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CONGRUENCE AND A−1A∗

Susana Furtado * and Charles R. Johnson

Abstract: A canonical form under congruence for nonsingular complex matrices

may be deduced from the canonical pair form for Hermitian matrices in a straightforward

way. This allows the study of A−1A∗ and what it says about the congruence class of A.

In turn, alternate congruential forms may be given along with a further generalization

of Sylvester’s law of inertia and an application to C-S equivalence.

1 – Introduction

The matrix B ∈Mn(C), or Mn for short, is congruent to A∈Mn if there

is a nonsingular C ∈ Mn such that B = C∗AC. Congruence is an equivalence

relation on Mn that arises in a variety of ways (including study of the algebraic

Riccati equation and indefinite scalar products), and we have been interested in

this subject in [JF, FJ1, FJ2, FJ3].

Our purpose here is to study some basic ideas about congruent matrices in

the nonsingular case. A simple calculation shows that if B is congruent to a

nonsingular A, then B−1B∗ is similar to A−1A∗. The converse is not generally

true, but we describe precisely which congruence classes are identified with the

similarity class of A−1A∗. In the process, we identify a canonical form for con-

gruence. As A = H + iS, the unique decomposition of a general A ∈ Mn into an

ordered pair of Hermitian matrices H and S, this form may be deduced directly

from the canonical pair form for Hermitian matrices, e.g. [T1, T2], but our in-

tent, for a variety of purposes, is to view A as a single matrix, rather than as an

ordered pair of Hermitian matrices. This allows us, in particular, to continue the
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generalization of Sylvester’s law of inertia begun in [JF] and to give other special

congruential forms not so obviously related to Hermitian pair forms.

The field of values of A is

F (A) ≡
{

x∗Ax : x ∈ C
n, x∗x = 1

}

,

a compact convex subset of the complex plane [HJ2]. The set

F ′(A) ≡
{

x∗Ax : 0 6= x ∈ C
n
}

,

is the smallest angular sector that contains F (A) and is called the angular field of

values of A. Congruent matrices share the same angular field of values, though

the field of values can vary. Whether or not 0 lies in the interior of, on the

boundary of, or outside F (A) is a congruential invariant that is important to our

considerations.

Given A∈Mn nonsingular, we denote A−1A∗ by Φ(A).

2 – A congruential canonical form for nonsingular matrices

For positive integers p, q and r, consider the blocks

(1) Dp(γ) =



















0 · · · · · · 0 γ − i
... . .

.
. .

.
1

... . .
.

. .
.

. .
.

0

0 . .
.

. .
.

. .
. ...

γ − i 1 0 · · · 0



















∈ Mp ,

(2) Gq =



















0 · · · · · · 0 −1
... . .

.
. .

.
i

... . .
.

. .
.

. .
.

0

0 . .
.

. .
.

. .
. ...

−1 i 0 · · · 0



















∈ Mq ,

(3) Er(γ) =

[

0 Dr(γ)

Dr(γ) 0

]

∈ M2r ,

with γ ∈ C and i =
√
−1. In particular, D1(γ) =

[

γ − i
]

and G1 =
[

−1
]

.
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The next result, also mentioned in [FJ3], is a simple consequence of the si-

multaneous canonical form for a pair of Hermitian matrices given in [T1, T2].

Theorem 1. Let A ∈ Mn be a nonsingular matrix. Then, apart from the

order of the direct summands, A is congruent to one and only one matrix of the

form Q1⊕ Q2 ⊕ Q3, with

Q1 = ε1Dp1
(β1) ⊕ · · · ⊕ εk Dpk

(βk) ,

Q2 = δ1Gq1
⊕ · · · ⊕ δl Gql

,

Q3 = Er1
(γ1) ⊕ · · · ⊕ Erm(γm) ,

β1, . . . , βk ∈ R, γ1, . . . , γm ∈ C\(R∪{−i, i}), i m(γj) > 0, j = 1, . . . , m, ε1, . . . , εk,

δ1, . . . , δl ∈ {−1, 1} and p1 + · · · + pk + q1 + · · · + ql + 2r1 + · · · + 2rm = n .

