PORTUGALIAE MATHEMATICA Vol. 64 Fasc. 2 – 2007 Nova Série

THE INFLUENCE OF DOMAIN GEOMETRY IN THE BOUNDARY BEHAVIOR OF LARGE SOLUTIONS OF DEGENERATE ELLIPTIC PROBLEMS

MICHELE GRILLOT and PHILIPPE GRILLOT

Abstract: In this paper we study the asymptotic boundary behavior of large solutions of the equation $\Delta u = d^{\alpha}u^{p}$ in a regular bounded domain Ω in \mathbb{R}^{N} , $N \geq 2$, where d(x) denotes the distance from x to $\partial\Omega$, p > 1 and $\alpha > 0$. We precise the expansion which depends on the mean curvature of the boundary.

1 – Introduction: notations and main results

Let Ω be a regular bounded domain in \mathbb{R}^N , $N \ge 2$, p > 1 and $\alpha > 0$. We denote by d(x) the distance from x to $\partial\Omega$, the boundary of Ω . In this paper we consider the semilinear degenerate equation

(1)
$$\Delta u = d^{\alpha} u^{p} \quad \text{in} \quad \Omega$$

and we are interesting in the large solutions of (1), that is solutions of (1) which blow up at the boundary:

(2)
$$u(x) \to +\infty$$
 as $d(x) \to 0$.

Note already that the maximum principle implies that the solutions $u \in C^2(\Omega)$ of (1)-(2) are positive in Ω .

Equation (1) registers in problems of the form

(3)
$$\Delta u = p(x) f(u) \quad \text{in} \quad \Omega \; .$$

Received: August 30, 2005; Revised: July 28, 2006.

AMS Subject Classification: 35J25, 35J70.

Keywords: elliptic equations; boundary behavior; blow-up.

Those problems were first studied by Bieberbach [4] for the case p(x) = 1, $f(u) = e^u$ and N = 2, in the context of Riemannian surfaces of constant negative curvature, and the theory of automorphic functions. The case p(x) > 0 for all $x \in \overline{\Omega}$ has been, largely dealt with in the literature (see [7], [12], [8], [5] for example).

Existence of solutions of (1)-(2) was established by Lair and Wood [9]. The question of the uniqueness of solutions of (1)-(2) is more delicate. When $\alpha = 0$ and p > 1, it is well know that problem (1)-(2) has a unique solution which satisfies

(4)
$$\lim_{d(x)\to 0} u(x) \, d(x)^{\frac{2}{p-1}} = \left(\frac{2(p+1)}{(p-1)^2}\right)^{\frac{1}{p-1}}$$

This was first established by Loewner and Nirenberg [10] for the case p = (N+2)/(N-2). Later we can find many extensions, see for example [1], [2] and [14] and the references cited there. The case $\alpha < 0$ and p > 0 is studied in [6]. In the general case $\alpha \ge 0$, Marcus and Véron proved the uniqueness of the solutions of (1)–(2) under the condition 1 . Our first theorem completes this result and gives the rate of the blow-up.

Theorem 1.1. Let $u \in C^2(\Omega)$ be a solution of (1)–(2). Then it satisfies

(5)
$$\lim_{d(x)\to 0} d(x)^{\frac{\alpha+2}{p-1}} u(x) = l$$

where l is given by

144

(6)
$$l = \left[\frac{(\alpha+2)(\alpha+p+1)}{(p-1)^2}\right]^{\frac{1}{p-1}}$$

This theorem allows us to establish the uniqueness of solutions of (1)–(2) with no conditions on p and α .

Theorem 1.2. Problem (1) possesses a unique large solution.

In the second time we are interested in the influence of the geometry of Ω in the boundary behavior. When $\alpha = 0$, this problem was first studied by Bandle and Marcus [3] for the radially symmetric solutions of (1)–(2) in a ball. Later their result was extended by del Pino and Letelier [13] for general solutions. They proved that a lower-order term, still explosive, appears in the expansion

of u which depends linearly of the mean curvature of the boundary of Ω . More precisely, if $1 and <math>\alpha = 0$, then on a sufficiently small neighborhood of $\partial \Omega$ we have the expansion

(7)
$$u(x) = \left(\frac{2(p+1)}{(p-1)^2}\right)^{\frac{1}{p-1}} d(x)^{-\frac{2}{p-1}} \left\{1 + \frac{N+1}{p+3}H(\overline{x})d(x) + o(d(x))\right\}$$

Here, for all x in a neighborhood of $\partial\Omega$, \overline{x} denotes the unique point of the boundary such that $d(x) = |x - \overline{x}|$ and $H(\overline{x})$ the mean curvature of the boundary at that point. Estimate (7) generalizes to our case $\alpha \geq 0$ in the following way.

