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Abstract: A perfect polynomial A ∈ F4[x] is a monic polynomial that equals the

sum of its monic divisors. There are no perfect polynomials A ∈ F4[x] with exactly

3 prime divisors, i.e., of the form A = P a QbRc where P,Q,R ∈ F4[x] are irreducible

and a, b, c are positive integers. We characterize the perfect polynomials A with 4 prime

divisors such that one of them has degree 1. Assume that A has an arbitrary number of

distinct prime divisors, we discuss some simple congruence obstructions that arise and

we propose three conjectures.

1 – Introduction

As usual, we denote by Fq the finite field with q elements. When q = 4,

we write F4 = {0, 1, α, α+1}, where α2 = α+1.

For a monic polynomial A ∈ Fq[x], let σ(A) denote the sum of all monic

divisors of A, i.e.,

σ(A) =
∑

D monic, D|A

D .

If σ(A) = A, then we call A a perfect polynomial (if necessary we add the words:

“over Fq”). Furthermore, we denote by ω(A) the number of distinct prime (irredu-

cible) factors of A and by d1 ≤ · · · ≤ dω(A) the degrees of the prime factors of A.

In [6] we obtained for q = 4, the complete list of all perfect polynomials with

either ω(A) ≤ 2 or with ω(A) = 3 and d1 = 1, d2 = 1, d3 > 1; or with ω(A) = 4
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and d1 = d2 = d3 = d4 = 1. We also disproved a conjecture of Beard et al.

[1, p. 287] by proving [6, Corollary 3.11] that there are perfect polynomials over Fq

without linear factors, namely (x4 + x + 1)2
n−1 for any integer n > 0. It may

be deduced easily from the proof of [11, Theorem 1.10.8] that for all integers

k ≥ 0 the polynomials Pk = x3k

+ α and Qk = Pk +1 are irreducible over F4

so that we have an infinity of perfect polynomials A over F4 with ω(A) = 2,

namely A = (Pk Qk)
2n−1 = (x2·3k

+ x3k

+ 1)2
n−1 for k = 1, ...,∞ and any positive

integer n > 0.

Other counter-examples, one over F11 and two over F17 are in [2, Section 4].

In this paper we prove the nonexistence of perfect polynomials A with 3 prime

factors, (see Theorem 3.1), generalizing our earlier work. Moreover for the next

“target case”, i.e., the case when A has 4 prime factors, we do here a first step

in order to resolve it, by characterizing the perfect polynomials A with 4 prime

factors (see Theorem 3.2) with at least one of these factors being linear.

Observe that Sylvester in 1888, [13, 5, Vol. 1, p. 27] proved the nonexistence

of odd perfect numbers with 4 prime factors. Later, Dickson [4] showed that

there are only finitely many odd perfect numbers with a given number of prime

factors.

We also provide some general (i.e., we assume only ω(A) ≥ 3 instead of

ω(A) < 5 as in our results above) congruence results that imply the nonexis-

tence of perfect polynomials A in the special case where all prime divisors of A

are quadratic polynomials (see Theorem 4.4).

Finally, we propose some general conjectures (see Section 5).

2 – Some useful Lemmata

We denote, as usual, by N (resp. N
∗) the set of nonnegative (resp. positive)

integers. In this section, we collect some results for the next sections.

The following three Lemmata were proved for polynomials in F2[x] and F4[x]

in previous work. However, their proofs work over any perfect field of charac-

teristic 2. The perfectness is required since the proofs use differentiation. More

precisely, it is necessary for the derivative P ′ of an irreducible polynomial P

to be nonzero.

Lemma 2.1 ([3, Lemma 5], [6, Lemma 2.1]). Let P, Q ∈ F[x], where F is

a perfect field of characteristic 2, and let n, m ∈ N such that P is irreducible

and σ(P 2n) = 1 + · · · + P 2n = Qm. Then m ∈ {0, 1}.
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Lemma 2.2 ([3, Lemma 6]). Let P, Q ∈ F[x] where F is a perfect field of

characteristic 2, and let n, m ∈ N such that P is irreducible, m > 1 and σ(P 2n) =

1 + · · · + P 2n = QmA. Then deg(P ) > 2 deg(Q).