Proof: The matrix A has a unique decomposition A = H + iS, with H and S

Hermitian, namely H = (A+A∗)/2 and S = (A−A∗)/2 i. The claim then follows

from the unique simultaneous canonical form for the pair H, S given, for example,

in [T1, lemma 2 and theorem 1].

We henceforth refer to Dp(β) with β ∈R, Gq, and Er(γ) with γ∈C\(R∪{−i,i})
and i m(γ) > 0, those cases of (1), (2) and (3) that arise in the theorem, as

“canonical blocks”.

Note that in the statement of theorem 1 we assume that the imaginary part

of γj , j = 1, . . . , m, is positive in order to have uniqueness, because Er(γ) is

congruent (via a permutation matrix) to Er(γ).

As mentioned in [FJ3, lemma 3], 0 is in the interior of the field of values of

canonical blocks of the form (3), and likewise for canonical blocks of the forms

(1) and (2) of sizes greater than 2. Also, 0 is on the boundary of the field of

values of 2-by-2 canonical blocks of the forms (1) and (2).

In [JF] a matrix A ∈ Mn is called unitoid if it is diagonalizable under con-

gruence. In case it is nonsingular, this means that A is congruent to a diagonal

unitary matrix. Here, we call A dubloid if A is non-unitoid but is congruent to a

direct sum of blocks of size at most 2. The unitoid and dubloid matrices include

all nonsingular A∈Mn such that 0 /∈ intF (A). It is known [DJ], and also follows

from theorem 1, that if 0 /∈F (A), then A is nonsingular unitoid. However, it

may happen that 0 ∈ ∂F (A) and A is unitoid. Also 0 may be in the interior of

F (A) with A unitoid or dubloid.
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3 – Congruential classes and A−1A∗

The following proposition is easily verified.

Proposition 2. Suppose that A ∈ Mn is nonsingular. If B ∈ Mn is congru-

ent to A then Φ(B) is similar to Φ(A).

The purpose of this section is to study the converse of proposition 2. What

can be said about the congruential relationship between A and B if Φ(A) is

similar to Φ(B).

The proofs of the next three lemmas are straightforward calculations.

Lemma 3. For β ∈ R the matrix Φ(Dp(β)) is similar to the Jordan block

of size p associated with the eigenvalue β+i
β−i .

Lemma 4. The matrix Φ(Gq) is similar to the Jordan block of size q asso-

ciated with the eigenvalue 1.

Lemma 5. For γ ∈ C\(R∪{−i, i}) the matrix Φ(Er(γ)) is similar to the

direct sum of the Jordan blocks of size r associated with the eigenvalues γ+i
γ−i

and γ+i
γ−i .

Suppose that β ∈ R and γ ∈ C\(R∪{−i, i}). It follows from lemmas 3 and 4

that the eigenvalues of the matrices Φ(Dp(β)) and Φ(Gq) are unit modulus.

Also, any unit modulus complex number, except 1, is an eigenvalue of Φ(Dp(β))

for exactly one β ∈ R. The matrix Φ(Er(γ)) has no unit modulus eigenvalues.

Since det(Φ(Er(γ))) is unit modulus, clearly one of its 2 distinct eigenvalues has

modulus greater than 1, while the other has modulus less than 1. Moreover,

any nonzero non-unit modulus complex number is an eigenvalue of Φ(Er(γ)) for

exactly one γ ∈ C\(R∪{−i, i}) with i m(γ) > 0. In particular, from these con-

siderations and the lemmas above, it follows that if A is known to be a canonical

block, then Φ(A) uniquely determines A.

Given A ∈ Mn nonsingular we call A circular if all the eigenvalues of Φ(A)

are unit modulus; we call A off-circular if Φ(A) has no unit modulus eigenvalues.

If A is neither circular nor off-circular we call A semicircular. Note that the size

of an off-circular matrix is always even.