Theorem 1.3. Let $u \in C^2(\Omega)$ a large solution of (1). Then, on a sufficiently small neighborhood of $\partial\Omega$:

(8)
$$u(x) = l d(x)^{-\frac{2+\alpha}{p-1}} \left\{ 1 + \frac{N-1}{\alpha+p+3} H(\overline{x}) d(x) + o(d(x)) \right\}.$$

This theorem implies that on a sufficiently small neighborhood of $\partial \Omega$:

(9)
$$u(x) - l d(x)^{-\frac{2+\alpha}{p-1}} = \frac{N-1}{\alpha+p+3} H(\overline{x}) d(x)^{-\frac{\alpha+3-p}{p-1}} + o\left(d(x)^{-\frac{\alpha+3-p}{p-1}}\right).$$

Therefore, we obtain that

- if $p > \alpha + 3$, then the first member of (9) tends to 0 at the boundary,

- if $p = \alpha + 3$, then $u(x) - l d(x)^{-\frac{2+\alpha}{p-1}} = \frac{N-1}{\alpha+p+3} H(\overline{x}) + o(1)$,

- if $p < \alpha + 3$, then the first member of (9) is not bounded and the blow-up depends on the mean curvature. Roughly, the "more curved" or "sharper" towards the exterior of Ω is around a given point of $\partial\Omega$, the higher the explosion rate at that point is.

That is a generalization of the results of Bandle and Marcus [3] for the radially symmetric solutions of (1)–(2) in a ball $\Omega = B(0, R)$:

- if p > 3, then $u(r) l(R-r)^{-\frac{2}{p-1}} \to 0$ when $r \to R$,
- if p = 3, then $u(r) l(R-r)^{-\frac{2}{p-1}} \to \frac{C(N)}{R}$ when $r \to R$, which represents the mean curvature of the ball,
- if p < 3, then $u(r) l(R-r)^{-\frac{2}{p-1}} \to \infty$ when $r \to R$.

Our paper is organized as follows:

- 1. Introduction
- 2. Asymptotic behavior and uniqueness
- 3. Boundary influence in the explosion rate.

2 – Asymptotic behavior and uniqueness

We begin this section by proving a classical estimate for all solution u of (1) (see [12]).

Proposition 2.1 (Osserman estimate). There exist two positive constants $a = a(\partial \Omega)$ and $C = C(\Omega, \alpha, p)$ such that for all solution $u \in C^2(\Omega)$ of equation (1), we have:

(10)
$$u(x) \le C d(x)^{-\frac{2+\alpha}{p-1}}$$

for all $x \in \Omega$ such that d(x) < a.

Proof: Since Ω is regular there exist $\tilde{a} = \tilde{a}(\Omega) > 0$ and $M = M(\Omega) > 0$ such that

(11)
$$|\Delta d(x)| \le M , \quad |\nabla d(x)| = 1$$

for all $x \in \Omega$ such that $d(x) < \tilde{a}$. Set $a = \min(1, \frac{\tilde{a}}{2})$. Let $x_0 \in \Omega$ such that $d(x_0) < a$ and $r_0 = d(x_0)/2$. We denote by B_0 the ball centered at x_0 of radius r_0 and we define the function w in B_0 as follows:

