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PERFECT POLYNOMIALS OVER F; WITH LESS THAN
FIVE PRIME FACTORS

Luis GALLARDO and OLIVIER RAHAVANDRAINY

Recommended by A. Garcia

Abstract: A perfect polynomial A € Fy[z] is a monic polynomial that equals the
sum of its monic divisors. There are no perfect polynomials A € Fy[z] with exactly
3 prime divisors, i.e., of the form A = P*Q"R® where P,Q, R € Fyz] are irreducible
and a, b, ¢ are positive integers. We characterize the perfect polynomials A with 4 prime
divisors such that one of them has degree 1. Assume that A has an arbitrary number of
distinct prime divisors, we discuss some simple congruence obstructions that arise and

we propose three conjectures.

1 — Introduction

As usual, we denote by I, the finite field with ¢ elements. When ¢ = 4,
we write Fy = {0,1,,a+1}, where o? = a+1.
For a monic polynomial A € F,[z], let 0(A) denote the sum of all monic

o(A) = ZD.

D monic, D|A

divisors of A, i.e.,

If 0(A) = A, then we call A a perfect polynomial (if necessary we add the words:
“over F,”). Furthermore, we denote by w(A) the number of distinct prime (irredu-
cible) factors of A and by d; < --- < d,,(4) the degrees of the prime factors of A.

In [6] we obtained for ¢ = 4, the complete list of all perfect polynomials with
either w(A) <2 or with w(A) =3 and d1 =1, do =1, d3 > 1; or with w(4) =4
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and dy=dy =d3=ds=1. We also disproved a conjecture of Beard et al.
[1, p. 287] by proving [6, Corollary 3.11] that there are perfect polynomials over F,
without linear factors, namely (z* + = 4+ 1)2"~! for any integer n > 0. It may
be deduced easily from the proof of [11, Theorem 1.10.8] that for all integers
k > 0 the polynomials Py = 23"+ a and Qi = Py +1 are irreducible over Fy
so that we have an infinity of perfect polynomials A over Fy with w(A4) = 2,
namely A = (P,Qp)%" ! = (¥ + 23+ 1)2"~! for k=1,..., 00 and any positive
integer n > 0.

Other counter-examples, one over F;; and two over Fy7 are in [2, Section 4].

In this paper we prove the nonexistence of perfect polynomials A with 3 prime
factors, (see Theorem 3.1), generalizing our earlier work. Moreover for the next
“target case”, i.e., the case when A has 4 prime factors, we do here a first step
in order to resolve it, by characterizing the perfect polynomials A with 4 prime
factors (see Theorem 3.2) with at least one of these factors being linear.

Observe that Sylvester in 1888, [13, 5, Vol. 1, p.27] proved the nonexistence
of odd perfect numbers with 4 prime factors. Later, Dickson [4] showed that
there are only finitely many odd perfect numbers with a given number of prime
factors.

We also provide some general (i.e., we assume only w(A) > 3 instead of
w(A) <5 as in our results above) congruence results that imply the nonexis-
tence of perfect polynomials A in the special case where all prime divisors of A
are quadratic polynomials (see Theorem 4.4).

Finally, we propose some general conjectures (see Section 5).

2 — Some useful Lemmata

We denote, as usual, by N (resp. N*) the set of nonnegative (resp. positive)
integers. In this section, we collect some results for the next sections.

The following three Lemmata were proved for polynomials in Fy[z] and Fy|x]
in previous work. However, their proofs work over any perfect field of charac-
teristic 2. The perfectness is required since the proofs use differentiation. More
precisely, it is necessary for the derivative P’ of an irreducible polynomial P
to be nonzero.

