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THE INFLUENCE OF DOMAIN GEOMETRY IN
THE BOUNDARY BEHAVIOR OF LARGE SOLUTIONS
OF DEGENERATE ELLIPTIC PROBLEMS

MICHELE GRILLOT and PHILIPPE GRILLOT

Abstract: In this paper we study the asymptotic boundary behavior of large
solutions of the equation Au = d®uP in a regular bounded domain Q in RN, N>2,
where d(z) denotes the distance from x to 9, p>1 and o >0. We precise the expan-

sion which depends on the mean curvature of the boundary.

1 — Introduction: notations and main results

Let © be a regular bounded domain in RY, N > 2, p>1 and a > 0. We denote
by d(z) the distance from z to €2, the boundary of . In this paper we consider
the semilinear degenerate equation

(1) Au=d*v’ in Q

and we are interesting in the large solutions of (1), that is solutions of (1) which
blow up at the boundary:

(2) u(z) —» +oo as d(z) —0.

Note already that the maximum principle implies that the solutions u € C2(12)
of (1)—(2) are positive in .

Equation (1) registers in problems of the form
(3) Au=p(z)f(u) in Q.
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Those problems were first studied by Bieberbach [4] for the case p(x)=1,
f(u)=e" and N =2, in the context of Riemannian surfaces of constant negative
curvature, and the theory of automorphic functions. The case p(z)>0 for all
r € Q has been, largely dealt with in the literature (see [7], [12], [8], [5] for
example).

Existence of solutions of (1)-(2) was established by Lair and Wood [9].
The question of the uniqueness of solutions of (1)-(2) is more delicate. When
a=0 and p>1, it is well know that problem (1)-(2) has a unique solution
which satisfies

2

(4) lim u(x)d(x)r—1 = (

d(z)—0

2(p+1)>P11
(p—1)2 '

This was first established by Loewner and Nirenberg [10] for the case
p= (N+2)/(N—2). Later we can find many extensions, see for example [1], [2]
and [14] and the references cited there. The case a < 0 and p > 0 is studied in [6].
In the general case « > 0, Marcus and Véron proved the uniqueness of the
solutions of (1)—(2) under the condition 1 <p < (N+14«)/(N—1). Our first
theorem completes this result and gives the rate of the blow-up.

Theorem 1.1. Let u € C?(QQ) be a solution of (1)-(2). Then it satisfies

(5) d(la%)n—ko d(:v);'%rf u(z) =1

where [ is given by

(@+2)(a+p+1)]7T |

©) = (p—1)?

This theorem allows us to establish the uniqueness of solutions of (1)—(2)
with no conditions on p and a.

Theorem 1.2. Problem (1) possesses a unique large solution.

In the second time we are interested in the influence of the geometry of 2
in the boundary behavior. When a. = 0, this problem was first studied by Bandle
and Marcus [3] for the radially symmetric solutions of (1)—(2) in a ball. Later
their result was extended by del Pino and Letelier [13] for general solutions.
They proved that a lower-order term, still explosive, appears in the expansion
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of w which depends linearly of the mean curvature of the boundary of 2. More
precisely, if 1<p <3 and a=0, then on a sufficiently small neighborhood of 02
we have the expansion

(1) w(z) = (M)”lld(x)ﬁl {1+ N—JF;H(E) d(x) —|—0(d(x))} .

(p—1)? p+
Here, for all x in a neighborhood of 92, T denotes the unique point of the bound-
ary such that d(x) = |x — Z| and H(Z) the mean curvature of the boundary at
that point. Estimate (7) generalizes to our case a > 0 in the following way.

Theorem 1.3. Let u € C?() a large solution of (1). Then, on a sufficiently
small neighborhood of 02 :

N-1
a+p+3

_ 2+«

(8) uw(z) = ld(z) »-1 {1 + H(T)d(z) +0(d(x))} .

