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Abstract: We present a counterexample to the converse of results on approximate

point spectra. A norm inequality in terms of a distance function is established for a

quotient bounded operator on a locally convex Hausdorff space on the set of complex

numbers.

1 – Introduction

In this article, we follow the notation and terminology of [1], [3] and [7].

Following [3] and [7], we define the left and right approximate point spectra

(LPS and RPS, respectively) of n-tuples (x1, x2, . . . , xn) ∈ X, where X is a

Banach algebra, as:

LPS(x1, . . . , xn) =

{

(λ1, . . . , λn) ∈ C
n : inf

‖y‖=1

n
∑

i=1

‖λiy − xiy‖ = 0

}

,

RPS(x1, . . . , xn) =

{

(λ1, . . . , λn) ∈ C
n : inf

‖y‖=1

n
∑

i=1

‖yλi − yxi‖ = 0

}

.
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The left and right Harte spectra of (x1, . . . , xn)∈X (LHS and RHS respectively)

are defined below as:

LHS(x1, . . . , xn) =

{

(λ1, . . . , λn) :
n
∑

i=1

X(xi−λi) 6= X

}

,

RHS(x1, . . . , xn) =

{

(λ1, . . . , λn) :
n
∑

i=1

(xi−λi)X 6= X

}

.

We note that in [7], {LHS} ∪ {RHS} = Hs, where Hs is Harte’s spectrum.

Remark 1.1. We present a modified version of Theorem 2 in [3] in the

following theorem.

Theorem 1.2. Let x, y ∈X and LPS(x)⊆RPS(x). Then, if x y = 1, yx = 1

where 1 is the unit element of the algebra X.

Proof: Let x y = 1. Then, (yx) (yx) = y (xy)x = y(1)x = yx which shows

that (yx) is an idempotent. If yx = µ, then we will show that µ = 1. Now, for

each x0 ∈X,
‖x0‖ = ‖x0 ·1‖

= ‖x0x y‖ ≤ ‖x0x‖ · ‖y‖

=⇒ ‖x0‖ − ‖x0x‖ ‖y‖ ≤ 0

which imples that zero does not belong to RPS(x) by the definition of RPS(x).

Since LPS(x)⊂RPS(x), we have 0 6∈LPS(x). In this case, there is a positive ǫ

with

0 < ǫ ≤
‖x x0‖

‖x0‖
, ∀x0 ∈X .

On the other hand,

1 · x = (x y) (x) = x(yx) = xµ

implying that x = xµ. Further simplification yields:

x − xµ = 0 =⇒ x(1−µ) = 0

=⇒ ‖x(1−µ)‖ = 0 .

Now, we have

‖x(1−µ)‖ ≥ ǫ ‖1−µ‖ (since ǫ ‖x0‖ ≤ ‖x x0‖)

=⇒ ǫ ‖1−µ‖ ≤ 0

which is only possible if µ = 1.
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The motivations for the following example are the semigroups of generators

(see Remark 12.3 in [8, p. 364]) and the algebra ℓ ′(·) [2, p. 54]. This example

produces a counterexample to the converse of Theorem 1.2.

Example 1.3. Let X be the algebra ℓ ′ over G, where G is a semigroup of

generators g1, g2 and g3. An element of X can be given by

x =
∑

λ g , g ∈ G and λ ∈ C .

The norm of x is given by

‖x‖ =
∑

|λ| ‖g‖G ≤ ∞ .

We remark that λ depends on a particular vector g in G. With this construction,

X is a Banach algebra with generators g1, g2 and g3. If e is the identity of G,

then we let ‖e‖G = 1. We also let

‖gk‖G = (k!)−1 , ∀ g ∈G .

If k1 ≥ 1, k2 ≥ 1 and k3 ≥ 1, then

‖gk1

1 ‖ = (k1!)
−1

‖gk2

2 ‖ = (k2!)
−1

‖gk3

3 ‖ = (k3!)
−1 .

In addition,

‖g1g2‖G ≤ ‖g1‖G ‖g2‖G , for g1, g2 ∈ G .

This algebra is a non-trivial algebra since there are no idempotents except for

those that are trivial. This is not difficult to prove as we see below.

Proof: Let µ ∈ X. Then, by definition,

µ =
∑

g∈G

λg g .

