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LOCAL ENERGY DECAY FOR THE NONLINEAR DISSIPATIVE

WAVE EQUATION IN AN EXTERIOR DOMAIN

Moez Daoulatli

Recommended by E. Zuazua

Abstract: In odd dimension space, under a microlocal geometric condition, we

give the rate of decay of the local energy for solutions of the wave equation on exterior

domain, with localized nonlinear damping.

Résumé: En dimension impaire d’espace, on détermine sous une condition géomé-

trique microlocale, le taux de décroissance de l’énergie locale des solutions de l’équation

des ondes dans un domaine extérieur, en présence d’un dissipateur non linéaire localisé.

1 – Introduction and Statement of the result

Let O be a compact domain of R
d (d ≥ 3 is odd) with C∞ boundary Γ = ∂Ω

and Ω = R
d\O. Consider the following wave equation with a nonlinear internal

damping

(1.1)











∂2
t u− ∆u+ a(x) f(∂tu) = 0 in R+×Ω ,

u = 0 on R+×Γ ,

u(0, x) = ϕ1 and ∂tu(0, x) = ϕ2 .

Here ∆ denotes the Laplace operator in the space variables and a(x) is a non-

negative function in L∞(Ω) with compact support. f : R→ R is a nondecreasing,
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continuous function, such that f(0) = 0 and satisfying the following polynomial

growth near the origin

(1.2) c1|s|
r ≤ |f(s)| ≤ c2 |s|

1
r , |s| ≤ 1 ,

where c1, c2 > 0 and r ≥ 1; moreover we suppose the growth condition at infinity

(1.3) c3|s| ≤ |f(s)| ≤ c4|s|
p , |s| > 1 ,

with c3, c4 > 0 and p ≥ 1.

The problem with linear or nonlinear dissipation in bounded domain has been

intensively investigated in [3], [16], [17], [7], [12], [18], [11], [28], [19], [14], [24],

[29], [5], etc.. One can find results with damping terms effective everywhere, or

localized on a suitable subset of the domain or on the boundary, under more

or less strong geometrical conditions like the Lions condition, or the microlocal

Bardos–Lebeau–Rauch condition. Various rates of decay (from exponential decay

to logarithmic decay) are then obtained depending on the geometry and the

nonlinear behavior of the damping term.

When Ω is an exterior domain, we define the local energy by

Eρ(u)(t) =
1

2

∫

Ω∩Bρ

(

|∇u(t, x)|2 + |∂tu(t, x)|
2
)

dx

=
∥

∥

(

u(t), ∂tu(t)
)∥

∥

2

H(Bρ)
,

where

Bρ =
{

x ∈ R
d, |x|<ρ

}

contains the obstacle O, and our goal is to give a decay estimate for this energy.

For the linear undamped wave equation (i.e. a = 0) outside a compact ob-

stacle in odd dimension space, the study of the local energy goes up to the

pioneering works of Lax–Phillips [15], Morawetz, Strauss, Ralston. When the

obstacle is trapping Ralston [27] proved that there is no uniform decay rate, and

Morawetz–Ralston–Strauss [22], Melrose [20] obtained the exponential decay for

non-trapping obstacle. On the other hand, without any assumption on the dy-

namics Burq [6] proved the logarithmic decay of the local energy with respect to

any Sobolev norm larger than the energy norm.

When a(x) f(∂tu) = a(x) ∂tu, Nakao in [25] proved that the local energy

decay exponentially if d is odd and polynomially if d is even under the Lions’s

geometric condition. More recently, combining the definition of a non-trapping

obstacle and the geometric control condition of Bardos–Lebeau–Rauch [3], Aloui

and Khenissi [1] introduced the exterior geometric control condition:
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Definition 1.1. Let R > 0 such that O ⊂ BR, TR > 0 and ω = {x ∈ Ω;

a(x)> 0}. We say that (ω, TR) verifies the exterior geometric control condition

on BR (E.G.C), if every geodesic γ starting from BR at time t = 0, is such that

• γ leaves R+×BR before the time TR, or

• γ meets R+×ω between the times 0 and TR.

So they prove the exponential decay with a localized linear damping term.

To our knowledge very few results seem to be known for the wave equation

with nonlinear dissipation in the whole space or in exterior domain. In the whole

space, when a= 1, K. Mochizuki and T. Motai [21] prove the logarithmic decay

of the global energy, and K. Ono [26] prove the polynomial decay when the

dissipative term is equal to ∂tu+ |∂tu|
p−1∂tu, 1< p ≤ 3. Finally, we mention

the work of M. Nakao and I. Hyo Jung [13] in exterior domain, where they

obtained the polynomial decay of the energy with dissipation which is nonlinear

in a bounded region and linear far from the obstacle.

Before stating the results of this paper, we need to precise some definitions

and notations. H = HD(Ω)×L2(Ω), is the completion of (C∞
0 (Ω))2 with respect

to the norm

‖ϕ‖2
H = ‖(ϕ1, ϕ2)‖

2
H =

1

2

∫

Ω
|∇ϕ1|

2 + |ϕ2|
2 dx .

H0 is the completion of (C∞
0 (Rd))2 with respect to the norm

‖ϕ‖2
H0

=
1

2

∫

Rd

(

|∇ϕ1|
2 + |ϕ2|

2
)

dx .

Let A =

(

0 I
∆ 0

)

be the unbounded operator on H, with domain

D(A) =
{

ϕ ∈ H; ∆ϕ1 ∈ L2(Ω), ϕ2 ∈ HD(Ω)
}

.

Let us consider the wave equation in exterior domain

(1.4)











∂2
t u− ∆u = 0 in R×Ω ,

u = 0 on R×∂Ω ,

u(0, ·) = ϕ1 and ∂tu(0, ·) = ϕ2 ,

where (ϕ1, ϕ2) ∈ H. We denote UL(t) the isometric linear wave group, defining

the solution of (1.4)

(1.5)
UL(t) : H −→ H

(ϕ1, ϕ2) 7−→ UL(t)(ϕ1, ϕ2) =
(

u(t), ∂tu(t)
)

.
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Let R > 0 such that BR contains the obstacle and the support of the function

a(x). Following Lax–Phillips we denote by

DR
+ =

{

ϕ= (ϕ1, ϕ2) ∈ H ; UL(t)ϕ = 0 on |x|< t+R, t≥ 0
}

.

We will precise this space in Section 3.1.1.

Let G the subspace of H, defined by

(1.6) G = D(A) +DR
+ .

Theorem 1. For every ϕ ∈D(A), the problem (1.1) admits a unique solution

(1.7) u ∈ C(R+, HD(Ω)) , ∂tu ∈ C(R+, L
2(Ω)) .

