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Abstract: We introduce a generalization of Glimm’s random choice method, which

provides us with an approximation of entropy solutions to quasilinear hyperbolic system

of balance laws. The flux-function and the source term of the equations may depend

on the unknown as well as on the time and space variables. The method is based on

local approximate solutions of the generalized Riemann problem, which form building

blocks in our scheme and allow us to take into account naturally the effects of the

flux and source terms. To establish the nonlinear stability of these approximations,

we investigate nonlinear interactions between generalized wave patterns. This analysis

leads us to a global existence result for quasilinear hyperbolic systems with source-term,

and applies, for instance, to the compressible Euler equations in general geometries and

to hyperbolic systems posed on a Lorentzian manifold.

1 – Introduction

1.1. Hyperbolic systems of balance laws

This paper(1) is concerned with the approximation of entropy solutions to

the Cauchy problem for a quasilinear hyperbolic system

∂tu + ∂xf(t, x, u) = g(t, x, u), t > 0, x ∈ R,(1.1)

u(0, x) = u0(x), x ∈ R,(1.2)

Received : May 18, 2006.
(1) This paper is based on notes written by the second author in July 1990, for his Habili-

tation memoir (Chapter XI) at the University of Paris VI.
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where u = u(t, x) ∈ R
p is the unknown. We propose here a generalized version

of the Glimm scheme [10] which allows us to deal with a large class of mappings

f, g and take into account the geometric effect of the flux and source terms. Our

scheme is based on an approximate solver for the generalized Riemann problem,

based on an asymptotic expansion introduced by LeFloch and Raviart [17].

The approach provides high accuracy and stability, under mild restrictions on

the equation and the data.

In (1.1), the flux f = f(t, x, u) ∈ R
p and the source-term g = g(t, x, u) ∈ R

p

are given smooth maps defined for all (t, x, u) ∈ R+×R×U , where U is a small

neighborhood of the origin in R
p, and the initial data u0 : R→ U is a function

with bounded total variation. We assume that the Jacobian matrix A(t, x, u) :=
Df
Du(t, x, u) admits p real and distinct eigenvalues,

λ1(t, x, u) < λ2(t, x, u) < . . . < λp(t, x, u),

and therefore a basis of right-eigenvectors rj(t, x, u) (1 ≤ j ≤ p). Finally, we

assume that each characteristic field is either genuinely nonlinear (∇λj(t, x, u) ·

ri(t, x, u) 6= 0) or linearly degenerate (∇λj(t, x, u) · ri(t, x, u) = 0).

One important motivation for considering general balance laws (1.1) comes

from the theory of general relativity. In this context, the vector u typically

consists of fluid variables as well as (first order derivatives) of the coefficients

of an unknown, Lorentzian metric tensor. (See [3, 5] and the reference therein.)

One can also freeze the metric coefficients and concentrate on the dynamics of

the fluid. For instance, the compressible Euler equations describing the dynamics

of a gas flow in general geometry read:

∂tρ + ∂x(ρv) = −
∂xa

a
ρv −

∂ta

a
ρ,

∂t(ρv) + ∂x(ρv2 + p) = −
∂xa

a
(ρv2) −

∂ta

a
ρv,

∂t(ρE) + ∂x(ρvE + pv) = −
∂xa

a
(ρvE + pv) −

∂ta

a
ρE

(1.3)

where a = a(t, x) > 0 can be regarded as the cross section of a time-dependent

(moving) duct, and ρ, v, p(ρ, e), e, and E = e + u2/2 are the density, velocity,

pressure, internal energy, and total energy of the gas, respectively. The system

(1.3) describes a situation where the fluid does not affect the variation of the duct;

i.e. the function a(t, x) is given and, for simplicity, smooth. The system (1.3) is of

the form (1.1) with u = (ρ, ρv, ρE)T , f = f(u) = (ρv, ρv2 + p, ρvE + pv)T and

g = g(t, x, u) = −∂xa
a g1(u) − ∂ta

a u where g1(u) = (ρv, ρv2, ρvE + pv)T .
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We are interested in solutions to (1.1)–(1.2) which have bounded total varia-

tion in space for all times and satisfy the equations in the sense of distributions,

together with an entropy condition [15, 8, 16]. In the special case that

f = f(u), g = 0,

the existence of global entropy solutions was established by Glimm [10], assuming

that the initial data u0(x) has sufficiently small total variation. Recall that

two main ingredients in Glimm’s random choice method are (1) the solutions of

Riemann problems and (2) a projection step based on a sequence of randomly

chosen points.

Let us first indicate some of the earlier work on the subject. The system (1.1)

with

f = f(x, u), g = g(x, u),

was treated in pioneering work by Liu [20, 21], via a suitable extension of the

Glimm method: the approximate solutions are defined by pasting together steady

state solutions, i.e., solutions v = v(x) of the ordinary differential equation

d

dx

(
f(x, v)

)
= g(x, v).

He established the existence of solutions defined in a finite interval of time [0, T )

as long as either T or the L1 norms of g and ∂g/∂u are sufficiently small. Next,

assuming in addition that the eigenvalues of the matrix A(x, u) never vanish

(so that no resonance takes place), Liu deduced a global existence result (with

T = +∞). Steady-state solutions were also used in the work by Glimm, Marshall,

and Plohr [12].

For more general mappings f, g, the existence for (1.1)–(1.2) is established

by Dafermos and Hsiao [7] and Dafermos [8, 9]. They assume that fx(u∗, t, x) =

g(u∗, t, x) = 0 at some (equilibrium) constant state u∗, hence u∗ is a solution

of (1.1) around which (1.1) can be formally linearized. They also require that

the linearized system satisfies a dissipative property. Their main result concerns

the consistency and stability of a generalization of the Glimm method, yielding

therefore the global existence of entropy solutions to (1.1). In [7], the approximate

solutions to the Cauchy problem on each time step are based on classical Riemann

solutions with initial data suitably modified by both the source term g and the

map θ := A−1fx.

Next, Amadori et al. [1, 2] developed further techniques to establish the ex-

istence of solutions for a large class of systems having f = f(u) and g = g(x, u),
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and discussed Dafermos–Hsiao dissipative condition. For some particular systems

(of two or three equations) the condition that the total variation be small can be

relaxed; see for instance Luskin and Temple [22], Groah and Temple [11], Barnes,

LeFloch, Schmidt, and Stewart [3], and the references cited therein. In these pa-

pers, the decreasing of a total variation functional (measured with respect to a

suitable chosen coordinate) was the key to establish the stability of the scheme.

1.2. A new version of the Glimm method

In the present paper we provide an alternative approach to Dafermos–Hsiao’s

method, and introduce a generalized version of the Glimm scheme for general

mappings f, g. Integrability assumptions will be required (and discussed later on)

on the matrix A and the mapping q : R+×R×U → R
p defined by

q(t, x, u) := g(t, x, u) −
∂f

∂x
(t, x, u).(1.4)

It should be emphasized that only this combination of the source and the flux

will be important in our approach, which can be summarized as follows.

First, we study the generalized Riemann problem associated with the system

(1.1), i.e. the Cauchy problem with piecewise constant initial data. The existence

of solutions defined locally in spacetime in a neighborhood of the initial discon-

tinuity was studied in Li and Yu [18] and Harabetian [13]. Contrary to the case

where f, g only depend upon the unknown u, no closed formula is available for the

solutions of the generalized Riemann problem. We propose here an approximate

Riemann solver, inspired by a technique of asymptotic expansion introduced by

Ben-Artzi and Falcovitz [4] (for the gas dynamics equations) and LeFloch and

Raviart [17] (for general hyperbolic systems of balance laws); see also [6].

Our scheme for solving approximately the generalized Riemann problem can

be re-interpreted as a splitting algorithm (the hyperbolic operator and the source

term being decoupled). Since an approximate (rather than an exact) solution

to the generalized Riemann problem is used, it is crucial to establish an error

estimate which we achieve in Proposition 2.1 below, under a mild assumption on

the data u0, f, g. This estimate will be necessary to ensure the consistency of

our generalized Glimm method.

Second, we study the nonlinear interaction of waves issuing from two general-

ized Riemann problems, and establish a suitable extension of Glimm’s estimates

[10] to the general system (1.1); cf. Proposition 3.3. This is a key, technical part

of our analysis.
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Third, we introduce our scheme and prove its stability in total variation, under

the assumption that the initial data u0 has sufficiently small total variation and

that the total amplification due to (the derivatives of) f, g to the total variation

of the solution is sufficiently small; cf. Theorem 4.3. More precisely, we impose

that
∂2A

∂t ∂u
,

∂2A

∂x ∂u
, q,

∂q

∂u

are sufficiently small in L1(R+×R).

Finally, we conclude with the convergence of the proposed scheme (cf. The-

orem 5.1) which yields the global existence of entropy solutions for the Cauchy

problem (1.1)–(1.2). The solution satisfies an entropy inequality and has bounded

total variation in x for all t ≥ 0. Our results cover in particular the case

∂tu + ∂xf(u) = g(t),(1.5)

for which global existence of entropy solutions is established under the sole as-

sumption ∫ +∞

0
|g(t)| dt ≪ 1.(1.6)

Without further restriction on the flux f , this condition is clearly necessary

in order to apply the Glimm method, since, for instance in the trivial case p = 1

and f = 0, (1.5) reduces to the differential equation

∂tu = g(t).(1.7)

On one hand, the condition (1.6) holds if and only if every solution of (1.7)

remains close to a constant state, which is a necessary condition in order to

apply the Glimm method. On the other hand, when one of the eigenvalues of the

system (1.1) vanishes, the amplitude of solutions could become arbitrarily large

and the solutions would not remain bounded — except when the source term

satisfies a “damping” property in time.

As a direct application, the global existence of entropy solutions to (1.3)

follows, if the source g and its derivative ∂g
∂u are sufficiently small in L1(R+×R),

which is the case, for instance, if the support of (at, ax) is sufficiently small.