Then, µ2 = µ implies either µ = 0 or µ = 1. To see this, let g1g2 = g. Then

λg =
∑

g1g2=g

λg1
λg2

, ∀ g ∈G

=⇒ λg = λg1
λ1 + λ1

and

λg2
= λg3

= 0 .
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By mathematical induction, we have

λg = λ1λg + λg λ1

=⇒ λg = 0 , ∀ g 6= 1

=⇒ µ = 0 or µ = 1 .

Since µy = y, it follows that µ = yx = 1, if xy = 1. Thus, for all x∈X, we have

shown that whenever xy = 1, yx = 1.

Now, consider

∥

∥(g1 + g2) gk1

2

∥

∥ =
∥

∥g1gk1

2 + gk1+1
2

∥

∥

≤ ‖g1gk1

2 ‖ + ‖gk1+1
2 ‖ .

A simple calculation shows that

∥

∥(g1 + g2) gk1

2

∥

∥ ≤ ‖gk1

2 ‖

(

2

1+k1

)

.

By the definition of LPS, we have zero belonging to LPS(g1 + g2). If

x − λ = x1g1 + x2 g2 + x3 g3

then the following inequality holds

2 ‖x(g1 + g2)‖ ≥ ‖x‖

implying that 0 6∈ RPS(g1 + g2), which shows that the converse of Theorem 1.2

is not true in general.

2 – Spectra of quotient bounded operators

Let E be a locally convex Hausdorff space over the field of complex numbers.

Let S(E) be the family of seminorms such that S(E) = {sα : α ∈ I}. The topol-

ogy on E is induced by S(E). For a given S, we denote by QS(E) the algebra of

quotient bounded operators on E. That is,

QS(E) =
{

T : sα(Ta) ≤ Kαsα(a), a∈E, α∈ I
}

.
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If Kα = K, then by [5], we have BS(E) denoting the algebra of bounded operators

on E. We say QS(E) is a unital l.m.c. algebra where the seminorm

S0 =
{

s0α
: α∈ I

}

and

s0α
(T ) = sup

{

sα(Ta) : sα(a) ≤ 1, a∈E
}

.

Also, the norm of an operator T ∈ BS(E) is given by

‖T‖S = sup
{

s0α
(T ) : α∈ I

}

.

For each α∈ I, let Nα denote the null space of sα. Then, the quotient space E
Nα

is denoted by Eα. Through [5] it is known that the algebra Eα is a normed algebra

such that for each aα in Eα, ‖a +Nα‖α = sα(a). Let Eα, denote the completion

of Eα. We note that (Ta)α = Tα aα, for each α ∈ I and for each a ∈ E.

If s2
α = (a, a)α, a∈E, then the adjoint of an operator T ∈ QS(E) is T ∗.

In other words, for each α ∈ I and a, b ∈ E, (Ta, b)α = (a, T ∗b)α. Obviously,

Eα becomes a Hilbert space and (Tα)∗ is the adjoint operator of Tα, where Tα

is the continuous extension of Tα on Eα. See [5] and [9].

By [1], the spectrum of T ∈ QS(E) is denoted by SP (T ). That is,

SP (T ) =
{

λ : (λI − T ) is not invertible
}

.

Let SPα(Tα) denote the spectrum of Tα in Eα. Then, by [5], we have

SP (T ) =
⋃

α

{

SPα(Tα)
}

.

The following theorem is an easy consequence of the definitions involved.

Compare this theorem with Harte’s spectrum in [7].

Theorem 2.1. If SPa and SPr are the approximate and residual spectra

of T ∈QS(E) respectively, then SP (T ) = SPa(T ) ∪ SPr(T ).

Proof: Let λ 6∈ SPa ∪ SPr. Then

λ ∈
(

SPa ∪ SPr

)c

which implies that

λ ∈ SP c
a ∩ SP c

r .
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By the definition of an approximate spectrum and since λ 6∈ SPa, there exists an

inverse operator which is continuous with

sα

(

(T −λI)−1 c
)

≤ Kαsα(c) , α ∈ I

c ∈ range of (T −λI) = R(T −λI) .

Let b ∈ E. Then, there exists a sequence

{an} s.t. Tan− λan = bn → b .

This is possible because the range of (T−λI) is dense. Hence, the sequence {an}

with an = (T −λI)−1 bn is convergent. Thus, the continuity of (T −λI) implies

that b = (T −λI)a. This implies that R(T −λI) = E and λ ∈ SP c.