(12)
$$w(x) = \lambda d(x)^{-\frac{\alpha}{p-1}} \left(r_0^2 - |x - x_0|^2 \right)^{-\frac{2}{p-1}}$$

with $\lambda > 0$ to determine such that

(13)
$$-\Delta w + d^{\alpha} w^{p} \ge 0 \quad \text{in } B_{0} .$$

A straightforward computation gives:

$$\begin{split} -\Delta w + d^{\alpha}w^{p} &= \lambda d^{-\frac{\alpha}{p-1}} \left(r_{0}^{2} - |x - x_{0}|^{2}\right)^{-\frac{2p}{p-1}} \times \\ & \left[-\frac{\alpha \left(\alpha + p - 1\right)}{(p-1)^{2}} \left(r_{0}^{2} - |x - x_{0}|^{2}\right)^{2} d^{-2} + \frac{\alpha}{p-1} \left(r_{0}^{2} - |x - x_{0}|^{2}\right)^{2} d^{-1} \Delta d \right. \\ & \left. + \frac{8\alpha}{(p-1)^{2}} \left(r_{0}^{2} - |x - x_{0}|^{2}\right) d^{-1} \nabla d \left. \left(x - x_{0}\right) - \frac{8(p+1)}{(p-1)^{2}} |x - x_{0}|^{2} \right. \\ & \left. - \frac{4N}{p-1} \left(r_{0}^{2} - |x - x_{0}|^{2}\right) + \lambda^{p-1} \right]. \end{split}$$

... LARGE SOLUTIONS OF DEGENERATE ELLIPTIC PROBLEMS 147

Since $|x - x_0| < d(x_0) \le 1$, $d(x) \ge d(x_0)/2$ and $r_0^3 < r_0^2$, there exists a constant $L = L(\alpha, p, M) > 0$ such that

$$-\Delta w + d^{\alpha} w^{p} \ge \lambda d^{-\frac{\alpha}{p-1}} \left(r_{0}^{2} - |x - x_{0}|^{2} \right)^{-\frac{2p}{p-1}} \left(-Lr_{0}^{2} + \lambda^{p-1} \right)$$

in B_0 . Therefore, we choose $\lambda = L^{\frac{1}{p-1}} r_0^{\frac{2}{p-1}}$ and we obtain (13). Note that $w(x) = +\infty$ if $x \in \partial B_0$ because -2/(p-1) < 0. The comparison principle implies $u \leq w$ in B_0 and in particular

$$u(x_0) \le w(x_0) = L^{\frac{1}{p-1}} \left(\frac{d(x_0)}{2}\right)^{\frac{2}{p-1}} \left(d(x_0)\right)^{-\frac{\alpha}{p-1}} \left(\frac{d(x_0)}{2}\right)^{-\frac{4}{p-1}}$$

which gives inequality (10). \blacksquare

We now establish an estimate from below for the solutions of (1)-(2). The results of [1] and [2] can't be used because the distance function d is not positive in $\overline{\Omega}$. Nevertheless we can adapt them as follows.

Proposition 2.2. Let $u \in C^2(\Omega)$ be a solution of (1)–(2). Then

(14)
$$\liminf_{d(x)\to 0} d(x)^{\frac{\alpha+2}{p-1}} u(x) \ge l$$

where l is defined in (6).

Proof: Let $\varepsilon > 0$, \tilde{a} be as the proof of Proposition 2.1 and $\beta \in (0, 1)$. We define

$$\underline{u}(x) = \beta l\left(\left(d(x) + \varepsilon\right)^{-\frac{\alpha+2}{p-1}} - \left(\overline{a} + \varepsilon\right)^{-\frac{\alpha+2}{p-1}}\right)$$

where \overline{a} will be determined such that $\overline{a} < \tilde{a}$. We have $\underline{u} > 0$ on $\partial \Omega$ and $\underline{u}(x) = 0$ for all x such that $d(x) = \overline{a}$. Moreover a straightforward computation yields

$$-\Delta \underline{u} + d^{\alpha} \underline{u}^{p} = \beta \left[\Delta d \left(\frac{\alpha + 2}{p - 1} \right) l (d + \varepsilon)^{-\frac{\alpha + p + 1}{p - 1}} - l^{p} (d + \varepsilon)^{-\frac{\alpha + 2p}{p - 1}} \right. \\ \left. + d^{\alpha} \beta^{p - 1} l^{p} \left((d + \varepsilon)^{-\frac{\alpha + 2}{p - 1}} - (\overline{a} + \varepsilon)^{-\frac{\alpha + 2}{p - 1}} \right)^{p} \right]$$

