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OF DEGENERATE ELLIPTIC PROBLEMS
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Abstract: In this paper we study the asymptotic boundary behavior of large

solutions of the equation ∆u = dαup in a regular bounded domain Ω in R
N , N≥ 2,

where d(x) denotes the distance from x to ∂Ω, p>1 and α> 0. We precise the expan-

sion which depends on the mean curvature of the boundary.

1 – Introduction: notations and main results

Let Ω be a regular bounded domain in R
N, N ≥ 2, p>1 and α> 0. We denote

by d(x) the distance from x to ∂Ω, the boundary of Ω. In this paper we consider

the semilinear degenerate equation

(1) ∆u = dαup in Ω

and we are interesting in the large solutions of (1), that is solutions of (1) which

blow up at the boundary:

(2) u(x) → +∞ as d(x) → 0 .

Note already that the maximum principle implies that the solutions u ∈ C2(Ω)

of (1)–(2) are positive in Ω.

Equation (1) registers in problems of the form

(3) ∆u = p(x)f(u) in Ω .
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Those problems were first studied by Bieberbach [4] for the case p(x) = 1,

f(u) = eu and N= 2, in the context of Riemannian surfaces of constant negative

curvature, and the theory of automorphic functions. The case p(x)> 0 for all

x ∈ Ω has been, largely dealt with in the literature (see [7], [12], [8], [5] for

example).

Existence of solutions of (1)–(2) was established by Lair and Wood [9].

The question of the uniqueness of solutions of (1)–(2) is more delicate. When

α= 0 and p> 1, it is well know that problem (1)–(2) has a unique solution

which satisfies

(4) lim
d(x)→0

u(x) d(x)
2

p−1 =

(

2(p+1)

(p−1)2

)
1

p−1

.

This was first established by Loewner and Nirenberg [10] for the case

p = (N+ 2)/(N− 2). Later we can find many extensions, see for example [1], [2]

and [14] and the references cited there. The case α< 0 and p> 0 is studied in [6].

In the general case α ≥ 0, Marcus and Véron proved the uniqueness of the

solutions of (1)–(2) under the condition 1 < p < (N+1+ α)/(N−1). Our first

theorem completes this result and gives the rate of the blow-up.

Theorem 1.1. Let u ∈ C2(Ω) be a solution of (1)–(2). Then it satisfies

(5) lim
d(x)→0

d(x)
α+2

p−1 u(x) = l

where l is given by

(6) l =

[

(α+ 2) (α+ p+ 1)

(p− 1)2

]
1

p−1

.

This theorem allows us to establish the uniqueness of solutions of (1)–(2)

with no conditions on p and α.

Theorem 1.2. Problem (1) possesses a unique large solution.

In the second time we are interested in the influence of the geometry of Ω

in the boundary behavior. When α= 0, this problem was first studied by Bandle

and Marcus [3] for the radially symmetric solutions of (1)–(2) in a ball. Later

their result was extended by del Pino and Letelier [13] for general solutions.

They proved that a lower-order term, still explosive, appears in the expansion
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of u which depends linearly of the mean curvature of the boundary of Ω. More

precisely, if 1<p< 3 and α= 0, then on a sufficiently small neighborhood of ∂Ω

we have the expansion

(7) u(x) =

(

2(p+1)

(p−1)2

)
1

p−1

d(x)
− 2

p−1

{

1 +
N+1

p+ 3
H(x) d(x) + o

(

d(x)
)

}

.

Here, for all x in a neighborhood of ∂Ω, x denotes the unique point of the bound-

ary such that d(x) = |x− x| and H(x) the mean curvature of the boundary at

that point. Estimate (7) generalizes to our case α ≥ 0 in the following way.

Theorem 1.3. Let u ∈ C2(Ω) a large solution of (1). Then, on a sufficiently

small neighborhood of ∂Ω :

(8) u(x) = ld(x)
− 2+α

p−1

{

1 +
N−1

α+ p+ 3
H(x) d(x) + o

(

d(x)
)

}

.

