin SP_a$, there exists an inverse operator which is continuous with

$$
s_{\alpha}((T - \lambda I)^{-1} c) \leq K_{\alpha} s_{\alpha}(c) , \qquad \alpha \in I
$$

$$
c \in \text{range of } (T - \lambda I) = R(T - \lambda I) .
$$

Let $b \in E$. Then, there exists a sequence

$$
\{a_n\} \quad \text{s.t.} \quad T a_n - \lambda a_n = b_n \to b \ .
$$

This is possible because the range of $(T - \lambda I)$ is dense. Hence, the sequence $\{a_n\}$ with $a_n = (T - \lambda I)^{-1} b_n$ is convergent. Thus, the continuity of $(T - \lambda I)$ implies that $b = (T - \lambda I)a$. This implies that $R(T - \lambda I) = E$ and $\lambda \in SP^c$.

Theorem 2.2. Let E be a separated locally convex space and $T \in Q_S(E)$. Then, SP_a is non-empty if and only if for a given $\alpha \in I$ and a sequence $\{a_n\} \in E$ we have $s_{\alpha}((T - \lambda I)a_n) \to 0$.

Proof: By the definition of SP_a , for each $\alpha \in I$, provided that $\lambda \notin SP_a$, there exists a $K_{\alpha} > 0$ with

$$
K_{\alpha} s_{\alpha}(a) \leq s_{\alpha}(Ta) , \quad a \in E .
$$

This yields the following inequality: for $a_{\alpha} \in E_{\alpha}$,

$$
K_{\alpha}||a_{\alpha}||_{\alpha} \leq ||T_{\alpha}a_{\alpha}||_{\alpha} .
$$

This shows that zero does not belong to $SP_a(\overline{T}_\alpha)$ for all $\alpha \in I$. In any case, the inequality $K_{\alpha} s_{\alpha}(a) \leq s_{\alpha}(Ta)$ holds.

Since $\{a_n\}$ is a sequence in E, we have

$$
s_{\alpha}((T-\lambda I)a_n) \geq K_{\alpha} s_{\alpha}(a_n)
$$

$$
\implies s_{\alpha}((T-\lambda I)a_n) \to 0.
$$

The other implication follows from the fact that

$$
SP_a(T) = \bigcup_{\alpha} \{ SP_a(\overline{T}_{\alpha}) \} . \blacksquare
$$

 \bold{Remark} 2.3. $SP_p(T) \subset \bigcup$ $\bigcup_{\alpha} \{SP_p(T_\alpha)\}.$

Theorem 2.4. Let E be a complete, separated, locally convex space and let bSP denote the boundary of the spectrum. Then,

$$
SP_a(T) \supset bSP(T) \cap SP(T) .
$$

Proof: In the case of a normed algebra, the boundary of the spectrum of an operator is contained in the spectrum if the space is separated. In our case, it is easy to see that if $\lambda \in bSP(T) \cap SP(T)$, then for $\alpha \in I$, $\lambda \in SP(\overline{T}_{\alpha})$. Therefore, there exists an open ball B, such that $\lambda \in B$. In fact, B is a subset of $SP(\overline{T}_{\alpha})$ which implies that B is contained in $SP(T)$ and hence λ is not a boundary point of $SP(T)$. Thus, $\lambda \in SP_a(\overline{T}_\alpha)$. The proof of the theorem follows from Theorem 2.2 and the fact that $\lambda \in SP_a(\overline{T}_\alpha)$. That is, $\lambda \in SP_a(T)$.

Remark 2.5. If $T \in B_S(E)$ such that $||T||_S = |\lambda|$, where λ belongs to the spatial numerical range $V(E, P, T)$ (see [5]), then $\lambda \in SP_a(T)$. This is a straightforward application of Theorem 2.2 and the definition of $V(E, P, T)$. We also remark that for $T \in Q_S(E)$ (where E is separated) that

$$
\bigcup_{\alpha} \left\{ SP_{a}(\overline{T}_{\alpha}) \right\} = SP_{a}(T) . \Box
$$

In the next theorem, we establish a bound for the norm of T^{-1} with respect to the seminorm S in terms of the distance between the origin and the closure of $V(E, S, T) = \overline{V(T)}$. If A is a subset of C, then we denote the distance between the origin and A by $d(A, 0)$.