Lemma 2.1 ([3, Lemma 5], [6, Lemma 2.1]). Let P,Q € F[x], where F is
a perfect field of characteristic 2, and let n,m € N such that P is irreducible
and o(P*™) =1+---+ P?"= Q™. Then m € {0,1}. n
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Lemma 2.2 ([3, Lemma 6]). Let P,Q € F[z] where F is a perfect field of
characteristic 2, and let n,m € N such that P is irreducible, m > 1 and o(P*") =
1+---+P?™=QmA. Then deg(P) > 2 deg(Q). m

Lemma 2.3 ([6, Lemma 2.3|). The following properties hold for polynomi-
als in Flx| where F is a perfect field of characteristic 2. For h € N, consider
o(a®)y=1+x+- - +ah. Then:

i) o(z") = (14 x)" if and only if h = 2" —1 for some n € N.
(z") = o((z +1)") if and only if h = 2" —2 for some n € N.
o(x?") = (1 4z + 22" if and only if h € {0,1}.

o(z") = (1 + 2+ 2?) (z + 1)"2 if and only if h = 2.

Q

=

o
—e
e .
— — — ~— —

Assume that F contains F4. Then
l+(z+a)+ -+ @+ta) =z@+1)(z+a+ 1)
if and only if h = 2.

vi) Let P € F[x] be a nonconstant polynomial. Then:
1+ P+---+ Ph=(1+P)" ifand only if h =2"—1 for some n € N. u

Lemma 2.4 ([6, Lemmata 2.4, 2.5], [9, Theorem 2.47]). Let p be an odd
prime number and n € N*. If d is the smallest positive integer such that
(21)Y =1 (mod p), and if pu is the number of irreducible distinct factors of
degree d, in Fon[x], of 1+ --- 4+ xP~!, then

p—1
po=—
It follows that for all integers n > 2, the polynomial
"+ 4+r41

is reducible over Fy. m

New lemmata follow:

First of all, we generalize a result of Beard et al.:

Lemma 2.5 ([1, Theorem 7], see also [7]). Let ¢ be a power of a prime p.
Let A € Fylz] be a monic polynomial. Let {p1,...,p,} be the list of all monic
irreducible polynomials in F,[z] of minimal degree that divide A.

If A is perfect over F, then r =0 (mod p).
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Proof: By definition one has

A=0(A) = Z d=0.
d|A, d#A, dmonic

In particular the leading coefficient of

A A
44 =
p1 Pr

equals 0, i.e., r is divisible by p, thereby finishing the proof of the lemma. =

Lemma 2.6.

i) If 14---+ 2" = PQ, with h even, P,Q € Fy[z] irreducible, then p = h+1
is prime, deg(P) = deg(Q) and P(0) = Q(0) =1 for h > 4.
i) If 1+ +a2h =144+ (1 + 2)" = PQ, with h even and P,(Q € F4[z]
irreducible, then h=6 and P=a® + 22>+ 1, Q = 2> + z + 1.
iii) If 1+ +a2" = (2%(x+1)°+1) (2°(z+1)4+1), with h even and
P=2a2%2+1)+1, Q=2a%x+1)?+1 irreducible in F4[zx], then h = 6,
a=d=2b=c=1, P=a?4+22+1, Q=23+z+1.

Proof: i): if h+1=ab, with a,b > 2 then:

1—{—.’Eh+1 (1_|_l.a) B
14 .- h _ — 14 ... ayb—1
e . T+ o 1+ + @)

has at least 3 factors since 1+ --- + (z%)*~! is reducible.

h
Thus p = h+1 is prime and deg(P) = deg(Q) = 3 by Lemma 2.4.

Assume that h > 4. Let Fy be an algebraic closure of F4. Let g be a generator
of the cyclic group {z € F4| 2/ +1 = 0}.
We have:

PQ =1+ +a" = (v+g)(z+g") - (z+g").
So,
P = (z+g") (x+g"?) - (x+g™),
~1
p2 ,and t1,...,t, € {1,...,p—1}.
Thus, P(0) = gt +m € F;—{0}. So, 1 = P(0)% = g3t +tm),

where m =
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We deduce that p divides 3(¢; + - - - +t,,) so that it divides ¢; + - - - + t,,, since
p > 3. Thus, P(0) =1 and Q(0) = 1.

ii): We have, by Lemma 2.3, h = 2™ —2 for some m, and by i), p=h+1=
2™ —1 is a prime number.