The energy of u is defined by

(1.8) E(u)(t) =
∥

∥

(

u(t), ∂tu(t)
)∥

∥

2

H
=

1

2

∫

Ω
|∇u(t, x)|2 + |∂tu(t, x)|

2 dx

and satisfies

(1.9) E(u)(t) − E(u)(0) = −

∫ t

0

∫

Ω
a(x) f(∂tu(τ, x)) ∂tu(τ, x) dx dτ

for every t ≥ 0. In addition we have

(1.10)
(

u(t), ∂tu(t)
)

∈ D(A) for every t≥ 0

and

(1.11)
∥

∥

(

∂tu(t), ∂
2
t u(t)

)∥

∥

H
≤

∥

∥

(

ϕ2, ∆ϕ1− af(ϕ2)
)∥

∥

H
, a.e. t ≥ 0 .

Theorem 2.

(1) p = 1. For every ϕ in H, the problem (1.1) admits a unique solution u

verifying (1.7) and (1.9).

(2) 1 ≤ p ≤ d
d−2 . For every ϕ in G, the problem (1.1) admits a unique solu-

tion u verifying (1.7) and (1.9). In addition we have

(1.12)
(

u(t), ∂tu(t)
)

∈ G, for every t≥ 0 .
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Let

(1.13) X =

{

H if p = 1 ,

G if p > 1 .

For every t ∈ R+, we define the evolution operator U(t) by

U(t) : X −→ X
(ϕ1, ϕ2) 7−→ U(t)(ϕ1, ϕ2) =

(

u(t), ∂tu(t)
)

where u is the solution of (1.1). (U(t))t∈R+ forms a one parameter semi-group onX.

Moreover, for every ϕ ∈X, the map

R+ → H
t 7→ U(t)ϕ

is continuous.

Take D0 > 0 and denote by

(1.14) BH(D0) =
{

ϕ ∈ H; ‖ϕ‖H <D0

}

and

(1.15) BD(A)(D0) =
{

ϕ ∈ D(A); ‖ϕ‖2
H +

∥

∥

(

ϕ2, ∆ϕ1− af(ϕ2)
)∥

∥

2

H
< D2

0

}

.

We come now to the main result of this paper.

Theorem 3. Let R > 0 and TR > 0, such that
(

{x ∈ Ω; a(x)> 0}, TR
)

satisfies the exterior geometric condition on BR. Then for every D0 > 0

(1) p = 1. There exist c > 0 and δ > 0 such that inequality

ER(u)(t) ≤ c e−δt‖ϕ‖2
H , t ≥ 0 if r= 1 ,

ER(u)(t) ≤
(

‖ϕ‖1−r
H + c(t−T )

)− 2
r−1

, t ≥ T = TR + 9R if r > 1 ,

holds for every solution u of (1.1), if the initial data ϕ ∈ BH(D0) and

is supported in BR.

(2) 1 < p < d
d−2 . There exists c > 0 such that inequality

ER(u)(t) ≤
(

‖ϕ‖
2(1−s)
H + c(t−T )

)− 1
s−1

, t ≥ T = TR + 9R ,

holds for every solution u of (1.1), if the initial data ϕ ∈ BD(A)(D0) and

is supported in BR, with

s = max

(

r+1

2
,
(d+2) − p(d−2)

2
(

d− p(d−2)
)

)

.
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Remark 1.1. This theorem is a local stabilization result. The constant c

depends on the ball BH(D0) or BD(A)(D0) in which we choose the initial data.

However, it is uniform on every ball. The question of the existence of a global

decay rate, is still open.

The tools used in the proof are of microlocal nature and essentially inspired

from [1] and [4]. We first built a nonlinear Lax–Phillips semi-group Z(t) which

characterizes the local energy and operates on a smooth subspace of the energy

space. Using then microlocal defect measures we obtain an a priori estimate on

the norm of Z(t) which yields the desired decay of the local energy.

The rest of this article is organized as follows.

2. Proof of Theorems 1 and 2

3. Rate of decay of the local energy

3.1. Lax–Phillips theory

3.2. Reduction to an a priori estimate

3.3. Proof of Theorem 3

2 – Proof of Theorems 1 and 2

2.1. Proof of Theorem 1

To prove this result we use the nonlinear version of Hille–Yosida Theorem.

Let Ã : D(Ã)⊂H → H the operator defined by

Ã

(

u
v

)

=

(

v
∆u− a(x)f(v)

)

,

with domain

D(Ã) =
{

ϕ ∈ H; ϕ2 ∈ HD(Ω), ∆ϕ1− a(x)f(ϕ2) ∈ L2(Ω)
}

.

We remark that by virtue of the continuity of the embedding HD(Ω) →֒ Lqloc(Ω)

for 1 ≤ q ≤
2d

d− 2
, we have

D(Ã) = D(A) .

So if we set v = ∂tu (u the solution of (1.1)) then formally we have

d

dt

(

u
v

)

= Ã

(

u
v

)

,

(

u
v

)

∈ D(A) .
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According to [2, Chapter 3, p. 118], it is clear that in order to prove that the

system (1.1) with initial data ϕ = (ϕ1, ϕ2) in D(A), admits a unique solution u

verifying (1.7), (1.10) and (1.11), it suffices to prove that Ã is a maximal dissipa-

tive operator in H. f is a nondecreasing function then Ã is dissipative. Indeed

〈

Ã

(

u
v

)

− Ã

(

u1

v1

)

,

(

u
v

)

−

(

u1

v1

)〉

= −

∫

Ω
a(x)

(

f(v)−f(v1)
)

(v−v1) dx ≤ 0 .

To prove that Ã is maximal, we need to show that, for every h ∈ H the equation

Ã

(

u
v

)

−

(

u
v

)

=

(

h1

h2

)

= h .

admits a solution

(

u
v

)

in D(A). Equivalently, for every h1 ∈ HD(Ω) and

h2 ∈ L2(Ω) there exists u and v in HD(Ω) such that ∆u ∈ L2(Ω) and v ∈ L2(Ω)

verifying the system

{

u = v − h1 in D′(Ω) ,

∆v − v − a(x)f(v) = ∆h1 + h2, in D′(Ω) .

