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Abstract: The Euler constant γ may be defined as the limit for n tending

to +∞, of the difference
n
∑

j=1

1
j
− log n. Alternatively, it may be defined as the limit at 1

of the difference
∞
∑

n=1

1
js − 1

s−1
, s being a complex number in the half-plane ℜ(s)> 1.

Mertens theorem states that for x real number tending to +∞,
∏

p≤x

(

1− 1
p

)

∼ e−γ

log x
,

the product being over prime numbers ≤ x. We prove analog results for the ring of

S-integers of a function field. However, in the function field case, the three approaches

lead to different constants.

1 – Introduction and main results

Let q be a power of a prime number p and let K be a function field with

genus g and field of constants k a finite field with q elements. Let V denote the

set of places of K and let h be the number of divisor classes of K. For S a finite

and non-empty set of s places of K, let O=OS denote the ring of S-integers of K,

that is to say the set of elements a∈K such that v(a)≥ 0 for any place v out of S.

Let I, resp.P, denote the set of non-zero ideals of O, resp. the set of prime ideals

of the ring O. The set V is the union of the set S and the set of the P -adic

places vP for P ∈ P. If v ∈ V , let fv denote the residual degree of v. In order to

reduce notations, we set fvP
= fP for each P ∈ P. If H ∈ I, let |H| denote the
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norm of the ideal H. We note that |H| is a power of q. We set |H| = qfH and

we note that this notation agrees with the notation fP used for prime ideals P .

The number fH will be called the degree of the ideal H.

The zeta-function ζK of the field K may be defined on the complex half-plane

ℜ(s)> 1 by:

(1.1) ζK(s) =
∏

v∈V

(

1 − q−fvs
)−1

.

The following facts are well-known, [6]:

(1.2) ζK(s) =
PK(q−s)

(1− q−s) (1− q1−s)
,

where PK(u) ∈ Z[u] is a polynomial of degree 2g such that

(1.3) PK(1) = h .

If g > 0, there exist algebraic numbers ρ1, ..., ρg such that

(1.4) PK(u) =

g
∏

i=1

(1− ρiu) (1− ρ̄iu) ,

with

(1.5) |ρi| = q1/2 .

Moreover, PK verifies the functional equation

(1.6) PK(u) = qgu2gPK

(

1

qu

)

.

The aim of this paper is to prove the following theorems. The first one deals

with the finite sum
∑

H∈I
fH<N

1

|H|

and leads to the definition of our first Euler constant γK,S . The second one deals

with the Laurent expansion at s= 1 of the sum

∑

H∈I

1

|H|s
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which is an analog of the classical Dedekind zeta-function for number fields

and leads to the definition of a second Euler constant δK,S . Although they are

different, these two first Euler constants are of the same kind. They are re-

lated to the Euler–Kronecker constant of a function field defined by Ihara, [4].

The third theorem deals with the product

∏

P∈P
fP≤N

(

1− 1

|P |

)

.

It provides an analog to the classical Mertens theorem and leads to the definition

of a third Euler constant ΓK,S different from the two first ones. This theorem

generalizes a theorem of Conrad proved in [2] for the ring k[T ].

Theorem 1.1. Let

(1.7) AK,S =
h q1−g

q−1

∏

v∈S

(

1− q−fv
)

and

(1.8) γK,S =

g
∑

i=1

(

1

ρi−1
+

1

ρ̄i−1

)

+
∑

v∈S

fv

qfv −1
− 1

q−1
.

Then,

(1.9)
∑

H∈I
fH<N

1

|H| = AK,S(N + γK,S) +O(Nq−N ) ,

the constants involved in the O depending only on K and S.

Theorem 1.2. Let

(1.10) δK,S = log q

(

g
∑

i=1

(

1

ρi−1
+

1

ρ̄i−1

)

+
∑

v∈S

fv

qfv −1
+

1

2
− 1

q−1

)

.

For z complex number such that ℜ(z)> 1, let

ζK,S(z) =
∑

H∈I

1

|H|z .

Then,

(1.11) lim
z→1

(

ζK,S(z) − AK,S/ log q

z−1

)

= AK,S δK,S .
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Theorem 1.3. For N tending to +∞,

(1.12)
∏

P∈P
fP≤N

(

1 − 1

|P |

)

=
e−γAK,S

N

(

1 +O

(

1

N

))

,

γ being the classical Euler constant, the constants involved in the O depending

only on K and S. In other words, if

(1.13) ΓK,S = γ − log

(

1 − 1

q

)

+
∑

v∈S

log

(

1 − 1

qfv

)

+ log(hq−g) ,

(1.14)
∏

P∈P
fP≤N

(

1 − 1

|P |

)

=
e−ΓK,S

N

(

1 +O

(

1

N

))

,

the constants involved in the O depending only on K and S.