This theorem implies that on a sufficiently small neighborhood of 0€2:

© )ty = g @ ) o))

Therefore, we obtain that

— if p> a4+ 3, then the first member of (9) tends to 0 at the boundary,

. —2ta N—1 _
— if p=a+3, then u(z) —ld(z) »1 = ;175 H(@) + o(1),
— if p < a+3, then the first member of (9) is not bounded and the blow-up

depends on the mean curvature. Roughly, the “more curved” or “sharper”

towards the exterior of ) is around a given point of 9€), the higher the
explosion rate at that point is.

That is a generalization of the results of Bandle and Marcus [3] for the radially
symmetric solutions of (1)—(2) in a ball Q = B(0, R):
— if p >3, then u(r) — l(Rfr)_P%l — 0 when r — R,

— if p =3, then u(r)—l(R—r)fﬁ — % when r — R, which represents
the mean curvature of the ball,

— if p <3, then u(r) — (R — r)fp%l — 00 when r — R.

Our paper is organized as follows:

1. Introduction
2. Asymptotic behavior and uniqueness
3. Boundary influence in the explosion rate.
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2 — Asymptotic behavior and uniqueness

We begin this section by proving a classical estimate for all solution u of (1)
(see [12]).

Proposition 2.1 (Osserman estimate). There exist two positive constants
a=a(09Q) and C = C(Q, a, p) such that for all solution u € C?(§2) of equation (1),
we have:

2+«

(10) u(z) < Cd(z) »-1t

for all © € Q such that d(x) < a.

Proof: Since 2 is regular there exist a = a(Q2) >0 and M = M(Q2) >0
such that

(11) Ad@)| <M, V() =1

for all € Q such that d(z) <a. Set a:min(l,%). Let zp € © such that
d(xzo) < a and 1o = d(zp)/2. We denote by By the ball centered at z( of radius rg
and we define the function w in By as follows:

2

(12) w(z) = Ad(@) 71 (r — |z — ) T
with A > 0 to determine such that
(13) —Aw+d*wP? >0 in By.

A straightforward computation gives:

2p

—Aw + d*w” = Ad 7T (r% — |z — x0]2)_pj X
alat+p—1)/, 2\%, 2
[ =17 (7“0 |x — x| ) d—=+
-
(p—1)

4N
— (rg — |z — xo|2) + a1

(67

(rg —|z —l‘0|2>2d_1Ad

p—1

8(p+1) 2 — 302

(7‘3 — |z — :E0’2> d~'Vd.(z — xo) — (p—1)2
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Since |z — mg| < d(z0) < 1, d(z) > d(x)/2 and r§ < r, there exists a con-
stant L = L(a,p, M) > 0 such that

2p

—Aw + d*w? > Ad 5T (7’8 — |z — xo\Q)_pTl (=Lrg + 271

2

1
in By. Therefore, we choose A = L»=Trf~" and we obtain (13). Note that
w(z) = +oo if x € 9By because —2/(p—1) < 0. The comparison principle im-
plies u < w in By and in particular

u(ze) < wwg) = LT <d(‘730)>"31(d(x0))—1fl <d(x0)>_p—1

2
which gives inequality (10). m

We now establish an estimate from below for the solutions of (1)—(2).
The results of [1] and [2] can’t be used because the distance function d is not
positive in Q. Nevertheless we can adapt them as follows.

Proposition 2.2. Let u € C%(Q) be a solution of (1)-(2). Then

(14) ng)fgd(x)%u(x) > 1

where [ is defined in (6).

Proof: Let € >0, a be as the proof of Proposition 2.1 and 5 € (0,1).
We define
_af2 _at2
u(x) = ﬁl((d(m) +e) T —(a+e) P—1>
where @ will be determined such that @ < a. We have u >0 on 02 and u(z) =0
for all x such that d(x) = a. Moreover a straightforward computation yields

O )i ey ey

—Au+d*uP = 3 [Ad<

a+2 _at2

+ g P ((d4e) T — (@t e) p—l)p]

in 0 < d(x) <a. Using inequality (11), we obtain

_a+2p Oé+2 1— 1 d «
_ a, P < P = P _ D
Au+d*uP < BIP(d+¢e)” »t [M<p_1>l (d+e)—1+p <d+6>