By Lemma 2.4, 1+ --- + 2" = PQ implies that 4 has order L

modulo p.
-1
But, 4" —-1=(2"—-1)(2"+41) =0 modulo p and m < p72 =om-1l_1,

So we must have: m =2""1 -1, ie., m = 3.

iii): First of all, observe that we have: a+b=c+d =

po| >

e If a = 0 then b = 1 by irreducibility. So z divides 1+ --- + ", which
is impossible.

e Idem if ¢ = 0.

e If b=0then a =1 and  + 1 divides 1+ - - - + 2", which is impossible
since h is even.

e Idem if d =0.

So, a,b,c,d > 1.
If either (a,c > 2) or (a = ¢ = 1), then (2%(z+1)°+1) (2¢(z+1)?+1) does
not contain the monomial . So a=1,¢>2or c=1,a > 2.
h
Suppose that a =1 so that d =1 andc:b:§—1 > 2.
Suppose that h > 6. Then

14 42 = (x($+1)%71+1) (ngl(a:-f-l)-i-l)
implies:

z4..-d+gh = x(x+1) (x%_l(x—i-l)%_l + (x‘i‘l)ﬁ_

[\v]
(3]
8
[NEy
|
[\]
N———

w($+1)(1+..._|_33%—1)2 = z(z+1) <$%_1($+1)%_1+(:E—|—1)%_2—|—g;%—2> ’

h h
h_q 4

L+a?+at+ a2 = 23 e+ )3 4 (a4 1) 2 a2
h i h .
o If 5 —2 is odd, then 5 —2 >3, so that the right hand member of the
last equality above contains the monomial z, which is impossible.
h
o If 5 —2 =2u is even, then :cgfl(a:—i-l)%*l + (:c—i—l)%*2 + 2272 does

2

. : h_ A .
not contain the monomial 22 2 = z2%. This is impossible.

So 5 —2 =1, and we are done.



26 LUIS GALLARDO and OLIVIER RAHAVANDRAINY

We characterize now some special perfects:

Lemma 2.7.

i) For all integers [,t > 0, the polynomial 2 (1+x)% (23 4+22+1)! (23 +2+1)!
is not perfect over Fy.

i) 251 +2)k (@3 + 22+ 1) (22 + 2+ 1), with k,1,t odd, is perfect over F,
ifand only if k=3, [ =t =1.

Proof: i): Suppose that % (142)% (3 +224+1)! (z3+2+1)! is perfect over Fy
for some nonnegative integers [, t.
Putting P =23+ 22+1, Q = 23+ 2+ 1, we have:
1+ 428 =1+ 4 (x+1)5 = PQ,
1+ 4P =g (x+1)" Q"2
14 --- _|_Qt — x6*u(x+1)6fvplf2 )

— If [ is even, then u = v = 0 since P(0) = P(1) = 1.
Thus, 1+ --- 4+ P! = @', which is impossible.
— Idem if ¢ is even.
— If [ and ¢ are odd, then:
O (z+1)5PQ = (14 +28) (1+- -+ (2+1)5) 1+ +P) (1+--+ Q)
= PQPQ(1+P)(1+Q)A?
— P2Q2x3(x+1)3A2 ,

which is impossible since [ and ¢ are odd.

ii): Sufficiency: It is proved by direct computations.

Necessity: Suppose that 2 (1 +z)F (23 + 22 + 1)! (23 + 2+ 1) is perfect for
some odd natural numbers k,[,t € N.
Putting P = 2% + 22 + 1, Q = 22 + z + 1, we have:

1+---+2% = PQ,

144 (z41)k = m(l—l—(l—i—a:)—i-'”—k(l—k:c)%)?: x A?

14+ P =a2%(x+1) <1+P+---—|—PT>2: z*(x+1) B%,
+Q

T4 Q = w(et 1 (14Q+--



Thus,

PERFECT POLYNOMIALS 27

L (x+1)PPIQ = PQ 2t (x+1)3 A2 B? C?

and k > 3.

So,

Th

t—

z(z+1)T PT QT = ABC |

us, = divides ABC and z? does not. Then any two of the integers 5

l_—l, t=1 must be even while the third must be odd.

2

- If

2

k—
is odd and T?) > 1, then x+1 must divide BC', which is impos-

-1 t—1
sible since 5 g are both even.