The next result follows from theorem 1 and lemmas 3, 4, and 5.
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Theorem 6. Let A ∈ Mn be nonsingular. Then A is congruent to a direct

sum of a circular matrix and an off-circular matrix.

If a nonsingular A ∈ Mn is congruent to B1 ⊕ B2, with B1 circular and B2

off-circular, we call B1 a circular part of A and B2 an off-circular part of A.

Note that 0 is in the interior of the field of values of the off-circular part of A.

Thus, if there is an eigenvalue of Φ(A) not on the unit circle then 0 ∈ intF (A)

because the off-circular part of A is non-empty.

Given A, B ∈ Mn, we say that A is quasi-congruent to B if the congruential

canonical forms given in theorem 1 of A and B differ only in the ±1 factors

ε1, . . . , εk, δ1, . . . , δl.

Theorem 7. Let A, B ∈ Mn. Then B is quasi-congruent to A if and only if

Φ(B) is similar to Φ(A).

Proof: LetA′ and B′ be matrices of the form described in theorem 1 that are

congruent to A and B, respectively. Note that, by proposition 2, Φ(A) is similar

to Φ(A′) and Φ(B) is similar to Φ(B′). If B is quasi-congruent to A, then, apart

from the order of the direct summands, Φ(A′) and Φ(B′) are the same matrix,

so that Φ(B) is similar to Φ(A). Now suppose that Φ(B) is similar to Φ(A).

Then Φ(B′) is similar to Φ(A′) and, from the discussion after lemma 5, A′ and B′

can differ only in the ±1 factors ε1, . . . , εk, δ1, . . . , δl and, thus, these matrices

are quasi-congruent.

We have the following consequence of theorem 7.

Corollary 8. Let A ∈ Mn be an off-circular matrix and let B ∈ Mn. Then

B is congruent to A if and only if Φ(B) is similar to Φ(A).

Note that for C = Ir ⊕ (−Ir), we have C∗(−Er(γ))C = Er(γ), so that, as

expected, the matrices Er(γ) and −Er(γ) are congruent.

An interesting fact is that if A is off-circular, then there is a neighborhood of A

in which all matrices are off-circular. In fact, if Φ(A) has no eigenvalues on the

unit circle the same is true for matrices sufficiently close to A because of the

continuous dependence of the eigenvalues on the entries of a matrix.

The remarks of this section allow us to characterize all matrices of the special

form Φ(A), sometimes called the generalized Cayley transform of A. Thus, the

current work may be viewed, in part, as a continuation of work begun in [DJ].
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Since a nonsingular A is congruent to a matrix of the form described in

theorem 1, by proposition 2, Φ(A) is similar to a direct sum of blocks of the

forms Φ(Dp(β)), Φ(Gq), Φ(Er(γ)), with β ∈ R and γ ∈ C\(R∪{−i, i}). It follows

that if B = Φ(A), then the eigenvalues of B not on the unit circle occur in pairs

of like Jordan structure, each pair fully determined by one of its members. If λ1 is

an eigenvalue of Φ(A) not on the unit circle then, by lemma 5, λ1 = γ+i
γ−i for some

(unique) γ ∈ C\(R∪{−i, i}). By lemma 5, the mate of λ1 is λ2 = γ+i
γ−i . It is easily

checked that if λ1 = k eiθ, with k > 0 and k 6= 1, then λ2 = 1
k eiθ. On the other

hand, unit modulus eigenvalues of B occur independently and with arbitrary

Jordan structure. Also, it is clear from lemmas 3, 4 and 5 that any nonsingular B

satisfying these two statements is similar to Φ(A), for some A ∈ Mn. If B =

C−1Φ(A)C, with C ∈ Mn nonsingular, then B = Φ(C∗AC). Taken together,

these observations fully describe what matrices can be Φ(A). A consequence is

that if n is odd, Φ(A) must have at least one unit modulus eigenvalue.