If γK denotes the Euler–Kronecker constant of the function field K defined

in [4], then

γK

log q
= (q−1)

g
∑

i=1

1

(1−ρi) (1− ρ̄i)
− (g−1) − q+1

2(q−1)
.

We note that constants γK,S , δK,S and γK are connected by the relations

(1.15) γK,S =
γK

log q
− 1

2
+
∑

v∈S

fv

qfv −1
,

(1.16) γK,S =
δK,S

log q
− 1

2
,

(1.17)
δK,S

log q
=

γK

log q
+
∑

v∈S

fv

qfv −1
.

We also note that Euler constants γK,S , δK,S , ΓK,S are pairwise distinct. In [2]

the authors mentioned without proof a Mertens formula for prime divisors of

a function field due to Conrad. Our Euler–Mertens constant ΓK,S occurring in

the Mertens formula for prime ideals of the ring OS is related to Conrad constant

as the Euler constant γK,S is related to Ihara constant γK . By (1.13) and the

Hermite–Lindeman theorem, [5], when ΓK,S 6= γ, the difference ΓK,S −γ is tran-

scendental. Hence it is an open question to decide if or if not the Euler–Mertens

constant ΓK,S is an algebraic number. On the other hand, since PK(u) ∈ Z[u],

the Euler constant γK,S is a rational number.
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2 – Proofs of theorems 1.1 and 1.2

We begin this section by an obvious remark concerning the polynomial case.

Every non-zero ideal of k[T ] being generated by a monic polynomial, a sum over

non-zero ideals may be replaced by a sum over monic polynomials. Let M denote

the set of monic polynomials.

Remark 2.1.

(i) Let N be a positive integer. Then,

(2.1)
∑

H∈M
degH<N

1

|H| = N ,

where |H|= qdeg H .

(ii) For s a complex number such that ℜ(s)> 1, let

ζk[T ](s) =
∑

H∈M

1

|H|s .

Then,

lim
s→1

(

ζk[T ](z) −
1

(z−1) log q

)

=
1

2
.

Proof: There are exactly qn monic polynomials of degree n in k[T ], whence (i).

For the same reasons, for ℜ(s)> 1,

ζk[T ](s) =
1

1− q1−s
.

The Laurent expansion of ζk[T ] at s= 1 gives (ii).

This remark proves that theorems 1.1 and 1.2 are true in the case where K=

k(T ) and S reduced to {∞}, where ∞ is the 1
T -adic place, with γk(T ),{∞}= 0 and

δk(T ),{∞} = log q/2. Even in the rational field case, these constants are different.

(In the rational field case Ihara’s constant is γk(T ) = q−3
2(q−1) .)

Nevertheless, it is possible to obtain the same Euler constant. It suffices

to modify the definition of the zeta function of the ring k[T ]. Indeed, the

above definition of ζk[T ](s) follows the analogy with the Riemann zeta function.
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The change of variable u=q−s allows us to define the zeta function of the ring k[T ]

as the powers series

Zk[T ](u) =
∑

H∈M

udeg H ,

absolutely convergent in the open disk D1/q =
{

z ∈C; |z|< 1
q

}

. In this setting

Zk[T ](u) =
1

1− qu

and

lim
u→1/q

(

Zk[T ](u) −
1
q

1
q − u

)

= 0 = γk(T ),∞ .

We return to the general case. For N a non-negative integer, let

(2.2) SN =
∑

H∈I
fH<N

1

|H|

and let iN denote the number of ideals of degree N in the ring OS .

Proposition 2.2. Let

(2.3) AK,S =
h q1−g

q −1

∏

v∈S

(

1− q−fv
)

and

(2.4) BK,S = AK,S

(

g
∑

i=1

(

1

ρi−1
+

1

ρ̄i−1

)

+
∑

v∈S

fv

qfv −1
− 1

q−1

)

.

Then, for any integer N ≥ 0,

(2.5)
∣

∣SN −AK,SN −BK,S

∣

∣ ≤ MK,S q
−N ,

with MK,S a constant depending only on K and S.