So, k = 3. Thus:
A =2z, and z does not divide BC',
B=1+P+ .- +P7% = Q% ,

-1

C = 1+Q+---+Q% =Pz .
-1, -1
We conclude that [ =¢. But 5 is even, so 720, and k=3, [=t=1.

k—1 -1 t—1
5 and —; are even, then N is odd and ged(B,z(x+1)) =1, so:

If

-1

B = 1_|-.--_|-Pl_71 :QUZQ?_
So l=1, and:

t—1

r(@+1) T Q5 = AC = (1+m+---+m%> <1+Q+--~+Q%) .
So

k=3
2

t—1
k—1

since is even.

Thus, by computing the degrees in both sides of (1), we have:

t—1 k—1
3 - =2 =
2 2 7
which is impossible by parity.
k—1 t—1
Idem if and are both even.
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3 — Main results

3.1. Perfects of the forms: P" Q"R

We have the following

Theorem 3.1. There are no perfect polynomials over Fy with 3 irreducible
factors.

Proof: First of all, by Lemma 2.5, we may suppose that deg(P) = deg(Q) <
deg(R). So, P and @ (and h, k) play symmetric roles.
If P"Q*R! is perfect then we have:
1—|——|—Ph — QaRb,
14+---+QF = P°R?,
1+ +R = PQ/,
where ct+e=h, a+f =k, b+d=1.

Case h, k even:

By Lemma 2.2, we have:
1_|_..._|_Ph:QR’ 1_|_..._|_Qk:PR.

So, h=Fk and [ = 2.

Thus, 1+ R+R? = P°Q/, withe=h—1=k—1=f, so, 1L+ R+R?> = (PQ)°
which implies e = 1, by Lemma 2.1. Thus, P, @) and R have the same degree,
a contradiction.

Case h,l even, k odd:
We have:

1+ +P'"=QR, 1+4--+Q"=P°R? withdodd.

So, 1+ Q1 = (1 + Q)P°R?.
By differentiation relative to x: (14 Q) P“R’ = AR, for some polynomial A,
where u = min(1,¢). So R divides 1+ @, a contradiction.

Case h, k odd, [ even:
We have:

1—|—Ph+1:(1—|—P)QaRb, 1+Qk+1:(1+Q)PCRd.
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— If bis odd, then d is odd and, by differentiation relative to x, we see that
R divides 1+ P and 14 @ which is impossible.

— If bis even, then d is even, a, c are odd, and e, f are even. By differentiation
relative to z, Q divides 14+ P, so Q = 1+ P. Moreover, 1+---+ Rl = P°¢Qf
is a square, which is impossible by Lemma 2.1.

Case h, k,l odd:
We have:

P'Q'R = (14 +P") (14 +Q") (1+---+R) = (1+P) (1+Q) (1+R) A*

for some polynomial A.
So:
R must divide (14+P) (14+Q), ie., R € {1+ P, 1+Q}, a contradiction.

Case h even, k,l odd:
One has

(2) 1+ 4+P14 Pt =QR.
We have also:
1+ +QF = P°R? |
1+---+R = Pt .
So, 1+QF!'=(1+Q)P°R%, 1+R* = (1+R)P°Q/, and d, f, c+e are even.
By differentiation relative to x, we must have: ¢,e odd and P divides 1+ Q
and 1+ R. So P=140Q.
Since h—1 is odd we get from (2) that 1+ P = Q divides P" which is
impossible. n

3.2. Perfects of the forms: S"P*Q'R!, with deg(S) =1

Assume S"PFQ'R! perfect with 1 < deg(S) < deg(P) < deg(Q) < deg(R).
The case deg(R)=1 was already done in [6], so that by Lemma 2.5 it suffices to
consider the cases where

1 = deg(5) = deg(P) < deg(Q) < deg(R) .

We consider the (Frobenius) Galois automorphism 7 such that 7(a) = a + 1.
Our main theorem reads:
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Theorem 3.2. Let S,P,Q,R € F4lx| be irreducible monic polynomials.
The polynomial S"P*Q'R!, in which 1 < deg(S) < deg(P) < deg(Q) < deg(R)
and such that deg(S) = 1 < deg(R) is perfect if and only if S = x + a, for some
a €y, P(x)=S(x+1), and either:

i) h=6, k=3, I=t=1, Q) =2>+2>+1=R(x+1), or
ii) For some n € N, h=k=2"—1, for some m €N, [ =t=2"—1, and
R=Q+1.