in $0 < d(x) < \overline{a}$. Using inequality (11), we obtain

$$-\Delta \underline{u} + d^{\alpha} \underline{u}^{p} \leq \beta l^{p} (d+\varepsilon)^{-\frac{\alpha+2p}{p-1}} \left[M\left(\frac{\alpha+2}{p-1}\right) l^{1-p} (d+\varepsilon) - 1 + \beta^{p-1} \left(\frac{d}{d+\varepsilon}\right)^{\alpha} \right]$$

which implies

$$-\Delta \underline{u} + d^{\alpha} \underline{u}^{p} \leq \beta l^{p} (d+\varepsilon)^{-\frac{\alpha+2p}{p-1}} \left[\overline{M} (d+\varepsilon) - (1-\beta^{p-1}) \right]$$

with $\overline{M} = M\left(\frac{\alpha+2}{p-1}\right)l^{1-p}$. We now choose $\overline{a} = \frac{1}{2}\min\left(\tilde{a}, \frac{1-\beta^{p-1}}{\overline{M}}\right)$ and impose $\varepsilon < \frac{1}{2}\left(\frac{1-\beta^{p-1}}{\overline{M}}\right)$. Then \overline{u} is a subsolution of (1) in $0 < d(x) < \overline{a}$. By the maximum principle

Then \overline{u} is a subsolution of (1) in $0 < d(x) < \overline{a}$. By the maximum principle we derive $\underline{u} \leq u$ in $0 < d(x) < \overline{a}$. Letting ε tend to 0, this implies for all $\beta \in (0, 1)$ and x such that $d(x) < \overline{a}$:

$$\beta l \left[1 - \left(\frac{d(x)}{\overline{a}} \right)^{\frac{\alpha+2}{p-1}} \right] \le d(x)^{\frac{\alpha+2}{p-1}} u(x)$$

Therefore for all $\beta \in (0, 1)$:

$$\beta l \leq \liminf_{d(x) \to 0} d(x)^{\frac{\alpha+2}{p-1}} u(x)$$

which ends the proof. \blacksquare

Because of Proposition 2.2, we can describe the asymptotic behavior of radially symmetric solutions of (1)-(2).

Proposition 2.3. Let R > 0 and $v \in C^2(0, R)$ a solution of

(15)
$$-v'' - \frac{N-1}{r}v' + (R-r)^{\alpha}v^{p} = 0$$

in (0, R) such that

$$\lim_{r \to R} v(r) = +\infty \; .$$

Then

(16)
$$\lim_{r \to R} (R - r)^{\frac{\alpha + 2}{p - 1}} v(r) = l$$

where l is defined in (6).

We omit the proof of this proposition because it follows the idea of [14]: the function $w(t) = (R-r)^{\frac{\alpha+2}{p-1}}v(r)$ with $R-r = e^{-t}$ is bounded and satisfies a second order differential equation in a neighborhood of infinity and the ω -limit set of a trajectory of that equation is {0} or {l}. Therefore Proposition 2.2 implies Proposition 2.3. Those results allows us to prove Theorem 1.1.

148

... LARGE SOLUTIONS OF DEGENERATE ELLIPTIC PROBLEMS 149

Proof of Theorem 1.1: In view of (14) we must only prove that

(17)
$$\limsup_{d(x)\to 0} d(x)^{\frac{\alpha+2}{p-1}} u(x) \leq l \; .$$

Still the results of [1], [2] or [14] don't apply directly but we can adapt them. Let $y \in \partial \Omega$. Since $\partial \Omega$ is smooth, there exists a ball B_y centered at a point Y of radius R_y such that $B_y \subset \Omega$ and $\overline{B_y} \cap \partial \Omega = \{y\}$. We introduce the function V defined by V(x) = v(|x|) for all $x \in B_{R_y}$ where v is a function as in Proposition 2.3 with $R = R_y$. The function v exists because it is the radial solution of (1)–(2) for $\Omega = B$ (see [9]). Let k > 1. Finally we introduce the function V_k defined by $V_k(x) = k^{\frac{2}{p-1}} V(k(x-Y))$ for all $x \in B(Y, \frac{R_y}{k})$. Note that $B(Y, \frac{R_y}{k}) \subset B_y$ and V_k is solution of

$$-\Delta V_k + \left(R_y - k|x - Y|\right)^{\alpha} V_k^p = 0$$

in $B(y, \frac{R_y}{k})$ and satisfies

$$\lim_{x-Y|\to \frac{R_y}{k}} V_k(x) = +\infty$$

Since $x \in B(Y, \frac{R_y}{k})$ implies $d(x) \ge R_y - |x - Y| \ge R_y - k|x - Y|$, the comparison principle involves $u \le V_k$ in $B(Y, \frac{R_y}{k})$. Letting k tend to 1, we obtain

