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A MONOTONE METHOD FOR

FOURTH ORDER BOUNDARY VALUE PROBLEMS

INVOLVING A FACTORIZABLE LINEAR OPERATOR

P. Habets and L. Sanchez

Abstract: We consider the nonlinear fourth order beam equation

uiv = f(t, u, u′′) ,

with boundary conditions corresponding to the periodic or the hinged beam problem.

In presence of upper and lower solutions, we consider a monotone method to obtain

solutions. The main idea is to write the equation in the form

uiv− c u′′ + d u = g(t, u, u′′) ,

where c, d are adequate constants, and use maximum principles and a suitable decom-

position of the operator appearing in the left-hand side.

1 – Introduction

The existence and approximation of solutions to boundary value problems

of the fourth order has been the object of a lot of recent works. Beam theory

provides a strong motivation to study the nonlinear equation

uiv = f
(

t, u, u′, u′′, u′′′) ,

with various types of linear or nonlinear boundary conditions. Some results of

rather general character have been given by Senkyřik [27].
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In this paper we are interested in the case where f depends only on u and u′′,

i.e.

(1.1) uiv = f(t, u, u′′) ,

and consider the periodic boundary conditions

(1.2) u(0) = u(2π) , u′(0) = u′(2π) , u′′(0) = u′′(2π) , u′′′(0) = u′′′(2π)

as well as the simply supported beam conditions

(1.3) u(0) = u′′(0) = u(π) = u′′(π) = 0 .

We should note that various other boundary conditions have been considered:

we refer the reader among others to Graef and Yang [14] or Yuji and Weigao [30].

The periodic problem has been studied by Cabada [6], via maximum principles

and the monotone method, for equations where the right hand side depends

on t and u only. A monotone method for the full nonlinear problem (1.1)–(1.2)

was proposed by Jiang, Gao and Wan [15]. Using fixed point theory in cones,

Li [18] and Liu and Li [20] have obtained existence results for (1.1)–(1.2), allowing

a linear dependence of f on u′′. With similar techniques, nonlinear dependence

has been considered by Liu [19] and other authors. Conti, Terracini and Verzini

[10] have considered linear dependence in u′′, superlinearity in u and a min-max

method to obtain solutions to (1.1)–(1.2) with an arbitrarily large even number

of zeros.

Concerning important models as the extended Fisher–Kolmogorov’s equation,

or the Swift–Hohenberg equation, which have a linear term in u′′, we can refer

the reader to the variational approach by J.B. van den Berg [5], Mizel, Peletier

and Troy [21] or Vandervorst and van den Berg [28]. Similar non-autonomous

equations have been considered by Chaparova, Peletier and Tersian [8]. Unfortu-

nately such approaches based on variational arguments do not apply to nonlinear

dependence on u′′.

For (1.1)–(1.3), Bai and Wang [3] have obtained existence and multiplicity

results without dependence on u′′. With linear dependence on u′′, we can find

results of existence in Li [17] and existence and multiplicity in Yao [29]. It is

not clear if the monotone method proposed in [1, 2] allows nonlinear dependence.

Recently, the superlinear case has also been dealt with by B.R. Rynne [24] using

a bifurcation technique.

The above quoted papers together with the references therein provide a view

of the literature dedicated to fourth order boundary value problems for (1.1).
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Our purpose is to give a monotone method that works for the nonlinear prob-

lems (1.1)–(1.2) and (1.1)–(1.3). In the approach of Jiang, Gao and Wan [15],

at each iteration step one needs to solve a fixed point equation using a contrac-

tion mapping. Monotonicity was obtained via a maximum principle. We propose

a modification of the method based on a factorization of linear operators. This

approach proceeds more directly and is therefore simpler. It does not cover all

cases where the monotone method applies, but it does provide monotonicity be-

haviour of the successive approximations. In addition, we apply the method to

a variety of situations not covered in [15] by using maximum and anti-maximum

principles. In particular, we are able to deal with lower and upper solutions in

reverse order for the periodic problem.

We should remark that the factorization technique has been used in a variety

of instances. It appears in arguments of Omari and Trombetta [22] and also in [5],

combined with maximum principles. On the other hand, it has been used recently

by Rynne [25, 26] in the study of 2m boundary value problems via bifurcation.

In this connection, factorization is closely related to the disconjugacy theory of

U. Elias (see e.g. [13] and also the monograph by Coppel [11]).

We provide some examples that prove both the applicability of our results

and their interest when seeking multiplicity or positive solutions in the presence

of the trivial one. It is worth noting that the examples we give have a variational

structure, but they do not seem to be easily reducible to the cases that have been

studied by variational methods; on the other hand the lower and upper solutions

provide easy localization of solutions.

It turns out that the ideas we used run as well (in a simpler way) for second

order periodic problems with a derivative dependent nonlinearity. We have found

it useful to include the treatment of this case in a final section. In this connection,

our procedure is quite close to a method devised by Bellen [4]. The results we find

(which, essentially, are not new) may also be viewed as variants of Theorems 4.6

and 4.11 in [12] (see also [9]).

The authors are indebted to C. De Coster for useful discussions and remarks.

2 – Auxiliary results

Our results are strongly based on the monotone method, a classical result that

goes back to Kantorovich [16] (see also Zeidler [31]). For convenience we state

here a version of this principle which can be found in De Coster and Habets [12].
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Let Z be a Banach space. An order cone K ⊂ Z is a closed set such that

for all x and y ∈ K, x+y ∈ K ,

for all t ∈ R+ and x ∈ K, tx ∈ K ,

if x ∈ K and −x ∈ K then x = 0 .

Such an order cone K induces an order on Z:

x ≤ y if and only if y−x ∈ K .