Proof: Sufficiency: This follows by direct computations.

Necessity: We can assume that S = z. Put P = z+a, where a € {1,a,a+1}.

We already treated [6] the case where deg(R)=1. Thus, from Lemma 2.5
we get deg(R) > deg(Q) > 2.

We show now that P =z +1. Put P = z+a and suppose that a € {a, a+1},
say a = o, we can write:

1+ 42" = (z+ )2 Q"R

I+ +(z+a)f = Q2R |

1+ 4+Q = a®(x+a)”2R%

1+ + R = 2% (2 + )3 Qb
where:
di+dy+ds=h, a+a+tas=k, b+b+bs=1, c+tectcz=t.
If we apply the Frobenius automorphism 7 to both sides of

1+ +a" = (z+a)” Q"R ,

then we obtain that a; = 0 and that A is even.
Analogously, by substituting x by x + « and by applying 7 to both sides of

1+...+(x+a)k — xdeb2R62

we obtain that dqy = 0 and that k is even.
So, by Lemma 2.2:

1442 =14+ (z+a)* = QR
and thus h = k. Applying again 7, we obtain:

142" =14+ +@+a+) =14 +(@z+1)" = QR.
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So, h = 6 by Lemma 2.6, which is impossible because:
I+-+a® £ 1+ +(xz+a).
So, P=xz+1, S=u, deg(R) > deg(Q) > 2.

Case h, k even:

As before, by using Lemmata 2.1 and 2.2 as well as by acting with the Frobe-
nius automorphism 7 again, we get after some computation:

14 da2 =1+ +@+1)"=QR.

So,h=k=06by Lemma 2.6, and Q=2 +22+1, R=23+2+1=Q(z + 1).
But the polynomial z%(1 + 2)5Q'R! is not perfect for all integers [, >0
(see Lemma 2.7), a contradiction.

Case h even, k odd:
As before, one has 1 + --- + 2" = Q R. This implies (by Lemma 2.6):

p=h+1 isprime, deg(Q)=deg(R)=h/2 and Q(0)=R(0)=1.

So, @ and R (resp. [ and t) play symmetric roles.

— If [ is even and ¢ odd, then 1+ ---+ Q' = 2% (x + 1)2 R with c3 < 1
by Lemma 2.2.
Furthermore, do =0 and 1 +--- + Q' = (z + 1) R%.
If c3=0, then 1+ --- 4+ Q' = (z + 1)?. This is impossible by Lemma 2.1.
So, 1+ + Q' = (z+1)2R and:
1+---+ah = QR,
I+ +(x+1)F = 2 A2,
1+ 4+Q = (z+1)2R,
l1+---+R = (1+R)B%.
Thus, " (z+1)*Q'R' = 2 QR? (1+R) (z+1)%2 D2,
This is impossible (consider the exponent of R).
A similar proof works when [ is odd and ¢t is even.

— If I, t are both even, then we can write:
I+ +2"=QR,
144 (z+1)F = 2 A2,
1+-4Q = (z+1)2R,
1+ +R = (x+1)83Q .
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Thus, xh(a:—i— 1)k QlRt = Q2R2 (x_|_ 1)a2+a3 A2
This is of course impossible (consider the exponent of z).

So, h is even and k,[,t are odd.

We can write:
1+ +2" = QR,

1L+ (x+1)F =242,
I+ +Q = (1+Q) B,
14+ R = (14+R)C?,
with deg(Q) = deg(R), Q(0) = R(0) =1=Q(1)R(1). We have:
2" (z4+ 1) Q'R = QRz(1+Q)(1+R)D? .
We deduce that:
i) z divides 1+@Q and 1+ R (since Q(0) = R(0)=1),
ii) z+1 divides (1+Q) (1+ R) since k is odd.
So, either Q(1)=1or R(1)=1.
Thus Q(1)=R(1)=1 and x+1 divides 1+ @ and 1+ R.
Observe that gcd(R,14+Q)=1=gcd(Q,1+R) since R(1)=Q(1)=1.