Lemma 2.3 ([6, Lemma 2.3]). The following properties hold for polynomi-

als in F[x] where F is a perfect field of characteristic 2. For h ∈ N, consider

σ(xh) = 1 + x + · · · + xh. Then:

i) σ(xh) = (1+ x)h if and only if h = 2n−1 for some n ∈ N.

ii) σ(xh) = σ
(

(x + 1)h
)

if and only if h = 2n−2 for some n ∈ N.

iii) σ(x2h) = (1 + x + x2)h if and only if h ∈ {0, 1}.

iv) σ(xh) = (1 + x + x2) (x + 1)h−2 if and only if h = 2.

v) Assume that F contains F4. Then

1 + (x + α) + · · · + (x + α)h = x(x + 1) (x + α + 1)h−2

if and only if h = 2.

vi) Let P ∈ F[x] be a nonconstant polynomial. Then:

1 + P + · · · + P h = (1+P )h if and only if h = 2n−1 for some n ∈ N.

Lemma 2.4 ([6, Lemmata 2.4, 2.5], [9, Theorem 2.47]). Let p be an odd

prime number and n ∈ N
∗. If d is the smallest positive integer such that

(2n)d = 1 (mod p), and if µ is the number of irreducible distinct factors of

degree d, in F2n [x], of 1 + · · · + xp−1, then

µ =
p − 1

d
.

It follows that for all integers n ≥ 2, the polynomial

xn + · · · + x + 1

is reducible over F4.

New lemmata follow:

First of all, we generalize a result of Beard et al.:

Lemma 2.5 ([1, Theorem 7], see also [7]). Let q be a power of a prime p.

Let A ∈ Fq[x] be a monic polynomial. Let {p1, ..., pr} be the list of all monic

irreducible polynomials in Fq[x] of minimal degree that divide A.

If A is perfect over Fq then r ≡ 0 (mod p).
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Proof: By definition one has

A = σ(A) ⇐⇒
∑

d |A, d6=A, d monic

d = 0 .

In particular the leading coefficient of

A

p1
+ · · · +

A

pr

equals 0, i.e., r is divisible by p, thereby finishing the proof of the lemma.

Lemma 2.6.

i) If 1+ · · ·+ xh = PQ, with h even, P, Q ∈ F4[x] irreducible, then p = h+1

is prime, deg(P ) = deg(Q) and P (0) = Q(0) = 1 for h ≥ 4.

ii) If 1 + · · · + xh = 1 + · · · + (1 + x)h = PQ, with h even and P, Q ∈ F4[x]

irreducible, then h = 6 and P = x3 + x2 + 1, Q = x3 + x + 1.

iii) If 1 + · · · + xh =
(

xa(x+1)b +1
) (

xc(x+1)d +1
)

, with h even and

P = xa(x+1)b +1, Q = xc(x+1)d +1 irreducible in F4[x], then h = 6,

a = d = 2, b = c = 1, P = x3 +x2 +1, Q = x3 +x+1.

Proof: i): if h+1 = ab, with a, b ≥ 2 then:

1 + · · · + xh =
1 + xh+1

1 + x
=

(1 + xa)

1 + x

(

1 + · · · + (xa)b−1
)

has at least 3 factors since 1 + · · · + (xa)b−1 is reducible.

Thus p = h+1 is prime and deg(P ) = deg(Q) =
h

2
by Lemma 2.4.

Assume that h ≥ 4. Let F4 be an algebraic closure of F4. Let g be a generator

of the cyclic group
{

z ∈ F4 | zp +1 = 0
}

.

We have:

P Q = 1 + · · · + xh = (x+g) (x+g2) · · · (x+gp−1) .

So,

P = (x+gt1) (x+gt2) · · · (x+gtm) ,

where m =
p−1

2
, and t1, ..., tm ∈ {1, ..., p−1}.

