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POSITIVE INTEGERS DIVISIBLE BY THE PRODUCT OF

THEIR NONZERO DIGITS

Jean-Marie De Koninck and Florian Luca

Abstract: Let N0(x) denote the set of positive integers n ≤ x which are divisible

by the product of their nonzero digits. In this note, we show that if x is large, then

x.495 < #N0(x) < x.654.

1 – Introduction

For any positive integer n we write

(1) n = nt−1 nt−2 . . . n0 , ni ∈ {0, . . . , 9}, nt−1 6= 0 ,

for the base 10 representation of n. There are several papers in the literature

in which arithmetic properties of those positive integers n which obey certain

restrictions with respect to their base 10 digits are investigated. For example,

almost primes with missing digits are investigated in [1] and [3], arithmetic prop-

erties of integers with a fixed sum of digits are investigated in [4], [5], [6] and

[7], while Niven numbers, that is positive integers n divisible by the sum of their

digits, are investigated in [2].

In this note, for a positive integer n whose base 10 representation is given by

(1), we write

P0(n) =
∏

0≤i≤t−1
ni 6=0

ni
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and

P(n) =
t−1
∏

i=0

ni .

Note that P0(n) = P(n) whenever n has only nonzero digits, and P(n) is zero

otherwise.

We write N0 and N for the set of all positive integers n such that P0(n) |n

and P(n) |n, respectively. For a subset A of the set of all positive integers,

and for a real x > 1 we write A(x) = A ∩ [1, x]. Observe that #N (x)≤ #N0(x).

In this paper, we give upper and lower estimates for #N (x) and #N0(x).

We have the following results.

Theorem 1.

(i) There exists x0 such that if x > x0, then

x.495 < #N0(x) < x.654 .

(ii) There exists x1 such that if x > x1, then

x.122 < #N (x) < x.618 .

The above theorem shows that if we write

ρ0(x) =
log
(

#N0(x)
)

log x
and ρ(x) =

log
(

#N (x)
)

log x
,

then

.495 ≤ lim inf
x→∞

ρ0(x) ≤ lim sup
x→∞

ρ0(x) ≤ .654 ,

and

.122 ≤ lim inf
x→∞

ρ(x) ≤ lim sup
x→∞

ρ(x) ≤ .618 .

We believe that

(2) lim
x→∞

ρ0(x) = ρ0 and lim
x→∞

ρ(x) = ρ

exist but we do not have any heuristic for precise values for ρ0 and ρ, although

numerical calculations up to x = 1010 seem to indicate that ρ0 ∼ 0.6 and ρ ∼ 0.4.

For a positive integer n we write P (n) for the largest prime factor of n. It is

clear that we can regard both P0 and P as functions from the set of all positive

integers to the set {m : P (m) ≤ 7}. Experimentally, we noted that there is no
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n ∈ N (x) for x = 107 such that P0(n) ∈ {27, 36}. However, when increasing x

to 108 several examples of such n were found. This raised however the question

of whether the function P0 (or P) is surjective when restricted to N0. Note that

it cannot be surjective when restricted to N since if d =P(n) is a multiple of 10,

then n must end in zero, therefore P(n) = 0 contradicting P(n) = d. We show

however that P0 is surjective when restricted to N0.

Proposition 1. The function P0 : N0 −→ {m : P (m)≤ 7} is onto.

We also looked at strings of consecutive integers contained either in N0 or in N.

The answer is contained in the following result.

Proposition 2.

(i) There are no strings of 14 consecutive integers in N0, but there are

infinitely many of 13.

(ii) There are no strings of 4 consecutive integers in N , but there are in-

finitely many of 3.

Most of the results in this paper can be extended to other bases g such that

g is not a power of a prime. We chose to present our results only in the context

of the base 10.

Throughout this paper we write x for a large positive real number. We use

the Vinogradov symbols ≫ and ≪ as well as the Landau symbols with their

usual meanings.

2 – The Proof of Theorem 1

2.1. A preliminary result

Throughout the proof of Theorem 1, we shall use the following fact.

Lemma 1. Let v1, . . . , vℓ > 0 be fixed and u = v1 + · · · + vℓ. Then
(

⌊us⌋
)

!
(

⌊v1s⌋
)

! . . .
(

⌊vℓs⌋
)

!
= exp

(

s

(

u log u −
ℓ
∑

i=1

vi log vi + o(1)

)

)

as s → ∞.

Proof: Follows immediately from Stirling’s formula.
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2.2. Lower bounds

The Case N0. We let α be a constant > 2 to be chosen later. We let s be

a large positive integer and put t = ⌊αs]+s. We set ni = 0 for i = 0, . . . , s−1.