Proof: We want to estimate the sum

SN =
N−1
∑

n=0

in q
−n . (1)
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For r a positive real number, let Dr denote the open disk {z ∈C; |z|< r}. The

series

GK,S(u) =

+∞
∑

n=0

in

(

u

q

)n

=
∑

Y ∈I

(

u

q

)fY

(2)

is absolutely convergent in the disk D1 and for u∈D1,

GK,S(u) =
∏

v∈V
v/∈S

(

1 −
(

u

q

)fv

)−1

. (3)

In view of (1.1) and (1.2), as for the proof of Proposition 3.5 in [1], we get that

GK,S(u) =
H(u)

1− u
, (4)

with

H(u) =
PK

(

u
q

)

1− u
q

∏

v∈S

(

1 −
(

u

q

)fv

)

. (5)

We note that H is holomorphic in the disk Dq. Let

H(u) =
+∞
∑

n=0

hnu
n (6)

be its power series expansion at the origin and let coefficients bk be defined by

PK(u)
∏

v∈S

(

1 − ufv
)

=
d
∑

i=0

bi u
i . (7)

Let

mK,S = max
(

|b0|, |b0 + b1|, . . . , |b0 + b1 + · · · + bd|
)

. (8)

Then, in view of (5), (6), (7) and (8), for any n≥ 0,

|hn| ≤ mK,S q
−n . (9)

By (1), (2) and (4),

SN =

N−1
∑

n=0

n
∑

i=0

hi =

N−1
∑

i=0

(N − i)hi .
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Since H is holomorphic in the disk Dq,

SN = NH(1) −H ′(1) +
+∞
∑

i=N

(i−N)hi .

By (9),
∣

∣SN −
(

NH(1) −H ′(1)
)∣

∣ ≤ mK,S
q

(q −1)2
q−N . (10)

It remains to compute H(1) and H ′(1) to get the announced result. By (5), then

(1.3) and (1.6),

H(1) =
h q1−g

q −1

∏

v∈S

(

1− q−fv
)

.

By (5), then (1.4),

H ′(1)

H(1)
= −

g
∑

i=1

(

ρi

q−ρi
+

ρ̄i

q− ρ̄i

)

−
∑

v∈S

fv

qfv −1
+

1

q −1
ψ

We conclude noting that in view of (1.5) ρi ρ̄i = q.

This proposition gives theorem 1.1. We note that if K= k(T ) and S = {∞},
then h= 1, g = 0 and f∞ = 1. Thus, Ak(T ),{∞} = 1 and Bk(T ),{∞} = 0, as it has

been remarked at the beginning of the section.

Proposition 2.3. We have

(2.6) lim
z→1

ℜ(z)>1

(

ζK,S(z) − AK,S

log q(z−1)

)

=
AK,S

2
−BK,S .

Proof: In the half-plane ℜ(z)> 1, the zeta-function of the ring OS may be

expanded as an eulerian product absolutely convergent

ζK,S(z) =
∑

H∈I

1

|H|s =
∏

v∈V
v/∈S

(

1− q−fvz
)−1

.

Using notations of the above proposition we get that

ζK,S(z) = GK,S

(

q1−z
)

. (1)

The Laurent series expansion at z = 1 of ζK,S(z) is obtained from the expansion

of GK,S in series of powers.



... S-INTEGERS OF A FUNCTION FIELD 135

As in the polynomial case, using the change of variable u= q−s, we may define

the zeta-function of the ring OS as the powers series.

ZK,S(u) =
∑

Y ∈I

ufY .

In this setting,

ZK,S(u) = GK,S(qu) .

Hence,

lim
u→1

(

ZK,S(u) − H(1)

1− qu

)

= H ′(1)

with H defined as in the proof of proposition 1.1. With this definition of the

zeta function, the Euler constant occurring in the Laurent expansion at 1/q

of the zeta function of the ring OS is the same that the Euler constant occurring

in the finite sum over ideals.

3 – Proof of the theorem 1.3

The proof follows that of theorem 429 in [3]. Firstly, we need some results

about the distribution of prime ideals. For n a positive integer, let pn denote the

number of prime ideals of degree n in the ring OS . Let

(3.1) an =
∑

j|n

j pj .

In [1] it has been proved that

(3.2) an = qn + 1 −
∑

v∈S
fv |n

fv −
g
∑

i=1

(ρi
n + ρ̄i

n) .