Thus, P (0) = gt1+ ···+tm ∈ F4−{0}. So, 1 = P (0)3 = g3(t1+ ···+tm).
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We deduce that p divides 3(t1+ · · ·+ tm) so that it divides t1+ · · ·+ tm since

p > 3. Thus, P (0) = 1 and Q(0) = 1.

ii): We have, by Lemma 2.3, h = 2m−2 for some m, and by i), p = h + 1 =

2m−1 is a prime number.

By Lemma 2.4, 1+ · · · + xh = P Q implies that 4 has order
p−1

2
modulo p.

But, 4m−1 = (2m−1) (2m +1) = 0 modulo p and m ≤
p−1

2
= 2m−1−1.

So we must have: m = 2m−1−1, i.e., m = 3.

iii): First of all, observe that we have: a + b = c + d =
h

2
.

• If a = 0 then b = 1 by irreducibility. So x divides 1+ · · · + xh, which

is impossible.

• Idem if c = 0.

• If b = 0 then a = 1 and x + 1 divides 1 + · · ·+ xh, which is impossible

since h is even.

• Idem if d = 0.

So, a, b, c, d ≥ 1.

If either (a, c ≥ 2) or (a = c = 1), then
(

xa(x+1)b +1
) (

xc(x+1)d +1
)

does

not contain the monomial x. So a = 1, c ≥ 2 or c = 1, a ≥ 2.

Suppose that a = 1 so that d = 1 and c = b =
h

2
− 1 ≥ 2.

Suppose that h > 6. Then

1 + · · · + xh =
(

x(x+1)
h
2
−1 +1

) (

x
h
2
−1(x+1)+1

)

implies:

x + · · · + xh = x(x+1)
(

x
h
2
−1(x+1)

h
2
−1 + (x+1)

h
2
−2 + x

h
2
−2

)

,

x(x+1) (1+ · · · + x
h
2
−1)2 = x(x+1)

(

x
h
2
−1(x+1)

h
2
−1 + (x+1)

h
2
−2 + x

h
2
−2

)

,

1 + x2 + x4 + · · · + xh−2 = x
h
2
−1(x+1)

h
2
−1 + (x+1)

h
2
−2 + x

h
2
−2 .

• If
h

2
−2 is odd, then

h

2
−2 ≥ 3, so that the right hand member of the

last equality above contains the monomial x, which is impossible.

• If
h

2
−2 = 2u is even, then x

h
2
−1(x+1)

h
2
−1 + (x+1)

h
2
−2 + x

h
2
−2 does

not contain the monomial x
h
2
−2 = x2u. This is impossible.

So
h

2
−2 = 1, and we are done.
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We characterize now some special perfects:

Lemma 2.7.

i) For all integers l, t ≥ 0, the polynomial x6 (1+x)6 (x3+x2+1)l (x3+x+1)t

is not perfect over F4.

ii) x6 (1 + x)k (x3 + x2 + 1)l (x3 + x + 1)t, with k, l, t odd, is perfect over F4

if and only if k = 3, l = t = 1.

Proof: i): Suppose that x6 (1+x)6 (x3+x2+1)l (x3+x+1)t is perfect over F4

for some nonnegative integers l, t.

Putting P = x3 +x2 +1, Q = x3 +x+1, we have:

1 + · · · + x6 = 1 + · · · + (x+1)6 = P Q ,

1 + · · · + P l = xu (x+1)v Qt−2 ,

1 + · · · + Qt = x6−u (x+1)6−v P l−2 .

– If l is even, then u = v = 0 since P (0) = P (1) = 1.

Thus, 1 + · · · + P l = Ql, which is impossible.

– Idem if t is even.

– If l and t are odd, then:

x6 (x+1)6P lQt = (1+ · · ·+x6)
(

1+ · · ·+(x+1)6
)

(1+ · · ·+P l) (1+ · · ·+Qt)

= P QP Q (1+P ) (1+Q)A2

= P 2 Q2 x3 (x+1)3A2 ,

which is impossible since l and t are odd.

ii): Sufficiency: It is proved by direct computations.