Theorem 9. Let B ∈ Mn be a nonsingular matrix. There is an A ∈ Mn

such that B = Φ(A) if and only if B is similar to a matrix of the form B1⊕ B2,

in which B1 ∈ Mn1
and B2 ∈ Mn−n1

, 0 ≤ n1 ≤ n, are such that

a) all the eigenvalues of B1 lie on the unit circle, and

b) the distinct eigenvalues of B2 are λ1= s1eiθ1, λ′
1= 1

s1
eiθ1 , . . . , λm = sm eiθm,

λ′
m = 1

sm
eiθm , for some θ1, . . . , θm ∈ R, s1, . . . , sm > 1, and the Jordan

structure of B2 associated with λj and λ′
j is the same, j = 1, . . . , m.

We note that theorem 9 above may be seen to be equivalent to theorem 1 of

[DJ]. However, the approach here and the related ideas are very different from

those in [DJ].

4 – Alternate congruential forms

Lemma 10. For every β ∈ R there is one and only one α ∈ (0, π) such that

Dq(β) is quasi-congruent to eiαGq.

Proof: By theorem 7, it is enough to show that there is one and only one

α ∈ (0, π) such that Φ(Dq(β)) and e−2iα Φ(Gq) are similar or, equivalently (be-

cause Φ(Dq(β)) and Φ(Gq) are each similar to a Jordan block), have the same

eigenvalues. According to lemma 4, the eigenvalues of Φ(Gq) are 1. By lemma 3,
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the eigenvalues of Φ(Dq(β)) are β+i
β−i . Thus, Φ(Dq(β)) and e−2iα Φ(Gq) have the

same eigenvalues if and only if α = −1
2 arg

(β+i
β−i

)

+ pπ, p ∈ Z. Because β+i
β−i is

different from 1, the existence of a unique α in (0, π) follows.

By theorem 1 Gq and −Gq are not congruent. Thus, from lemma 10 there is

one and only one α ∈ (0, 2π)\{π} such that Dq(β) is congruent to eiαGq.

With lemma 10 we then can rephrase theorem 1 as follows.

Theorem 11. Let A ∈ Mn be a nonsingular matrix. Then, apart from the

order of the direct summands, A is congruent to one and only one matrix of the

form Q′
1⊕ Q′

2, with

Q′
1 = eiα1 Gq1

⊕ · · · ⊕ eiαlGql
,

Q′
2 = Er1

(γ1) ⊕ · · · ⊕ Erm(γm) ,

α1, . . . , αl ∈ [0, 2π), γ1, . . . , γm ∈ C\(R∪{−i, i}), i m(γj) > 0, j = 1, . . . , m, and

q1 + · · · + ql + 2r1 + · · · + 2rm = n.

Lemma 12. There is an upper triangular Jq ∈ Mq with all eigenvalues 1

such that Gq is congruent to eiθqJq, for some θq ∈ [0, 2π).

Proof: If q = 1 the result is trivial. Suppose that q ≥ 2. Let θ2 = π
2 and

for q ≥ 3 let θq = 1
q

(

arg(det(Gq)) + 2 pq π
)

, for some arbitrary pq ∈ Z. Note that

for any q ≥ 2, eiθq ∈ F ′(Gq) and, modulo 2π, q θq = arg(det(Gq)). According to

[FJ1], if q ≥ 3, or [J, FJ3], if q = 2, Gq is congruent to a matrix B with all

eigenvalues equal to eiθq . By Schur’s unitary triangularization theorem there is a

unitary matrix U ∈Mq such that U∗BU = eiθqJq, in which Jq is upper triangular

with all eigenvalues 1.

For example, since Φ(G2) is similar to Φ(ei π
2 J2) for

J2 =

[

1 2

0 1

]

,

the matrices G2 and ei π
2 J2 are quasi-congruent. Moreover, because of the location

of the field of values of both matrices, it follows that G2 and ei π
2 J2 are congruent.