The remaining digits nj for j ∈ {s, . . . , t−1} will be chosen from the set {0, 1, 2, 5}

in such a way that exactly s of them are 2 and exactly s of them are 5. There

are
(

⌊αs⌋
s

)

ways of putting 2 in s locations of the totality of ⌊αs⌋ available lo-

cations, and
(

⌊αs⌋−s
s

)

ways of putting 5 is s of the remaining ⌊αs⌋− s locations.

Finally, there are 2⌊αs⌋−2s ways of filling in the remaining positions with 0 or 1.

This shows that if we write x = 5(10t −1)/9, then every one of the numbers we

have constructed above is in N0(x), therefore with Lemma 1 for ℓ = 3, v1 = v2 = 1

and v3 = α−2, we get

#N0(x) ≥

(

⌊αs⌋

s

)(

⌊αs⌋ − s

s

)

2⌊αs⌋−2s

=

(

⌊αs⌋
)

!

s!2
(

⌊αs⌋ − 2s
)

!
2⌊αs⌋−2s

= exp

(

s

(

α log α − (α−2) log

(

(α−2)

2

)

+ o(1)

)

)

.

Since t =
log x

log 10

(

1+o(1)
)

, we get that s =
log x

(α+1) log 10

(

1+o(1)
)

. Thus,

as x→∞, we get that

#N0(x) ≥ xc(α)+o(1) ,

where

c(α) =
α log α − (α−2) log

(

(α−2)/2
)

(α+1) log 10
.

To find the optimal α, we solve the equation
dc(α)

dα
= 0, getting α = 5.5385 . . . ,

which in turn leads to c(α) = 0.495599 . . . , thus establishing the lower bound of

Theorem 1 (i).

The Case N . For a positive integer k we write

Ak =

{

ak−1 . . . a0 ≡ 0 (mod 2k) : ai ∈ {1, 2, 4}, i = 0, . . . , k−1

}

.

We begin with the following preliminary result.
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Lemma 2. The following estimate holds for all k ≥ 1:

(3) min
{

P(a) : a ∈ Ak

}

≤ 23⌊k/4⌋+6 .

Proof: We shall construct a smaller subset A′
k of Ak formed by all numbers

a = ak−1 . . . a0 such that a0 = 2 and am−1 . . . a0 ∈ Am holds for all 1 ≤ m ≤ k.

Thus, A′
1={2} and A′

2={12}. Assume that m < k and that am= am−1. . . a0 ∈A′
m.

To extend this number to A′
k for k > m, we do the following:

(i) if 2m ||am, we then note that 10m+am ≡ 0 (mod 2m+1). Hence, we may

set am+1 = 1 and am+1 = 1 am . . . a0 and note that am+1 ∈ A′
m+1.

(ii) if 2m+2 |am, we then set am+2 = 2, am+1 = 1 and note that 2·10m+am ≡ 0

(mod 2m+1) and also that 10m+1+2·10m+ am ≡ 0 (mod 2m+2), in which

case am+2 = 12 am . . . a0 ∈ A′
m+2.

(iii) if 2m+1 ||am we can do one of the following:

(1) set am+1 = 4, am+2 = 1. In this case, 4 ·10m +am ≡ 0 (mod 2m+1)

as well as 10m+1 + 4 · 10m + am ≡ 0 (mod 2m+2), so that am+2=

14 am . . . a0 ∈ A′
m+2.

(2) set am+1 = 2, am+2 = 2. In this case, 2 ·10m +am ≡ 0 (mod 2m+1)

as well as 2 ·10m+1+2 ·10m +am ≡ 0 (mod 2m+2), so that am+2 =

22 am . . . a0 ∈ A′
m+2.

Assume that ak is a number constructed by the above process. We shall show

that there exists a choice at (iii) of doing either (1) or (2) in such a way that the

resulting number has the property that the product of its digits fulfills the desired

inequality (3). Note that the last two digits of ak are 12. As we move from am for

some m < k up towards k, we encounter one of the three situations (i), (ii) or (iii)

above. Every time we encounter situation (i), we save a factor of 2 as we used one

digit of 1. Every time we encounter situation (ii), we save one factor of 2 from

2 digits, since we have a group 12. If we encounter (iii) however, we save nothing

as both 14 and 22 have products 22 = 2number of digits. If after encountering (iii),

we encounter either (i) or (ii), then we save a factor of 2 from 4 possible locations.