Necessity: Suppose that x6 (1 + x)k (x3 + x2 + 1)l (x3 + x + 1)t is perfect for

some odd natural numbers k, l, t ∈ N.

Putting P = x3 + x2 + 1, Q = x3 + x + 1, we have:

1 + · · · + x6 = P Q ,

1 + · · · + (x+1)k = x
(

1 + (1+x) + · · · + (1+x)
k−1

2

)2
= x A2 ,

1 + · · · + P l = x2 (x+1)
(

1 + P + · · · + P
l−1

2

)2
= x2 (x+1) B2 ,

1 + · · · + Qt = x(x+1)2
(

1 + Q + · · · + Q
t−1

2

)2
= x(x+1)2 C2 .
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Thus,

x6 (x+1)k P l Qt = P Q x4 (x+1)3 A2B2 C2

and k ≥ 3.

So,

x(x+1)
k−3

2 P
l−1

2 Q
t−1

2 = ABC .

Thus, x divides ABC and x2 does not. Then any two of the integers
k−1

2
,

l−1

2
,

t−1

2
must be even while the third must be odd.

– If
k−1

2
is odd and

k−3

2
≥ 1, then x+1 must divide BC, which is impos-

sible since
l−1

2
,

t−1

2
are both even.

So, k = 3. Thus:

A = x, and x does not divide BC ,

B = 1 + P + · · · + P
l−1

2 = Q
t−1

2 ,

C = 1 + Q + · · · + Q
t−1

2 = P
l−1

2 .

We conclude that l = t. But
l−1

2
is even, so

l−1

2
= 0, and k = 3, l = t = 1.

– If
k−1

2
and

l−1

2
are even, then

t−1

2
is odd and gcd(B, x(x+1)) = 1, so:

B = 1 + · · · + P
l−1

2 = Qu = Q
l−1

2 .

So l = 1, and:

x (x+1)
k−3

2 Q
t−1

2 = AC =
(

1 + x + · · · + x
k−1

2

) (

1 + Q + · · · + Q
t−1

2

)

.

So

(1) 1 + Q + · · · + Q
t−1

2 = x (x+1)
k−3

2

since
k−1

2
is even.

Thus, by computing the degrees in both sides of (1), we have:

3
t−1

2
=

k−1

2
,

which is impossible by parity.

– Idem if
k−1

2
and

t−1

2
are both even.
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3 – Main results

3.1. Perfects of the forms: P h Qk Rl

We have the following

Theorem 3.1. There are no perfect polynomials over F4 with 3 irreducible

factors.

Proof: First of all, by Lemma 2.5, we may suppose that deg(P ) = deg(Q) <

deg(R). So, P and Q (and h, k) play symmetric roles.

If P hQkRl is perfect then we have:

1 + · · · + P h = QaRb ,

1 + · · · + Qk = P cRd ,

1 + · · · + Rl = P eQf ,

where c+e = h, a+f = k, b+d = l.

Case h, k even:

By Lemma 2.2, we have:

1 + · · · + P h = QR , 1 + · · · + Qk = P R .

So, h = k and l = 2.

Thus, 1+R+R2 = P eQf , with e = h−1 = k−1 = f , so, 1+R+R2 = (P Q)e

which implies e = 1, by Lemma 2.1. Thus, P , Q and R have the same degree,

a contradiction.

Case h, l even, k odd:

We have:

1 + · · · + P h = QR , 1 + · · · + Qk = P cRd, with d odd .

So, 1 + Qk+1 = (1 + Q)P cRd.

By differentiation relative to x : (1+Q)P uR′ = AR, for some polynomial A,

where u = min(1, c). So R divides 1+Q, a contradiction.

Case h, k odd, l even:

We have:

1 + P h+1 = (1+P )QaRb , 1 + Qk+1 = (1+Q)P cRd .
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– If b is odd, then d is odd and, by differentiation relative to x, we see that

R divides 1+P and 1+Q which is impossible.