Proposition 3.1. If n is a positive integer, then

(3.3) npn ≤ (q + 2 gq1/2 + 1) qn−1 .

Proof: For n a positive integer, let ǫ(n) be defined by

npn = qn + 1 −
∑

v∈S
fv |n

fv + ǫ(n) . (1)
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In [1] it has been proved that

ǫ(n) ≤ 2 gqn/2 . (2)

This gives (3.3).

The following proposition will be crucial for proving theorem 3.

Proposition 3.2. Let

(3.4) ΓK,S = γ − log(1− q−1) +
∑

v∈S

log(1− q−fv) + log(hq−g) ,

where γ is the classical Euler constant and for N a positive integer, let

(3.5) XN =

N
∑

n=1

an

nqn
.

Then,

(3.6) XN = log(N) + ΓK,S + YN ,

with

(3.7) |YN | ≤
(

1 +
g

√
q
(√
q −1

) +
∑

v∈S

fv q
fv−1

qfv −1

)

1

N
.

Proof: By (3.5) and (3.2),

XN =
N
∑

n=1

1

n









1 + q−n

(

1 −
∑

v∈S
fv |n

fv −
g
∑

i=1

(ρi
n + ρ̄i

n)

)









. (1)

The Euler constant verifies

N
∑

n=1

1

n
= log(N) + γ + λ(N) , (2)

with
1

N(N +1)
≤ λ(N) ≤ 1

N
. (3)
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A proof of this may be found in [3], theorem 422. For θ ∈Dq, let

ΦN (θ) =
N
∑

n=1

1

n

(

θ

q

)n

(4)

and

Φ(θ) =
∞
∑

n=1

1

n

(

θ

q

)n

, (5)

this last series being absolutely convergent. Then,

ΦN (θ) = Φ(θ) − ϕN (θ) , (6)

with

|ϕN (θ)| ≤ ϕN (|θ|) ≤
∞
∑

n=N+1

1

n

( |θ|
q

)n

≤ 1

N +1

∞
∑

n=N+1

1

n

( |θ|
q

)n

.

Hence,

|ϕN (θ)| ≤ ϕN (|θ|) ≤ 1

(N +1)
× |θ|
q − |θ|

( |θ|
q

)N

. (7)

On the other hand,

Φ(θ) = − log

(

1− θ

q

)

.

Thus, by (1),

XN = log(N) + γ− log

(

1− 1

q

)

+

g
∑

i=1

(

log

(

1− ρi

q

)

+ log

(

1− ρ̄i

q

)

)

− ΩN + xN ,

with

ΩN =
N
∑

n=1

1

nqn

∑

v∈S
fv |n

fv (8)

and

xN = λ(N) − ϕN (1) +

g
∑

i=1

(

ϕN

(

ρi

q

)

+ ϕN

(

ρ̄i

q

)

)

. (9)

Now,

g
∑

i=1

(

log

(

1− ρi

q

)

+ log

(

1− ρ̄i

q

)

)

= log

(

g
∏

i=1

(

1− ρi

q

)(

1− ρ̄i

q

)

)
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and by (1.3) and (1.6),

g
∑

i=1

(

log

(

1− ρi

q

)

+ log

(

1− ρ̄i

q

)

)

= log
(

hq−g
)

.

Then,

XN = log(N) + γ − log

(

1− 1

q

)

+ log(hq−g) − ΩN + xN . (10)

By (8),

ΩN =
∑

v∈S

fv

[N/fv ]
∑

j=1

1

jfv qjfv
=
∑

v∈S

[N/fv ]
∑

j=1

1

j qjfv
.

Hence, as above,

ΩN = −
∑

v∈S

log
(

1− q−fv
)

− ωN , (11)

with

0 ≤ ω(N) ≤ 1

N qN

∑

v∈S

fv q
fv

qfv −1
, (12)

and

XN = log(N) + ΓK,S + YN ,

with

YN = λ(N) − ϕN (1) +

g
∑

i=1

(

ϕN

(

ρi

q

)

+ ϕN

(

ρ̄i

q

)

)

+ ωN .

This gives the announced result, the bound (3.7) being given by (3), (7) and (12).

Proposition 3.3. Let

(3.8) θ(K,S) = 1 +
g

√
q
(√
q −1

) +
∑

v∈S

fvq
fv

qfv −1
+

2
(

q + 2g
√
q + 1

)

q1/2(q−1)2
.

