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Abstract: The Euler constant 7 may be defined as the limit for n tending

n
to 400, of the difference ]l — logn. Alternatively, it may be defined as the limit at 1
j=1

&)
of the difference > Ji — -, s being a complex number in the half-plane R(s)> 1.

s—17
n=1

Mertens theorem states that for x real number tending to +oo, I;[(l—%) ~ 13;737
P

the product being over prime numbers < z. We prove analog results for the ring of

S-integers of a function field. However, in the function field case, the three approaches

lead to different constants.

1 — Introduction and main results

Let ¢ be a power of a prime number p and let K be a function field with
genus g and field of constants k a finite field with g elements. Let V' denote the
set of places of K and let h be the number of divisor classes of K. For S a finite
and non-empty set of s places of K, let O = Og denote the ring of S-integers of K,
that is to say the set of elements a € K such that v(a) > 0 for any place v out of S.
Let Z, resp. P, denote the set of non-zero ideals of O, resp. the set of prime ideals
of the ring O. The set V is the union of the set S and the set of the P-adic
places vp for Pe P. If ve V| let f, denote the residual degree of v. In order to
reduce notations, we set f,, = fp for each P € P. If H € Z, let |H| denote the
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norm of the ideal H. We note that |H| is a power of ¢. We set |H| = ¢/# and
we note that this notation agrees with the notation fp used for prime ideals P.
The number fz will be called the degree of the ideal H.

The zeta-function (i of the field K may be defined on the complex half-plane
R(s)>1 by:

(1.1) Cls) = [J—a ).

veV

The following facts are well-known, [6]:

Pr(q7°)
(I-g5)(1—g'=5)"’

where Pk (u) € Z[u] is a polynomial of degree 2¢ such that

(1.2) (ke (s) =

(1.3) Pg(1) = h .

If g > 0, there exist algebraic numbers p1, ..., p; such that

g

(1.4) Pr(u) = [J(1= piw) (1= piw)
i=1

with

(1.5) loil = ¢'/*.

Moreover, Py verifies the functional equation

(1.6) Pic(u) = ¢9u Py (qlu) |

The aim of this paper is to prove the following theorems. The first one deals
3 1
| H

fu<N

with the finite sum

and leads to the definition of our first Euler constant vk 5. The second one deals
with the Laurent expansion at s=1 of the sum

1
2 i

HeZl
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which is an analog of the classical Dedekind zeta-function for number fields
and leads to the definition of a second Euler constant dx g. Although they are
different, these two first Euler constants are of the same kind. They are re-
lated to the Euler-Kronecker constant of a function field defined by Ihara, [4].
The third theorem deals with the product

H (1_ 1>
10 =7m)
fP<N

It provides an analog to the classical Mertens theorem and leads to the definition
of a third Euler constant I'x g different from the two first ones. This theorem
generalizes a theorem of Conrad proved in [2] for the ring k[T].

Theorem 1.1. Let

hq'—9 _
(1.7) Aks =~ [[a-¢7)
veS
and
g
1 1 fo 1
1.8 = —+ — -
Then,
1 _
(1.9) > 1 = Aws(N+is) + O ™) |
HeT
fa<N

the constants involved in the O depending only on K and S.

Theorem 1.2. Let

9 1 1 f 1 1
1.10 oxs =1 — - 9 :
(1.10)  dks qu<2<pi_1+ﬁi—l>+qu“—1+2 )

i=1 veS q—1

For z complex number such that R(z) > 1, let

gK,S(Z) = Z f}|z :

H€I|

Then,
. A lo
(1.11) l:rri (CK,S(Z) — K’Zsilgq> = AK,S 5[(,5 .
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Theorem 1.3. For N tending to +oo,

(1.12) H(l—%): N];mﬁ(HO(;T)) :

PeP
fP<N

v being the classical Euler constant, the constants involved in the O depending
only on K and S. In other words, if

1 1 _
(1.13) I'ks =v— log<1 - q) + Z log<1 — qfu) +log(hq™9) ,
veS
1 e ks 1

1.14 l1-— ) = —|(1 —
@19 () = v (roly)

Pep

PN

the constants involved in the O depending only on K and S.