2 – An approximate solver for the generalized Riemann problem

In the present section, we introduce an approximate solution to the general-

ized Riemann problem associated with the system (1.1), and we derive an error

estimates (see Proposition 2.1 below).
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Given t0 > 0, x0 ∈ R, and two constant states uL, uR ∈ R
p, we consider the

generalized Riemann problem, denoted by RG(uL, uR; t0, x0), and consisting of

the following equations and initial conditions:

∂tu + ∂xf(t, x, u) = g(t, x, u), t > t0, x ∈ R,(2.1)

u(0, x) =

{
uL, x < x0,

uR, x > x0.
(2.2)

Replacing f and g in (2.1) by f(t0, x0, u) and 0, respectively, the problem

RG(uL, uR; t0, x0) reduces to the classical Riemann problem,which we denote by

RC(uL, uR; t0, x0), that is the equations

∂tu + ∂xf(t0, x0, u) = 0, u(t, x) ∈ R
p, t > t0, x ∈ R(2.3)

together with the initial data (2.2). This problem was solved by Lax under the

assumption that the initial jump |uR − uL| be sufficiently small: the solution to

RC(uL, uR; t0, x0) is self-similar (i.e. depends only on x−x0

t−t0
) and consists of at

most (p +1) constant states uL = u0, u1, . . . , up = uR, separated by rarefaction

waves, shock waves or contact discontinuities; see Figure 2.1.

Figure 2.1 – Classical Riemann solution (p = 2),
uL, u1 and uR are constant states, u = u(ξ) is a function of ξ = x

t
.

The following terminology and notation will be used throughout this paper.

Let WC = WC(ξ; uL, uR; t0, x0) be the solution of RC(uL, uR; t0, x0) with ξ =
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(x − x0)/(t − t0). We say that the problem RC(uL, uR; t0, x0) is solved by the

elementary waves (ui−1, ui) (i = 1, . . . , p) if each constant state ui belongs to

the i-wave curve Wi(ui−1) issued from the state ui−1 in the phase space, and

(ui−1, ui) is called an i-wave of RC(uL, uR; t0, x0). When the i-characteristic field

is genuinely nonlinear, the curve Wi(ui−1) consists of two parts, the i-rarefaction

curve and the i-shock curve issuing from ui−1; if i-characteristic field is linearly

degenerate, the curve Wi(ui−1) is a C2 curve of i-contact discontinuities. Call εi

the strength of the i-wave (ui−1, ui) along the i-curve, so that, for a genuinely

nonlinear i-field, we can assume that εi ≥ 0 if (ui−1, ui) is a rarefaction wave,

and εi ≤ 0 if (ui−1, ui) is a shock wave. On the other hand, εi has no specific sign

if (ui−1, ui) is a contact discontinuity.

Let εi(uL, uR; t0, x0) denote the wave strength of the i-wave (ui−1, ui) in

the Riemann problem RC(uL, uR; t0, x0), and vector ε = (ε1, . . . , εp) denote the

wave strength of RC(uL, uR; t0, x0) (so |ε| is equivalent to the total variation

of WC(ξ; uL, uR; t0, x0)). In addition, we let σ−
i = λi(ui−1, t0, x0) and σ+

i =

λi(ui, t0, x0) be the lower and upper speeds of the i-rarefaction wave (ui−1, ui)

respectively, and σi be the speed of the i-shock or i-contact discontinuity. If the

i-wave is a shock or a contact discontinuity we set σ−
i = σ+

i = σi.

From the implicit function theorem we deduce that the states ui and the

speeds σ±
i are smooth functions of uL, uR, t0, and x0. Moreover, one can check

that ui = uL + O(1) |uR − uL| (i = 0, 1, . . . , p), and, for an i-shock (ui−1, ui),

σi = λi(ui−1; t0, x0) + O(1) |ui − ui−1|, i = 1, 2, . . . , p,

where O(1) is bounded function possibly depending on uL, uR ∈ U , t0 ≥ 0,

and x0 ∈ R.

Consider next the generalized Riemann problem on which a large litera-

ture is available [18, 13, 4, 6, 17]. First, we recall [18] that the solution of

RG(uL, uR; t0, x0) is piecewise smooth and has a local structure which is sim-

ilar to the one of the associated classical Riemann problem RC(uL, uR; t0, x0).

Following [17] we consider an approximate Riemann solution of the problem

RG(uL, uR; t0, x0), denoted by WG(t, x; uL, uR; t0, x0) and defined by

WG(t, x; uL, uR; t0, x0) = WC(ξ) + (t − t0) q(t0, x0, WC(ξ))(2.4)

for t > t0 and x ∈ R. Here, the function q(t, x, u) is given by (1.4), and

ξ =
x − x0

t − t0
, WC(ξ) = WC(ξ; uL, uR; t0, x0).
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Observe that the function WG(t, x; uL, uR; t0, x0) is constructed as a superposi-

tion of the corresponding classical Riemann solution WC(ξ; uL, uR; t0, x0) and

an asymptotic expansion term (t − t0) q(t0, x0, WC(ξ)) (see Figure 2.2).

Figure 2.2 – Generalized Riemann solution (p = 2),
uL(t), u1(t), uR(t) are functions of t and ũ(t, ξ) is constructed by (2.4).

Within a region where function WC(ξ) is a constant, the function WG(t, x;

uL, uR; t0, x0) is a linear function of t, namely,

WG(t, x; uL, uR; t0, x0) = ui + (t − t0) q(t0, x0, ui), σ+
i <

x

t
< σ−

i+1(2.5)

for i = 0, 1, . . . , p. By convention, σ+
0 := −∞ and σ−

p+1 := +∞. Whenever there

will be no ambiguity, we will use the notation WG(t, x) or WG(t, x; uL, uR) for

WG(t, x; uL, uR; t0, x0).

To describe the structure of WG(t, x; uL, uR; t0, x0), it is convenient to say

that the approximate solution WG(t, x, uL, uR; t0, x0) consists of an i-wave

(ui−1, ui) if (ui−1, ui) is an i-wave of the corresponding classical Riemann

solution WC(ξ; uL, uR; t0, x0).

We now prove that the function WG(t, x) defined in (2.4) approximately solves

the problem RG(uL, uR; t0, x0), by evaluating the discrepancy between WG(t, x)

and the exact solution of RG(uL, uR; t0, x0). Given any s > 0 and r > 0, and any
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C1 function θ : R+×R→ R with compact support, we now show that the term

∆(s, r; θ) :=

∫ t0+s

t0

∫ x0+r

x0−r

(
WG ∂tθ + f(t, x, WG) ∂xθ + g(t, x, WG) θ

)
dx dt(2.6)

is of third order in r, s, provided that the condition (2.7) holds.

Proposition 2.1. Let θ : R+×R→R be a compactly supported, C1 function.

Then, for every (t0, x0) ∈ R+×R, uL, uR ∈ U , and any positive numbers s, r

satisfying the (Courant–Friedrichs–Levy-type) stability condition

s

r
sup |λi(t, x, u)| ≤ 1(2.7)

(the supremum being taken over 1 ≤ i ≤ p, (t, x) ∈ R+×R, and u ∈ U), the

function WG(t, x) = WG(t, x; uL, uR; t0, x0) satisfies

∆(s, r; θ) =

∫ x0+r

x0−r
WG(t0 +s, ·) θ(t0 +s, ·) dx −

∫ x0+r

x0−r
WG(t0, ·) θ(t0, ·) dx

+

∫ t0+s

t0

f
(
· , x0 +r, WG( · , x0 +r)

)
θ( ·, x0 +r) dt

−

∫ t0+s

t0

f
(
· , x0−r, WG( · , x0−r)

)
θ( · , x0−r) dt

+ O(1) (s2 + r2)
(
s + r + |uR − uL|

)
‖θ‖C1 ,

(2.8)

where ∆(s, r; θ) is given in (2.6) and ‖θ‖C1 = ‖θ‖C0 + ‖∂tθ‖C0 + ‖∂xθ‖C0 .

The left-hand side of (2.8) vanishes when WG(t, x) is replaced by the exact

solution of RG(uL, uR; t0, x0). Thus, the right hand side of (2.8) represents the

error due to the choice of approximate solution WG(t, x).

Remark 2.2.

1. Condition (2.7) ensures that the waves in RC(uL, uR; t0, x0) can not reach

the lines
{
x = x0 ± r

}
for t ≤ t0 + s, so that the waves in the rectangle

region D(to,x0) ≡ [x0−r, x0 +r]× [t0, t0 +s) do not interact with the waves

outside D(to,x0).

2. In a different context, Liu [20] derived earlier an estimate similar to (2.7),

but for an approximation based on steady state solutions of the hyperbolic

system and with initial data consisting of two steady state solutions of (2.1)

(with f = f(u) and g = g(x, u)).
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3. Our formula (2.11) yields a possible generalization to the class of quasi-

linear systems (1.1) of the notion of (classical) Riemann solver introduced

by Harten and Lax in [14].

4. One can check similarly that WG satisfies an entropy inequality associated

with an entropy pair (when available). The error terms are completely

similar to those found in (2.11). This will be used to show that the weak

solution generated by the random choice method satisfies all the entropy

inequalities.

Proof: Without loss of generality, we can assume that (t0, x0) = (0, 0). Given

a C1 function θ with compact support in R+×R, we define m(t, x) := WG ∂tθ +

f(t, x,WG) ∂xθ+g(t, x,WG) θ. From (2.6) we have ∆(s,r; θ) =
∫ s
0

∫ r
−r m(t, x) dx dt.

Next, we decompose ∆(s, r; θ) as

∆(s, r; θ) =

p∑

i=0

∆1
i (s, r; θ) +

∑

i-rare.

waves

∆2
i (s, r; θ)(2.9)

where

∆1
i (s, r; θ) :=

∫ s

0

∫ σ−

i+1
t

σ+

i t
m(t, x) dx dt, 1 ≤ i ≤ p −1,

∆1
0(s, r; θ) :=

∫ s

0

∫ σ−

1
t

−r
m(t, x) dx dt, ∆1

p(s, r; θ) :=

∫ s

0

∫ r

σ+
p t

m(t, x) dx dt,

and (if the i-wave, 1 ≤ i ≤ p, is a rarefaction wave)

∆2
i (s, r; θ) :=

∫ s

0

∫ σ+

i t

σ−

i t
m(t, x) dx dt.