As we will see later, the choice of J2 is unique up to a diagonal unitary similarity;

the choice of θ2 is unique modulo 2π.
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From the proof of lemma 12, if q > 2 then the value of θq is not intrinsically

determined by Gq. However, θq is uniquely determined by Gq once Jq has been

chosen. For example, G3 is congruent to both

J3 =







1 3 3

0 1 3

0 0 1







and ei2π/3J ′
3, with

J ′
3 =







1 3 3

0 1 9
2 + 2

√
15

3 −
√

3
6 i

0 0 1






.

In fact, Φ(G3) is similar to both Φ(J3) and Φ(ei2π/3J ′
3), so that G3 is congruent to

either J3 or −J3. Also G3 is congruent to either ei2π/3J ′
3 or −ei2π/3J ′

3. The claim

about the displayed matrices follows because congruence preserves the argument

of the determinant. (We note that for q > 3 no particular explicit form for Jq

is as simple to describe.) However, for a fixed Jq, θq is unique (modulo 2π).

In fact, suppose that Gq is congruent to both eiθqJq and eiθ′qJq. Then e−2iθq Φ(Jq)

is similar to e−2iθ′q Φ(Jq), which implies θq = θ′q + pπ, for some p ∈ Z. But, since

Gq and −Gq are not congruent, then, modulo 2π, θq must be θ′q.

The previous observation, together with theorem 11 and lemma 12, implies

theorem 13, in which we have chosen a particular Jq for each positive integer q.

Theorem 13. Let A ∈ Mn be a circular matrix. Then, apart from the order

of the direct summands, A is congruent to one and only one matrix of the form

eiθ1Jq1
⊕ · · · ⊕ eiθjJqj

,

with θ1, . . . , θj ∈ [0, 2π) and q1 + · · · + qj = n.

Note that theorem 13 applies only to circular matrices. A block of the form

Er(γ) is also congruent to eiθB, with B upper triangular with eigenvalues 1, but

in this case B cannot be taken to be a single particular matrix independent of γ ;

B can only be given parametrically. Thus γ determines both θ and B. However,

when r = 1 the parametric description of B is particularly simple which is a

motivation to study the dubloid case.
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5 – An “inertia” law for dubloid matrices

A nonsingular unitoid matrix A ∈ Mn is congruent to a diagonal unitary

matrix U . The arguments of the principal entries of U are called the canonical

angles for A and according to [JF], and also theorem 1, are a congruential in-

variant. The nonsingular A is unitoid if and only if Φ(A) is similar to a unitary

matrix. The lines through the origin on which the canonical angles lie are deter-

mined by the spectrum of Φ(A), though the canonical angles are not. If A ∈ Mn

is such that 0 /∈F (A) then A is unitoid (but not conversely). In this event the

canonical angles of A are determined by the spectrum of Φ(A) and the location

of F (A).

In [FJ3] it is shown that if A ∈ Mn is a nonsingular non-unitoid matrix such

that 0 ∈ ∂F (A) then, up to a permutation, A is congruent to a unique direct sum

of a diagonal unitary matrix U and copies of the block

eiθ

[

1 2

0 1

]

,

in which θ ∈R is fixed and such that the canonical angles for U lie in
[

θ− π
2 , θ+ π

2

]

.

In this section we generalize the above mentioned results in [JF] and [FJ3]

to general nonsingular dubloid matrices. Note that a nonsingular A is dubloid

if and only if in the Jordan form of Φ(A), the Jordan blocks associated with

unit modulus eigenvalues are of size at most 2, the Jordan blocks associated with

non-unit modulus eigenvalues are of size 1 and either there are non-unit modulus

eigenvalues or there is at least one 2-by-2 Jordan block. The unitoid and dubloid

matrices include all nonsingular A ∈ Mn such that Φ(A) is diagonalizable by

similarity.