This theorem implies that on a sufficiently small neighborhood of ∂Ω:

(9) u(x) − ld(x)
− 2+α

p−1 =
N−1

α+ p+ 3
H(x) d(x)

−α+3−p

p−1 + o
(

d(x)
−α+3−p

p−1

)

.

Therefore, we obtain that

– if p > α+ 3, then the first member of (9) tends to 0 at the boundary,

– if p = α+ 3, then u(x) − ld(x)
− 2+α

p−1 = N−1
α+p+3 H(x) + o(1),

– if p < α+3, then the first member of (9) is not bounded and the blow-up

depends on the mean curvature. Roughly, the “more curved” or “sharper”

towards the exterior of Ω is around a given point of ∂Ω, the higher the

explosion rate at that point is.

That is a generalization of the results of Bandle and Marcus [3] for the radially

symmetric solutions of (1)–(2) in a ball Ω = B(0, R):

– if p > 3, then u(r) − l(R− r)
− 2

p−1 → 0 when r → R ,

– if p = 3, then u(r)− l(R−r)
− 2

p−1 → C(N)
R

when r → R, which represents

the mean curvature of the ball,

– if p < 3, then u(r) − l(R− r)
− 2

p−1 → ∞ when r → R.

Our paper is organized as follows:

1. Introduction

2. Asymptotic behavior and uniqueness

3. Boundary influence in the explosion rate.
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2 – Asymptotic behavior and uniqueness

We begin this section by proving a classical estimate for all solution u of (1)

(see [12]).

Proposition 2.1 (Osserman estimate). There exist two positive constants

a= a(∂Ω) and C=C(Ω, α, p) such that for all solution u∈C2(Ω) of equation (1),

we have:

(10) u(x) ≤ Cd(x)
− 2+α

p−1

for all x ∈ Ω such that d(x)< a.

Proof: Since Ω is regular there exist ã = ã(Ω) > 0 and M = M(Ω) > 0

such that

(11) |∆d(x)| ≤M , |∇d(x)| = 1

for all x ∈ Ω such that d(x)< ã. Set a = min(1, ã
2 ). Let x0 ∈ Ω such that

d(x0)<a and r0 = d(x0)/2. We denote by B0 the ball centered at x0 of radius r0
and we define the function w in B0 as follows:

(12) w(x) = λ d(x)−
α

p−1

(

r20 − |x− x0|
2
)− 2

p−1

with λ > 0 to determine such that

(13) −∆w + dαwp ≥ 0 in B0 .

A straightforward computation gives:

−∆w + dαwp = λ d
− α

p−1

(

r20 − |x− x0|
2
)− 2p

p−1

×
[

−
α(α+p−1)

(p−1)2

(

r20 −|x−x0|
2
)2
d−2 +

α

p−1

(

r20 −|x−x0|
2
)2
d−1∆d

+
8α

(p−1)2

(

r20 − |x− x0|
2
)

d−1∇d.(x− x0) −
8(p+ 1)

(p−1)2
|x− x0|

2

−
4N

p−1

(

r20 − |x− x0|
2
)

+ λp−1

]

.
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Since |x− x0| < d(x0) ≤ 1, d(x) ≥ d(x0)/2 and r30 < r20, there exists a con-

stant L = L(α, p,M) > 0 such that

−∆w + dαwp ≥ λd
− α

p−1

(

r20 − |x− x0|
2
)− 2p

p−1
(

−Lr20 + λp−1
)

in B0. Therefore, we choose λ = L
1

p−1 r
2

p−1

0 and we obtain (13). Note that

w(x) = +∞ if x ∈ ∂B0 because −2/(p−1) < 0. The comparison principle im-

plies u ≤ w in B0 and in particular

u(x0) ≤ w(x0) = L
1

p−1

(

d(x0)

2

)
2

p−1
(

d(x0)
)− α

p−1

(

d(x0)

2

)− 4

p−1

which gives inequality (10).