Then, for any positive integer N ,

(3.9) exp

(

−θ(K,S)

N

)

≤ exp(ΓK,S)N
∏

P∈P
fP≤N

(

1− 1

|P |

)

≤ exp

(

θ(K,S)

N

)

.
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Proof: For N a positive integer, let TN , UN and VN be defined by:

TN =
∑

P∈P
fP≤N

log

(

1− 1

|P |

)

, (1)

UN =
∑

P∈P
fP≤N

1

|P | , (2)

UN + TN = −VN . (3)

Then,

UN =
N
∑

n=1

pn q
−n .

By (3.1) and (3.5),

UN = XN −RN , (4)

with

RN =
N
∑

n=1

1

nqn

∑

j|n

j 6=n

j pj . (5)

Interchanging the order of summation in (5), we get that

RN =

[N/2]
∑

j=1

j pj

∑

1≤n≤N
j|n

j 6=n

1

nqn
=

[N/2]
∑

j=1

pj

[N/j]
∑

m=2

1

mqjm
=
∑

P∈P
fP≤N/2

[N/fP ]
∑

m=2

1

m |P |m .

Whence, in view of (3),

RN = VN −W ′
N −W ′′

N , (6)

with

W ′
N =

∑

P∈P
fP≤N/2

∞
∑

m=1+[N/fP ]

1

m |P |m (7)

and

W ′′
N =

∑

P∈P
N/2<fP≤N

∞
∑

m=2

1

m |P |m . (8)
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We bound W ′
N and W ′′

N . By (7),

W ′
N ≤

∑

P∈P
fP≤N/2

1

1+[N/fP ]

∞
∑

m=1+[N/fP ]

1

|P |m ≤ q−N
∑

P∈P
fP≤N/2

|P |
(

1+[N/fP ]
)(

|P |−1
) .

Hence,

N qNW ′
N ≤

∑

P∈P
fP≤N/2

fP |P |
|P |−1

.

By (3.3),

N qNW ′
N ≤

(

q + 2gq1/2 + 1
)

[N/2]
∑

j=1

q2j−1

qj −1
≤ q + 2gq1/2 + 1

q −1

[N/2]
∑

j=1

qj ,

N qNW ′′
N ≤ q + 2gq1/2 + 1

(q −1)2
q[N/2]+1 . (9)

By (8),

W ′′
N ≤

∑

P∈P
fP >N/2

∞
∑

m=2

1

|P |m ≤ 1

2

∑

P∈P
fP >N/2

∞
∑

m=2

|P |−m =
1

2

∑

P∈P
fP >N/2

1

|P |
(

|P |−1
) .

Hence,

W ′′
N ≤ q

2(q −1)

∑

P∈P
fP >N/2

|P |−2

and by (3.3)

W ′′
N ≤ q + 2gq1/2 + 1

2(q −1)

∞
∑

j=1+[N+2]

1

j qj
≤ q + 2gq1/2 + 1

N(q −1)

∞
∑

j=1+[N+2]

q−j .

Hence,

NW ′′
N ≤ q

(

q + 2gq1/2 + 1
)

(q −1)2
q−N/2 . (10)

By (3), (4) and (6),

TN = −XN −W ′
N −W ′′

N

and, in view of (3.6)

TN = − log(N) − ΓK,S − YN −W ′
N −W ′′

N . (11)
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By (9), (10) and (3.7),

|WN + YN | ≤ θ(K,S)

N
, (12)

with θ(K,S) defined by (3.8). By (11),

exp

(

−θ(K,S)

N

)

≤ exp
(

TN + log(N) + ΓK,S

)

≤ exp

(

θ(K,S)

N

)

.

This is (3.9).

Corollary 3.4. We have

(3.10) N eΓK,S

∏

P∈P
fP≤N

(

1− 1

|P |

)

= 1 +O

(

1

N

)

,

the constants involved in the O depending only on K and S.

This last corollary gives theorem 1.3.

If we restrict theorem 1.3 to the polynomial ring k[T ], we obtain the following

theorem already proved in [2].

Theorem 3.5. Let I denote the set of monic irreducible polynomials of

the ring k[T ]. Then, for N tending to +∞,

(3.11)
∏

P∈I
deg(P )≤N

(

1− 1

|P |

)

=
e−γ

N

(

1 +O

(

1

N

))

,

with |P | = qdeg P, the constants involved in the O depending only on q.
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