Lemma 14. For θ ∈ R and k > 0 let

(4) A(θ, k) = eiθ

[

1 k

0 1

]

.

a) G2 is congruent to exactly one block of the form (4), namely A(π
2 , 2);

b) For γ ∈ C\(R∪{−i, i}), E1(γ) is congruent to exactly two blocks of

the form (4), namely A(θ1, k1) and A(θ1+ π, k1), with θ1 = π−arg(λ1)
2 ,

k1 =
(

|λ1|2+1
|λ1| + 2

)1/2
and λ1 = γ+i

γ−i .
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Proof: It is easily checked that Φ(G2) is similar to Φ(A(π
2 , 2)) and Φ(E1(γ))

is similar to Φ(A(θ1, k1)). According to corollary 8, E1(γ) is congruent to A(θ1, k1)

and A(θ1+π, k1). According to theorem 7, G2 is quasi-congruent to A(π
2 , 2), and,

thus, G2 is congruent to either A(π
2 , 2) or A(−π

2 , 2). The “uniqueness” follows

because Φ(A(θ, k)) is similar to Φ(A(θ′, k′)) if and only if k = k′ and θ = θ′+ pπ,

p ∈ Z. Since the angular fields of values of A(−π
2 , 2) and G2 are distinct it follows

that G2 is not congruent to A(−π
2 , 2) and, then, G2 is congruent to A(π

2 , 2).

We now give an alternate canonical form for dubloid matrices.

Theorem 15. Let A ∈ Mn be a nonsingular matrix. If A is dubloid, then,

apart from the order of the direct summands, A is congruent to one and only one

matrix of the form Q1⊕ Q2 ⊕ Q3, with

Q1 = diag
(

eiθ1 , . . . , eiθj1

)

,

Q2 = eiβ1

[

1 2

0 1

]

⊕ · · · ⊕ eiβj2

[

1 2

0 1

]

and

Q3 = eiγ1

[

1 k1

0 1

]

⊕ · · · ⊕ eiγj3

[

1 kj3

0 1

]

,

θ1, . . . , θj1 , β1, . . . , βj2 ∈ [0, 2π), γ1, . . . , γj3 ∈ [0, π), k1, . . . , kj3 > 2, j1 < n and

j1 + 2 j2 + 2 j3 = n.

Proof: Let A ∈ Mn be a nonsingular dubloid matrix. By definition, A is

non-unitoid and is congruent to a direct sum of blocks of size at most 2. But, by

theorem 11, this implies that A is congruent to a unique (apart from the order

of the blocks) direct sum of a unitary diagonal matrix and 2-by-2 blocks of the

forms eiθG2 and E1(γ), 0≤ θ < 2π, γ ∈ C\(R∪{−i, i}), i m(γ) > 0, with at least

a 2-by-2 block. Now the claimed existence is a simple consequence of lemma 14.

The uniqueness follows because two distinct matrices with the form described in

the statement of the theorem have distinct canonical forms according to theorem 1

(or theorem 11) and then are not congruent.

It follows from theorem 15 that the congruence class of a nonsingular dubloid

matrix is uniquely determined by the canonical angles θ1, . . . , θj1 , the angles

β1, . . . , βj2 and γ1, . . . , γj3 , that generalize the notion of canonical angles, and

the magnitudes k1, . . . , kj3 .
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6 – An application to C-S equivalence

In [FJ2] we say that A ∈ Mn is C-S equivalent to B ∈ Mn if A is both con-

gruent and similar to B, a notion introduced by M. Mills [M1]. For A ∈ Mn

normal, the number of unitary similarity classes in the C-S equivalence class of A

is studied and completely determined as a function of the location of F (A). Also,

it is shown that for A ∈ M2 nonsingular there is just one unitary similarity class

in the C-S equivalence class of A. Generalizing this result, we may use ideas

developed here to show that for A ∈ Mn nonsingular and such that its minimum

polynomial has degree 2, there is just one unitary similarity class in the C-S

equivalence class of A.

Lemma 16. Let a, b ∈ C\{0}. Let

A =
k

⊕

i=1

[

a ci

0 b

]

and B =
k

⊕

i=1

[

a di

0 b

]

,

with c1 ≥ · · · ≥ ck ≥ 0 and d1 ≥ · · · ≥ dk ≥ 0. Then, A and B are congruent

if and only if ci = di, i = 1, . . . , k.