Thus, let us assume that (iii) appears twice, consecutively, regardless of whether

(1) or (2) is being performed. We claim that this is impossible. Indeed, for

if it were not so, we would conclude that 2m+4 divides both 1414 am . . . a0 and

2222 am . . . a0; hence, their difference (2222−1414)10m. We thus get that 24 |808,

which is false. The above argument shows that as we move from 2 towards k,

we create blocks of consecutive digits of length ℓ ∈ {1, . . . , 4} in ak such that the

product of the digits in any block is 2ℓ−1. This immediately implies inequality (3).
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We are now ready to handle a lower bound for N (x). We let again α > 1/4

to be determined later. We let s be a large positive integer, and as be a num-

ber in As satisfying inequality (3). We let t = ⌊αs⌋+s. We also let n be such that

ni = ai for i = 0, . . . , s−1 and nj ∈ {1, 2} for j ≥ s. Since n ≡ as (mod 2s),

we get that 2s |n. Since P(as) ≤ 23⌊s/4⌋+6, it follows that we can take ⌊s/4⌋− 6

of the digits nj of n for j ≥ s to be 2, and the remaining ones being 1, and the

resulting number belongs to N (x), where x = 2(10t−1)/9. Thus, the number of

such numbers is, by Lemma 1 with ℓ = 2, v1 = 1/4, v2 = α−1/4,

#N (x) ≥

(

⌊αs⌋

⌊s/4⌋ − 6

)

= exp

(

s
(

α log α − 1/4 log(1/4) − (α−1/4) log(α−1/4) + o(1)
)

)

.

Since t =
(

1+o(1)
) log x

log 10
, we get that s =

(

1+o(1)
) log x

(α+1) log 10
. Thus,

#N (x) ≥ xc(α)+o(1) ,

where

c(α) =
α log α − 1/4 log(1/4) − (α−1/4) log(α−1/4)

(α+1) log 10
.

As usual, to encounter the best value for α, we take the derivative of c(α) and

equal it to zero getting α = 1.01989 . . . , which leads to c(α) = 0.122123 . . . , thus

establishing the lower bound in Theorem 1 (ii).

2.3. Upper bounds

The Case N0. We let β and γ be constants in (0, 1) to be determined later.

We let N0,1(x) = {n ≤ x1−β}. Clearly,

(4) #N0,1(x) ≤ x1−β .

We now put y = xγ and set

N0,2(x) =
{

n ≤ x : d |n for some d > y with P (d)≤ 7
}

.

Fix n ∈ N0,2(x). Then there exists d > y with P (d) ≤ 7 such that d |n. For a

fixed d, there are at most x/d such values for n. Since A(t) = Ψ(t, 7) = {n ≤ t :
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P (n)≤ 7} satisfies #A(t)≪ (log t)4, we get, by summing over all the acceptable

values of d, that

#N0,2(x) ≤
∑

d>y
P (d)≤7

x

d
≤ x

∫ x

y

dA(t)

t
≪

A(y)

y
+

∫ x

y

(log t)4

t2
dt

≪
x(log x)4

y
= x1−β+o(1) .

From now on, we assume that n ∈ N0,3(x) = N0(x) \
(

N0,1(x) ∪ N0,2(x)
)

.

Then P0(n) ≤ xγ = 2γ log x/ log 2. Thus, n can have at most γ log x/ log 2 digits

distinct from 0 or 1. Since n > x1−β , it follows that n has at least

⌊

(1−β)
log x

log 10

⌋

+ 1 −
γ log x

log 2
> δ log x

digits equal to either zero or 1, where

δ =
1 − β

log 10
−

γ

log 2
.

Since the totality of digits of n does not exceed ⌊log x/ log 10⌋+ 1, we get, by

Lemma 1 with ℓ = 2, v1 = δ, v2 = 1/ log 10 − δ, that

#N0,3(x) ≤

(

⌊log x/ log 10⌋ + 1

⌊δ log x⌋

)

2⌊δ log x⌋ 10⌊log x/ log 10⌋−⌊δ log x⌋+1

= exp

(

log x

(

1

log 10
log

(

1

log 10

)

− δ log δ(5)

−

(

1

log 10
− δ

)

log

(

1

log 10
− δ

)

+ δ log 2 + 1 − δ log 10 + o(1)

)

)

.

Comparing (4) with (5), we see that we should take β = γ, therefore δ = 1 −

β (1/ log 10 + 1/ log 2). Imposing that also #N0,3(x) ≤ x1−β+o(1), we are led

to solve the equation

1 − β =
1

log 10
log

(

1

log 10

)

− δ log δ −

(

1

log 10
− δ

)

log

(

1

log 10
− δ

)

+ δ log 2 + 1 − δ log 10 ,
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with δ = 1 − β (1/ log 10 +1/ log 2), which gives β = 0.3467 . . . , and therefore

leads to #N0(x)< x.6533 if x is sufficiently large, which yields the upper bound

in Theorem 1 (i).

The Case N (x). We follow the same procedure as before. We let N1(x) =

N0,1(x) ∩N (x) and N2(x) = N0,2(x) ∩N (x). Certainly,

#N1(x) ≤ x1−β and #N2(x) ≤ x1−γ+o(1) .