In other words, it is sufficient to show that, there exist v in H1
0 (Ω) = HD(Ω)∩

L2(Ω) such that

(2.1)

∫

Ω
∇v∇χ+ vχ dx +

∫

Ω
a(x)f(v)χ dσ =

∫

Ω
∇h1∇χ− h2χ dx .

for every χ in H1
0 (Ω). Now we prove (2.1). Let

A1 : H1
0 (Ω) −→ H−1(Ω)

v 7−→ A1v

defined by

∀ϕ ∈ H1
0 (Ω) ,

〈

A1v, ϕ
〉

H−1(Ω),H1
0 (Ω)

=

∫

Ω
∇v∇ϕ dx .

and
B : H1

0 (Ω) −→ H−1(Ω)
v 7−→ Bv

defined by

∀ϕ ∈ H1
0 (Ω) ,

〈

Bv, ϕ
〉

H−1(Ω),H1
0 (Ω)

=

∫

Ω
a(x)f(v)ϕ dx .
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Thus (2.1) is equivalent to I+A1 +B is onto. We have

•
〈

(I+A1 +B)v, v
〉

H−1(Ω),H1
0 (Ω)

= ‖v‖2
H1

0 (Ω) +

∫

Ω
a(x)f(v) v dx ≥ 0 .

•

〈

(I+A1 +B)v, v
〉

H−1(Ω),H1
0 (Ω)

‖v‖H1
0 (Ω)

−−−−−−−−−→
‖v‖

H1
0(Ω)

→+∞
+ ∞ .

These properties means that the operator I+A1+B is monotone and coercive,

in addition it is clear that I+A1 +B : H1
0 (Ω) → H−1(Ω) is hemicontinuous (1).

Using then [2, Chapter 2, Theorem 1.3, p. 40] we deduce that I+A1 +B is onto.

Finally, multiplying the equation by ∂tu and integrating by part we obtain

(1.9).

2.2. Proof of Theorem 2

(1) We remind that p = 1. Let ϕ ∈ H, then there exists a sequence (ϕn) in

D(A) such that ϕn converges strongly to ϕ inH. Let (U(t)ϕn) = (un(t), ∂tun(t)).

Using the fact that f is a nondecreasing function and the classical energy estimate,

we deduce that (un, ∂tun) is a Cauchy sequence in C(R+; HD(Ω)×L2(Ω)). Then

there exists

(u, v) ∈ C
(

R+; HD(Ω)×L2(Ω)
)

such that

(un, ∂tun) −→
n→+∞

(u, v) in C
(

R+; HD(Ω)×L2(Ω)
)

.

Then, for every χ ∈ C∞
0 (Ω) and t ≥ 0

〈

u(t), χ
〉

L2(Ω)
=

〈

ϕ1, χ
〉

L2(Ω)
+

∫ t

0

〈

v(s), χ
〉

L2(Ω)
ds

so
〈

∂tu(t), χ
〉

L2(Ω),L2(Ω)
=

〈

v(t), χ
〉

L2(Ω),L2(Ω)
,

which yields

(2.2) (un, ∂tun) −→
n→+∞

(u, ∂tu) in C
(

R+; HD(Ω)×L2(Ω)
)

.

(1.9) gives

(2.3)

∫ t

0

∫

Ω
a(x)f(∂tun(t, x)) ∂tun(t, x) dx dt ≤ ‖ϕn‖

2
H ,

(1) We say that C is hemicontinuous on H1
0 (Ω) if D(C) = H1

0 (Ω) and C(x+ ty) ⇀
t→0

C(x)

weakly in H1
0 (Ω).
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for every T ≥ 0. Using (1.2), (1.3) and (2.3), we deduce that af(∂tun) is bounded

in L2([0, T ]×Ω), for every T ≥ 0. Then there exists ψ in L2([0, T ]×Ω) such that

af(∂tun) ⇀
n→+∞

ψ weakly in L2([0, T ]×Ω) .

On the other hand, using (2.2), (1.3) and (1.2) we obtain

(2.4) af(∂tu) ∈ L2([0, T ]×Ω) .

In order to finish the proof of the existence, it remains to show that ψ = af(∂tu)

a.e. on [0, T ]×Ω.

The classical energy estimates gives

lim
n→+∞

∫ t

0

∫

Ω
a(x)f(∂tun) ∂tun dx ds =

∫ t

0

∫

Ω
ψ ∂tu dx ds ,

which yields

lim
n→+∞

∫ t

0

∫

Ω
a(x)

(

f(∂tun) − f(φ)
)

(∂tun− φ) dx ds =(2.5)

=

∫ t

0

∫

Ω

(

ψ − a(x)f(φ)
)

(∂tu− φ) dx ds

for every t ∈ [0, T ] and φ ∈ L2([0, T ]×Ω). Using the fact that f is monotone,

we obtain:

(2.6)

∫ T

0

∫

Ω

(

ψ − a(x)f(φ)
)

(∂tu− φ) dx ds ≥ 0 , ∀φ ∈ L2([0, T ]×Ω) .

Taking φ = ∂tu− λξ, λ> 0, ξ ∈ L2([0, T ]×Ω) in (2.6) we obtain

λ

∫ T

0

∫

Ω

(

ψ − a(x)f(∂tu− λ ξ)
)

ξ dx ds ≥ 0 ,

for every ξ ∈ L2([0, T ]×Ω) and λ> 0. So

∫ T

0

∫

Ω

(

ψ − a(x)f(∂tu− λ ξ)
)

ξ dx ds ≥ 0 ,

then letting λ→ 0

∫ T

0

∫

Ω

(

ψ − a(x)f(∂tu)
)

ξ dx ds ≥ 0 , ∀ ξ ∈ L2([0, T ]×Ω) ,

and the result follows.
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Uniqueness of the solution.

Let u1 and u2 two solutions of the problem (1.1), with the same initial data

ϕ in H. For w = u1− u2, we can write















∂2
tw − ∆w = −a(x)

[

f(∂tu1) − f(∂tu2)
]

in R+×Ω ,

w = 0 on R+×Γ ,

w(0, x) = 0 and ∂tw(0, x) = 0 .

Hence

E(w)(t) = −

∫ t

0

∫

Ω
a(x)

[

f(∂tu1) − f(∂tu2)
]

∂t(u1− u2) dx ds ≤ 0

since f is monotone; then w = 0.

(2) We remind that 1≤ p ≤ d
d−2 . Let ϕ in G, then there exist ψ in D(A)

and χ in DR
+, such that ϕ = ψ + χ.

Let v and w verifying











∂2
t v − ∆v + a(x)f(∂tv) = 0 in R+×Ω ,

v = 0 on R+×Γ ,

v(0, x) = ψ1 and ∂tv(0, x) = ψ2 ,











∂2
tw − ∆w = 0 in R+×Ω ,

w = 0 on R+×Γ ,

w(0, x) = χ1 and ∂tw(0, x) = χ2 .

Since χ∈DR
+, Supp a(x)f ⊂ BR and using the fact that UL(t) operates on DR

+

(see [15]), we obtain

(2.7) a(x)f(∂tv) = a(x)f
(

∂t(v+w)
)

.

So u = v + w is a solution of (1.1). It is then clear that u satisfies (1.7) and
(

u(t), ∂tu(t)
)

∈ G for every t ≥ 0.

Finally, for the uniqueness we argue as in the case p = 1.