– If b is even, then d is even, a, c are odd, and e, f are even. By differentiation

relative to x, Q divides 1+P , so Q = 1+P . Moreover, 1+ · · ·+Rl = P eQf

is a square, which is impossible by Lemma 2.1.

Case h, k, l odd:

We have:

P hQkRl = (1+ · · ·+P h) (1+ · · ·+Qk) (1+ · · ·+Rl) = (1+P ) (1+Q) (1+R)A2

for some polynomial A.

So:

R must divide (1+P ) (1+Q), i.e., R ∈ {1+P, 1+Q}, a contradiction.

Case h even, k, l odd:

One has

(2) 1 + · · · + P h−1 + P h = QR .

We have also:
1 + · · · + Qk = P cRd ,

1 + · · · + Rl = P eQf .

So, 1+Qk+1 = (1+Q)P cRd, 1+Rl+1 = (1+R)P eQf , and d, f, c+e are even.

By differentiation relative to x, we must have: c, e odd and P divides 1+Q

and 1+R. So P = 1+Q.

Since h−1 is odd we get from (2) that 1+P = Q divides P h which is

impossible.

3.2. Perfects of the forms: ShP k QlRt, with deg(S) = 1

Assume ShP k QlRt perfect with 1 ≤ deg(S) ≤ deg(P ) ≤ deg(Q) ≤ deg(R).

The case deg(R) = 1 was already done in [6], so that by Lemma 2.5 it suffices to

consider the cases where

1 = deg(S) = deg(P ) < deg(Q) ≤ deg(R) .

We consider the (Frobenius) Galois automorphism τ such that τ(α) = α + 1.

Our main theorem reads:
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Theorem 3.2. Let S, P, Q, R ∈ F4[x] be irreducible monic polynomials.

The polynomial ShP k QlRt, in which 1 ≤ deg(S) ≤ deg(P ) ≤ deg(Q) ≤ deg(R)

and such that deg(S) = 1 < deg(R) is perfect if and only if S = x + a, for some

a ∈ F4, P (x) = S(x+1), and either:

i) h = 6, k = 3, l = t = 1, Q(x) = x3 + x2 + 1 = R(x + 1), or

ii) For some n ∈ N, h = k = 2n−1, for some m ∈ N, l = t = 2m−1, and

R = Q + 1.

Proof: Sufficiency: This follows by direct computations.

Necessity: We can assume that S = x. Put P = x+a, where a ∈ {1, α, α+1}.

We already treated [6] the case where deg(R) = 1. Thus, from Lemma 2.5

we get deg(R) ≥ deg(Q) ≥ 2.

We show now that P = x+1. Put P = x+a and suppose that a ∈ {α, α+1},

say a = α, we can write:

1 + · · · + xh = (x + α)a1 Qb1Rc1 ,

1 + · · · + (x + α)k = xd1 Qb2Rc2 ,

1 + · · · + Ql = xd2 (x + α)a2 Rc3 ,

1 + · · · + Rt = xd3 (x + α)a3 Qb3 ,

where:

d1 + d2 + d3 = h , a1 + a2 + a3 = k , b1 + b2 + b3 = l , c1 + c2 + c3 = t .

If we apply the Frobenius automorphism τ to both sides of

1 + · · · + xh = (x + α)a1 Qb1Rc1 ,

then we obtain that a1 = 0 and that h is even.

Analogously, by substituting x by x + α and by applying τ to both sides of

1 + · · · + (x + α)k = xd1 Qb2Rc2

we obtain that d1 = 0 and that k is even.

So, by Lemma 2.2:

1 + · · · + xh = 1 + · · · + (x + α)k = QR

and thus h = k. Applying again τ , we obtain:

1 + · · · + xh = 1 + · · · + (x + α + 1)h = 1 + · · · + (x + 1)h = QR .
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So, h = 6 by Lemma 2.6, which is impossible because:

1 + · · · + x6 6= 1 + · · · + (x + α)6 .

So, P = x+1, S = x, deg(R) ≥ deg(Q) ≥ 2.