If we now put N3(x) = N (x)\
(

N1(x) ∪N2(x)
)

, we get that any n ∈ N3(x) has

at least δ log x digits equal to 1. The same argument as before now shows that

#N3(x) ≤

(

⌊log x/ log 10⌋ + 1

⌊δ log x⌋

)

9⌊log x/ log 10⌋−⌊δ log x⌋+1

= exp

(

log x

(

1

log 10
log

(

1

log 10

)

− δ log δ

−

(

1

log 10
− δ

)

log

(

1

log 10
− δ

)

+ log 9/ log 10 − δ log 9 + o(1)

)

)

.

Taking again β = γ, we are led to solve the equation

1 − β =
1

log 10
log

(

1

log 10

)

− δ log δ −

(

1

log 10
− δ

)

log

(

1

log 10
− δ

)

+ log 9/ log 10 − δ log 9 ,

again with δ = 1−β (1/log10+1/log 2), which gives β = .38276 . . . , and therefore

leads to #N (x) < x.618 if x is sufficiently large, which yields the upper bound in

Theorem 1 (ii).

3 – The Proofs of the Propositions

Proof of Proposition 1: Let d = 2a 3b 5c 7d. We put f = max{a, c} and

n = m 10f , where m is coprime to 10. It is clear that P0(n) = P0(m) and n is a

multiple of 2a5c. Thus, it remains to show that we can choose m to be a multiple

of M = 3b7d such that it has a digits 2, b of 3, c of 5, d of 7, and the remaining

0 and 1. We search for m of the form

m =
t−1
∑

ℓ=0

aℓ 10ℓφ(M) ,
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where φ is Euler’s totient function and aℓ ∈ {1, 2, 3, 5, 7} are such that a of them

are 2, b of them are 3, c of them are 5, and d of them are 7. Assume that

s = t−a− b− c−d of them are 1. Then, by Euler’s Theorem,

m ≡ 2a + 3b + 5c + 7d + s (mod M) .

Thus, it suffices to choose s > 0 such that 2a + 3b + 5c + 7d + s is a multiple

of M . The condition s > 0 insures that we may choose a0 = 1 so m is coprime

to 10. It is now clear that if m is chosen as shown above, then n = m 10f ∈ N0.

Proof of Proposition 2: (i) No number of the form . . . a4 or . . . a8, where

a is an odd digit, can belong to N0, as such numbers are not divisible by 4 but the

product of their digits is. This shows that any string of consecutive integers in

N is either contained in an interval of length 15 starting with m = . . . a9, where

a is odd, or in an interval of length 3 starting with m = . . . a5, where a is odd.

We analyze only the first situation. If the string of consecutive integers in N0

starts with m, then it cannot contain m+10, because both these numbers end

in 9 but not both of them can be multiples of 9. So, any string of consecutive

integers in N0 containing m can have length at most 10. A similar argument

can be used to deduce that any string of consecutive integers in N0 ending in

m + 14 = . . . 3, cannot contain m + 4 (which ends also with 3), therefore it can

have length at most 10. Hence, either the string has length at most 10, or is

contained in {m+1, . . . , m+13}. It remains to show that there are infinitely

many m such that this last string has all its members in N0. We choose

n = 11 . . . 1000 ,

where the string of 1’s is of length ℓ = 18 k for some k ≥ 1. It is clear that

n, n + 1, n + 2, n + 4, n + 5, n + 8, n + 10, n + 11, n + 12 are all in N0.

Since the number of 1’s is a multiple of 9, it is also clear that n + 3, n + 6, n + 9

are also in N0. Finally, since the number of 1’s is a multiple of 7, one checks

using Euler’s Theorem that

n + 7 = 103

(

10ℓ − 1

9

)

+ 7 ≡ 0 (mod 7) ,

which shows that n + 7 is also in N0.

(ii) It is clear that a string of consecutive integers in N cannot contain

a multiple of 10. Assume that 10 |n and that the string of consecutive integers

is contained in {n+1, . . . , n + 9}. Write n as shown in (1). Hence, n0 = 0.
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If n1 is odd, then we saw that n + 4 and n + 8 cannot be members of N0. Thus,

the length of the string is at most 3 in this case. If n1 is even, then neither one

of n+1, n+3, n+5, n+7 or n+9 can be part of the string because they are odd

but the products of their digits is even. Hence, there is no string of consecutive

integers in N of length ≥ 4. Taking

n = 1 . . . 1 ,

with a number ℓ of 1’s which is congruent to 1 modulo 3, we see that n, n+1

and n + 2 are all in N .
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base r ne comporte pas certains chiffres, J. Number Theory, 81 (2000), 270–291.

[2] De Koninck, J.-M.; Doyon, N. and Kátai, I. – On the counting function for
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