We first compute ∆1
i in the region where classical Riemann solution WC is

a constant state. According to the form of WG(t, x) in (2.5), it follows that

WG(t, x) = ui + t q(0, 0; ui)(2.10)

for x
t ∈ [σ+

i , σ−
i+1], i ∈ {1, 2, . . . , p−1}. By a simple calculation and the definition

of q in (1.4), we have

∂tWG + ∂xf(t, x, WG) − g(t, x, WG) = q(0, 0; ui) − q(t, x, WG)
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for i ∈ {1, 2, . . . , p −1}. By multiplication by the function θ and then using

integration by parts, we obtain

∆1
i (s, r; θ) =

∫ σ−

i+1
s

σ+

i s
WG(s, x) θ(s, x) dx

+

∫ s

0

(
f
(
t, σ−

i+1t, WG(t, σ−
i+1t)

)
− σ−

i+1WG(t, σ−
i+1t)

)
θ(t, σ−

i+1t) dt

−

∫ s

0

(
f
(
t, σ+

i t, WG(t, σ+
i t)
)
− σ+

i WG(t, σ+
i t)
)

θ(t, σ+
i t) dt

−

∫ s

0

∫ σ−

i+1
t

σ+

i t

(
q(0, 0; ui) − q(t, x, WG)

)
θ(t, x) dx dt.

(2.11)

By the property that q is Lipschitz continuous with respect to t, x and u on the

compact set [0, s] × [−r, r] and the form of WG(t, x) in (2.10), the last term on

the right hand side of (2.11) can be estimated by O(s3) ‖θ‖C0 with the bound

O(1) depending on q. Therefore, equality (2.11) leads to

∆1
i (s, r; θ) =

∫ σ−

i+1
s

σ+

i s
WG(s, x) θ(s, x) dx

+

∫ s

0

(
f
(
t, σ−

i+1t, WG(t, σ−
i+1t)

)
− σ−

i+1WG(t, σ−
i+1t−)

)
θ(t, σ−

i+1t) dt

−

∫ s

0

(
f
(
t, σ+

i t, WG(t, σ+
i t + 0)

)
− σ+

i WG(t, σ+
i t+)

)
θ(t, σ+

i t) dt

+ O(1) s3 ‖θ‖C0

(2.12)

for i = 1, 2, . . . , p −1. In the same fashion one can show that

∆1
0(s, r; θ) =

∫ σ−

1
s

−r
WG(s, x) θ(s, x) dx −

∫ 0

−r
WG(0, x) θ(0, x) dx

+

∫ s

0

(
f
(
t, σ−

1 t, WG(t, σ−
1 t−)

)
− σ−

1 WG(t, σ−
1 t−)

)
θ(t, σ−

1 t) dt

−

∫ s

0
f
(
t,−r, WG(t,−r)

)
θ(t,−r) dt

+ O(1) s2(s+r) ‖θ‖C0 + O(1) sr2 ‖θ‖C0 ,

(2.13)
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and

∆1
p(s, r; θ) =

∫ r

σ+
p s

WG(s, x) θ(s, x) dx −

∫ r

0
WG(0, x) θ(0, x) dx

+

∫ s

0
f
(
t, r, WG(t, r)

)
θ(t, r) dt

−

∫ s

0

(
f
(
t, σ+

p t, WG(t, σ+
p t+)

)
− σ+

p WG(t, σ+
p t+)

)
θ(t, σ+

p t) dt

+ O(1) s2(s+r) ‖θ‖C0 + O(1) sr2 ‖θ‖C0 .

(2.14)

Next, suppose that WC(t, x) consists of an i-rarefaction wave in the region{
(t, x) | x

t ∈ [σ−
i , σ+

i ]
}

for some i ∈ 1, . . . , p. It follows that WG(t, x) in this region

is of the form

WG(t, x) = W̃C

(x

t

)
+ t q

(
0, 0; W̃C

(x

t

))

where W̃C

(
x
t

)
is the i-rarefaction wave of the classical Riemann problem RC(uL,uR;

t0, x0). By setting ξ = x
t , WG(t, x) = W̃G(t, ξ), and the technique of change of

variables (t, x)→ (t, ξ), we obtain

∂tWG + ∂xf(t, x, WG) − g(t, x, WG)

= ∂tW̃G −
ξ

t
∂ξW̃G +

1

t
∂ξf(t, tξ, W̃G) − g(t, tξ, W̃G)

=
1

t

(
∂f

∂u
(t, tξ, W̃G) − ξ I

)(
I + t

∂q

∂u
(0, 0, W̃C)

)
·

dW̃C

dξ

+ q(0, 0, W̃C) − q(t, tξ, W̃C)

(2.15)

where I is the p×p identity matrix. Since W̃C(ξ) is a rarefaction wave for the

system (2.3), this implies that

1

t

(
−ξ · I +

∂f

∂u
(0, 0, W̃C)

)
·
dW̃C

dξ
= 0.(2.16)

Thus, by applying (2.16) to (2.15) we obtain

∂tWG + ∂xf(t, x, WG) − g(t, x, WG)

=
1

t

(
∂f

∂u
(t, x, WG) −

∂f

∂u
(0, 0, W̃C)

)
·

dW̃C

dξ

+

(
∂f

∂u
(t, x, WG) − ξ I

)
∂q

∂u
(0, 0, W̃C) ·

dW̃C

dξ

+ q(0, 0, W̃C) − q(t, x, WG).

(2.17)
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Next, we multiply (2.17) by θ(t, x) and integrate the equation over the region of

i-rarefaction wave: t < s and x
t ∈ [σ−

i , σ+
i ]. Due to the Lipschitz continuity of ∂f

∂u

and the fact that ∂f
∂u , ∂q

∂u , dfWC

dξ and q remain bounded in [0, s]× [−r, r], the right

hand side of (2.17) is bounded by O(1) s2 (s + |ui − ui−1|). Therefore, by (2.17)

again, we deduce the estimate

∆2
i (s, r; θ) =

∫ σ+

i s

σ−

i s
WG(s, x) θ(s, x) dx

+

∫ s

0

(
f
(
t, σ+

i t, WG(t, σ+
i t)
)
− σ+

i WG(t, σ+
i t)
)

θ(t, σ+
i t) dt

−

∫ s

0

(
f
(
t, σ−

i t, WG(t, σ−
i t)
)
− σ−

i WG(t, σ−
i t)
)

θ(t, σ−
i t) dt

+ O(1) s2
(
s + |uR− uL|

)
‖θ‖C0 .

(2.18)

Next, note that an i-shock wave satisfies the Rankine–Hugoniot condition

f(0, 0, ui) − σi ui = f(0, 0, ui−1) − σi ui−1,

and this implies that the approximate solution WG(t, x) satisfies

∫ s

0

[(
f
(
t, σi t, WG(t, σi t+)

)
− σi WG(t, σi t+)

)]
θ(t, σi t) dt

−

∫ s

0

[(
f
(
t, σi−1t, WG(t, σi−1t−)

)
− σi−1WG(t, σi−1t−)

)]
θ(t, σi−1t) dt

= O(1) s2 |uR− uL| ‖θ‖C0

(2.19)

where the bound O(1) depends on the Lipschitz constant of f and L∞-norm of q.

Finally, by the estimates (2.9), (2.12)–(2.14) and (2.18)–(2.19), we obtain

∆(s, t; θ) =

p∑

i=0

∆1
i (s, t; θ) +

∑

i-rare.

waves

∆2
i (s, t; θ)

=

∫ σ−

i s

−r
WG(s, x) θ(s, x) dx +

p−1∑

i=1

∫ σ−

i+1
s

σ+

i s
WG(s, x) θ(s, x) dx

+
∑

i-rare.

waves

∫ σ+

i s

σ−

i s
WG(s, x) θ(s, x) dx +

∫ r

σ+
p s

WG(s, x) θ(s, x) dx −
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−

∫ 0

−r
WG(0, x) θ(0, x) dx −

∫ r

0
WG(0, x) θ(0, x) dx

+

∫ s

0
f
(
t, r, WG(t, r)

)
θ(t, r) dt −

∫ s

0
f
(
t,−r, WG(t,−r)

)
θ(t,−r) dt

+ O(1) (s2 + r2)
(
s + r + |uR− uL|

)
‖θ‖C1 ,

which leads to (2.8) and completes the proof.

3 – Wave interaction estimates

In this section we study the nonlinear interaction of waves issuing from two

Riemann solutions and we derive estimates on the wave strengths.

We emphasize that the generalized Riemann solution, nor the approximate

solution WG(t, x) of the generalized Riemann problem RG(uL, uR; t0, x0) is not

self-similar. The solution does not consist of regions of constant value separated

by straight lines. We thus should be careful in defining the wave strengths. In fact,

we still define here the wave strengths by using the underlying, classical Riemann

solution WC(t, x). We will see later that this strategy is accurate enough and

that the discrepancy in total variation between WG(t, x) and WC(t, x) on each

time step is uniformly small (cf. Section 4) when our Glimm scheme is applied to

the problem (1.1), (1.2). The same observation applies to the potential of wave

interaction to be introduced later.

In the rest of the section, all waves are considered as waves from some classical

Riemann problem unless specified otherwise. We say that an i-wave and a j-wave

approach each other (or interact in the future) if either i > j, or else i = j and

at least one of two waves is a shock wave. Suppose there are two solutions from

different classical Riemann problems with strengths denoted by α = (αi, . . . , αp)

and β = (βi, . . . , βp), then the wave interaction potential associated these two

solutions is defined by

D(α, β) :=
∑

(i,j)

|αi βj |,(3.1)

where the notation (i, j) under the summation sign indicates an i-wave in one

solution approaching a j-wave in the other solution, and the summation is on

all approaching waves; also αi or βi is negative when i = j. In addition, given

a (uL, uR; t0, x0) ∈ U×U×R+×R, the wave strengths in RC(uL, uR; t0, x0) are

denoted by ε(uL, uR; t0, x0).
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We first recall:

Lemma 3.1 (Glimm).