Case h, k even:

As before, by using Lemmata 2.1 and 2.2 as well as by acting with the Frobe-

nius automorphism τ again, we get after some computation:

1 + · · · + xh = 1 + · · · + (x + 1)k = QR .

So, h = k = 6 by Lemma 2.6, and Q = x3 + x2 + 1, R = x3 + x + 1 = Q(x + 1).

But the polynomial x6 (1 + x)6QlRt is not perfect for all integers l, t ≥ 0

(see Lemma 2.7), a contradiction.

Case h even, k odd:

As before, one has 1 + · · · + xh = QR. This implies (by Lemma 2.6):

p = h+1 is prime , deg(Q) = deg(R) = h/2 and Q(0) = R(0) = 1 .

So, Q and R (resp. l and t) play symmetric roles.

– If l is even and t odd, then 1 + · · · + Ql = xd2 (x + 1)a2Rc3 with c3 ≤ 1

by Lemma 2.2.

Furthermore, d2 = 0 and 1 + · · · + Ql = (x + 1)a2Rc3 .

If c3 = 0, then 1 + · · · + Ql = (x + 1)a2 . This is impossible by Lemma 2.1.

So, 1 + · · · + Ql = (x + 1)a2R and:

1 + · · · + xh = QR ,

1 + · · · + (x + 1)k = x A2 ,

1 + · · · + Ql = (x + 1)a2 R ,

1 + · · · + Rt = (1 + R)B2 .

Thus, xh (x+1)k QlRt = x QR2 (1+R) (x+1)a2 D2.

This is impossible (consider the exponent of R).

A similar proof works when l is odd and t is even.

– If l, t are both even, then we can write:

1 + · · · + xh = QR ,

1 + · · · + (x + 1)k = x A2 ,

1 + · · · + Ql = (x + 1)a2 R ,

1 + · · · + Rt = (x + 1)a3 Q .
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Thus, xh(x+1)k QlRt = x Q2R2 (x+1)a2+a3 A2.

This is of course impossible (consider the exponent of x).

So, h is even and k, l, t are odd.

We can write:
1 + · · · + xh = QR ,

1 + · · · + (x + 1)k = x A2 ,

1 + · · · + Ql = (1 + Q)B2 ,

1 + · · · + Rt = (1 + R)C2 ,

with deg(Q) = deg(R), Q(0) = R(0) = 1 = Q(1)R(1). We have:

xh (x+1)k QlRt = QR x (1+Q) (1+R)D2 .

We deduce that:

i) x divides 1+Q and 1+R (since Q(0) = R(0) = 1),

ii) x+1 divides (1+Q) (1+R) since k is odd.

So, either Q(1) = 1 or R(1) = 1.

Thus Q(1) = R(1) = 1 and x+1 divides 1+Q and 1+R.

Observe that gcd(R, 1+Q) = 1 = gcd(Q, 1+R) since R(1) = Q(1) = 1.

So, 1+Q = xu1(1+x)u2 and 1+R = xv1(1+x)v2 .

We obtain:

1 + · · · + xh = QR =
(

xu1(1+x)u2 + 1
) (

xv1(1+x)v2 + 1
)

.

Then h = 6, u1 = v2 = 1, u2 = v1 = 2 by Lemma 2.6. This implies that

Q = x3 + x + 1 and R = x3 + x2 + 1 = Q(x+1).

The result follows now from Lemma 2.7.

Case h, k, l, t odd:

Put:

h = 2h0 − 1 = 2nε − 1 , k = 2k0 − 1 = 2mν − 1 ,

l = 2 l0 − 1 = 2rβ − 1 , t = 2t0 − 1 = 2sγ − 1 ,

where ε, ν, β and γ are odd.

If xh (1+x)k QlRt is perfect, then the polynomial

xh0−1 (1+x)k0−1 Ql0−1Rt0−1

must be perfect and R = Q+1.
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Indeed, if xh (1+x)k QlRt is perfect, then:

xh−1 (1+x)k−1 Ql Rt = (1+Q) (1+R)A2 ,

so that l, t odd implies: R divides (1+Q) and Q divides (1+R), i.e., R = 1+Q.