Proof: Suppose that A and B are congruent. For x ∈ C, let

(5) Dx =

[

a x

0 b

]

.

First, note that if |x1| 6= |x2| then Φ(Dx1
) is not similar to Φ(Dx2

) and, therefore,

Dx1
is not congruent to Dx2

. Also, if γ1 is known to be a canonical angle of

a block of the form (5), then γ1 determines both γ2 and the x ≥ 0 for which

γ1 and γ2 are the canonical angles of Dx ; γ2 is such that γ1 + γ2 = arg(ab) and

x ≥ 0 (unique) is such that Φ(Dx) has eigenvalues e−2γ1 , e−2γ2 . Denote by D′
x

the matrix of the form described in theorem 1 congruent to Dx. Clearly, either

D′
x is diagonal or it is quasi-congruent to a 2-by-2 canonical block. Then A is

congruent to A′ =
k

⊕

i=1
D′

ci
and B is congruent to B′ =

k
⊕

i=1
D′

di
. By theorem 1,

up to a permutation of the blocks, A′ and B′ are the same matrix. Because of

the assumed form of the c’s and d’s, it follows that ci = di, i = 1, . . . , k. Of course,

the converse is immediate.

Theorem 17. Let A ∈ Mn be a nonsingular matrix and suppose that the

minimum polynomial of A has degree 2. Let B ∈ Mn be congruent and similar

to A. Then B is unitarily similar to A.
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Proof: Using Schur’s triangularization theorem, it is straightforward to

observe that A and B are unitarily similar to matrices of the forms

A′ =

[

aIn1
X

0 bIn2

]

and

B′ =

[

aIn1
Y

0 bIn2

]

,

respectively, with a, b ∈ C\{0}, X, Y ∈ Mn1,n2
and n1 + n2 = n. Let U, V ∈ Mn1

and U ′, V ′ ∈ Mn2
be unitary matrices such that

UXU ′∗ =

[

0 0

0 diag(c1, . . . , ck)

]

and V Y V ′∗ =

[

0 0

0 diag(d1, . . . , dk′)

]

with c1 ≥ · · · ≥ ck > 0 and d1 ≥ · · · ≥ dk′ > 0, the singular values of X and Y ,

respectively. Without loss of generality, suppose that k ≥ k′ and let dk′+1= · · · =

dk = 0. The matrix A′ is unitarily similar to A′′ = (U ⊕ U ′)A′(U∗ ⊕ U ′∗) and

B′ is unitarily similar to B′′ = (V ⊕ V ′)B′(V ∗⊕ V ′∗). The matrices A′′ and B′′

are unitarily similar (via a permutation matrix) to A′′′ = aIn1−k ⊕ bIn2−k ⊕A0

and B′′′ = aIn1−k ⊕ bIn2−k ⊕ B0, respectively, with

A0 =
k

⊕

i=1

[

a ci

0 b

]

and B0 =
k

⊕

i=1

[

a di

0 b

]

.

Since A′′′ and B′′′ are congruent, it follows from the uniqueness of the canonical

form given in theorem 1 that A0 and B0 are congruent. According to lemma 16,

ci = di, for i ∈ {1, . . . , k}. Therefore, A′′′ = B′′′ and B is unitarily similar to A.

It follows from [FJ2] that if A is a nonsingular normal matrix with at most

2 distinct eigenvalues then the C-S equivalence class of A contains just one unitary

similarity class (in this event 0 /∈ intF (A)). A normal matrix with 2 distinct

eigenvalues necessarily has a quadratic minimum polynomial. Theorem 17 shows

that the normality assumption is not necessary, but having quadratic minimum

polynomial is sufficient for the existence of just one unitary similarity class in

the C-S equivalence class of the nonsingular A. Theorem 17 also can be seen as

a generalization of the 2-by-2 case discussed in [M1, M2] and [FJ2]. It is also

interesting to notice that for any integer n > 1, there is a non-normal A ∈ Mn

such that the C-S equivalence class of A contains just one unitary similarity class.
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7 – An example

The matrix

An =













1 2 · · · 2

0
. . .