1) Given a (t0, x0) in R+×R and uL, uM , uR in U , we have

∣∣γ − (α+β)
∣∣ = O(1)D(α, β)(3.2)

where

α = ε(uL, uM ; t0, x0), β = ε(uM , uR; t0, x0), γ = ε(uL, uR; t0, x0).(3.3)

2) Let vL, vR be two constant states in U , then

D(γ, δ) = D(α, δ) + D(β, δ) + O(1) |δ|D(α, β),(3.4)

and

D(δ, γ) = D(δ, α) + D(δ, β) + O(1) |δ|D(α, β)

where α, β and γ are given in (3.3), and δ is given by δ = ε(vL,vR; t0, x0).

The following lemma describes the dependence of the wave strengths and

potential D(·, ·) with respect to their arguments. We introduce the following

“local norm” of a given function ϕ(t, x, u)

Nx1,x2

t1, t2
(ϕ) = sup

{
|ϕ(t, x, u)| ; t ∈ [t1, t2], x ∈ [x1, x2], u ∈ U

}
,(3.5)

where the supremum is taken over any function u ∈ U and (t, x)∈ [t1, t2]×[x1, x2].

Lemma 3.2.

1) The wave strength ε = (εi)1≤i≤p : U×U×R+×R → R
p is a C2 vector func-

tion of its arguments. Furthermore, for any (uL, uR), (u′
L, u′

R) in U×U

and any (t0, x0), (t
′
0, x

′
0) in R+×R, we have

|α′ − α| = O(1) |α|
(
|u′

L− uL| + |u′
R − uR| + C0

1 |t
′
0− t0| + C0

2 |x
′
0− x0|

)

+ O(1)
∣∣(u′

R− u′
L) − (uR − uL)

∣∣
(3.6)

where

α = ε(uL, uR; t0, x0), α′ = ε(u′
L, u′

R; t′0, x
′
0),(3.7)

and the constants C0
1 and C0

2 are given by



214 JOHN M. HONG and PHILIPPE G. LEFLOCH

C0
1 := N

x0,x′

0

t0, t′
0

(
∂2A

∂t ∂u

)
, C0

2 := N
x0,x′

0

t0, t′
0

(
∂2A

∂x ∂u

)
.(3.8)

2) For given (uL, uR), (vL, vR), (u′
L, u′

R), (v′L, v′R) in U×U and (t1, x1), (t2, x2),

(t′1, x
′
1), (t′2, x

′
2) in R+×R, we have

D(α′, β′) = D(α, β) + O(1) |α|
∣∣(v′R − v′L) − (vR − vL)

∣∣

+ O(1) |β|
∣∣(u′

R − u′
L) − (uR − uL)

∣∣

+ O(1) |α| |β|
(
|u′

L−uL| + |u′
R−uR| + |v′L−vL| + |v′R−vR|

)

+ O(1) |α| |β|
∑

m=1,2

{
Cm

1 |t′m− tm| + Cm
2 |x′

m− xm|
}

+ O(1)
∣∣(u′

R − u′
L) − (uR − uL)

∣∣ ·
∣∣(v′R − v′L) − (vR − vL)

∣∣

(3.9)

where

α = ε(uL, uR; t1, x1), β = ε(vL, vR; t2, x2),

α′ = ε(u′
L, u′

R; t′1, x
′
1), β′ = ε(v′L, v′R; t′2, x

′
2),

(3.10)

and the constants Cm
1 , Cm

2 are defined by

Cm
1 := N

xm,x′

m

tm, t′m

(
∂2A

∂t ∂u

)
, Cm

2 := N
xm,x′

m

tm, t′m

(
∂2A

∂x∂u

)
, m = 1, 2.(3.11)

Proof: The regularity of functions εi, i = 1, 2, . . . , p, is a consequence of

smoothness of the flux function f and the result of [15]. Moreover, the functions
∂2εi

∂t ∂uR
and ∂2εi

∂x ∂uR
are bounded if ∂2A

∂t ∂u , ∂2A
∂x ∂u are bounded.

To show (3.6), we note that εi(uL, uR; t0, x0) = 0 when uR = uL. Then, by the

regularity of εi, i = 1, 2, . . . , p, we can express εi(uL, uR; t0, x0), εi(u
′
L, u′

R; t′0, x
′
0)

as

εi(uL, uR; t0, x0) =

∫ 1

0

∂εi

∂uR

(
uL, (1− τ)uL + τ uR; t0, x0

)
dτ · (uR − uL),

εi(u
′
L, u′

R; t′0, x
′
0) =

∫ 1

0

∂εi

∂uR

(
u′

L, (1− τ)u′
L + τ u′

R; t′0, x
′
0

)
dτ · (u′

R − u′
L).
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Applying the definition of
{
C0

j : j =1, 2
}

in (3.8) and the norm in (3.5), we obtain

εi(u
′
L, u′

R; t′0, x
′
0) − εi(uL, uR; t0, x0)

=

∫ 1

0

(
∂εi

∂uR

(
u′

L, (1− τ)u′
L + τ u′

R; t′0, x
′
0

)

−
∂εi

∂uR

(
uL, (1− τ)uL + τ uR; t0, x0

))
dτ · (uR − uL)

+

∫ 1

0

∂εi

∂uR

(
u′

L, (1− τ)u′
L + τ u′

R; t′0, x
′
0

)
dτ ·

(
(u′

R − u′
L) − (uR − uL)

)

= O(1)
{
|u′

L− uL| + |u′
R− uR| + C0

1 |t
′
0− t0| + C0

2 |x
′
0− x0|

}
|uR− uL|

+ O(1)
∣∣(u′

R− u′
L) − (uR− uL)

∣∣,
Therefore, by the observation of (3.7) and the fact that

|uR − uL| = O(1)
∣∣ε(uL, uR; t0, x0)

∣∣ = O(1) |α|,

we obtain (3.6).

Next we derive (3.9). By applying (3.6) directly, we have

α′
i = αi + O(1) |α|

{
|u′

L− uL| + |u′
R − uR| + C1

1 |t
′
1− t1| + C1

2 |x
′
1− x1|

}

+ O(1)
∣∣(u′

R − u′
L) − (uR − uL)

∣∣,

β′
j = βj + O(1) |β|

{
|v′L− vL| + |v′R − vR| + C2

1 |t
′
2 − t2| + C2

2 |x
′
2 − x2|

}

+ O(1)
∣∣(v′R − v′L) − (vR − vL)

∣∣

for i, j = 1, 2, . . . , p where the constants
{
Cm

j : j, m = 1, 2
}

are given in (3.11)

and (3.5). We define A :=
{
|u′

L−uL|+ |u′
R −uR|+C1

1 |t
′
1− t1|+C1

2 |x
′
1−x1|

}
and

B :=
{
|v′L− vL| + |v′R− vR| + C2

1 |t
′
2 − t2| + C2

2 |x
′
2 − x2|}. Then by multiplying

two previous equations together and using the fact that A, B are of order O(1)

for (uL, uR), (u′
L, u′

R) ∈ U×U , we obtain

α′
i β

′
j = αi βj + O(1) |α| |β| (A+B) + O(1) |α|

∣∣(v′R−v′L) − (vR−vL)
∣∣

+ O(1) |β|
∣∣(u′

R−u′
L) − (uR−uL)

∣∣

+ O(1)
∣∣(u′

R−u′
L) − (uR−uL)

∣∣ ·
∣∣(v′R−v′L) − (vR−vL)

∣∣,

i, j = 1, 2, . . . , p. Summing up previous equations for i, j = 1, 2, . . . , p, we obtain

(3.9). The proof is completed.
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Using Lemmas 3.1 and 3.2, we obtain wave interaction estimates — which

can be interpreted as a generalized version of [10].

Proposition 3.3.

1) Suppose that s, r are two positive numbers and (t0, x0) is in R+×R.

Also assume that uL, uM , uR, uL+µL, uR +µR are constant states in U

and α, β and γ are the wave strengths of solutions of three classical

Riemann problems RC(uL, uM ; t0, x0 − r), RC(uM , uR; t0, x0 + r) and

RC(uL + µL, uR + µR; t0 + s, x0), i.e.,

α = ε(uL, uM ; t0, x0− r),

β = ε(uM , uR; t0, x0 + r),

γ = ε(uL + µL, uR + µR; t0 + s, x0).

(3.12)

Then we have

|γ| = |α| + |β| + O(1)D(α, β)

+ O(1)
(
|α| + |β|

) (
|µL| + |µR| + C1s + C2 r

)

+ O(1) |µR − µL|

(3.13)

where constants C1 and C2 are defined by

C1 := Nx0x0

t0,t0+s

(
∂2A

∂t ∂u

)
, C2 := Nx0−r,x0+r

t0,t0

(
∂2A

∂x ∂u

)
.(3.14)

2) Let α, β, γ be the wave strengths as described in (3.12). Also, for a given

(vL, vR) in U×U and (t1, x1) in R+×R, we define δ = ε(vL, vR; t1, x1).

Then

D(γ, δ) = D(α, δ) + D(β, δ) + O(1) |δ|D(α, β) + O(1) |δ| |µR − µL|

+ O(1) |δ|
(
|α| + |β|

) (
|µL| + |µR| + C1s + C2 r

)
,

(3.15)

and

D(δ, γ) = D(δ, α) + D(δ, β) + O(1) |δ|D(α, β) + O(1) |δ| |µR − µL|

+ O(1) |δ|
(
|α| + |β|

) (
|µL| + |µR| + C1s + C2 r

)(3.16)

where constants C1 and C2 are given in (3.14).
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Proof: By the definition of γ in (3.12) and Lemma 3.2 with u′
L = uL + µL,

u′
R = uR + µR, t′ = t0 + s, x′

0 = x0, we obtain

γ = ε(uL, uR; t0, x0) + O(1)
∣∣ε(uL, uR; t0, x0)

∣∣ (|µL| + |µR| + C1s
)

+ O(1) |µR − µL|
(3.17)

where constant C1 is given in (3.14). Similarly, by Lemma 3.2 we have

ε(uL, uM ; t0, x0) = α + O(1)C2 |α| r,(3.18)

ε(uM , uR; t0, x0) = β + O(1)C2 |β| r.(3.19)

On the other hand, Glimm’s interaction estimates (3.2), (3.3) lead to

ε(uL, uR; t0, x0) = ε(uL, uM ; t0, x0) + ε(uM , uR; t0, x0)

+ O(1)D
(
ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0)

)
.