2.3. Some properties of the solutions of the system (1.1)

In this section we give several properties of the solutions of (1.1), usefull in

the sequel.



LOCAL ENERGY DECAY 49

Corollary 2.1. Let ϕ ∈ G and (ψ, χ) ∈ D(A)×DR
+, such that ϕ = ψ + χ.

We have

(2.8) U(t)ϕ = U(t)ψ + UL(t)χ , for all t ≥ 0 .

and

(2.9)
∥

∥

∥

d

dt
U(t)ϕ

∥

∥

∥

2

H(BR+t)
≤

∥

∥

(

ψ2, ∆ψ1− af(ψ2)
)
∥

∥

2

H
a.e. t ≥ 0 .

Proof: Let ϕ ∈ G then there exists (ψ, χ) ∈ D(A)×DR
+, such that ϕ = ψ+χ.

From the proof of the existence of the solutions of (1.1), we have

U(t)ϕ = U(t)ψ + UL(t)χ , for all t ≥ 0 .

On the other hand, UL(t)χ ∈ DR
+, for all t ≥ 0 then

U(t)ϕ = U(t)ψ in BR+t ∩ Ω .

Using then (1.11), we obtain (2.9).

In the sequel we denote U(t)ϕ =
(

u(t), ∂tu(t)
)

the solution of the system (1.1)

with initial data ϕ.

Proposition 2.1.

(1) For every ϕ ∈ X, we have

∥

∥a ∂tu
∥

∥

L2([0,T ]×Ω)
≤(2.10)

≤ C
(

‖a‖L∞ , T
)

[

∥

∥af(∂tu) ∂tu
∥

∥

1/2

L1([0,T ]×Ω)
+

∥

∥af(∂tu) ∂tu
∥

∥

1
r+1

L1([0,T ]×Ω)

]

for every T ≥ 0.

(2) For every ϕ ∈ G, we have

∥

∥af(∂tu)
∥

∥

L2([0,T ]×Ω)
≤(2.11)

≤ C
(

‖a‖L∞ , T,R
)

[

∥

∥af(∂tu) ∂tu
∥

∥

1
r+1

L1([0,T ]×Ω)

+
∥

∥af(∂tu) ∂tu
∥

∥

(d−p(d−2))
(d+2)−p(d−2)

L1([0,T ]×Ω)
ess sup

[0,T ]

∥

∥∇∂tu(t, ·)
∥

∥

d(p−1)
(d+2)−p(d−2)

L2(BR∩Ω)

]

for every T ≥ 0.
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(3) p = 1. For every ϕ ∈ H, we have

∥

∥af(∂tu)
∥

∥

L2([0,T ]×Ω)
≤(2.12)

≤ C
(

‖a‖L∞ , T
)

[

∥

∥af(∂tu) ∂tu
∥

∥

1
r+1

L1([0,T ]×Ω)
+

∥

∥af(∂tu) ∂tu
∥

∥

1
2

L1([0,T ]×Ω)

]

for every T ≥ 0.

Proof: Throughout this proof we use the following notations

Q1 =
{

(t, x) ∈ [0, T ]×Ω; |∂tu(t, x)| ≤ 1
}

, Q2 =
(

[0, T ]×Ω
)

\Q1 .

(1) (1.2) gives

|s| ≤

(

1

c1

)
1

r+1
(

f(s)s
)

1
r+1 , pour |s| ≤ 1 ,

which yields

∫

Q1

|a(x) ∂tu|
2 dx dt ≤

(

1

c1

)
2

r+1
∫

Q1

a2(x)
(

f(∂tu) ∂tu
)

2
r+1 dx dt .

Then using Hölder inequality we obtain

∫

Q1

|a(x) ∂tu|
2 dx dt ≤ C

(

‖a‖L∞ , T,R
)

(
∫

[0,T ]×Ω
a(x)f(∂tu) ∂tu dx dt

)
2

r+1

.

On the other hand, (1.3) gives

∫

Q2

|a(x) ∂tu|
2 dx dt ≤ C

(

‖a‖L∞

)

∫

[0,T ]×Ω
a(x)f(∂tu) ∂tu dx dt

and the result follows.

(2) (1.2) gives

|f(s)| ≤ c
1

r+1

2

(

f(s)s
)

1
r+1 , for |s| ≤ 1 ,

so
∫

Q1

∣

∣a(x)f(∂tu)
∣

∣

2
dx dt ≤ C

2
r+1

2

∫

Q1

(

a(x)
)2 (

f(∂tu) ∂tu
)

2
r+1 dx dt .
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Then using Hölder inequality we obtain

∥

∥af(∂tu)
∥

∥

L2([0,T ]×Q1)
≤ C

(

‖a‖L∞ , T,R
)
∥

∥af(∂tu) ∂tu
∥

∥

1
r+1

L1([0,T ]×Ω)
.(2.13)

Let 0< θ≤ 1, such that
1

2
=

θp

p+1
+
p(d−2) (1−θ)

2 d
. We have

∥

∥af(∂tu)
∥

∥

L2(Q2)
≤ C

(

‖a‖L∞
)∥

∥a
p

p+1 f(∂tu)
∥

∥

θ

L
p+1

p (Q2)

∥

∥f(∂tu)
∥

∥

(1−θ)

L
2d

p(d−2) (([0,T ]×BR)∩Q2)
.

On the other hand (1.3), gives

|f(s)|
2d

p(d−2) ≤ c
2d

d−2

4 |s|
2d

d−2 , for |s|> 1 .

and

|f(s)|
p+1

p ≤ c
1
p

4

(

f(s)s
)

, for |s|> 1 .

So

∥

∥af(∂tu)
∥

∥

L2(Q2)
≤ C

(

‖a‖L∞
)
∥

∥af(∂tu) ∂tu
∥

∥

(d−p(d−2))
(d+2)−p(d−2)

L1([0,T ]×Ω)

∥

∥∂tu
∥

∥

(1−θ)p

L
2d

(d−2) ([0,T ]×(BR∩Ω))
.

The continuity of the embedding H1
0 (Ω) →֒ Lrloc(Ω) for 2 ≤ r ≤

2d

d−2
, gives

∥

∥af(∂tu)
∥

∥

L2(Q2)
≤(2.14)

≤ C
(

‖a‖L∞ , T,R
) ∥

∥af(∂tu) ∂tu
∥

∥

(d−p(d−2))
(d+2)−p(d−2)

L1([0,T ]×Ω)
ess sup

[0,T ]

∥

∥∇∂tu(t, ·)
∥

∥

d−dp

dp−2p−d−2

L2(BR∩Ω)
.

Combining then (2.13) and (2.14) we obtain (2.11).