148 MICHELE GRILLOT and PHILIPPE GRILLOT

which implies

a2 —
—Ag+d%ffEﬁWM+eY?%2pﬂd+@—wl—ﬁFﬂ}
with M = M(Z‘%“f) '"P. We now choose @ = 3 min(a, 1_%)71) and impose
1/1-pr71
Then % is a subsolution of (1) in 0 < d(x) < @. By the maximum principle
we derive u <wu in 0 < d(x) <a. Letting € tend to 0, this implies for all 5 € (0,1)
and z such that d(z) < a:

Therefore for all 8 € (0,1):

+2

Bl < liminfd(x) Pt u(x)

d(z)—0

which ends the proof. =

Because of Proposition 2.2, we can describe the asymptotic behavior of radi-
ally symmetric solutions of (1)—(2).
Proposition 2.3. Let R > 0 and v € C?(0, R) a solution of

N-1
(15) - —

. v+ (R—7r)*0P =0
in (0, R) such that

lim v(r) = +o0 .
r—R

Then

(16) lim (R — )5t o(r) = I

r—R

where [ is defined in (6). m

We omit the proof of this proposition because it follows the idea of [14]:
the function w(t) = (R — 7“);%f v(r) with R —r = et is bounded and satisfies a
second order differential equation in a neighborhood of infinity and the w-limit set
of a trajectory of that equation is {0} or {l}. Therefore Proposition 2.2 implies
Proposition 2.3. Those results allows us to prove Theorem 1.1.



. LARGE SOLUTIONS OF DEGENERATE ELLIPTIC PROBLEMS 149

Proof of Theorem 1.1: In view of (14) we must only prove that
(17) lim sup d(x) "1 u(z) < 1.
d(z)—0
Still the results of [1], [2] or [14] don’t apply directly but we can adapt them.
Let y € 092. Since 0f is smooth, there exists a ball B, centered at a point Y of
radius R, such that B, C Q and B, N 9Q = {y}. We introduce the function V
defined by V'(x) = v(|z|) for all 2 € B, where v is a function as in Proposition 2.3
with R = R,. The function v exists because it is the radial solution of (1)-(2)
for Q@ = B (see [9]). Let k > 1. Finally we introduce the function V}, defined by
2
Vi(z) = k7 1V (k(z — Y)) for all z € B(Y, ). Note that B(Y, ) ¢ B, and
V}, is solution of
~AVi+ (Ry = Klz=Y[) VP = 0
in B(y, %) and satisfies

lim Vi(z) = 400 .

Since z € B(Y, %) implies d(z) > Ry — |z —Y| > R, — k|z — Y|, the comparison
principle involves u < Vj in B(Y, %) Letting k£ tend to 1, we obtain

(18) u(@) <v(lz—Y]) in By.

Because of Proposition 2.3, for all € > 0 there exists n > 0 such that

a2

(19) sP=1 v(Ry,—s) — l‘ <e Vse(0,n).

Let 77 > 0 be sufficiently small so that for all z € Q with d(z) < 7 there exists
a unique y € 9 such that |z — y| = d(x). Then for all x € Q such that d(z) <
min(n, 77), both inequalities (18) and (19) imply
a+2 a+2
d(z)r=Tu(z) < d(z)rTv(Ry—d(z)) < l+e¢
and inequality (17) holds. m

Proof of Theorem 1.2: Large solutions of (1) satisfy (5). Then two large
solutions u; and ug of (1) are such that

lim u ()
d(z)—0 U2 (x)

=1.

and the result follows as in [1] or [11]. m
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3 — Boundary influence in the explosion rate

In this section we prove Theorem 1.3. As in [13] we construct suitable sub-
and supersolutions of (1) in a neighborhood of 02 which are inspired of the radial
study that we omit here.

Since 2 is regular there exists b > 0 such that d is a function of class C? in
{zeQ/dx)<b}, |Vd(z)] =1 and

(20) Ad(z) = —(N-1)H(@) +o(1) as d(x)—0.