So, after simplification,

x(h−1)/2 (1+x)(k−1)/2 Q(l−1)/2 R(t−1)/2

is perfect.

If one of (h−1)/2, (k−1)/2, (l−1)/2, (t−1)/2, is even, then we obtain

a contradiction from the previous cases.

If all the exponents are odd, then by using the same argument, we see that

the only possibility that remains is that

xh0−1 (1+x)k0−1 Ql0−1 Rt0−1

must be perfect.

According to the previous cases, one of the following two conditions must

hold:

a) h0−1 = 6, k0−1 = 3, l0−1 = t0−1 = 1 and Q = x3 +x2 +1 = R(x+1)

b) h0−1, k0−1, l0−1, t0−1 are simultaneously odd.

Observe that a) does not hold since R = Q+1 so that we get b).

We consider now the following sequences of odd integers:

hµ = 2(n−µ)ε − 1 , 0 ≤ µ ≤ n−1 , hn = ε−1 ,

kµ = 2(m−µ)ν − 1 , 0 ≤ µ ≤ m−1 , km = ν − 1 ,

lµ = 2(r−µ)β − 1 , 0 ≤ µ ≤ r−1 , lr = β − 1 ,

tµ = 2(s−µ)γ − 1 , 0 ≤ µ ≤ s−1 , ts = γ − 1 .

Note that

hµ− 1

2
= hµ+1 ,

kµ− 1

2
= kµ+1 ,

lµ− 1

2
= lµ+1 ,

tµ− 1

2
= tµ+1 ,

and hn, km, lr, ts are all even.

Put: e = min(n, m, r, s).

• If e = n, then by iterating the arguments above, we see that the polynomial

xhe−1 (1+x)ke−1 Qle−1Rte−1 must be perfect (with R = Q+1).
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So, we must have: ke − 1 = he − 1 = hn − 1 = ε− 1 = 0. Thus, n = m,

h = k = 2n−1.

So, QlRt must be perfect, with R = Q+1. The result follows from

[6, Proposition 3.10].

• We can proceed analogously if either e = m, e = r or e = s.

4 – Some congruence results

Let n be an odd perfect number. Write its factorization over Z :

n =
∏

pe ,

where p is a prime number and pe divides n while pe+1 does not divide n ;

(this is also denoted pe ||n as usual).

It is well known (and it is easy to prove) that the exponent e must either

satisfy e 6≡ 1 (mod 2) or e 6≡ 3 (mod 4) and that there is one and only one

exponent in the latter case.

One has an analogue for polynomials:

Let us begin with the analogue for polynomials over the finite field Fq of

characteristic p of the notion of an odd perfect number.

Definition 4.1. Let A ∈ Fq[x] be such that gcd(A, xq−x) = 1. We say that

A is an odd polynomial. Moreover, if A is also perfect then we call it an odd

perfect polynomial.

First of all, we have the obvious lemma:

Lemma 4.2. Let q be a power of a prime p. Let P ∈ Fq[x] be a monic

irreducible polynomial of degree d > 1 and let h ∈ N
∗ be a positive integer.

i) If there exists a ∈ Fq such that P (a) = 1 and if h ≡ −1 (mod p) then for

all odd A ∈ Fq[x] the polynomial P hA is not perfect.

ii) If there exists a ∈ Fq such that P (a) /∈ {0, 1} and if

h ≡ −1 (mod q−1) ,

then for all odd A ∈ Fq[x] the polynomial P hA is not perfect.
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Proof: In those cases, if P hA is perfect then the monomial x− a divides

1 + · · · + P h = σ(P h) and thus divides σ(P hA) = P hA, a contradiction.

Proposition 4.3. For all h ∈ N
∗ such that h ≡ 5 mod 6, for all irreducible

monic polynomial P ∈ F4[x] of degree d > 1 and for all odd perfect polynomial

A ∈ F4[x] the polynomial P hA is not perfect.