Theorem 2.2. Let E be a separated locally convex space and T ∈ QS(E).

Then, SPa is non-empty if and only if for a given α ∈ I and a sequence {an} ∈ E

we have sα((T −λI)an) → 0.

Proof: By the definition of SPa, for each α ∈ I, provided that λ 6∈ SPa,

there exists a Kα > 0 with

Kαsα(a) ≤ sα(Ta) , a ∈ E .

This yields the following inequality: for aα ∈ Eα,

Kα‖aα‖α ≤ ‖Tαaα‖α .

This shows that zero does not belong to SPa(Tα) for all α ∈ I. In any case,

the inequality Kαsα(a) ≤ sα(Ta) holds.

Since {an} is a sequence in E, we have

sα

(

(T −λI)an

)

≥ Kαsα(an)

=⇒ sα

(

(T −λI)an

)

→ 0 .

The other implication follows from the fact that

SPa(T ) =
⋃

α

{

SPa(Tα)
}

.

Remark 2.3. SPp(T ) ⊂
⋃

α

{SPp(Tα)}.
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Theorem 2.4. Let E be a complete, separated, locally convex space and let

bSP denote the boundary of the spectrum. Then,

SPa(T ) ⊃ bSP (T ) ∩ SP (T ) .

Proof: In the case of a normed algebra, the boundary of the spectrum of

an operator is contained in the spectrum if the space is separated. In our case,

it is easy to see that if λ ∈ bSP (T ) ∩ SP (T ), then for α ∈ I, λ ∈ SP (Tα).

Therefore, there exists an open ball B, such that λ ∈ B. In fact, B is a subset of

SP (Tα) which implies that B is contained in SP (T ) and hence λ is not a bound-

ary point of SP (T ). Thus, λ ∈ SPa(Tα). The proof of the theorem follows from

Theorem 2.2 and the fact that λ ∈ SPa(Tα). That is, λ ∈ SPa(T ).

Remark 2.5. If T ∈ BS(E) such that ‖T‖S = |λ|, where λ belongs to the

spatial numerical range V (E, P, T ) (see [5]), then λ ∈ SPa(T ). This is a straight-

forward application of Theorem 2.2 and the definition of V (E, P, T ). We also

remark that for T ∈ QS(E) (where E is separated) that

⋃

α

{

SPa(Tα)
}

= SPa(T ) .

In the next theorem, we establish a bound for the norm of T−1 with respect

to the seminorm S in terms of the distance between the origin and the closure of

V (E, S, T ) = V (T ). If A is a subset of C, then we denote the distance between

the origin and A by d(A, 0).

Theorem 2.6. Let E be a complete, locally convex space and let T ∈Qs(E).

Suppose that the set V (E, S, T ) = V (T ) does not contain zero. Then, T−1∈BS(E)

and

‖T−1‖S

(

d
(

V (T ), 0
)

)

≤ 1 .

Proof: Let 0 6∈ V (T ). Then, by known results in [4] and [5], zero is in

the spectral radius ρ(Tα) of Tα for each α ∈ I. Also, for aα ∈ Eα, the following

inequality holds:

‖T−1
α aα‖α ≤ ‖T−1

α ‖ ‖aα‖α .

In fact, by the relation between ‖ · ‖α and seminorms sα, we have for α ∈ I

sα(T−1) ≤ ‖T
−1

α ‖α .
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Hence, by the connection between the spatial and the algebraic numerical ranges

in Eα (see [1]), we have zero not belonging to V (Tα). Combining the above facts,

we have

‖T
−1

α ‖α

(

d
(

V (Tα), 0
)

)

≤ 1 ≤ d
(

V (Tα), 0
)

·

(

d

(

⋃

α

V (Tα), 0

)

)−1

≤
(

d
(

V (T ), 0
)

)−1

.

Now sα(T−1) ≤ ‖T
−1

α ‖α =⇒ sα(T−1) · d
(

V (T ), 0
)

≤ 1, for each α, which shows

that T−1∈BS(E) and the required inequality holds.

Remark 2.7. If r(T ) and ρ(T ) denote the numerical and spectral radii of T

respectively, then

r ∈

[

‖T‖S

2
, ‖T‖S

]

.

This can easily be verified by previously known results and the following relation

‖Tα‖α ≤ 2 r(Tα) .

Remark 2.8. For more on these inequalities and estimates, refer to [6] and

[10].
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