(3.20)

Also, by (3.9)–(3.11) with α′= ε(uL, uM ; t0, x0) and β′= ε(uM , uR; t0, x0), we

obtain

D
(
ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0)

)
= D(α, β) + O(1) |α| |β|C2 r.(3.21)

Then, from (3.17)–(3.21) it follows that

|γ| = |α| + |β| + O(1)D(α, β) + O(1)
(
|α| + |β| + |α| |β|

)
C2 r

+ O(1)
∣∣ε(uL, uR; t0, x0)

∣∣ (|µL| + |µR| + C1s
)

+ O(1) |µR − µL|

= |α| + |β| + O(1)D(α, β) + O(1)
(
|α| + |β|

)
C2 r

+ O(1)
∣∣ε(uL, uR; t0, x0)

∣∣ (|µL| + |µR| + C1s
)

+ O(1) |µR − µL|.

(3.22)

Also, we see that estimates (3.20) and (3.21) yield

∣∣ε(uL, uR; t0, x0)
∣∣ =

∣∣ε(uL, uM ; t0, x0)
∣∣+
∣∣ε(uM , uR; t0, x0)

∣∣
+ O(1)D

(
ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0)

)

= |α| + |β| + O(1)D(α, β) + O(1)
(
|α| + |β|

)
C2 r

+ O(1) |α| |β|C2 r

=
(
|α|+ |β|

) (
1+O(1)C2 r

)
+ O(1)D(α, β) + O(1) |α| |β|C2 r,

which in particular implies that

∣∣ε(uL, uR; t0, x0)
∣∣ = O(1)

(
|α| + |β|

)
.(3.23)

Therefore, combining (3.22) with (3.23), we obtain (3.13).
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Next we derive (3.15). The proof of (3.16) is similar, and is omitted. By the

estimate (3.4) we see that

D
(
ε(uL, uR; t0, x0), δ

)
= D

(
ε(uL, uM ; t0, x0), δ

)
+ D

(
ε(uM , uR; t0, x0), δ

)

+ O(1) |δ|D
(
ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0)

)
.

(3.24)

On the other hand, estimate (3.9) yields

D(γ, δ) = D
(
ε(uL, uR; t0, x0), δ

)
+ O(1) |δ| |µR− µL|

+ O(1)
∣∣ε(uL, uR; t0, x0)

∣∣ |δ|
(
|µL| + |µR| + C1s

)
,

(3.25)

D
(
ε(uL, uM ; t0, x0), δ

)
= D(α, δ) + O(1) |α| |δ|C2 r,(3.26)

D
(
ε(uM , uR; t0, x0), δ

)
= D(β, δ) + O(1) |β| |δ|C2 r,(3.27)

and

D
(
ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0)

)
= D(α, β) + O(1) |α| |β|C2 r.(3.28)

Thus, by applying (3.23), (3.25)–(3.28) to (3.24), we obtain the estimate (3.15).

The proof is completed.

We just showed in Proposition 3.3 that Glimm’s interaction estimates (Lemma

3.1) remain valid for the quasilinear hyperbolic system (1.1) up to certain error

terms. The following immediate consequence of Proposition 3.3 will be the key

to the forthcoming stability result.

Corollary 3.4. Following the notations and assumptions in Proposition 3.3

and letting

µL := −s q(t0 +s, x0, uL), µR := −s q(t0 +s, x0, uR)

in (3.14), we have

|γ| = |α| + |β| + O(1)D(α, β)

+ O(1)
(
|α| + |β|

) (
(C1 + C3 + C4) s + C2 r

)
,

(3.29)

D(δ, γ) = D(δ, α) + D(δ, β) + O(1) |δ|D(α, β)

+ O(1) |δ|
(
|α| + |β|

) (
(C1 + C3 + C4) s + C2 r

)
,

(3.30)

D(γ, δ) = D(α, δ) + D(β, δ) + O(1) |δ|D(α, β)

+ O(1) |δ|
(
|α| + |β|

) (
(C1 + C3 + C4) s + C2 r

)(3.31)
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where constants C1, C2 are given in (3.14) and C3, C4 are given by

C3 := Nx0x0

t0,t0+s

(
q(t, x, u)

)
, C4 := Nx0x0

t0,t0+s

(
∂q

∂u
(t, x, u)

)
.(3.32)

Proof: By the observation of (3.23) we obtain

|µR − µL| = s
∣∣q(t0 +s, x0, uR) − q(t0 +s, x0, uL)

∣∣

= s
∂q

∂u
(t0 +s, x0, ū) · |uR − uL|

= O(1)C4 s
∣∣ε(uL, uR; t0, x0)

∣∣

= O(1)
(
|α| + |β|

)
C4 s

(3.33)

where ū ∈ U and C4 is given in (3.32). Therefore, by combining (3.33) with the

result of Proposition 3.3, we obtain (3.29)–(3.31) . The proof is completed.

4 – Stability of the generalized Glimm method

We are in position to introduce our version of Glimm scheme for the approx-

imation of the quasilinear system (1.1). Then we rely on the wave interaction

estimates in Section 3 and prove a stability result.

The approximate solution to the Cauchy problem (1.1), (1.2) is defined as

follows. Given two positive constants s and r satisfying the C-F-L condition (2.7),

we introduce the constant

λ∗ :=
r

s
.(4.1)

Let also a =
{
ak : ak ∈ (−1, 1), k ∈ N

}
be an equidistributed sequence. We di-

vide the (t, x) plane into

tk = k s, xh = h r, k = 0, 1, 2, . . . , h ∈ Z.(4.2)

Next, we construct an approximate solution ur(t, x) of the problem (1.1), (1.2)

in the following way. First, the initial data u0(x) is approximated by a piecewise

constant function

ur(0, x) = u0(hr), x ∈
[
(h−1)r, (h+1)r

)
, h is odd.(4.3)

Then, within domain 0 ≤ t < s, we construct an approximate solution WG(t, x)

for each generalized Riemann problem with initial data ur(0, x) to obtain ur(t, x)
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in region
{
(t, x); 0 ≤ t < s

}
. If ur(t, x) has been constructed for t < k s, k ∈ N,

we set

ur(ks, x) := ur

(
ks−, (h+ak)r

)
(4.4)

for x ∈
[
(h−1)r, (h+1)r

)
, k+h is odd. Again, we solve the generalized Riemann

problems with initial data ur(ks, x) given in (4.4) to construct ur(t, x) within

region
{
(t, x); ks ≤ t < (k+1)s}. Following the process (4.3), (4.4) consecutively,

we then construct our approximate solution ur(t, x) of (1.1), (1.2). In other words,

the approximate solution to the problem (1.1), (1.2) generated by the generalized

Glimm scheme is given by

ur(t, x) = WG

(
t, x; ur

(
ks, (h−1)r

)
, ur

(
ks, (h+1)r

)
; ks, hr

)
(4.5)

for (t, x) ∈
[
ks, (k+1)s

)
×
[
(h−1)r, (h+1)r

)
, k+h is even.

Next we study the stability of ur(t, x) in L∞ and BV norms. This requires

the description of mesh points, mesh curves and immediate successors before-

hand. Recall that the values of ur(t, x) on t = ks are determined by the values

of ur(t, x) at points
{
(ks−, (h+ak)r); h∈ Z, k+h is odd

}
, we call these points{

(ks, (h+ak)r) : k = 0, 1, 2, . . . , h ∈ Z, k+h is odd
}

the mesh points of approx-

imate solution ur(t, x). We obtain a set of diamond regions by connecting all mesh

points with segments. An unbounded piecewise linear curve I is called a mesh

curve if I lies on the boundaries of those diamond regions. Suppose I is a mesh

curve, then I divides the (t, x) plane into I+ and I− regions, such that I− contains

t = 0. We say two mesh curves I1 > I2 (I1 is a successor of I2) if every point of I1

is either on I2 or contained in I+
2 . And, I1 is an immediate successor of I2

if I1 > I2 and every mesh point of I1 except one is on I2. Note that the difference

between I1 and I2 is determined by a diamond region if one is an immediate

successor of the other.

Next, to simplify the notations, we set uk,h := ur(ks, hr) when k + h is odd.

By the observation of (2.4) and (4.5), we have

uk,h = ũk,h + s q
(
(k−1)s, hr, ũk,h

)
, k+h is odd,

where ũk,h is the value of RC(uk−1,h−1, uk−1,h+1; (k−1)s, hr) at (ks−, (h+ak)r),

i.e.,

ũk,h = WC

(
ak

r

s
; uk−1,h−1, uk−1,h+1; (k−1)s, hr

)
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with the function WC given in Section 2. Next, given a pair (k0, h0), k0 + h0

is even, we note that the (t, x)-plan consists of the diamond regions Γk0,h0
with

center (k0s, h0 r) and vertices (mesh points)

S :=
(
(k0−1)s, (h0 +ak0−1)r

)
, W :=

(
k0s, (h0−1+ak0

)r
)
,

E :=
(
k0s, (h0 +1+ak0

)r
)
, N :=

(
(k0 +1)s, (h0 +ak0+1)r

)(4.6)

(see Figure 4.1). We set

uS := uk0−1,h0
, uW := uk0,h0−1, uE := uk0,h0+1, uN := uk0+1,h0

,(4.7)

and

ũS := ũk0−1,h0
, ũW := ũk0,h0−1, ũE := ũk0,h0+1, ũN := ũk0+1,h0

.(4.8)

Note that uW and uE are the states in RG

(
(k0−1)s, (h0−1)r

)
and RG

(
(k0−1)s,

(h0 +1)r
)

respectively, i.e.,

uW = ũW + s q
(
(k0−1)s, (h0−1)r, ũW

)
,

uE = ũE + s q
(
(k0−1)s, (h0 +1)r, ũE

)
.

Figure 4.1 – Diamond region Γk0,h0
.

