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Abstract: We present a counterexample to the converse of results on approximate
point spectra. A norm inequality in terms of a distance function is established for a
quotient bounded operator on a locally convex Hausdorff space on the set of complex

numbers.

1 — Introduction

In this article, we follow the notation and terminology of [1], [3] and [7].
Following [3] and [7], we define the left and right approximate point spectra
(LPS and RPS, respectively) of n-tuples (z1,zo,...,x,) € X, where X is a
Banach algebra, as:

LPS(‘Tla"'axn) = {(}\17...,)\,”)6@”3 |11’lf ZH)‘Zy_xzyH:O}a

=1
=1 &

RPS(x1,...,3,) = {(Al,...,)\n) eC: inf Y |y —ymil = o} :

=1
lyll=1 &
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The left and right Harte spectra of (z1,...,z,) € X (LHS and RH S respectively)
are defined below as:

LHS(x1,...,2,) = {()\1,...,)\”): ZX(x,;—)\Z-);AX} ,
=1

RHS(.%’l,...,l'n) = {(Al,...,)\n): zn:(xl—)\l)X#X} .

=1

We note that in [7], {LHS} U{RHS} = H,, where H, is Harte’s spectrum.

Remark 1.1. We present a modified version of Theorem 2 in [3] in the
following theorem. o

Theorem 1.2. Let z,y € X and LPS(x) C RPS(x). Then, if xy =1, yx =1
where 1 is the unit element of the algebra X.

Proof: Let xy =1. Then, (yz)(yx) =y(xy)z = y(1)z = yx which shows
that (yx) is an idempotent. If yz = p, then we will show that u=1. Now, for
each zg € X,

[zoll = [lzo- 1|
= [lzozyll < llzoz| - llyll
= lzoll = ozl lyll < 0

which imples that zero does not belong to RPS(x) by the definition of RP.S(zx).
Since LPS(z) C RPS(x), we have 0 ¢ LPS(x). In this case, there is a positive €
with

[z o

0<e<
ol

, Vrge X .
On the other hand,

Lz = (zy)(z) = z(yz) = zp
implying that © = xu. Further simplification yields:

r—zxp =0 = zx(l—p) =0
— Ja(l-p)l = 0.
Now, we have
le(M=p)l = ell—pll  (since €|lzo]l < [lzzol])
— efi—pl <0

which is only possible if g =1. u
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The motivations for the following example are the semigroups of generators
(see Remark 12.3 in [8, p.364]) and the algebra ¢/(-) [2, p.54]. This example
produces a counterexample to the converse of Theorem 1.2.

Example 1.3. Let X be the algebra ¢’ over G, where G is a semigroup of
generators g1, g2 and g3. An element of X can be given by
x:Z)\g, geG and A eC.
The norm of x is given by

el = S Alllglle < oo

We remark that A depends on a particular vector g in G. With this construction,
X is a Banach algebra with generators g1, go and g3. If e is the identity of G,
then we let ||e]|¢ = 1. We also let

lg"lc = (K",  Vged.
If k1> 1, ks > 1 and k3 > 1, then

gt = (k)™
g8 = (k!
lghs || = (k)" .

In addition,
lg192llc < llgille llg2llG » for g1,90€G .

This algebra is a non-trivial algebra since there are no idempotents except for
those that are trivial. This is not difficult to prove as we see below. o

Proof: Let y € X. Then, by definition,
= Z Ag9 -
geG

Then, p? =y implies either p1 =0 or g = 1. To see this, let g1 go = g. Then

Ag= > Aglg, VgeG
9192=g
— Ay =AM+ A

and
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By mathematical induction, we have
)\g = )\1)\9 + )\g>\1
— N=0, Vg#l1
— u=0 or u=1.

Since py = vy, it follows that p = yax = 1, if zy = 1. Thus, for all x € X, we have
shown that whenever xy =1, yr=1. n

Now, consider

[o1-+92) 95°]| = lons' + 05|

k k1+1
< llgrga" I+ llga" Il -

A simple calculation shows that

2
o+ am) o) < okl (1) -

By the definition of LPS, we have zero belonging to LPS(g1 + g2). If
T—\N=x191+ 2292+ 2393

then the following inequality holds

2]z (g1+ g2)ll = ll=|

implying that 0 ¢ RPS(g1 + g2), which shows that the converse of Theorem 1.2
is not true in general.

2 — Spectra of quotient bounded operators

Let E be a locally convex Hausdorff space over the field of complex numbers.
Let S(E) be the family of seminorms such that S(E) = {s,: a € I}. The topol-
ogy on E is induced by S(E). For a given S, we denote by Qg(E) the algebra of
quotient bounded operators on E. That is,

Qs(E) = {T: sa(Ta) < Kq5s4(a), a€ E, ae[} .
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If K,= K, then by [5], we have Bg(FE) denoting the algebra of bounded operators
on E. We say Qg(F) is a unital l.m.c. algebra where the seminorm

So = {soa: aGI}

and
so,(T) = Sup{sa(Ta): Sq(a) <1, aEE} )

Also, the norm of an operator T € Bg(F) is given by

IT|s = Sup{soa(T): aef} .