If vx denotes the Euler—Kronecker constant of the function field K defined
in [4], then

YE . N~ L g
= 1)Z(l— Y=g Y 5o

We note that constants vk, g, 0,5 and v are connected by the relations

v 1 Jo
(1.15) VK,S = —o >
’ fo_1"
logg 2 ol 1
Iks 1
1.16 = &5 _
(1.16) TS = jogq 2

OK,s VK Jo
1.17 L = .
(L17) logg  logg ;qfv—l

We also note that Euler constants vx g, 0k,5, I'x,s are pairwise distinct. In [2]
the authors mentioned without proof a Mertens formula for prime divisors of
a function field due to Conrad. Our Euler-Mertens constant I'x ¢ occurring in
the Mertens formula for prime ideals of the ring Og is related to Conrad constant
as the Euler constant v g is related to Ihara constant yx. By (1.13) and the
Hermite-Lindeman theorem, [5], when I'x g # ~, the difference I'x, g — is tran-
scendental. Hence it is an open question to decide if or if not the Euler—Mertens
constant I' g is an algebraic number. On the other hand, since Pg(u) € Z[u],
the Euler constant g g is a rational number.
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2 — Proofs of theorems 1.1 and 1.2

We begin this section by an obvious remark concerning the polynomial case.
Every non-zero ideal of k[T] being generated by a monic polynomial, a sum over
non-zero ideals may be replaced by a sum over monic polynomials. Let M denote
the set of monic polynomials.

Remark 2.1.

(i) Let N be a positive integer. Then,

(2.1) > ‘Hl‘:N,

HeM
degH<N

where |H|= g1,

(ii) For s a complex number such that R(s) > 1, let

1
Crir)(8) = Z 1H]

HeM

Then,
1

. 1
s <<k[T](Z) C(z-1) logq) T2

Proof: There are exactly ¢" monic polynomials of degree n in k[T'], whence (i).
For the same reasons, for (s) > 1,

1
Cryry(8) = gl

The Laurent expansion of iz at s =1 gives (ii). u

This remark proves that theorems 1.1 and 1.2 are true in the case where K=
kE(T) and S reduced to {oo}, where oo is the %—adic place, with 747y {00} =0 and
Ok(T) {00} = l0g ¢/2. Even in the rational field case, these constants are different.
(In the rational field case Thara’s constant is ;1) = ﬁ.)

Nevertheless, it is possible to obtain the same Euler constant. It suffices
to modify the definition of the zeta function of the ring k[T]. Indeed, the

above definition of (7)(s) follows the analogy with the Riemann zeta function.
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The change of variable u=¢~* allows us to define the zeta function of the ring k[T

Zyry(u) = Y uleH,

HeM

as the powers series

absolutely convergent in the open disk D/, = {z€C; |z] < %} In this setting

1
1—qu

Zyr)(u) =

and

1
lim (ka(u) — lj > =0= Ve(T),00 -

u—1/q g U

We return to the general case. For N a non-negative integer, let

(2.2) Sv= > ui”

fu<N

and let ¢ denote the number of ideals of degree N in the ring Og.

Proposition 2.2. Let

hq'™9 —fo
(2.3) Ars = i—1 H(l—q )
vES
and
1 1 fv 1
24 B = A - |-
(2.4) K,S K’S<;<p¢—1+pi—1>+v§gqﬁf—l q_1>

Then, for any integer N > 0,
(2.5) |Sv — Ax,s N — Bgs| < Mksq ™,

with My s a constant depending only on K and S.

Proof: We want to estimate the sum

N-1
SN = Z in q_" . (1)
n=0
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For r a positive real number, let D, denote the open disk {z € C; |z|<r}. The

as =2 (3} = £ (5)

n=0 Yez

series

is absolutely convergent in the disk Dy and for u € Dy,

Grostw) =[] (1 - (;‘)f)l Q

veV
vgS

In view of (1.1) and (1.2), as for the proof of Proposition 3.5 in [1], we get that

Grslu) = ) @
with ( ) ;
Pk % u\""

H(u) = o E(l—(q) ) (5)

We note that H is holomorphic in the disk D,. Let

+0o0
H(u) =Y hpu" (6)
n=0

be its power series expansion at the origin and let coefficients by be defined by

d
Pr(u) [T =ul) =) biu' . (7)
Let
mics = max(Jbol, [bo+bl, ., [bo+br+ -+ bal) (8)