(3) Taking p = 1 in (2.14), we obtain

∥

∥af(∂tu)
∥

∥

L2(Q2)
≤ C

(

‖a‖L∞ , T
)
∥

∥af(∂tu) ∂tu
∥

∥

1
2

L1([0,T ]×Ω)
.

The result then follows from (2.13).

3 – Rate of decay of the local energy

3.1. Lax–Phillips theory

3.1.1. Definitions and preliminary results

Let us consider the free wave equation

(3.1)

{

∂2
t u− ∆u = 0 in R×R

d ,

u(0, ·) = ϕ1 , ∂tu(0, ·) = ϕ2 .
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We recall that the solution of (3.1) is given by the propagator

(3.2) U0(t) : H0 ∋ ϕ = (ϕ1, ϕ2) → U0(t)ϕ = (u, ∂tu) ∈ H0 .

Following Lax and Phillips, we denote:

D0
+ =

{

ϕ= (ϕ1, ϕ2) ∈ H0 ; U0(t)ϕ = 0 on |x|< t, t≥ 0
}

the space of outgoing data, and

D0
− =

{

ϕ= (ϕ1, ϕ2) ∈ H0 ; U0(t)ϕ = 0 on |x|<−t, t≤ 0
}

,

the space of incoming data associated to the solutions of (3.1).

We choose R> 0 such that BR contains the obstacle and the support of

the function a(x).

According to the Lax–Phillips theory, we define spaces of outgoing and

incoming data associated to solutions of problem (1.4) by

DR
+ =

{

ϕ= (ϕ1, ϕ2) ∈ H ; UL(t)ϕ = 0 on |x|< t+R, t≥ 0
}

,(3.3)

DR
− =

{

ϕ= (ϕ1, ϕ2) ∈ H ; UL(t)ϕ = 0 on |x|<−t+R, t≤ 0
}

.(3.4)

We identify H to a subspace of H0 with the help of the following extension

operator

E : H→ H0 : Eϕ =

{

ϕ on Ω ,

0 on R
d\Ω .

Then we remark that the subspaces of outgoing and incoming data associated

to (1.4) coincide respectively with U0(R)D0
+ and U0(−R)D0

−. Moreover, they

satisfy the following properties:

(1) DR
+ and DR

− are closed in H.

(2) DR
+ and DR

− are orthogonal and

(3.5) DR
+ ⊕DR

− ⊕
(

(DR
+)⊥ ∩ (DR

−)⊥
)

= H .

Remark 3.1.

(1) Solutions of (3.1), (1.4) and (1.1) verify the finite speed propagation

property.

(2) The nonlinearity being localized in a ball BR, it’s easy to see that

(3.6) U(t) = UL(t) on DR
+ for every t ≥ 0 .
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(3) Following [15] we denote P+ [resp. P−] the orthogonal projection of H

onto the orthogonal complement of DR
+ [resp. DR

−]. Thanks to (3.5),

it’s clear that

(3.7) P+ϕ ∈ (DR
+)⊥ ∩ (DR

−)⊥ if ϕ ∈ (DR
−)⊥ .

(4) If ϕ ∈ G then P+ϕ ∈ G.

(5) U(t) operates on DR
+ for t≥ 0, so (Supp U(t)ϕ)∩Supp a(x) = ∅ for every

t ≥ 0 and ϕ∈DR
+. Using then the fact that the Cauchy problem admits

a unique solution, we obtain: for every ϕ in X and for every t ∈ R+,

U(t)ϕ = U(t)P+ϕ+ U(t) (I−P+)ϕ(3.8)

= U(t)P+ϕ+ UL(t) (I−P+)ϕ .

3.1.2. Lax–Phillips semi-group

Notation 3.1. We remind that

X =

{

H if p = 1 ,

G if p > 1 .

If p = 1, we denote

NX(ϕ) = ‖ϕ‖H .

If p> 1, we denote

(

NX(ϕ)
)2

= inf
{ψ=(ψ1,ψ2)∈D(A); ∃χ∈DR

+, ϕ=ψ+χ}

{

∥

∥ϕ
∥

∥

2

H
+

∥

∥

(

ψ2, ∆ψ1−af(ψ2)
)
∥

∥

2

H

}

.

We remind thatK= (DR
+)⊥∩(DR

−)⊥, and we define the nonlinear Lax–Phillips

operator on K ∩X by

(3.9) Z(t) = P+ U(t)P− for t ≥ 0 .

In order to prove that Z(t) is a semi-group operating on K∩X, we need the

following lemma.

Lemma 3.1. Let (ϕ,ψ) ∈ X×H, then for every t ≥ 0,

(3.10)
〈

U(t)ϕ,ψ
〉

H
−

〈

ϕ,UL(−t)ψ
〉

H
= −

∫ t

0

〈

af(∂tu(s)), ∂tv(s− t)
〉

L2
ds

where we denoted U(t)ϕ =
(

u(t), ∂tu(t)
)

and UL(t)ψ =
(

v(t), ∂tv(t)
)

.
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Proof: Since UL(t) is a group, it’s clear that (3.10) is equivalent to

〈

U(t)ϕ, UL(t)ψ
〉

H
−

〈

ϕ,ψ
〉

H
= −

∫ t

0

〈

af(∂tu(s)), ∂tv(s)
〉

L2
ds .

By density argument, it suffices to prove the result for (ϕ,ψ) in D(A)×(C∞
0 (Ω))2.

Thanks to Green formula

d

dt

〈

U(t)ϕ, UL(t)ψ
〉

H
=

d

dt

(

〈

∇u,∇v
〉

L2 +
〈

∂tu, ∂tv
〉

L2

)

=
〈

∂2
t u, ∂tv

〉

L2 +
〈

∂tu, ∂
2
t v

〉

L2 −
〈

∂tu,∆v
〉

L2 −
〈

∆u, ∂tv
〉

L2 .

Since u and v verify respectively the system (1.1) and (1.4), with initial data ϕ,

respectively ψ, we obtain

d

dt

〈

U(t)ϕ,UL(t)ψ
〉

H
= −

〈

af(∂tu(t)), ∂tv(t)
〉

L2
,

and the result follows.

Proposition 3.1.
(

Z(t)
)

t≥0
is a semi-group on K∩X. Moreover, for every

ϕ ∈ K ∩X, the map

(3.11)
R+ → H
t 7→ Z(t)ϕ

is continuous.

Proof: Let ϕ ∈ K ∩X, and t ≥ 0. We begin by proving that Z(t)ϕ ∈ K.