Now we define the strengths of waves in ur(t, x). However, the set up for

the waves strengths of ur(t, x) becomes crucial due to the lack of self-similarity

of approximate solution WG(t, x), the strengths of waves in WG(t, x) can not be

defined in the traditional way as described in [15]. To overcome the difficulty,

we first solve the associated classical Riemann problems with the initial data{
ur

(
ks−, (h+ak)r

)
; x ∈

[
(h−1)r, (h+1)r

)
, k+h is odd

}
(see (4.4)) within each
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time step. So we construct a new function ũr(t, x) defined on R+×R. Then we

define the strengths of approximate waves in ur(t, x) based on classical waves in

ũr(t, x). More precisely, given a wave (ui−1(t), ui(t)) in ur(t, x), there exist two

corresponding constant states ui−1, ui and a classical Riemann wave (ui−1, ui)

with strength ε(ui−1, ui) in ũr(t, x), then the strength of (ui−1(t), ui(t)) is de-

fined as ε(ui−1, ui).

Next, we show that, under the condition that the L1(R+×R)-norms of q and
∂q
∂u are small, the sum of strengths for waves in ur(t, x) crossing mesh curve J

can be regarded as an equivalent norm for the total variation of ur(t, x) on J .

By the fact that the term |ε(ui−1, ui)| is equivalent to the total variation of

(ui−1, ui) for any classical Riemann wave (ui−1, ui), it is equivalent to show that

the total variation of ur(t,x) on J is equivalent to the total variation of ũr(t,x) on J.

To show this, let Jk be a mesh curve lying within k-th time level
{
(t, x); ks ≤ t <

(k+1)s
}
, and let TV (ur(t, x), Jk), TV (ũr(t, x), Jk) denote the total variations of

ur(t, x), ũr(t, x) on Jk, respectively. Suppose there is a wave (ui−1(t), ui(t)) in

ur(t, x), issued from (ks, ir) and crosses Jk, also (ui−1, ui) is the corresponding

classical Riemann wave of (ui−1(t), ui(t)) (so (ui−1, ui) is also issued from (ks, ir)

and crosses Jk). If (ui−1, ui) is a shock wave, then by (2.4) we can easily obtain

that
∣∣∣TV

(
(ui−1(t), ui(t)); Jk

)
− TV

(
(ui−1, ui); Jk

)∣∣∣

≤ s

∣∣∣∣
∂q

∂u
(ks, ir, ūi)

∣∣∣∣ TV
(
(ui−1, ui); Jk

)
+ s
(∣∣q(t0, x0, ui−1)

∣∣+
∣∣q(t0, x0, ui)

∣∣
)
,

where ūi ∈ U and TV ((ui−1(t), ui(t));Jk), TV ((ui−1, ui); Jk) denote the total

variations of (ui−1(t), ui(t)), (ui−1, ui) crossing Jk. Similarly, if (ui−1, ui) = ūi(ξ)

is a rarefaction wave with ξ ∈ [ξ1, ξ2], then we obtain
∣∣∣TV

(
(ui−1(t), ui(t)); Jk

)
− TV

(
(ui−1, ui); Jk

)∣∣∣

≤ s

∣∣∣∣
∂q

∂u

(
ks, ir, ūi(ξ̃)

)∣∣∣∣ TV
(
(ui−1, ui); Jk

)
+ s
(∣∣q(t0, x0, ui−1)

∣∣+
∣∣q(t0, x0, ui)

∣∣
)

for some ξ̃ ∈ [ξ1, ξ2] and ūi(ξ̃) ∈ U . Summing up the previous inequalities with

respect to the waves crossing Jk we obtain
∣∣∣TV

(
ur(Jk)

)
− TV

(
ũr(Jk)

)∣∣∣

≤ O(s)

∥∥∥∥
∂q

∂u

∥∥∥∥
L1(R+×R)

TV
(
ũr(Jk)

)
+ O(s) ‖q‖L1(R+×R)
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for any mesh curve Jk, and this is enough to imply that the total variations of

ur(t, x) and ũr(t, x) on any mesh curve Jk are equivalent when ‖q‖L1(R+×R) and∥∥ ∂q
∂u

∥∥
L1(R+×R)

are small, we then show the statement.

We note that the waves entering each diamond region may come from two

generalized Riemann solutions, we certainly need to know the constant states of

corresponding classical Riemann solutions at the left and right vertices of diamond

region to calculate those wave strengths separately. We proceed as follows.

First, using the notations in (4.7), (4.8), we define the strength of the waves

entering the diamond region Γk0,h0
, k0 +h0 is even, by

ε∗(Γk0,h0
) :=

∣∣∣ε
(
ũW , uS ; (k0−1)s, (h0−1)r

)∣∣∣ +
∣∣∣ε
(
uS , ũE ; (k0−1)s, (h0 +1)r

)∣∣∣

and the strength of the waves leaving Γk0,h0
by

ε∗(Γk0,h0
) :=

∣∣ε(uW , ũN ; k0s, h0 r)
∣∣ +

∣∣ε(ũN , uE ; k0s, h0 r)
∣∣.(4.9)

Since ũN is a constant state in WC(uW , uE ; k0s, h0 r), we can write

ε∗(Γk0,h0
) =

∣∣ε(uW , uE ; k0s, h0 r)
∣∣.(4.10)

Next, for k0+h0 is even, we let Q(Γk0,h0
) denote the potential of waves interaction

in the diamond Γk0,h0
, i.e.,

Q(Γk0,h0
) := D

(
ε
(
ũW , uS , (k0−1)s; (h0−1)r

)
, ε
(
uS , ũE , (k0−1)s, (h0 +1)r

))

where D(·, ·) is defined in (3.1). Given a mesh curve J , we note that there

are two types of waves crossing J . The first kind of waves are (ũk,h−1, uk−1,h),

k + h = even (waves of type I), the second type of waves are (uk−1,h, ũk,h+1),

k + h = even (waves of type II). More precisely, waves of type I are either of the

form (ũk,h−1,uk−1,h) entering Γk,h (left in-coming waves of Γk,h), or (ũk+1,h,uk,h+1)

leaving Γk,h (right out-going waves of Γk,h). Waves of type II are either of the form

(uk−1,h, ũk,h+1) entering Γk,h (right in-coming waves of Γk,h), or (uk,h−1, ũk+1,h)

leaving Γk,h (left out-going waves of Γk,h), see Figures 4.2 (a), (b). Next we define

the linear functional L(J) for the waves in ur(t, x) crossing mesh curve J by

L(J) :=
∑

type I

∣∣∣ε
(
ũk,h−1, uk−1,h; (k−1)s, (h−1)r

)∣∣∣

+
∑

type II

∣∣∣ε
(
uk−1,h, ũk,h+1; (k−1)s, (h+1)r

)∣∣∣.
(4.11)
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Figure 4.2 (a) – Waves of type I crossing mesh curve J .

Figure 4.2 (b) – Waves of type II crossing mesh curve J .

From previous analysis, we see that functional L(J) is equivalent to the to-

tal variation of ur(t, x) crossing mesh curve J . Next we define the quadratic

functional Q(J) of ur(t, x) by

Q(J) :=
∑

(α,β)

D(α, β)(4.12)

where the notation (α, β) under summation sign denotes a pair of waves α, β

crossing J and approach, and D(α, β) is given in (3.1). Furthermore, we define

the Glimm functional F (J) of ur(t, x) for mesh curve J by

F (J) := L(J) + K Q(J).(4.13)

Our goal is to show that functional F remains uniformly bounded on all mesh

curves provided that constant K in (4.13) is sufficiently large, and this leads

to the result that functional L can be bounded by a constant times the total

variation of initial data u0(x). To show this, the first step is to estimate the

possible changing amount of L and Q when waves pass through one mesh curve

and into an immediate successor. The estimates of changing amounts of L and Q

are stated as follows.
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Proposition 4.1. Given two mesh curves J1 and J2 such that J2 is an imme-

diate successor of J1, let Γk0,h0
denote the diamond region bounded by J1 and J2.

Then functionals L and Q satisfy

L(J2)−L(J1) = O(1)
{

Q(Γk0,h0
) + ε∗(Γk0,h0

) (C0
1 +λ∗C

0
2 +C0

3 +C0
4 ) s
}

,(4.14)

Q(J2) − Q(J1) = − Q(Γk0,h0
) + O(1)L(J1)Q(Γk0,h0

)

+ O(1)L(J1) ε∗(Γk0,h0
) (C0

1 + λ∗C
0
2 + C0

3 + C0
4 ) s

(4.15)

where constants λ∗ is defined in (4.1) and C0
j , 1≤ j ≤ 4, are given by

C0
1 := Nh0r,h0r

(k0−1)s,k0s

(
∂2A

∂t ∂u

)
, C0

2 := N
(h0−1)r,(h0+1)r
(k0−1)s,(k0−1)s

(
∂2A

∂x ∂u

)
,(4.16)

C0
3 := Nh0r,h0r

(k0−1)s,k0s

(
q(t, x, u)

)
, C0

4 := Nh0r,h0r
(k0−1)s,k0s

(
∂q

∂u
(t, x, u)

)
(4.17)

where N is defined in (3.5). Note that
{
C0

j ; 1≤ j ≤ 4
}

depend on h0, k0.

Proof: Let uS , uW , uE , uN be the constant states described in (4.6)–(4.7),

we first derive (4.14). By the definitions of ε∗ and ε∗ in (4.9), (4.10) and L in

(4.11), we find

L(J2) − L(J1) =
∣∣ε(uW , ũN ; k0s, h0 r)

∣∣ +
∣∣ε(ũN , uE ; k0s, h0 r)

∣∣

−
∣∣∣ε
(
ũW , uS ; (k0−1)s, (h0−1)r

)∣∣∣

−
∣∣∣ε
(
uS , ũE ; (k0−1)s, (h0 +1)r

)∣∣∣

= ε∗(∆k0,h0
) − ε∗(∆k0,h0

).

(4.18)

Next, by applying the definition of λ∗ in (4.1) and the estimates (3.29), (3.32) to

(4.18) with the choice of uL = ũW , uM = uS , uR = ũE , µL = uW − ũW , µR =

uE − ũE , t0 = (k0−1)s and x0 = h0 r, we obtain

ε∗(Γk0,h0
) = ε∗(Γk0,h0

)+O(1)Q(Γk0,h0
)+O(1) ε∗(Γk0,h0

)
(
(C0

1 +C0
3 +C0

4 )s+C0
2 r
)
,

and this gives (4.14).