Then, in view of (5), (6), (7) and (8), for any n >0,
|hn| < mis g™ . (9)

By (1), (2) and (4),

N—-1 n —

= (N=i)h; .
=0

n=0 =0 7

=

Il
N
N
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Since H is holomorphic in the disk D,

+oo
Sy = NH(1) - H'(1) + > (i—N)h; .
i=N
By (9),
Sy — (NH(1) — H'(1))| < mxs (q_q1)2 V. (10)

It remains to compute H (1) and H'(1) to get the announced result. By (5), then

(1.3) and (1.6), -
a) = "L - ).

qil veES

By (5), then (1.4),

H@1) ¢ ( pi pi )_ fo 1
H(1) ; S %qfﬂ—1+q—l¢

q—pi q—pPi

We conclude noting that in view of (1.5) pip; = q. »

This proposition gives theorem 1.1. We note that if K=k(T) and S = {o0},
then h=1, g =0 and foo = 1. Thus, Ak(T),{oo} =1 and Bk(T),{oo} =0, as it has
been remarked at the beginning of the section.

Proposition 2.3. We have

A A
(2.6) lim (CKS( ) — logq(is—1)> = ;(’S
§R( )>1

Proof: In the half-plane R(z) > 1, the zeta-function of the ring Og may be
expanded as an eulerian product absolutely convergent

Cr,s(z Z T H (1— _fvz)f1
HeT veV
vgS

Using notations of the above proposition we get that

(r,s(2) = Grs(d' 7). (1)

The Laurent series expansion at z =1 of (k,s(2) is obtained from the expansion
of Gk s in series of powers. m
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As in the polynomial case, using the change of variable u = ¢~*, we may define
the zeta-function of the ring Og as the powers series.

Zks(u) = Z ulv .
Yel

In this setting,
Zrs(u) = Grs(qu) -

lim <ZK,s(u> - A2 ) = H'(1)

1—qu

Hence,

with H defined as in the proof of proposition 1.1. With this definition of the
zeta function, the Euler constant occurring in the Laurent expansion at 1/q
of the zeta function of the ring Og is the same that the Euler constant occurring
in the finite sum over ideals.

3 — Proof of the theorem 1.3
The proof follows that of theorem 429 in [3]. Firstly, we need some results

about the distribution of prime ideals. For n a positive integer, let p, denote the
number of prime ideals of degree n in the ring Og. Let

(3.1) an =Y jp; -

jln
In [1] it has been proved that
g
(3.2) R A
vesS i=1
foln

Proposition 3.1. If n is a positive integer, then

(3.3) npn < (q+29¢"*+1)¢" L.

Proof: For n a positive integer, let €(n) be defined by

npn = q"+1-=Y _ fo+en). (1)
veS
fuln
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In [1] it has been proved that
e(n) < 294" (2)
This gives (3.3). n
The following proposition will be crucial for proving theorem 3.

Proposition 3.2. Let

(3.4) I'ks =~v—log(l—q¢ ")+ Zlog 1—q7) +log(hq™?),
veES

where 7y is the classical Euler constant and for N a positive integer, let

Y
(3.5) Xy =) —.

n=1 nq
Then
(3.6) Xy = log(N) +Tks+ Yy,
with

fog ™!

3.7 YN < |1+
(3.7) Y| ( D Zqﬁ,_l

Proof: By (3.5) and (3.2),

N g
Xy=> 1+q‘”<1—2fv—2(m"+ﬁi”)> . (1)
=1

n=1 vES
fv‘n
The Euler constant verifies
N
372 = log(N) + 7+ A(N) (2)
n=1
with
! AN) < ~ 3)
N(N+1) — - N
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A proof of this may be found in [3], theorem 422. For 6 € Dy, let

o) =3 (%) 0

q

and

300 ®

this last series being absolutely convergent. Then,

Dy (6) = B(6) — on(6) ®
with
IR SPRR SR I VAUAY
v < exto) < 3 () < iy 2 ()
Hence, N
L (e
on @) < on(0) < i % g () - ©

On the other hand,

() = —log(l—Z) .
Thus, by (1),

1 o ;
Xy = log(N)Jrvlog(lq) +Z(log<1q) +log( 'Z)) —Qn + 2N,

i=1

with
Qny = Z Z Jo (8)
T
and
B B Pi Pi
zn = MN) —on(1 +;<90N<q>+90N<q>> : (9)
Now,

(s 2) o w1 ) - (T 2) (- )

1
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and by (1.3) and (1.6),

i(log(l - 'Z) + log(l - ?)) = log(hq™) .