So, 1+Q =z""(14+2)"* and 1+ R = 2" (14 x)".
We obtain:

1+ +2" = QR = (w“1(1+x)“2 +1> (a;”l(1+:c)”2 +1) :

Then h=6, uy=vo=1, uo =v1 =2 by Lemma 2.6. This implies that
Q=2>+r+1and R=23+22+1=Q(z+1).
The result follows now from Lemma 2.7.

Case h, k,l,t odd:
Put:

h=2hg—1=2"e—1, k=2k—1=2"v—1,
l=2—1=28-1, t=2tg—1=25v—1,

where ¢, v, # and ~ are odd.
If 2" (1+2)F Q'R! is perfect, then the polynomial

iL'hO_l (1 _|_1,)k‘0—1 Qlo—l Rto—l

must be perfect and R = Q + 1.
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Indeed, if 2" (14 x)* Q'R? is perfect, then:
2" H14+2) QIR = (1+Q) (1+R) A%

so that [, t odd implies: R divides (14 Q) and @ divides (14+ R), i.e., R=1+Q.
So, after simplification,

2072 (1 4 ) =D/2 QU=D/2 RlE=1)/2

is perfect.

If one of (h—1)/2, (k—1)/2, (I—-1)/2, (t—1)/2, is even, then we obtain
a contradiction from the previous cases.

If all the exponents are odd, then by using the same argument, we see that
the only possibility that remains is that

.,L,h()—l (1 +1,)k20—1 Qlo—l Rt()—l

must be perfect.
According to the previous cases, one of the following two conditions must
hold:

a) hg—1=6, ko—1=3, lp—1=tp—1=1and Q =2®+22+1=R(z+1)
b) ho—1, ko—1, lp—1, to—1 are simultaneously odd.

Observe that a) does not hold since R = Q@+ 1 so that we get b).
We consider now the following sequences of odd integers:

hy=2"Meg 1, 0<p<n-—1, hp=e—1,
ky = 2m=my -1, 0<pu<m-1, kp=v-1,
ZH:Q(T*N)ﬂ—l, 0§,LL§’]"—17 l?’:/@_lg
t,=20"My 1, 0<u<s—1, te=vy—1.
Note that
h,—1 k,—1 l,—1 t,—1
M2 :hﬂ+1’ MT:kN"Fl’ M2 :lu+17 MT:tll-‘rlv

and hg,, kny, 1., ts are all even.
Put: e = min(n,m,r,s).

e If e=n, then by iterating the arguments above, we see that the polynomial
zhe=1 (14 z)ke—1 Qle=1 Rte~1 must be perfect (with R = Q+1).
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So, we must have: k,.— 1 =he—1=h,—1=e—1=0. Thus, n = m,
h=k=2"-1.

So, Q'R* must be perfect, with R=Q+1. The result follows from
[6, Proposition 3.10].

e We can proceed analogously if either e=m, e=7r or e=3s. n

4 — Some congruence results

Let n be an odd perfect number. Write its factorization over Z :

n=]]r,

where p is a prime number and p¢ divides n while p®T! does not divide n;
(this is also denoted p®||n as usual).

It is well known (and it is easy to prove) that the exponent e must either
satisfy e Z1 (mod 2) or e # 3 (mod 4) and that there is one and only one
exponent in the latter case.

One has an analogue for polynomials:

Let us begin with the analogue for polynomials over the finite field F, of
characteristic p of the notion of an odd perfect number.

Definition 4.1. Let A € Fy[z] be such that ged(A,z9—x) = 1. We say that
A is an odd polynomial. Moreover, if A is also perfect then we call it an odd
perfect polynomial. o

First of all, we have the obvious lemma:

Lemma 4.2. Let g be a power of a prime p. Let P € Fy[z] be a monic
irreducible polynomial of degree d > 1 and let h € N* be a positive integer.

i) If there exists a € Fy such that P(a) =1 and if h = —1 (mod p) then for
all odd A € F,[x] the polynomial P"A is not perfect.

ii) If there exists a € Fy such that P(a) ¢ {0,1} and if
h=-1 (modgqg—1),

then for all odd A € Fy[z] the polynomial P"A is not perfect.
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Proof: In those cases, if P"A is perfect then the monomial z — a divides
1+---+ P"=g(P") and thus divides o(P"A) = P"A, a contradiction. m

Proposition 4.3. For all h € N* such that h =5 mod 6, for all irreducible
monic polynomial P € Fy[x| of degree d > 1 and for all odd perfect polynomial
A € Fy[z] the polynomial P"A is not perfect.