(18)
$$u(x) \le v(|x-Y|) \quad \text{in } B_y$$

Because of Proposition 2.3, for all $\varepsilon > 0$ there exists $\eta > 0$ such that

(19)
$$\left|s^{\frac{\alpha+2}{p-1}}v(R_y-s)-l\right|<\varepsilon \quad \forall s\in(0,\eta)$$

Let $\tilde{\eta} > 0$ be sufficiently small so that for all $x \in \Omega$ with $d(x) < \tilde{\eta}$ there exists a unique $y \in \partial \Omega$ such that |x - y| = d(x). Then for all $x \in \Omega$ such that $d(x) < \min(\eta, \tilde{\eta})$, both inequalities (18) and (19) imply

$$d(x)^{\frac{\alpha+2}{p-1}}u(x) \leq d(x)^{\frac{\alpha+2}{p-1}}v(R_y - d(x)) < l + \varepsilon$$

and inequality (17) holds.

Proof of Theorem 1.2: Large solutions of (1) satisfy (5). Then two large solutions u_1 and u_2 of (1) are such that

$$\lim_{d(x)\to 0} \frac{u_1(x)}{u_2(x)} = 1 \; .$$

and the result follows as in [1] or [11].

3 – Boundary influence in the explosion rate

In this section we prove Theorem 1.3. As in [13] we construct suitable suband supersolutions of (1) in a neighborhood of $\partial \Omega$ which are inspired of the radial study that we omit here.

Since Ω is regular there exists $\overline{b} > 0$ such that d is a function of class C^2 in $\{x \in \Omega / d(x) < \overline{b}\}, |\nabla d(x)| = 1$ and

(20)
$$\Delta d(x) = -(N-1)H(\overline{x}) + o(1) \quad \text{as} \quad d(x) \to 0 \; .$$

Let $b_0 \in (0, \overline{b})$, $b \in (0, b_0)$ and $\varepsilon > 0$. We introduce the function Ψ defined in $E_{b,b_0} = \{x \in \Omega \mid b < d(x) < b_0\}$ by

$$\Psi(x) \ = \ l\Big(d(x) - b\Big)^{-\frac{\alpha+2}{p-1}} + \frac{l}{\alpha+p+3}\Big((N-1)H(\overline{x}) + \varepsilon\Big)\Big(d(x) - b\Big)^{-\frac{\alpha+3-p}{p-1}}$$

We claim that if b_0 is chosen sufficiently small, independently of ε and b, then Ψ is a supersolution in E_{b,b_0} . Indeed, a straightforward computation using (20) gives:

$$\begin{split} \Delta\Psi &= l^p \Big(d(x) - b \Big)^{-\frac{\alpha+2p}{p-1}} + l \Big(d(x) - b \Big)^{-\frac{\alpha+p+1}{p-1}} \left[\frac{\alpha+2}{p-1} \left(N-1 \right) H(\overline{x}) \right. \\ &+ \frac{(\alpha+3-p)\left(\alpha+2\right)}{(\alpha+p+3)\left(p-1\right)^2} \left(\left(N-1 \right) H(\overline{x}) + \varepsilon \right) + o(1) \\ &+ \frac{\alpha+3-p}{(p-1)\left(\alpha+p+3\right)} \left(\left(N-1 \right) H(\overline{x}) + \varepsilon \right) \left(\left(N-1 \right) H(\overline{x}) + o(1) \right) \left(d(x) - b \right) \right]. \end{split}$$

On the other hand, we have

$$\begin{split} d(x)^{\alpha} \Psi^{p} &\geq \left(d(x) - b \right)^{\alpha} \Psi^{p} \\ &\geq l^{p} \Big(d(x) - b \Big)^{-\frac{\alpha + 2p}{p-1}} \times \\ & \left[1 + \frac{p}{\alpha + p + 3} \left((N-1) H(\overline{x}) + \varepsilon \right) \left(d(x) - b \right) + o \Big(d(x) - b \Big) \right]. \end{split}$$