We now establish an estimate from below for the solutions of (1)–(2).

The results of [1] and [2] can’t be used because the distance function d is not

positive in Ω. Nevertheless we can adapt them as follows.

Proposition 2.2. Let u ∈ C2(Ω) be a solution of (1)–(2). Then

(14) lim inf
d(x)→0

d(x)
α+2

p−1 u(x) ≥ l

where l is defined in (6).

Proof: Let ε > 0, ã be as the proof of Proposition 2.1 and β ∈ (0, 1).

We define

u(x) = β l

(

(

d(x) + ε
)−α+2

p−1 − (a+ ε)−
α+2

p−1

)

where a will be determined such that a < ã. We have u > 0 on ∂Ω and u(x) = 0

for all x such that d(x) = a. Moreover a straightforward computation yields

−∆u+ dαup = β

[

∆d

(

α+ 2

p− 1

)

l(d+ ε)
−α+p+1

p−1 − lp(d+ ε)
−α+2p

p−1

+ dαβp−1 lp
(

(d+ ε)
−α+2

p−1 − (a+ ε)
−α+2

p−1

)p

]

in 0 < d(x) < a. Using inequality (11), we obtain

−∆u+ dαup ≤ β lp(d+ ε)
−α+2p

p−1

[

M

(

α+ 2

p− 1

)

l1−p(d+ ε) − 1 + βp−1

(

d

d+ ε

)α
]
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which implies

−∆u+ dαup ≤ β lp(d+ ε)
−α+2p

p−1

[

M(d+ ε) − (1− βp−1)
]

with M = M
(

α+2
p−1

)

l1−p. We now choose a = 1
2 min

(

ã, 1−βp−1

M

)

and impose

ε < 1
2

(1−βp−1

M

)

.

Then u is a subsolution of (1) in 0 < d(x) < a. By the maximum principle

we derive u ≤ u in 0<d(x)<a. Letting ε tend to 0, this implies for all β ∈ (0, 1)

and x such that d(x)< a :

β l

[

1 −

(

d(x)

a

)
α+2

p−1

]

≤ d(x)
α+2

p−1 u(x) .

Therefore for all β ∈ (0, 1):

β l ≤ lim inf
d(x)→0

d(x)
α+2

p−1 u(x)

which ends the proof.

Because of Proposition 2.2, we can describe the asymptotic behavior of radi-

ally symmetric solutions of (1)–(2).

Proposition 2.3. Let R > 0 and v ∈ C2(0, R) a solution of

(15) − v′′ −
N − 1

r
v′ + (R− r)αvp = 0

in (0, R) such that

lim
r→R

v(r) = +∞ .

Then

(16) lim
r→R

(R− r)
α+2

p−1 v(r) = l

where l is defined in (6).

We omit the proof of this proposition because it follows the idea of [14]:

the function w(t) = (R− r)
α+2

p−1 v(r) with R− r = e−t is bounded and satisfies a

second order differential equation in a neighborhood of infinity and the ω-limit set

of a trajectory of that equation is {0} or {l}. Therefore Proposition 2.2 implies

Proposition 2.3. Those results allows us to prove Theorem 1.1.
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Proof of Theorem 1.1: In view of (14) we must only prove that

(17) lim sup
d(x)→0

d(x)
α+2

p−1 u(x) ≤ l .

Still the results of [1], [2] or [14] don’t apply directly but we can adapt them.