Let R € Fy[x] be a prime factor of an odd perfect polynomial A € Fy[x] and
let e be a positive integer such that R¢|| A. Then the exponent e satisfies: either
e# 1 (mod 2) or e # 2 (mod 3).

Proof: Clearly, his odd and A =2 mod 3. The result follows from Lemma 4.2
since P(0) € {1,,a+1}. u

We know, by computations, that there are exactly 6 monic irreducible poly-
nomials of degree 2, namely:

P=x+r+a, P=2+zx+a+1,
Py =a2>4+az+1, Py =22+ (a+1)z+1,
P=2+ar+a, Ps =2+ (a+)z+a+1.

We see that:
P3(0) = P4(0) = P5(1) = Ps(1) =1 .

We are ready to present the main result of the section:

Theorem 4.4. Let B € Fy[x] be any perfect polynomial such that
ng(B,IQ) =1 s

where Iy = 22 + 2% + 2% + 23+ 1. Let r € {3,4,5,6}, k€ {1,...,7}, and let
hi, ..., h, € N* be positive integers. Then for all irreducible monic polynomials
T

@1, ---, Q. of degree 2, the polynomial C = BA, where A = H QZ’“, is not perfect.
k=1

Proof: Since I, = P;--- FPg, it suffices to prove that A cannot be perfect:

-

If A= HQZk is perfect, then there exist k € {3,...,r} and j € {3,4,5,6} such
k=1

that Qi = P;. So, there exists a € Fy such that Qy(a) =1. So, h; must be

even by Lemma 4.2. Thus, by Lemma 2.2, 1 4 --- + QZ" = Q?ll e Q?::ll where
by, ..., bp—1 < 1. Tt follows that: hp <r—1<5. So hy € {2,4}.
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By computations, we can see that for j € {3,4,5,6}, the polynomials
1+ P; + sz and 14---+ P;l have irreducible divisors of degree different from 2.
So that we are done. n

We risk some Conjectures:

5 — Conjectures over F,

As observed in the introduction there are finitely many odd perfect numbers
with k prime factors [12, 8, 10], namely there are at most 24" such perfect numbers.
An analogue for polynomials in Fy[z| may be:

Definition 5.1. Let A € F4[z] be a monic polynomial. We say that A
is minimally perfect if it is perfect and has no proper monic perfect divisors d
coprime to A/d. o

Assume that A is a minimally perfect polynomial in our 3 conjectures below.

Moreover, observe that if A is odd (see Proposition 4.3) then, in order to be
perfect, the only exponents e allowed in primary divisors p®|| A are either even
numbers or odd numbers congruent to 0 or 1 modulo 3.

Conjecture 1. Let k > 0 be a positive integer. If k£ is odd then there are
finitely many, say f(k), perfect polynomials A over Fy with k irreducible factors.
Perhaps, f(k) =0. o

Conjecture 2. Let r > 0 be a positive integer, let £k = 2m > 0 be an even
integer. For j=1,...,r, let P; be an irreducible polynomial in F4[z] such that

{a?, z+1, z+a, x—i—a—i—l} z {Pl,...,PT} .
If the positive integers hi, hs, ..., ham—1, hoy are all odd, then the polynomial
k
h;i . . .
A= HP]- 7 is perfect if and only if:
j=1

(a) Fori e {1,...,k} there exists some j € {1,...,k} such that P, = P;+1
and

(b) hj =2™i —1 for some positive integer m; >0. o
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Conjecture 3. Let k£ = 2m > 0 be an even integer, and assume that there

exists some integer j € {1,...,k} for which the positive integer h; is odd. Then

k
there are finitely many perfect polynomials A over Fy of the form A = HPZ”. a]

=1
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