Let by € (0,b), b € (0,bg) and € > 0. We introduce the function ¥ defined in
Eypy={z€Q/b<d(x)<by} by

_oaf2 l _a+3—p

() = 1(d@) =b) "+ o (V) HE) e (da) —b)

We claim that if by is chosen sufficiently small, independently of € and b, then
VU is a supersolution in Ejyp,. Indeed, a straightforward computation using (20)
gives:

a+2p _oatp+1

AV =17 (d(x) - b)_ oy l(d(:z) - b) p=1

a+2

p—1 (N—-1)H(z)

(a+3—p)(a+2)
(a+p+3)(p—1)2

(V=1 H@)+2) +o(1)

a+3—p
(p—1)(a+p+3

) ((N_l)H@) +g) ((N—I)H(T) +o(1)) (d(x) —b)] .
On the other hand, we have

d@)° v > (d() —b)a\pr

a+2p

> [P (d(x) - b>_ T

[1 +—P ((N— 1) H(T) + s) (d(m) - b) + 0<d(ac) - b)] .

a+p+3
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Then
AU 4+ TP >
> l(d(x) . b)_a’f‘p# x
a+2 . (a+3-p)(a+2) B
— 51 W-DH®@ - (o5 o1y ((N—l)H(x) —|—5>
- (p_?)tj;;)%) (V=10 H@) +¢) (N = 1) H@) +o(1)) (dx) )
p—1
alﬂﬁg (V=1 H@) +2) +o(1)
Since

a+2 (a+3-p)(a+2) wtp

p=1 (atp+3)(-1% a+tp+3

and since the coefficient of € is (a+ 2)/(p — 1), it implies that there exists by =
bo(¢) € (0,b) such that for all 0 < b < by:

)

—AV +d°0? >0 in Eb,bo .

Consider the solution u of (1)—(2). We claim that there exists a positive number K
independent of b € (0,bp) such that:

(21) U(x)+ K > u(z)
for all z € Q with d(z) = bg. In fact, if we define

My = max u(x) ,
0 d(z)=bo ( )

we can compute for all x such that d(z) = by:

a+2 l

\I/(x) = l(bo_b) p—1 +m

_a+3-p

((N— ) H(7) + a) (bo—b) 1

Since 0N is regular, there exists a real b € (0, bp) such that

1
a+p+3

(V-1 H(@) +) (bo—b)' < %

for all b € (b1,bp), where T is such that d(x) = |z — Z|. Therefore

1+a+]1H3((N1)H(x)+e)(bob) > %
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and then ; , l ,
_a+2 _at2
Y(z) =2 i(bo_b) ot > §(bo—b1) p-1
for all b € (b1,bp), where T is such that d(z) = |x — Z|. On the other hand, for
all b € (0,b1] and d(z) = by:

at2 l _at3—p

) = o= b) 7 (V=1 H@)+e) (b~ )

_ _ a3
> lbo Pl C(bo— bl) p-1

with C' > 0 and because the assumption if we assume o+ 3 —p > 0 (we omit
the proof in the case aw + 3 — p < 0 which is simpler). Finally we obtain for all
be (0, bo) :

a+2 _a+2 a+3_p)

W) > L = min(;(bo—bl)pl> lby " = Clbo—b) 77

then, for all x such that d(z) = by,
u < My < max(1, My—L)+ L < max(1,My—L)+ ¢

which implies (21).

On the other hand the function ¥ + K is itself a supersolution of equation (1)
in Epp,. Therefore the comparison principle implies (21) in Epp,. Letting b tend
to 0, we obtain

_a+2 l a+3—p

u() < Ld(x) T b ((N—l)H(E)Jra) d(z)" 71 + K

for all z € Q such that 0 < d(x) < by. In the same way, by considering subsolu-
tions in the form

((N— 1) H(z) — 5> (d(a:) + b) TR

_% l _at3—p

we obtain expansion (8). m
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