Let y ∈ ∂Ω. Since ∂Ω is smooth, there exists a ball By centered at a point Y of

radius Ry such that By ⊂ Ω and By ∩ ∂Ω = {y}. We introduce the function V

defined by V (x) = v(|x|) for all x∈BRy
where v is a function as in Proposition 2.3

with R =Ry. The function v exists because it is the radial solution of (1)–(2)

for Ω = B (see [9]). Let k > 1. Finally we introduce the function Vk defined by

Vk(x) = k
2

p−1 V
(

k(x− Y )
)

for all x ∈ B
(

Y,
Ry

k

)

. Note that B
(

Y,
Ry

k

)

⊂ By and

Vk is solution of

−∆Vk +
(

Ry − k|x−Y |
)α

V p
k = 0

in B
(

y,
Ry

k

)

and satisfies

lim
|x−Y |→

Ry

k

Vk(x) = +∞ .

Since x ∈ B
(

Y,
Ry

k

)

implies d(x) ≥ Ry − |x−Y | ≥ Ry − k|x−Y |, the comparison

principle involves u ≤ Vk in B
(

Y,
Ry

k

)

. Letting k tend to 1, we obtain

(18) u(x) ≤ v
(

|x− Y |
)

in By .

Because of Proposition 2.3, for all ε > 0 there exists η > 0 such that

(19)
∣

∣

∣
s

α+2

p−1 v(Ry − s) − l
∣

∣

∣
< ε ∀s ∈ (0, η) .

Let η̃ > 0 be sufficiently small so that for all x ∈ Ω with d(x) < η̃ there exists

a unique y ∈ ∂Ω such that |x− y| = d(x). Then for all x ∈ Ω such that d(x)<

min(η, η̃), both inequalities (18) and (19) imply

d(x)
α+2

p−1 u(x) ≤ d(x)
α+2

p−1 v
(

Ry − d(x)
)

< l + ε

and inequality (17) holds.

Proof of Theorem 1.2: Large solutions of (1) satisfy (5). Then two large

solutions u1 and u2 of (1) are such that

lim
d(x)→0

u1(x)

u2(x)
= 1 .

and the result follows as in [1] or [11].
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3 – Boundary influence in the explosion rate

In this section we prove Theorem 1.3. As in [13] we construct suitable sub-

and supersolutions of (1) in a neighborhood of ∂Ω which are inspired of the radial

study that we omit here.

Since Ω is regular there exists b > 0 such that d is a function of class C2 in
{

x ∈ Ω / d(x)< b
}

, |∇d(x)| = 1 and

(20) ∆d(x) = −(N −1)H(x) + o(1) as d(x) → 0 .

Let b0 ∈ (0, b), b ∈ (0, b0) and ε > 0. We introduce the function Ψ defined in

Eb,b0 =
{

x ∈ Ω / b < d(x) < b0
}

by

Ψ(x) = l
(

d(x) − b
)−α+2

p−1

+
l

α+ p+ 3

(

(N −1)H(x) + ε
)(

d(x) − b
)−α+3−p

p−1

.

We claim that if b0 is chosen sufficiently small, independently of ε and b, then

Ψ is a supersolution in Eb,b0 . Indeed, a straightforward computation using (20)

gives:

∆Ψ = lp
(

d(x) − b
)−α+2p

p−1

+ l
(

d(x) − b
)−α+p+1

p−1

[

α+ 2

p− 1
(N − 1)H(x)

+
(α+ 3 − p)(α+ 2)

(α+ p+ 3)(p−1)2

(

(N −1)H(x) + ε
)

+ o(1)

+
α+ 3 − p

(p−1)(α+p+3)

(

(N−1)H(x) + ε
)(

(N−1)H(x) + o(1)
)(

d(x)− b
)

]

.