For each a € I, let N, denote the null space of s,. Then, the quotient space J\%
is denoted by E,. Through [5] it is known that the algebra F,, is a normed algebra
such that for each a, in E,, ||a + Nylla = sala). Let E,, denote the completion
of E,. We note that (T'a), = Ty aq, for each o € I and for each a € E.

If s2=(a,a)s, a€E, then the adjoint of an operator T € Qgs(FE) is T*.
In other words, for each o € I and a,b € E, (Ta,b), = (a,T*b)q. Obviously,
* is the adjoint operator of T,, where T,
is the continuous extension of T, on E,. See [5] and [9].

By [1], the spectrum of T € Qg(F) is denoted by SP(T'). That is,

E, becomes a Hilbert space and (T,,)

SP(T) = {)\: (M —T) is not invertible} .
Let SP,(T,) denote the spectrum of T, in E,. Then, by [5], we have

SP(T) = | J{SP.(T.)} -

The following theorem is an easy consequence of the definitions involved.
Compare this theorem with Harte’s spectrum in [7].

Theorem 2.1. If SP, and SP, are the approximate and residual spectra
of T € Qs(FE) respectively, then SP(T) = SP,(T) U SP.(T).

Proof: Let A & SP, U SP,.. Then
A e (SPaUSPT)C

which implies that
A€ SP;NSPS.
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By the definition of an approximate spectrum and since A ¢ SP,, there exists an
inverse operator which is continuous with

sa(T=AD)"1e) < Kusalc), ac€l
c €erange of (T'—AI)=R(T—-M\I) .

Let b € E. Then, there exists a sequence
{an} st. Tap—Aa, =b, — b.

This is possible because the range of (T'— A1) is dense. Hence, the sequence {a,}
with a, = (T — AI)~'b, is convergent. Thus, the continuity of (T'— A1) implies
that b = (T'— AI)a. This implies that R(T'—AI) = E and A € SP°. n

Theorem 2.2. Let E be a separated locally convex space and T € Qg(FE).
Then, SP, is non-empty if and only if for a given « € I and a sequence {a,} € E
we have so((T'—\I)a,) — 0.

Proof: By the definition of SP,, for each o € I, provided that \ & SP,,
there exists a K, > 0 with
Kysa(a) < sq(Ta), ackE.
This yields the following inequality: for a, € E,,
Kallaalla < [|Taaalla -

This shows that zero does not belong to SP,(T,) for all « € I. In any case,
the inequality K, sq(a) < sq(Ta) holds.
Since {a,} is a sequence in E, we have

Sa ((T—)\I)an) > Kasalan)
— so((T—AD)ay,) — 0.

The other implication follows from the fact that

SP(T) = | J{SPu(Ts)} -

«

Remark 2.3. SP,(T) c U{SP,(T,)}. o
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Theorem 2.4. Let E be a complete, separated, locally convex space and let
bSP denote the boundary of the spectrum. Then,

SP,(T) > bSP(T) N SP(T) .

Proof: In the case of a normed algebra, the boundary of the spectrum of
an operator is contained in the spectrum if the space is separated. In our case,
it is easy to see that if A\ € bSP(T)N SP(T), then for a € I, X € SP(T,).
Therefore, there exists an open ball B, such that A € B. In fact, B is a subset of

SP(T,) which implies that B is contained in SP(T') and hence A is not a bound-

ary point of SP(T). Thus, A\ € SP,(T,). The proof of the theorem follows from

Theorem 2.2 and the fact that A € SP,(T,,). That is, A € SP,(T). u

Remark 2.5. If T € Bg(F) such that ||T'||s = |\|, where X belongs to the
spatial numerical range V(E, P,T) (see [5]), then A € SP,(T"). This is a straight-
forward application of Theorem 2.2 and the definition of V(E, P,T). We also
remark that for T' € Qg(FE) (where F is separated) that

J{SPu(Ta)} = SPu(T) .0

In the next theorem, we establish a bound for the norm of T~! with respect
to the seminorm S in terms of the distance between the origin and the closure of
V(E,S,T) = V(T). If Ais a subset of C, then we denote the distance between
the origin and A by d(A4,0).

Theorem 2.6. Let E be a complete, locally convex space and let T € Qs(E).
Suppose that the set V(E, S, T) = V(T) does not contain zero. Then, T~' € Bg(E)
and

|75 (d(V(T),0)) < 1.
Proof: Let 0 ¢ V(T). Then, by known results in [4] and [5], zero is in
)

the spectral radius p(T,) of T, for each a € I. Also, for a, € E,, the following
inequality holds:

176" aalla < 1727 llaalla -

In fact, by the relation between || - ||, and seminorms s,, we have for ac € I

— 71
sa(T7) < 1T lla -
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Hence, by the connection between the spatial and the algebraic numerical ranges

in B, (see [1]), we have zero not belonging to V(T,). Combining the above facts,

- (1))

we have

175 (a(VC
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Now sa(T~Y) < ||Th 'l = sa(T~Y) - d(V(T),0) < 1, for each a, which shows
that T—1 € Bg(FE) and the required inequality holds. =

Remark 2.7. If r(T) and p(T') denote the numerical and spectral radii of T

respectively, then
Tls
re |55 ms]

This can easily be verified by previously known results and the following relation

|Tollo < 27(Ty) -0

Remark 2.8. For more on these inequalities and estimates, refer to [6] and
[10]. o
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