Then

$$\begin{split} -\Delta \Psi + d^{\alpha} \Psi^{p} &\geq \\ &\geq l \left(d(x) - b \right)^{-\frac{\alpha + p + 1}{p - 1}} \times \\ & \left[-\frac{\alpha + 2}{p - 1} \left(N - 1 \right) H(\overline{x}) - \frac{(\alpha + 3 - p) \left(\alpha + 2 \right)}{(\alpha + p + 3) \left(p - 1 \right)^{2}} \left((N - 1) H(\overline{x}) + \varepsilon \right) \right. \\ & \left. - \frac{\alpha + 3 - p}{(p - 1) \left(\alpha + p + 3 \right)} \left((N - 1) H(\overline{x}) + \varepsilon \right) \left((N - 1) H(\overline{x}) + o(1) \right) \left(d(x) - b \right) \right. \\ & \left. + \frac{l^{p - 1} p}{\alpha + p + 3} \left((N - 1) H(\overline{x}) + \varepsilon \right) + o(1) \right]. \end{split}$$

Since

$$-\frac{\alpha+2}{p-1} - \frac{(\alpha+3-p)(\alpha+2)}{(\alpha+p+3)(p-1)^2} + \frac{l^{p-1}p}{\alpha+p+3} = 0 ,$$

and since the coefficient of ε is $(\alpha + 2)/(p - 1)$, it implies that there exists $b_0 = b_0(\varepsilon) \in (0, \overline{b})$ such that for all $0 < b < b_0$:

$$-\Delta \Psi + d^{\alpha} \Psi^p \ge 0$$
 in E_{b,b_0} .

Consider the solution u of (1)–(2). We claim that there exists a positive number K independent of $b \in (0, b_0)$ such that:

(21)
$$\Psi(x) + K \ge u(x)$$

for all $x \in \Omega$ with $d(x) = b_0$. In fact, if we define

$$M_0 = \max_{d(x)=b_0} u(x) ,$$

we can compute for all x such that $d(x) = b_0$:

$$\Psi(x) = l(b_0 - b)^{-\frac{\alpha+2}{p-1}} + \frac{l}{\alpha+p+3} \left((N-1)H(\overline{x}) + \varepsilon \right) (b_0 - b)^{-\frac{\alpha+3-p}{p-1}}$$

Since $\partial \Omega$ is regular, there exists a real $b_1 \in (0, b_0)$ such that

$$\left|\frac{1}{\alpha+p+3}\left((N-1)H(\overline{x})+\varepsilon\right)(b_0-b)\right| \leq \frac{1}{2}$$

for all $b \in (b_1, b_0)$, where \overline{x} is such that $d(x) = |x - \overline{x}|$. Therefore

$$1 + \frac{1}{\alpha + p + 3} \left((N - 1) H(\overline{x}) + \varepsilon \right) (b_0 - b) \ge \frac{1}{2}$$

and then

$$\Psi(x) \ge \frac{l}{2} (b_0 - b)^{-\frac{\alpha+2}{p-1}} \ge \frac{l}{2} (b_0 - b_1)^{-\frac{\alpha+2}{p-1}}$$

for all $b \in (b_1, b_0)$, where \overline{x} is such that $d(x) = |x - \overline{x}|$. On the other hand, for all $b \in (0, b_1]$ and $d(x) = b_0$:

$$\Psi(x) = l(b_0 - b)^{-\frac{\alpha+2}{p-1}} + \frac{l}{\alpha + p + 3} \left((N-1)H(\overline{x}) + \varepsilon \right) (b_0 - b)^{-\frac{\alpha+3-p}{p-1}}$$

$$\geq lb_0^{-\frac{\alpha+2}{p-1}} - C(b_0 - b_1)^{-\frac{\alpha+3-p}{p-1}}$$

with C > 0 and because the assumption if we assume $\alpha + 3 - p > 0$ (we omit the proof in the case $\alpha + 3 - p \le 0$ which is simpler). Finally we obtain for all $b \in (0, b_0)$:

$$\Psi(x) \geq L = \min\left(\frac{l}{2} \left(b_0 - b_1\right)^{-\frac{\alpha+2}{p-1}}, \ l b_0^{-\frac{\alpha+2}{p-1}} - C \left(b_0 - b_1\right)^{-\frac{\alpha+3-p}{p-1}}\right),$$

then, for all x such that $d(x) = b_0$,

$$u \leq M_0 \leq \max(1, M_0 - L) + L \leq \max(1, M_0 - L) + \psi$$

which implies (21).