Let R ∈ F4[x] be a prime factor of an odd perfect polynomial A ∈ F4[x] and

let e be a positive integer such that Re ||A. Then the exponent e satisfies: either

e 6≡ 1 (mod 2) or e 6≡ 2 (mod 3).

Proof: Clearly, h is odd and h≡ 2 mod 3. The result follows from Lemma 4.2

since P (0) ∈ {1, α, α+1}.

We know, by computations, that there are exactly 6 monic irreducible poly-

nomials of degree 2, namely:

P1 = x2 + x + α , P2 = x2 + x + α + 1 ,

P3 = x2 + αx + 1 , P4 = x2 + (α+1)x + 1 ,

P5 = x2 + αx + α , P6 = x2 + (α+1)x + α + 1 .

We see that:

P3(0) = P4(0) = P5(1) = P6(1) = 1 .

We are ready to present the main result of the section:

Theorem 4.4. Let B ∈ F4[x] be any perfect polynomial such that

gcd(B, I2) = 1 ,

where I2 = x12 + x9 + x6 + x3 + 1. Let r ∈ {3, 4, 5, 6}, k ∈ {1, ..., r}, and let

h1, ..., hr ∈ N
∗ be positive integers. Then for all irreducible monic polynomials

Q1, ..., Qr of degree 2, the polynomial C = BA, where A =
r

∏

k=1

Qhk

k , is not perfect.

Proof: Since I2 = P1 · · ·P6, it suffices to prove that A cannot be perfect:

If A =
r

∏

k=1

Qhk

k is perfect, then there exist k ∈ {3, ..., r} and j ∈ {3, 4, 5, 6} such

that Qk = Pj . So, there exists a ∈ F4 such that Qk(a) = 1. So, hk must be

even by Lemma 4.2. Thus, by Lemma 2.2, 1 + · · · + Qhk

k = Qb1
l1
· · ·Q

br−1

lr−1
where

b1, ..., br−1 ≤ 1. It follows that: hk ≤ r−1 ≤ 5. So hk ∈ {2, 4}.
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By computations, we can see that for j ∈ {3, 4, 5, 6}, the polynomials

1 + Pj + P 2
j and 1 + · · ·+ P 4

j have irreducible divisors of degree different from 2.

So that we are done.

We risk some Conjectures:

5 – Conjectures over F4

As observed in the introduction there are finitely many odd perfect numbers

with k prime factors [12, 8, 10], namely there are at most 24k

such perfect numbers.

An analogue for polynomials in F4[x] may be:

Definition 5.1. Let A ∈ F4[x] be a monic polynomial. We say that A

is minimally perfect if it is perfect and has no proper monic perfect divisors d

coprime to A/d.

Assume that A is a minimally perfect polynomial in our 3 conjectures below.

Moreover, observe that if A is odd (see Proposition 4.3) then, in order to be

perfect, the only exponents e allowed in primary divisors pe ||A are either even

numbers or odd numbers congruent to 0 or 1 modulo 3.

Conjecture 1. Let k > 0 be a positive integer. If k is odd then there are

finitely many, say f(k), perfect polynomials A over F4 with k irreducible factors.

Perhaps, f(k) = 0.

Conjecture 2. Let r > 0 be a positive integer, let k = 2m > 0 be an even

integer. For j = 1, ..., r, let Pj be an irreducible polynomial in F4[x] such that

{

x, x+1, x+α, x+α+1
}

6⊆
{

P1, ..., Pr

}

.

If the positive integers h1, h2, ..., h2m−1, h2m are all odd, then the polynomial

A =
k

∏

j=1

P
hj

j is perfect if and only if:

(a) For i ∈ {1, ..., k} there exists some j ∈ {1, ..., k} such that Pi = Pj + 1

and

(b) hj = 2mj −1 for some positive integer mj > 0.
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Conjecture 3. Let k = 2m > 0 be an even integer, and assume that there

exists some integer j ∈ {1, ..., k} for which the positive integer hj is odd. Then

there are finitely many perfect polynomials A over F4 of the form A =

k
∏

i=1

P hi

i .
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