. . .
...

...
. . .

. . . 2
0 · · · 0 1













∈ Mn ,

n ≥ 2, arises in a variety of ways. In particular, it plays an important role in the

work in [KRS, CSS] as in our continuing investigation of C-S equivalence.

It is easily seen that An +A∗
n is a positive semi-definite rank 1 matrix. There-

fore, 0 /∈ intF (An), otherwise An + A∗
n would be indefinite. Thus, An is either

unitoid or dubloid. Since F (Q) ⊂ F (An), with

Q =

[

1 2

0 1

]

,

and 0 ∈ ∂F (Q), then 0 ∈ ∂F (An). Moreover, the field of values of An lies in the

closed right half plane.

The purpose of this section is to show that our methods can be used to

determine the congruential canonical form of An, which is, otherwise, not so

simple.

A calculation shows that the Jordan structure of Φ(An) depends on n.

If n is odd, Φ(An) has eigenvalues 1 and −1. The eigenvalue 1 is simple and

the eigenvalue −1 has multiplicity n− 1. Because rank
(

Φ(An) + In

)

= 1, all

the Jordan blocks associated with the eigenvalue −1 have size 1. If n is even,

−1 is an eigenvalue of Φ(An) with multiplicity n. Because rank
(

Φ(An)+ In

)

= 1,

there is one Jordan block of size 2 and n− 2 Jordan blocks of size 1 associated

with the eigenvalue −1. As a consequence of theorem 7, for n odd, An is unitoid

and is congruent to

Bn = ε
[

1
]

⊕ (−i)Is1
⊕ iIn−s1−1 ,

for some ε ∈ {−1, 1} and 0≤ s1 ≤ n−1; for n even, An is dubloid and is congru-

ent to

Bn = ε

[

1 2

0 1

]

⊕ (−i)Is2
⊕ iIn−s2−2 ,

for some ε ∈ {−1, 1} and 0 ≤ s2 ≤ n−2.
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Because of the location of the field of values of An, it follows that in any case

ε = 1. We just need to determine the numbers s1 and s2 for which An and Bn

are congruent. First consider the case in which n is odd. We show that s1 = n−1
2 .

If we measure the canonical angles in [−π
2 , π

2 ], the canonical angles for Bn

(and An) are θ1 = · · · = θs1
= −π

2 , θs1+1 = 0 and θs1+2 = · · · = θn = π
2 . Since

the arguments of the eigenvalues of An are all 0, it follows from [FJ1] that

θ1 + · · · + θi ≤ 0 , i ∈ {1, . . . , n−1} ,

θ1 + · · · + θn = 0 .

In particular, these requirements imply s1 = n−1
2 .

Now consider the case in which n is even. We show that s2 = n−2
2 . Using the

terminology defined in [FJ3], the canonical angles for An are θ1 = · · · = θs2
= −π

2 ,

θs2+3 = · · ·= θn = π
2 while the limit canonical angles are θs2+1 =−π

2 and θs2+2 = π
2 .

By [FJ3]
θ1 + · · · + θi ≤ 0 , i ∈ {1, . . . , s2} ,

θ1 + · · · + θi < 0 , i ∈ {s2 +1, s2 +2} ,

θ1 + · · · + θi ≤ 0 , i ∈ {s2 +3, . . . , n−1} ,

θ1 + · · · + θn = 0 .

In particular, these requirements imply s2 = n−2
2 .

Thus, for n odd, An is congruent to

Bn =
[

1
]

⊕ (−i)In−1

2

⊕ iIn−1

2

,

and for n even, An is congruent to

Bn =

[

1 2

0 1

]

⊕ (−i)In−2

2

⊕ iIn−2

2

.

It should be noted that this example shows that any relation between the

congruential canonical form of a matrix and those of its principal submatrices of

size one smaller is weak. In particular, a non-unitoid matrix may be bordered to

give a unitoid one.
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