Theorem 2.6. Let E be a complete, locally convex space and let $T \in Q_s(E)$. Suppose that the set $\overline{V(E, S, T)} = \overline{V(T)}$ does not contain zero. Then, $T^{-1} \in B_S(E)$ and

$$
||T^{-1}||_S\left(d\left(\overline{V(T)},0\right)\right)| \leq 1.
$$

Proof: Let $0 \notin \overline{V(T)}$. Then, by known results in [4] and [5], zero is in the spectral radius $\rho(\overline{T}_{\alpha})$ of \overline{T}_{α} for each $\alpha \in I$. Also, for $a_{\alpha} \in \overline{E}_{\alpha}$, the following inequality holds:

$$
\|\overline{T_{\alpha}^{-1}}a_{\alpha}\|_{\alpha} \leq \|\overline{T_{\alpha}^{-1}}\| \|a_{\alpha}\|_{\alpha} .
$$

In fact, by the relation between $\|\cdot\|_{\alpha}$ and seminorms s_{α} , we have for $\alpha \in I$

$$
s_{\alpha}(T^{-1}) \ \leq \ \|\overline{T}_{\alpha}^{-1}\|_{\alpha} \ .
$$

Hence, by the connection between the spatial and the algebraic numerical ranges in \overline{E}_{α} (see [1]), we have zero not belonging to $\overline{V(T_{\alpha})}$. Combining the above facts, we have

$$
\|\overline{T}_{\alpha}^{-1}\|_{\alpha}\left(d(\overline{V(\overline{T}_{\alpha})},0)\right) \leq 1 \leq d(\overline{V(\overline{T}_{\alpha})},0) \cdot \left(d\left(\bigcup_{\alpha} \overline{V(\overline{T}_{\alpha})},0\right)\right)^{-1} \leq \left(d(\overline{V(T)},0)\right)^{-1}.
$$

Now $s_{\alpha}(T^{-1}) \leq ||\overline{T}_{\alpha}^{-1}||_{\alpha} \implies s_{\alpha}(T^{-1}) \cdot d(\overline{V(T)}, 0) \leq 1$, for each α , which shows that $T^{-1} \in B_S(E)$ and the required inequality holds.

Remark 2.7. If $r(T)$ and $\rho(T)$ denote the numerical and spectral radii of T respectively, then

$$
r \in \left[\frac{\|T\|_S}{2}, \|T\|_S\right].
$$

This can easily be verified by previously known results and the following relation

$$
\|\overline{T}_{\alpha}\|_{\alpha} \leq 2 r(\overline{T}_{\alpha}) \cdot \Box
$$

Remark 2.8. For more on these inequalities and estimates, refer to [6] and $[10]$. \Box

ACKNOWLEDGEMENTS – The author is grateful to the referee for his input in improving the clarity of the paper.

REFERENCES

- [1] Bonsall, F.F. and Duncan, J. Numerical ranges of operators on normed spaces and elements of normed algebras, *London Math. Soc. Lecture Note Series 2*, Cambridge, 1971. MR0288583.
- [2] Douglas, R.G. Banach Algebra Techniques in Operator Theory, Academic Press, 1972. MR 0361893.
- [3] Gaur, A.K. Commutativity modulo radical and spectra in L.M.C. algebras, Miss. J. of Math. Sci., 15 (2003), 1-7. MR 2003m:46076.

- [4] Giles, J.R.; Joseph, G.; Koehler, D.O. and Sims, B. On numerical ranges of operators on locally convex spaces, J. Austral. Math. Soc., 20 (1975), 468–482. MR0385598.
- [5] Giles, J.R. and Koheler, D.O. On numerical ranges of elements of locally m-convex algebras, Pac. J. Math., 49 (1973), 79–91. MR0336342.
- [6] Gaur, A.K. and Kovarik, Z.V. Norms on unitizations of Banach algebras, Proc. Amer. Math. Soc., 117 (1993), 111-113. MR 93c:46082.
- [7] Harte, R.E. Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A, 72 (1972), 89–107. MR0326394.
- [8] Hille, E. and Phillips, R.S. Functional analysis and semigroups, Amer. Math. Soc., Reprinted Ed., 1985. MR0423094.
- [9] Joseph, G.A. Boundedness and completeness in locally convex spaces and algebras, J. Austral. Math. Soc., 24 (1977), 50–63. MR0512300.
- [10] PALMER, T.W. Review of 6 . MR93c:46082.

A.K. Gaur, Department of Mathematics, Duquesne University, Pittsburgh, Pennsylvania 15282 – USA E-mail: gaur@mathcs.duq.edu