Then,
1
XNy = log(N) +~— log<1— q) +log(hq™9) — Qn + N -
By (8),
[N/ o] [N/ fo]
Qv =D f ) =22
f’U f’u
veSs 7j=1 ]f qj veS j=1 ‘]qj

Hence, as above,

= log(1—g ) — wx

vES

with

foq®
0 <w

Nq Z qf'u -1

and
Xy = log(N) + FK,S + Yy ,

with

Ya = AN) — on(1) +§<¢N(’;> + cpN(ZZ)) +wy .

(10)

(11)

(12)

This gives the announced result, the bound (3.7) being given by (3), (7) and (12).n

Proposition 3.3. Let

(3.8) O(K,S) = 1+ \/a( UESqfv_l 2 (q—1)2

Then, for any positive integer N,

(3.9) exp<—0(K]\}S)> < exp(Tks) N H<1_ u{)) < exp<9(~’(]\}s)

PeP
fP<N

s qufv 2(q+29/q+1) _
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Proof: For N a positive integer, let T, Uy and Vi be defined by:

Ty = Zlog(l— P,) (1)

PeP
fp<N
1
Uv =Y 5 (2)
per |7
fp<N
Uv+1In = —Vy (3)
Then,
N
Un = anq—n
n=1
By (3.1) and (3.5),
Uv = Xy — Ry, (4)

with

Ry = Z = v (5)

n=1 "
JFn

Interchanging the order of summation in (5), we get that

[N/2] [N/2] [N/ [N/ fp]

1
DS VT D MO P S ol e
1<n<n " m=2 PEP m=2
jln fP<N/2
j#n
Whence, in view of (3),
Ry = Vy — Wi — WY, (6)
with
= 1
— I 7
PEP  m=1+[N/fp]
fP<N/2
and

- S g

PeP m=2
N/2< fp<N
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We bound Wy, and Wy. By (7),

! 3 |P|
e Y Y Y .
o RN 2 P & (L IN/f7) (1P - 1)
fP<N/2 fp<N/2
Hence,
P
N Nwl fP’
N = Z P|—1
Pep
fP<N/2
By (3.3),
IN/2] 95 1 1/2 [NV/2]
2 1 .
— ¢ —1 q—1 :
j=1 7j=1
+2gq¢"?+1
N N 11 < q— [N/2]+1 . 9
¢ Wy < (G—1) (9)
By (8),
UIED D ITTIEE D IDNRIEE DS
pep 2 IPI" T2 55 0o £ IPI(PI-1) |P|—1
fpP>N/2 fpP>N/2 fpP>N/2
Hence,
Wi <
PeP
fP>N/2
and by (3.3)
1/2 o0 1/2 00 '
Wﬁgﬁqu—lﬂ 3 %s% S g
(¢=1) j=1+[N+2]]q (¢-1) J=1+[N+2]
Hence,

1/2
NWY < q(q+29q/*+1) Ve

- (¢—1)° (10)

By (3), (4) and (6),
Ty = — Xy — Wi — WY/

and, in view of (3.6)

Ty = —log(N) — I'ks— YN — WN W” . (11)
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By (9), (10) and (3.7),

0(K, S
W+ 1y < A5 (12
N
with 0(K, S) defined by (3.8). By (11),
0(K,S 0(K,S
Xp(—(N’)> < exp(Ty +1log(N) 4+ Tk,s) < exp( (]\’] )> )

This is (3.9). n

Corollary 3.4. We have

(3.10) Netss T] <1— ‘;)) = 1+O<Jif) ,

Pep
fP<N

the constants involved in the O depending only on K and S. n

This last corollary gives theorem 1.3.
If we restrict theorem 1.3 to the polynomial ring k[7'], we obtain the following
theorem already proved in [2].

Theorem 3.5. Let 7 denote the set of monic irreducible polynomials of
the ring k[T|. Then, for N tending to +oo,

s )= S e(d)

deg(P)<N

with |P| = ¢8| the constants involved in the O depending only on q. u
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