Indeed according to (3.7), it suffices to verify that U(t)ϕ ∈ (DR
−)⊥. Let ψ ∈ DR

−,

by Lemma 3.1, we have

〈

U(t)ϕ,ψ
〉

H
−

〈

ϕ,UL(−t)ψ
〉

H
= −

∫ t

0

〈

af(∂tu(s)), ∂tv(s− t)
〉

L2
ds .

where UL(t)ψ =
(

v(t), ∂tv(t)
)

. Since UL(s− t)ψ ∈ DR
− for s≤ t and the support

of a(x) is contained in BR, we obtain

〈

U(t)ϕ,ψ
〉

H
=

〈

ϕ,UL(−t)ψ
〉

H
= 0 .

When X = G, we need also to prove that Z(t)ϕ ∈ G. According to Corollary 2.1

we have

∃ψ ∈ D(A) and χ ∈ DR
+ ; U(t)ϕ = U(t)ψ + UL(t)χ .
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Since P+ is the orthogonal projection of H onto the orthogonal complement of

DR
+

Z(t)ϕ = P+ U(t)ψ

= U(t)ψ + (P+−I)U(t)ψ ,

and the result follows.

Finally, it is clear that for every ϕ in X

Z(t1+ t2)ϕ = Z(t1)Z(t2)ϕ , for every t1, t2 ≥ 0 .

The continuity of Z(t) is a consequence of (1.7).

3.2. Reduction to an a priori estimate

In this section, we prove that the rate of decay of the local energy is equivalent

to an a priori estimate for ‖Z(t)‖H . First we give the following lemma.

Lemma 3.2. Let s ≥ 1 and χ a nonincreasing positive function of C(R,R).

We suppose that there exist T > 0 and c >1, such that

(3.12) χ(t)s ≤ c
(

χ(t) − χ(t+T )
)

, t≥ 0 .

Then

χ(t) ≤
c

c−1
e−( 1

T
log c

c−1
)t χ(0) , t≥ 0 if s= 1 ,

χ(t) ≤

(

χ(0)(1−s) +
s−1

c T
(t−T )

)− 1
(s−1)

, t≥ T if s > 1 .

For the proof of this lemma we refer the interested reader to Nakao [23].

Lemma 3.3. Let ϕ ∈ H (resp. D(A)) with support in BR ∩Ω, then ϕ ∈ K

(resp. ϕ ∈ K ∩G) and

ER(u)(t) ≤ ‖Z(t)ϕ‖2
H , t≥ 0 ,

with U(t)ϕ =
(

u(t), ∂tu(t)
)

.
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Proof: Let ϕ ∈ H (resp. D(A)); Suppϕ ⊂ BR ∩ Ω. By (3.3) and (3.4),

we have,

if ψ ∈DR+ [resp. χ∈DR−] then Suppψ [resp. Suppχ] is contained in R
d\BR ,

which yields immediately, ϕ ∈ K = (DR
+)⊥ ∩ (DR

−)⊥. On the other hand

∀ t ≥ 0 U(t)ϕ = Z(t)ϕ+ (I−P+)U(t)ϕ .

Since the Support of (I−P+)U(t)ϕ is contained in R
d\BR, we obtain

U(t)ϕ = Z(t)ϕ on BR ∩ Ω ,

and

ER(u)(t) ≤ ‖Z(T )ϕ‖2
H .

Take D0 > 0 and denote by

BK
X(D0) =

{

ϕ ∈ X ∩K ; NX(ϕ)<D0

}

.

Remark 3.2.

(1) If ϕ ∈ BD(A)(D0), such that Suppϕ ⊂ BR, then ϕ ∈ BK
G(D0).

(2) (a) It is clear that Z(t)ϕ ∈ BK
H(D0) for all ϕ ∈ BK

H(D0) and t≥ 0.

(b) If ϕ ∈ BK
G(D0) then Z(t)ϕ ∈ BK

G(D0), a.e. t≥ 0.

Indeed, let ϕ ∈ BK
G(D0) then there exists ψ ∈ D(A) such that

‖ϕ‖2
H +

∥

∥

(

ψ2, ∆ψ1− af(ψ2)
)∥

∥

2

H
< D2

0 ,

and

Z(t)ϕ = U(t)ψ + (P+−I)U(t)ψ .

Then using (1.11), we obtain

‖Z(t)ϕ‖2
H +

∥

∥

(

∂tv(t), ∆v(t)− af(∂tv(t))
)
∥

∥

2

H
=

= ‖Z(t)ϕ‖2
H +

∥

∥

∥

d

dt
U(t)ψ

∥

∥

∥

2

H

≤ ‖ϕ‖2
H +

∥

∥

(

ψ2, ∆ψ1− af(ψ2)
)∥

∥

2

H
< D2

0 , a.e. t≥ 0 ,

where we denoted U(t)ψ =
(

v(t), ∂tv(t)
)

.

Finally,
(

NX(Z(t)ϕ)
)

< D0.
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We remind that, we want to find the rate of decay of the local energy for every

solution u of (1.1), if the initial data ϕ ∈ BH(D0) (resp. ϕ ∈ BD(A)(D0)) and is

supported in BR. Thus Lemma 3.3, combined with the first part of Remark 3.2

and Lemma 3.2, shows that it suffices to prove

(3.13) ‖Z(t)ϕ‖2s
H ≤ c

(

‖Z(t)ϕ‖2
H − ‖Z(t+T )ϕ‖2

H

)

for some c > 0, some T > 0, for every t ≥ 0 and for every ϕ in BK
X(D0). On the

other hand, the second part of the Remark 3.1 allows one to apply the semi-group

property for every ϕ in BK
X(D0). Hence it suffices to prove the estimate

(3.14) ‖ϕ‖2s
H ≤ c

(

‖ϕ‖2
H − ‖Z(T )ϕ‖2

H

)

,

for some c > 0, some T > 0 and for every ϕ in BK
X(D0). And this is the a priori

estimate for ‖Z(t)‖H mentioned in the beginning of this section.

3.3. Proof of Theorem 3

In the sequel, we suppose that
(

ω = {x∈Ω; a(x)> 0}, TR
)

verifies the exte-

rior geometric condition on BR.

Let

s = max

(

r+1

2
,

(d+2) − p(d−2)

2
(

d− p(d−2)
)

)

and take T = TR + 9R.

To prove (3.14), we argue by contradiction: We suppose the existence of

a sequence (ϕn)n in BK
X(D0), such that

(3.15) ‖ϕn‖
2s
H > n

(

‖ϕn‖
2
H − ‖Z(t)ϕn‖

2
H

)

, for every t≤ T .

Let un to be the solution of the system (1.1) with initial data ϕn and set

αn = ‖ϕn‖H , vn =
un
αn

.

vn verifies the system

(3.16)



















∂2
t vn− ∆vn + 1

αn
a(x)f(∂tun) = 0 in R+×Ω ,

vn(t, x) = 0 on R+×∂Ω ,
(

vn(0, x), ∂tvn(0, x)
)

=
ϕn
αn

= ψn , ‖ψn‖H = 1 .
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On the other hand, due to (3.15) and (1.9) the sequence (ϕn) satisfies

‖ϕn‖
2s
H ≥ n

∫ T

0

∫

Ω
a(x)f(∂tun(τ, x)) ∂tun(τ, x) dx dτ .