To prove (4.15), we define several notations for the rest of the section. First,

given (k, h), k +h = even, we let vector εk−1,h−1/2 denote the strength of waves
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issued from ((k−1)s, (h−1)r) entering Γk,h, and let vector εk−1,h+1/2 denote the

strength of waves issued from ((k− 1)s, (h + 1)r) entering Γk,h. More precisely,

the vector εk−1,h−1/2 measures the strength of waves of type I entering Γk,h and

εk−1,h+1/2 measures the strength of waves of type II entering Γk,h. Next, given

a mesh curve J , let J[h−1,h] (J[h,h+1] respectively) denote the segment of J in

R+×[(h−1)r, hr] (R+×[hr, (h+1)r]). Then we define vectors εJ,h−1/2, εJ,h+1/2

as the strengths of waves crossing J[(h−1),h], J[h,h+1] respectively. We will drop

the sign J in εJ,h−1/2 and εJ,h+1/2 when J is specified. We also set

εW,S := εh0−1/2, εS,E := εh0+1/2,

εW,N := ε(uW , ũN ; k0s, h0 r), εN,E := ε(ũN , uE ; k0s, h0 r).

Since J2 is an immediate successor of J1, the diamond region bounded by J1,

J2 can be specified as Γ(k0, h0) with center (k0s, h0 r), and J1, J2 coincide out-

side Γ(k0, h0). We will also drop the signs J1, J2 without confusion. From the

definition of Q in (4.12), we have

Q(J2) − Q(J1)

=
∑

h<h0

(
D(εh−1/2, εW,N ) + D(εh−1/2, εN,E) − D(εh−1/2, εW,S) − D(εh−1/2, εS,E)

)

+
∑

h>h0+1

(
D(εW,N, εh−1/2)+D(εN,E , εh−1/2)−D(εW,S, εh−1/2)−D(εS,E , εh−1/2)

)

+ D(εW,N , εN,E) − D(εW,S , εS,E).

From (3.1) we see that

D(εW,N , εN,E) = 0.(4.19)

Also, for any h ∈ Z we observe that

D(εh−1/2, εW,N ) + D(εh−1/2, εN,E) = D(εh−1/2, εW,E)(4.20)

for h < h0, and

D(εW,N , εh−1/2) + D(εN,E , εh−1/2) = D(εW,E , εh−1/2)(4.21)
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for h > h0 +1. Thus, by (4.19)–(4.21) we obtain

Q(J2) − Q(J1)

=
∑

h<h0

(
D(εh−1/2, εW,E) − D(εh−1/2, εW,S) − D(εh−1/2, εS,E)

)

+
∑

h>h0+1

(
D(εW,E , εh−1/2) − D(εW,S , εh−1/2) − D(εS,E , εh−1/2)

)

− D(εW,S , εS,E).

(4.22)

Finally, applying (3.30) and (3.31) to (4.22) and using the fact that D(εW,S , εS,E) =

Q(Γk0,h0
), we obtain

Q(J2) − Q(J1)

= −D(εW,S , εS,E) +
∑

h∈Z

h 6=h0,h0+1

(
O(1) |εh−1/2|D(εW,S , εS,E)

+ O(1) |εh−1/2|
(
|εW,S |+ |εS,E |

) (
(C0

1 +C0
3 +C0

4 )s + C0
2 r
))

= −Q(Γk0,h0
) + O(1)L(J1)Q(Γk0,h0

)

+ O(1)L(J1) ε∗(Γk0,h0
)
(
(C0

1 +C0
3 +C0

4 )s + C0
2 r
)
,

which leads to (4.15). This completes the proof.

Before stating a crucial technical lemma, let us introduce a notation about

mesh curves. We say that a mesh curve J is of the type (k0, k0+1) if all the mesh

points on J have the form of
{
(ks, (h+ak)r) : k = k0, k0 +1

}
.

Lemma 4.2. Given a positive integer k0, let J1 and J2 be two mesh curves

of type (k0−1, k0) and (k0, k0 +1) respectively. We assume that there exists

a positive constant M∗ such that

L(J1) ≤ M∗.(4.23)

If M∗ is sufficiently small and the constant K in (4.13) is sufficiently large, then

the functional F satisfies the following inequality

F (J2) ≤ F (J1) + O(1)s
∑

h0∈Z

ε∗(Γk0,h0
) (C0

1 +λ∗C
0
2 +C0

3 +C0
4 )(4.24)

where the bound O(1) depends on M∗ and K, and the constants C0
j := C0

j (h0, k0),

1≤ j ≤ 4, in (4.16), (4.17) depend on h0 ∈ Z.
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Proof: Given h0 ∈ Z, we multiply (4.15) by constant K in (4.13) and add it

to (4.14). Then by the assumption that J1 and J2 are two mesh curves of type

(k0−1, k0) and (k0, k0 +1), we obtain

F (J2) − F (J1)

= −K
∑

h0∈Z

Q(Γk0,h0
)

+ O(1)
[
1+KL(J1)

]
{
∑

h0∈Z

Q(Γk0,h0
) +

∑

h0∈Z

ε∗(Γk0,h0
) (C0

1 +λ∗C
0
2 +C0

3 +C0
4 )s

}
.

Next, by the observation that
∑

h0∈Z
Q(Γk0,h0

) = Q(J1), the equation above

implies that

F (J2) − F (J1) = −KQ(J1) + O(1)
(
1+KL(J1)

)
Q(J1)

+ O(1)s
∑

h0∈Z

ε∗(Γk0,h0
) (C0

1 +λ∗C
0
2 +C0

3 +C0
4 )

= Q(J1)
{
K
[
O(1)L(J1) −1

]
+ O(1)

}

+ O(1)s
∑

h0∈Z

ε∗(Γk0,h0
) (C0

1 +λ∗C
0
2 +C0

3 +C0
4 )

≤ Q(J1)
{
K
[
O(1)M∗ − 1

]
+ O(1)

}

+ O(1)s
∑

h0∈Z

ε∗(Γk0,h0
) (C0

1 +λ∗C
0
2 +C0

3 +C0
4 ).

The last inequality is an application of (4.23). We see that the term K[O(1)M∗−1]

+ O(1) is negative, if M∗ is sufficiently small and K is sufficiently large. Thus,

(4.24) holds for such M∗ and K. This completes the proof.

We now establish the stability of generalized Glimm method, which is the

main result of this section. We denote by TV (·) the total variation of a function.

Theorem 4.3. Fix a constant state u∗ and assume that the initial data

u0 = u0(x) is a function of bounded variation such that

‖u0 − u∗‖L∞ and TV (u0) are sufficiently small.(4.25)

Assume also that the mappings A(t, x, u) := Df
Du(t, x, u) and q(t, x, u) in (1.4) are

smooth and such that

the L1(R+×R) norm of
∂2A

∂t ∂u
, λ∗

∂2A

∂x ∂u
, q,

∂q

∂u
are sufficiently small.(4.26)
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Then, the approximate solutions ur(t, x) are bounded uniformly in the L∞ and

BV norms:

‖ur − u∗‖L∞(R+×R) ≤ O(1)
(
‖u0 − u∗‖L∞(R) + TV (u0) + C

)
,(4.27)

TV
(
ur(t, ·)

)
≤ O(1)

(
TV (u0) + C

)
,(4.28)

where

C :=

∥∥∥∥
∂2A

∂t ∂u

∥∥∥∥
L1(R+×R)

+ λ∗

∥∥∥∥
∂2A

∂x ∂u

∥∥∥∥
L1(R+×R)

+ ‖q‖L1(R+×R) +

∥∥∥∥
∂q

∂u

∥∥∥∥
L1(R+×R)

(4.29)

Furthermore, the function ur(t,x) is Lipschitz continuous in time, i.e., for t1,t2 > 0,

∫

R

∣∣ur(t1, x) − ur(t2, x)
∣∣ dx ≤ O(1)

(
|t2− t1| + s

) (
TV (u0) + C

)
.(4.30)

Proof: We apply an induction argument based on Lemma 4.2 to show that

the approximate solution ur(t, x) is uniformly bounded in L∞ and total variation.

First, we show that the condition (4.23) in Lemma 4.2 holds under the assump-

tions (4.25), (4.26). By induction, given k0 ∈ N, we let Jk0−1/2 denote the mesh

curve of type (k0−1, k0). For k0 = 1, we see that

F (J1/2) ≤ O(1)
(
TV (u0) + K[TV (u0)]

2
)
.(4.31)

This means that there exists a positive constant M∗, as described in (4.23), such

that F (J1/2) ≤ M∗, and in particular, L(J1/2) ≤ M∗ if TV (u0) is sufficiently

small. Next, suppose that

L(Jk+1/2) ≤ M∗ for k = 0, 1, . . . , k0−1.(4.32)

We intend to show that (4.32) still holds for k = k0. Since Jk0−1/2 is a mesh curve

of type (k0−1, k0), this implies that Jk0+1/2 is a mesh curve of type (k0, k0 +1)

so that Lemma 4.2 can be applied. Therefore we obtain

F (Jk0+1/2) ≤ F (Jk0−1/2) + O(1)s
∑

h0∈Z

ε∗(Γk0,h0
) (C0

1 +λ∗C
0
2 +C0

3 +C0
4 )

...

≤ F (J1/2) + O(1)s

k0∑

k=1

∑

h0∈Z

ε∗(Γk,h0
) (C0

1 +λ∗C
0
2 +C0

3 +C0
4 ).
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Then, by
∑

h0∈Z

ε∗(Γk,h0
) = L(Jk−1/2), k ∈ N,

this leads to

F (Jk0+1/2) ≤ F (J1/2) + O(1)

k0∑

k=1

sL(Jk−1/2) sup
h0∈Z

(C0
1 +λ∗C

0
2 +C0

3 +C0
4 ).(4.33)

Next, by (4.31)–(4.33) we find

F (Jk0+1/2) ≤ O(1)
(
1 + K TV (u0)

)
TV (u0)

+ O(1)M∗

k0∑

k=1

sup
h0∈Z

(C0
1 +λ∗C

0
2 +C0

3 +C0
4 )s.