On the other hand the function $\Psi + K$ is itself a supersolution of equation (1) in E_{b,b_0} . Therefore the comparison principle implies (21) in E_{b,b_0} . Letting b tend to 0, we obtain

$$u(x) \leq l d(x)^{-\frac{\alpha+2}{p-1}} + \frac{l}{\alpha+p+3} \left((N-1)H(\overline{x}) + \varepsilon \right) d(x)^{-\frac{\alpha+3-p}{p-1}} + K$$

for all $x \in \Omega$ such that $0 < d(x) < b_0$. In the same way, by considering subsolutions in the form

$$\phi(x) = l\left(d(x) + b\right)^{-\frac{2+\alpha}{p-1}} + \frac{l}{\alpha+p+3}\left((N-1)H(\overline{x}) - \varepsilon\right)\left(d(x) + b\right)^{-\frac{\alpha+3-p}{p-1}} - \overline{K}$$

we obtain expansion (8). \blacksquare

ACKNOWLEDGEMENTS – The authors are pleased to aknowledge Catherine Bandle for their profitable discussions.

152

... LARGE SOLUTIONS OF DEGENERATE ELLIPTIC PROBLEMS 153

REFERENCES

- [1] BANDLE, C. and MARCUS, M. Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math., 58 (1992), 9–24.
- [2] BANDLE, C. and MARCUS, M. Asymptotic behavior of solutions and their derivatives, for semilinear elliptic problems with blow-up on the boundary, Annal. Inst. Henri Poincaré – Anal. non Lin., 12 (1995), 155–171.
- [3] BANDLE, C. and MARCUS, M. On second-order effects in the boundary behavior of large solutions of semilinear elliptic problems, *Diff. Integ. Eq.*, 11 (1998), 23–34.
- [4] BIEBERBACH, L. $\Delta u = e^u$ und die automorphen funktionen, Math. Ann., 77 (1916), 173–212.
- [5] CHENG, K.S. and NI, W.M. On the structure of the conformal scalar curvature equation on \mathbb{R}^N , *Indiana Univ. Math. J.*, 41 (1992), 261–278.
- [6] CHUAQUI, M.; CORTÁZAR, C.; ELGUETA, M.; FLORES, C.; LETELIER, R. and GARCÍ-MELIÁN, J. – On an elliptic problem with boundary blow-up and a singular weight: the radial case, *Proceed. of the Roy. Soc. of Edinburgh*, 133A (2003), 1283– 1297.
- [7] KELLER, J.B. On solution of $\Delta u = f(u)$, Comm. Pure Appl. Math., 10 (1957), 503–510.
- [8] LAIR, A.V. A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations, J. Math. Anal. and Appl., 240 (1999), 205–218.
- [9] LAIR, A.V. and WOOD, A.W. Large solutions of semi-linear elliptic problems, Nonlin. Anal., 37 (1999), 805–812.
- [10] LOEWNER, C. and NIRENBERG, L. Partial differential equations invariant under conformal projective transformations, in "Contributions to Analysis" (L. Ahlfors, Ed.), Academic Press, New York, 1974, pp. 245–272.
- [11] MARCUS, M. and VÉRON, L. Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Annal. Inst. Henri Poincaré – Anal. non Lin., 14 (1997), 237–274.
- [12] OSSERMAN, R. On the inequality $\Delta u \ge f(u)$, Pacific J. Math., 7 (1957), 1641– 1647.
- [13] DEL PINO, M. and LETELIER, R. The influence of domain geometry in boundary blow-up elliptic problems, *Nonlin. Anal.*, 48 (2002), 897–904.
- [14] VÉRON, L. Semilinear elliptic equations with uniform blow-up on the boundary, J. Anal. Math., 59 (1992), 231–250.

Michèle Grillot, IUFM d'Orléans-Tours et Université d'Orléans MAPMO, BP 6759 – 45 067 Orléans cedex 02 – FRANCE

and

Philippe Grillot, Université d'Orléans MAPMO, BP 6759 – 45 067 Orléans cedex 02 – FRANCE