In order to obtain a contradiction we need the following results

Proposition 3.2. Let (ϕn)n ∈ BK
X(D0) satisfying

(3.17) ‖ϕn‖
2s
H ≥ n

∫ T

0

∫

Ω
a(x)f(∂tun(τ, x)) ∂tun(τ, x) dx dτ

where un denotes the solution of the system (1.1) with initial data ϕn. Set

αn = ‖ϕn‖H , vn =
un
αn

.

Then

(3.18)
∥

∥

∥

1

αn
a(x)f(∂tun)

∥

∥

∥

L2([0,T ]×Ω)
−→

n→+∞
0 ,

and there exists a subsequence of (Vn) = ((vn, ∂tvn)), still denoted (Vn)n that

converges weakly-* to V = (v, ∂tv) in L∞
(

[0, T ], (DR
−)⊥

)

. Moreover

(3.19) P+ Vn(TR + 9R) → P+ V (TR + 9R) in H .

First we finish the proof of Theorem 3, then we give the proof of the Propo-

sition 3.2.

By Proposition 3.2 there exists a subsequence of (Vn) = ((vn, ∂tvn)) still

denoted (Vn), that converges weakly-* to V = (v, ∂tv) in L∞
(

[0, T ], (DR
−)⊥

)

and

verifies (3.18). Passing then to the limit in the system satisfied by vn, we infer

that v the weak limit of (vn), verifies























∂2
t v − ∆v = 0 in ]0, T [×Ω ,

v(t, x) = 0 on ]0, T [×∂Ω ,

∂tv = 0 on ]0, T [×ω ,
(

v(0, x), ∂tv(0, x)
)

= ψ ∈ K ,

where ψ denotes the weak limit of (ψn)n inH. Moreover, V = (v, ∂tv)∈C([0,T ],H)

and

‖V (t)‖H ≤ 1 for every t ∈ [0, T ] .
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On the other hand, it is clear that (3.15) gives

(3.20) 0 ≤ 1 − ‖P+Vn(t)‖
2
H ≤

D
2(s−1)
0

n
for t ≤ T .

Now using (3.19) and then passing to the limit in (3.20), we conclude by the

classical energy estimate that there exists ψ in K such that

(3.21)

{

‖P+V (t)‖H = ‖P+UL(t)ψ‖H = ‖ψ‖H = 1 , for t ≤ T ,

∂tv = 0 , on ]0, T [×ω

}

and this is in contradiction with the following lemma [1, Lemma 5.1].

Lemma 3.4. The space
{

ψ ∈ K; ‖P+UL(t)ψ‖H = ‖ψ‖H ∀ t≤ T, ∂tv = 0, on ]0,T [×ω

}

is reduced to the null vector.

This finishes the proof of Theorem 3.

Proof of Proposition 3.2: vn verifies the system


















∂2
t vn− ∆vn + 1

αn
a(x)f(∂tun) = 0 in R+×Ω ,

vn(t, x) = 0 on R+×∂Ω ,
(

vn(0, x), ∂tvn(0, x)
)

=
ϕn
αn

= ψn , ‖ψn‖H = 1 ,

and satisfies the energy identity:

E(vn)(t) − E(vn)(0) = −α−2
n

∫ t

0

∫

Ω
a(x)f(∂tun) ∂tun dx dτ , t ≥ 0 .

This estimate allows one to show that the sequence
(

Vn = (vn, ∂tvn)
)

n
is bounded

in C
(

[0, T ], (DR
−)⊥

)

; then it admits a subsequence, (Vn)n that converges weakly-*

to V = (v, ∂tv) in L∞
(

[0, T ], (DR
−)⊥

)

. In this way,

Vn(t) ⇀ V (t) in H a.e. t ∈ [0, T ] , and ess sup
[0,T ]

‖V (t)‖H ≤ 1 ,

which yields

(3.22) vn⇀ v in H1
loc

(

[0, T ]×Ω
)

.
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First, we prove (eventually after extracting a subsequence) that

(3.23) vn→ v in H1
loc(K̃(T0)) ,

where T0 = TR + 3R and

(3.24) K̃(T0) =
{

(t, x) ∈ R+×Ω ; |x|< t−T0 +R, T0 ≤ t≤ T
}

.

For that, we use the notion of microlocal defect measures. These measures were

introduced by P. Gérard in [9], [10]. They propagate along generalized bichar-

acteristics of the wave operator under Dirichlet condition on the boundary (G.

Lebeau [16]).

(3.22) allows one to associate to the sequence (vn− v)n a microlocal defect

measure µ in H1
loc([0, T ]×Ω). So in order to obtain (3.23), we have to show that

µ = 0 on K̃(T0).

Let wn be the solution of the system

(3.25)















∂2
twn − ∆wn = 0 in R+×Ω ,

wn(t, x) = 0 on R+×Ω ,
(

wn(0, x), ∂twn(0, x)
)

=
ϕn
αn

= ψn .

Then the sequence (vn− wn) verifies

(3.26) sup
0≤t≤T

E1/2(vn− wn)(t) ≤ C(T )
∥

∥

∥

1

αn
a(x)f(∂tun)

∥

∥

∥

L2([0,T ]×Ω)
.

Now using (3.17) and (2.12) (resp. (2.11) and (2.9)) when X = H (resp. X = G),

we get

(3.27)
∥

∥

∥

1

αn
a(x)f(∂tun)

∥

∥

∥

L2([0,T ]×Ω)
≤ C(D0, T )

(

1

n

)
1
2s

−→
n→+∞

0 ,

which yields

sup
0≤t≤T

E(vn− wn)(t) −→
n→+∞

0 ,

and this means in particular that (vn− wn) −→
n→+∞

0 in H1
loc([0, T ]×Ω). (vn)n is

then a “linearizable” sequence according to the terminology of P. Gérard [10].
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From this we deduce these two properties of the microlocal defect measure µ:

• The support of µ is contained in the characteristic set of the wave operator
{

(t, x, τ, ξ); τ2 = |ξ|2
}

(2).

• µ propagates along the bicharacteristic flow of the d’Alembertian on

[0, T ]×Ω (3).

Let q ∈ T ∗(K̃(T0)), and γ a generalized bicharacteristic issued from q.

To prove that µ = 0 near q, we argue as Aloui–Khenissi [1]. We are in one of

the following situations:

1stcase: γ traced backwards in time, does not meet ∂Ω or meets ∂Ω at t0>2R.