On the other hand, we have

d(x)α Ψp ≥
(

d(x) − b
)α

Ψp

≥ lp
(

d(x) − b
)−α+2p

p−1

×
[

1 +
p

α+ p+ 3

(

(N−1)H(x) + ε
)(

d(x) − b
)

+ o
(

d(x) − b
)

]

.
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Then

−∆Ψ + dαΨp ≥

≥ l
(

d(x) − b
)−α+p+1

p−1

×
[

−
α+ 2

p−1
(N−1)H(x) −

(α+3−p)(α+2)

(α+p+3)(p−1)2

(

(N−1)H(x) + ε
)

−
α+3−p

(p−1)(α+p+3)

(

(N−1)H(x) + ε
)(

(N−1)H(x) + o(1)
)(

d(x)− b
)

+
lp−1p

α+p+3

(

(N−1)H(x) + ε
)

+ o(1)

]

.

Since

−
α+ 2

p− 1
−

(α+ 3 − p) (α+ 2)

(α+ p+ 3) (p− 1)2
+

lp−1p

α+ p+ 3
= 0 ,

and since the coefficient of ε is (α+ 2)/(p− 1), it implies that there exists b0 =

b0(ε) ∈ (0, b) such that for all 0 < b < b0 :

−∆Ψ + dαΨp ≥ 0 in Eb,b0 .

Consider the solution u of (1)–(2). We claim that there exists a positive numberK

independent of b ∈ (0, b0) such that:

(21) Ψ(x) +K ≥ u(x)

for all x ∈ Ω with d(x) = b0. In fact, if we define

M0 = max
d(x)=b0

u(x) ,

we can compute for all x such that d(x) = b0 :

Ψ(x) = l
(

b0− b
)−α+2

p−1 +
l

α+ p+ 3

(

(N−1)H(x) + ε
)

(

b0− b
)−α+3−p

p−1 .

Since ∂Ω is regular, there exists a real b1 ∈ (0, b0) such that
∣

∣

∣

∣

1

α+ p+ 3

(

(N−1)H(x) + ε
)

(b0− b)

∣

∣

∣

∣

≤
1

2

for all b ∈ (b1, b0), where x is such that d(x) = |x− x|. Therefore

1 +
1

α+ p+ 3

(

(N−1)H(x) + ε
)

(b0− b) ≥
1

2
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and then

Ψ(x) ≥
l

2

(

b0 − b
)−α+2

p−1 ≥
l

2

(

b0 − b1
)−α+2

p−1

for all b ∈ (b1, b0), where x is such that d(x) = |x − x|. On the other hand, for

all b ∈ (0, b1] and d(x) = b0 :

Ψ(x) = l
(

b0− b
)−α+2

p−1 +
l

α+ p+ 3

(

(N−1)H(x) + ε
)

(

b0 − b
)−α+3−p

p−1

≥ l b
−α+2

p−1

0 − C
(

b0− b1
)−α+3−p

p−1

with C > 0 and because the assumption if we assume α+ 3 − p > 0 (we omit

the proof in the case α + 3 − p ≤ 0 which is simpler). Finally we obtain for all

b ∈ (0, b0):

Ψ(x) ≥ L = min

(

l

2

(

b0 − b1
)−α+2

p−1 , l b
−α+2

p−1

0 − C
(

b0− b1
)−α+3−p

p−1

)

,

then, for all x such that d(x) = b0,

u ≤ M0 ≤ max(1,M0−L) + L ≤ max(1,M0−L) + ψ

which implies (21).

On the other hand the function Ψ +K is itself a supersolution of equation (1)

in Eb,b0 . Therefore the comparison principle implies (21) in Eb,b0 . Letting b tend

to 0, we obtain

u(x) ≤ ld(x)
−α+2

p−1 +
l

α+ p+ 3

(

(N−1)H(x) + ε
)

d(x)
−α+3−p

p−1 +K

for all x ∈ Ω such that 0 < d(x) < b0. In the same way, by considering subsolu-

tions in the form

φ(x) = l
(

d(x) + b
)− 2+α

p−1

+
l

α+ p+ 3

(

(N−1)H(x) − ε
) (

d(x) + b
)−α+3−p

p−1

−K

we obtain expansion (8).
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BP 6759 – 45 067 Orléans cedex 02 – FRANCE