(4.34)

From the definitions of C0
j and the assumption that the constant C in (4.29) is

finite, we see that

lim
r→0

∞∑

k=1

sup
h0∈Z

(C0
1 + λ∗C

0
2 + C0

3 + C0
4 )s = C.(4.35)

Therefore, from (4.34) and (4.35) we obtain the inequality

F (Jk0+1/2) ≤ O(1)
{(

1 + K TV (u0)
)
TV (u0) + M∗ C

}
,(4.36)

and in particular,

L(Jk0+1/2) ≤ O(1)
{(

1 + K TV (u0)
)
TV (u0) + M∗ C

}
.(4.37)

We note that the functional L in (4.37) only depends on the constants M∗, C and

the total variation of u0, thus it enables us to choose TV (u0) and C sufficiently

small such that O(1) (1+K TV (u0))TV (u0) ≤
M∗

2 and O(1)CM∗ ≤
M∗

2 and this

implies that
L(Jk0+1/2) ≤ M∗.

Therefore (4.32) holds for k = k0, we just showed that L(k0 +1/2) has uniform

bound for all k0 ∈ N, which implies that functional L of ur(t, x) has global bound.

Since L is a functional equivalent to the total variation of ur(t, x), we prove that

the total variation of ur(t, x) has an uniform bound for all t≥ 0 and all finite

r > 0, so as well the L∞ norm of ur(t, x). To prove (4.28), we apply (4.4), (4.5)

to ur(t, x) and we use the fact that TV (ur(k0s, ·)) = O(1)F (Jk0+1/2) to (4.36),

then (4.28) is established. For the proof of (4.27) and (4.30), we follow the lines

of proof in [10]. The proof is completed.
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We note that if ∂2A
∂t ∂u , λ∗

∂2A
∂x ∂u , q and ∂q

∂u in (4.26) belong to L∞, then

inequalities (4.27), (4.28) and (4.30) remain valid in a finite interval [0, T ] with

T sufficiently small.

5 – Convergence of the generalized Glimm method

In Section 4 we established the BV stability of the scheme together with

a time continuity property. By Helly’s theorem, there exists a subsequence of

approximate solutions, still denoted by {ur(t, x)} and converging strongly in L1
loc

to a limit function u = u(t, x). Moreover, by the estimates (4.23), (4.24), the

function u is uniformly bounded and is of bounded variation in x. We now prove

that the limit u is indeed an entropy solution of the Cauchy problem. The proof

relies on the error estimate derived in Section 2.

Theorem 5.1. Suppose that the initial data u0(x) is sufficiently close to a

constant state in L∞ and BV , and that the L1 norms of ∂2A
∂x ∂u , ∂2A

∂t ∂x , q and ∂q
∂u are

sufficiently small in R+×R. Let {ur(t, x) : r > 0} be the sequence of approximate

solutions constructed by the generalized Glimm scheme (4.3)–(4.5). Then, for

any equidistributed sequence {ak}k∈N, there exists a subsequence of {ur(t, x)}

converging in L1
loc

to a function u = u(t, x) which is an entropy solution of the

Cauchy problem (1.1), (1.2).

Remark 5.2. Assume that U is a convex subset of R
p, we say that (U, F ),

U : U ∈ R
p → R and F : R+×R×U → R, is an entropy pair of the system (1.1)

if U is a convex function on U and

∂F

∂u
=

DU

Du

∂f

∂u
on R+×R×U .

Furthermore, a function u : R+×R→ R
p is called an entropy solution of (1.1)

if u = u(t, x) is a weak solution of (1.1) satisfying

∂tU(u) + ∂x

(
F (t,x,u)

)
≤

DU

Du
(u)
{
g(t,x,u)− (∂xf)(t,x,u)

}
+(∂xF )(t,x,u)(5.1)

in the sense of distributions, for every entropy pair (U, F ).

Proof: The proof is based on the result of Proposition 2.1. Let {ur(t, x)}

denote a sequence of approximate solutions constructed by generalized Glimm
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scheme (4.3)–(4.5). Then, by the stability result and Helly’s theorem, there exists

a subsequence of {ur(t, x)} converging almost everywhere to a function u ∈ L1
loc

with bounded total variation. Given any test-function θ : R+×R→ R we define

the residual of ur as

R(ur, θ) :=

∫

R+

∫

R

{
ur ∂tθ +f(t, x, ur) ∂xθ + g(t, x, ur) θ

}
dx dt

+

∫ ∞

−∞

u0(x) θ(0, x) dx

Note that u is a weak solution to (1.1), (1.2) if and only if R(u, θ) = 0 for any

test-function θ. By Lebesgue’s theorem, we see that

∣∣R(ur, θ) −R(u, θ)
∣∣→ 0 as r → 0.

Thus, to show that u is a weak solution of (1.1), (1.2), it is equivalent to show

that R(ur(t, x), θ) tends to zero as r vanishes. To show this, we first let χk0,h0

supp(θ)

denote a characteristic function having the same support as the test-function θ.

Then, by construction of ur(t, x) and by (2.8), we can write

R(ur, θ)

=
∞∑

k0=0

∑

h0+k0
even

∫ (k0+1)s

k0s

∫ (h0+1)r

(h0−1)r

(
ur ∂tθ + f(t, x, ur) ∂xθ + g(t, x, ur) θ

)
dx dt

=
∞∑

k0=0

∑

h0+k0
even

O(1) (s2 +r2)
(
s + r + |uk0,h0+1− uk0,h0−1|

)
χk0,h0

supp(θ)

+

(
∞∑

k0=0

∑

h0+k0
even

(∫ (h0+1)r

(h0−1)r
ur

(
(k0 +1)s−, x

)
θ
(
(k0 +1)s, x

)
dx

−

∫ (h0+1)r

(h0−1)r
ur(k0s+, x) θ(k0s, x) dx

)
+

∫ ∞

−∞

u0(x) θ(0, x) dx

)

+

∞∑

k0=0

∑

h0+k0
even

(∫ (k0+1)s

k0s
f
(
t, (h0 +1)r, ur

(
t, (h0 +1)r−

))
θ
(
t, (h0 +1)r

)
dt

−

∫ (k0+1)s

k0s
f
(
t, (h0−1)r, ur

(
t, (h0−1)r+

))
θ
(
t, (h0−1)r

)
dt

)
.

(5.2)

Let Ω1(r), Ω2(r) and Ω3(r) denote the terms on the right hand side of (5.2),

respectively. We first estimate Ω1(r). By a direct calculation and (4.2), (4.28),
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we obtain

Ω1(r) = O(1) r +
∞∑

k0=0

∑

h0+k0
even

O(1) (s2 + r2)
(
|uk0,h0+1− uk0,h0−1|

)
χk0,h0

supp(θ)

≤ O(1) r +
∑

k0∈N

O(1) (s2 + r2)
(
TV
{
u0(x)

}
+ C

)
χk0,h0

supp(θ)

≤ O(1) r.

(5.3)

Next we calculate Ω3(r). By the property of the Lipschitz continuity of f , q and

(2.4), (4.5), we obtain

Ω3(r)

= O(1)
∞∑

k0=0

∑

h0+k0
even

∫ (k0+1)s

k0s

∣∣∣ur

(
t, (h0 +1)r+

)
− ur

(
t, (h0−1)r−

)∣∣∣ ·
(
χk0,h0

supp(θ)

)
dt

= O(1)
∞∑

k0=0

∑

h0+k0
even

(∫ (k0+1)s

k0s
t
∣∣∣q
(
k0s, (h0 + 2)r, ũk0,h0+1

)

− q
(
k0s, h0 r, ũk0,h0+1

)∣∣∣ ·
(
χk0,h0

supp(θ)

)
dt

)

= O(1)
∑

k0

∑

h0

∫ (k0+1)s

k0s
t r ·

(
χk0,h0

supp(θ)

)
dt.

It follows that

Ω3(r) = O(1) r.(5.4)

It remains to estimate Ω2(r). It is a standard matter to check that

Ω2(r) = −

∞∑

k0=1

∑

h0+k0
even

∫ (h0+1)r

(h0−1)r
[ur] (k0s, x) θ(k0s, x) dx

−

∫ +∞

−∞

(
ur(0, x) − u0(x)

)
θ(0, x) dx

where [ur](k0s, x) := ur(k0s+, x) − ur(k0s−, x). We let J({ak}, r, θ) denote the

term
∞∑

k0=1

∑

h0+k0
even

∫ (h0+1)r

(h0−1)r
[ur] (k0s, x) θ(k0s, x) dx.
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By the construction of ur(t, x) in (4.3), we see that the term
∫ +∞

−∞

(
ur(0, x) −

u0(x)
)
θ(0, x) dx on the right hand side of (5.5) vanishes as r tends to zero.

In addition, by a result of Liu [19] we obtain that, for any equidistributed sequence

{ak}k∈N, J({ak}, r, θ) tends to zero as r approaches to zero. This implies that

Ω2(r) → 0 as r → 0(5.5)

for every equidistributed sequence {ak}k∈N. We refer the reader to [19] for the

details of the estimate of Ω2(r). Finally, by (5.3), (5.4) and (5.5), we obtain

R(ur, θ) → 0 in L1 as r → 0,

which means that the limit function u satisfies R(u, θ) = 0. Therefore, u is a

weak solution of the Cauchy problem (1.1), (1.2).

To prove that u is an entropy solution satisfying the entropy inequality (5.1),

it is equivalent to show that, for any entropy pair (U, F ) and test-function θ ≥ 0,

the function u satisfies
∫

R+

∫

R

U(u) θt +F (t,x,u)θx +P (t,x,u)θ dx dt +

∫

R

U
(
u0(x)

)
θ(x,0)dx ≥ 0,(5.6)

with

P (t, x, u) :=
DU

Du
·

(
g −

∂f

∂x

)
(t, x, u) + (∂xF )(t, x, u).

We note that the result of Proposition 2.1 can be applied to show that u(t, x)

satisfies (5.6) for any entropy pair (U, F ). In turn, this implies that u is an

entropy solution of the Cauchy problem (1.1), (1.2), and the proof of Theorem 5.1

is completed.
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