Consequently, γ0 = γ/t=0 /∈ BR. The support of a(x) is contained in BR, then

vn = zn near γ0, which gives µ = µ0 near γ0, where
(

zn(t), ∂tzn(t)
)

= U0(t)ψn
and µ0 is the microlocal defect measures associated to the sequence (zn− z)

in H1
loc([0, T ]×Ω) where

(

z(t), ∂tz(t)
)

= U0(t)ψ, ψ the weak limit of ψn (4).

On the other hand (ψn−ψ)∈ (DR
−)⊥, then using the translation representation

of the free wave equation (see [15, Chapter 3]), we obtain U0(t)(ψn− ψ) = 0

in
{

(t, x) ∈ R+×R
d; |x|< t−R, 2R≤ t

}

, so µ0 = 0 near

q′ =

{

q 1st subcase ,

γ(t1) 2nd subcase ,

with t1≤ t0 and γ(t1) ∈ T ∗
({

(t, x) ∈ R+×R
d; |x| ≤ t−R, 2R< t

})

. Therefore

by propagation of the support of µ0, we deduce that µ0 = 0 near γ0, which

gives µ0 = µ = 0 near γ0. Then µ = 0 near q, by propagation of the support

of µ.

2ndcase: γ meets ∂Ω at t0 ≤ 2R and there exists t1 such that γ(t1) ∈ BR
and t1− t0 > TR.

Using (2.10) and (3.17), it is clear that

(3.28)
∥

∥a ∂tvn(t, x)
∥

∥

L2([0,T ]×Ω)
≤ C(D0)

(

1

n

)
1

r+1

−→
n→+∞

0 ,

(2) This is known as elliptic regularity theorem of the microlocal defect measure and is a
direct consequence of the fact that ∂2

t vn− ∆vn −→
n→+∞

0 in L2([0, T ]×Ω).

(3) If some point ω0 of a generalized bicharacterestic γ is not in supp(µ), then γ∩ supp(µ) = ∅.
(4) ‖ψn‖H ≤ 1 then due to the classical energy estimate the sequence (zn− z) is bounded in

C([0, T ], H0), which allows us to attach to the sequence (zn− z) a microlocal defect measure.
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we remind that ω =
{

x ∈ Ω; a(x)> 0
}

, then

∂t(vn− v) −→
n→∞

0 in L2
(

[0, T ]×ω
)

,

and since the Support of µ is contained in
{

(t, x, τ, ξ); τ2 = |ξ|2
}

, then µ = 0

on [0, T ]×ω. Finally, the condition (C.G.E.) implies that γ meets the region

[0,T0]×ω. By the propagation of the support of µ, we infer that µ= 0 near q.

Then after extracting a subsequence and using (3.27) and the hyperbolic

energy inequality, we obtain

(3.29) Vn(TR + 7R) → V (TR + 7R) in H(B5R ∩ Ω) .

To finish the proof, we need the following lemma

Lemma 3.5. Let M = U(2R) − U0(2R), ML = UL(2R) − U0(2R).

(1) ∀ f ∈H, we have

SuppMLf ⊂ B3R and ‖MLf‖H0 ≤ 2‖f‖H(B5R∩Ω) .

(2) ∀ (f, g) ∈ X×H, ∀λ 6= 0

(3.30)
∥

∥

∥

1

λ
Mf −MLg

∥

∥

∥

H0

≤
∥

∥

∥

1

λ
af(∂tu)

∥

∥

∥

L1((0,2R),L2(Ω))
+ 2

∥

∥

∥

1

λ
f − g

∥

∥

∥

H(B5R∩Ω)
,

where
(

u(t), ∂tu(t)
)

= U(t)f .

First we finish the proof of the proposition, then we give the proof of the

lemma.

Taking f = U(TR+7R)ϕn, g = V (TR+7R), λ = αn in (3.30), and using

(3.29) and (3.27), we get

(3.31)

∥

∥

∥

∥

1

αn
MU(TR+7R)ϕn −MLV (TR+7R)

∥

∥

∥

∥

H0

−→
n→∞

0 .

On the other hand

Vn(T ) =
1

αn
MU(TR+7R)ϕn +

1

αn
U0(2R)U(TR+7R)ϕn ,

then, by using the translation representation of the free wave equation (see [15]),

we obtain
1

αn
U0(2R) U(TR+7R)ϕn ∈ DR

+ .
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So we deduce that

P+Vn(T ) = P+

(

1

αn
MU(TR+7R)ϕn

)

,

and by (3.31)

P+

(

1

αn
MU(TR+7R)ϕn

)

−→
n→∞

P+MLV (TR+7R) in H0

and the result follows.

Proof of Lemma 3.5:

(1) Let f in H. By the finite speed propagation property

UL(t)f = U0(t)f on |x|> t+R, t≥ 0 ,

then for t = 2R, UL(2R)f = U0(2R)f on |x|> 3R. Using the same property,

it is clear that

‖MLf‖H0 =
∥

∥

(

UL(2R) − U0(2R)
)

f
∥

∥

H0(B3R)

≤ 2 ‖f‖H(B5R) .

(2) Let f in X and g in H. We have

1

λ
Mf −MLg =

1

λ
U(2R)f −

1

λ
UL(2R)f +ML

(

1

λ
f − g

)

then due to the hyperbolic inequality

∥

∥

∥

∥

1

λ
U(2R)f −

1

λ
UL(2R)f

∥

∥

∥

∥

H

≤

∥

∥

∥

∥

1

λ
af(∂tu)

∥

∥

∥

∥

L1((0,2R),L2(Ω))

,

and we conclude using the first part of the lemma.

ACKNOWLEDGEMENTS – The author would like to thanks Professor B. Dehman for

his help. The author also thanks the referees for their helpful comments and suggestions.



64 MOEZ DAOULATLI

REFERENCES

[1] Aloui, L. and Khenissi, M. – Stabilisation de l’équation des ondes dans un
domaine extérieur, Rev. Mat. Iberoamerica, 28 (2002), 1–16.

[2] Barbu, V. – Nonlinear Semigroups and Differential Equations in Banach Spaces,
Noodhoff, Amsterdam.

[3] Bardos, C.; Lebeau, G. and Rauch, J. – Sharp sufficient conditions for the ob-
servation, control, and stabilization of waves from the boundary, SIAM J. Control

Optimization, 30(5) (1992), 1024–1065.

[4] Bchatnia, A. and Daoulatli, M. – Scattering and exponential decay of the
local energy for the solutions of semilinear and subcritical wave equation outside
convex obstacle, Math. Z., 247 (2004), 619–642.

[5] Bellassoued, M. – Decay of solutions of the wave equation with arbitrary local-
ized nonlinear damping, J. Diff. Eq., 211(2), (2005), 303–332.
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