We write equivalently x ≤ y or y ≥ x. The order cone is said to be normal

if there exists c > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ c‖y‖.

Theorem 2.1. Let X ⊂ Z be continuously included Banach spaces so that

Z has a normal order cone. Let α̂ and β̂ ∈X, α̂ ≤ β̂, E =
{

x ∈X | α̂ ≤ x ≤ β̂
}

and let T : E →X be continuous and monotone increasing, i.e. x ≤ y implies

Tx ≤ Ty. Assume T (E) is relatively compact in X,

α̂ ≤ T α̂ and T β̂ ≤ β̂ .

Then, the sequences (α̂n)n and (β̂n)n defined by

α̂0 = α̂ , α̂n = T α̂n−1 ,
and

β̂0 = β̂ , β̂n = T β̂n−1 ,

converge monotonically in X to fixed points xmin and xmax of T such that

α̂ ≤ xmin ≤ xmax ≤ β̂ .

Further, any fixed point x ∈ E of T verifies

xmin ≤ x ≤ xmax .

Proof: See Kantorovich [16], Zeidler [31] or De Coster and Habets [12].

The monotonicity of the operators we consider relies on maximum and anti-

maximum principles. We present here such results and provide proofs for the

sake of completeness. First, we work second order operators associated with

the periodic problem and give conditions to ensure they are inverse monotone.

Our first result is Lemma 2 in [15].
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Proposition 2.2 (Maximum principle). Let p > 0 and q ∈ R. Assume u ∈
W 2,1(0, 2π) is such that

u′′− p u+ + qu− = f(t) ≥ 0 ,

u(0) = u(2π) , u′(0) ≥ u′(2π) .

Then u ≤ 0 on [0, 2π].

Proof:

Claim 1. u must take non-positive values.

Assume that u = u+ 6= 0. We obtain then the contradiction

0 ≥ u′(2π) − u′(0) =

∫ 2π

0

(

f(s) + p u+(s)
)

ds > 0 .

Claim 2. u ≤ 0.

If the claim is wrong, there exist t1 and t2 6= t1 such that u(t) > 0 if t is be-

tween t1 and t2, u′(t1) (t2 − t1) ≥ 0 and u′(t2) = 0. Assume t1 < t2. This implies

u′(t1) ≥ 0. We compute then

0 ≥ u′(t2) − u′(t1) =

∫ t2

t1

[

f(s) + p u(s)
]

ds > 0 ,

which is a contradiction. The same argument applies if t1 > t2.

Another result of the same type is an Anti-maximum principle.

Proposition 2.3 (Anti-maximum principle). Let p < 1
4 and q > 0. Assume

u ∈ W 2,1(0, 2π) is such that

u′′ + p u+− qu− = f(t) ≥ 0 ,

u(0) = u(2π) , u′(0) ≥ u′(2π) .

Then u ≥ 0 on [0, 2π].

Proof:

Claim 1. If u is non-trivial, it must take non-negative values.

Assume that u = −u− 6= 0. We obtain then the contradiction

0 ≥ u′(2π) − u′(0) =

∫ 2π

0

(

f(s) + qu−(s)
)

ds > 0 .
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Claim 2. u ≥ 0.

If the claim is wrong, extending u by periodicity if necessary, there exist t1
and t2 > t1 such that t2 − t1≤ 2π, u(t) > 0 if t∈ ]t1, t2[, u(t1) = 0 and u(t2) = 0.

Let t0 = t2+ t1
2 , v(t) = cos t− t0

2 and compute

0 ≥ (u′v − v′u)
∣

∣

∣

t2

t1
≥

∫ t2

t1

[

f v +
(

1
4 − p)uv

]

ds > 0 ,

which is a contradiction. Notice that the inequality in the integration by parts

is due to the fact that 2π might be in the interval ]t1, t2[.

The previous propositions can be adapted to deal with Dirichlet problems.

Proposition 2.4 (Maximum principle). Assume p < 1, q ∈ R and u ∈
W 2,1(0, π) is a function such that

u′′ + p u+− qu− = f(t) ≥ 0 ,

u(0) ≤ 0 , u(π) ≤ 0 ,

Then u ≤ 0 on [0, π].

Proof: If the claim is wrong, there exist t1 and t2 > t1 such that t2 − t1≤ π,

u(t) > 0 if t∈ ]t1, t2[, u(t1) = 0 and u(t2) = 0. Let t0 = t2+ t1
2 , v(t) = cos(t− t0)

and compute

0 ≥ (u′v − v′u)
∣

∣

∣

t2

t1
=

∫ t2

t1

[

f v + (1− p)uv
]

ds > 0 ,

which is a contradiction.

Remark. The previous propositions can be improved as follows. If the func-

tion u is non trivial, we have in Proposition 2.2, u < 0, in Proposition 2.3, u > 0,

and in Proposition 2.4, u < 0 on ]0, π[.

Similar results hold for first order operators.

Proposition 2.5 (Maximum principle). Let p > 0 and q ∈ R. Assume u ∈
W 1,1(0, 2π) is such that

u′− p u+ + qu− ≥ 0 , u(0) ≥ u(2π) .

Then u ≤ 0 on [0, 2π].
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Proof: If the claim is wrong, there exists t1 < t2 such that u(t) > 0 on [t1, t2]

and u(t1) ≥ u(t2). Integrating on [t1, t2], we obtain the contradiction

0 > −p

∫ t2

t1

u+ ds ≥ u(t1) − u(t2) ≥ 0 .

In a similar way, we obtain the following dual result.

Proposition 2.6 (Maximum principle). Let p ∈ R and q > 0. Assume u ∈
W 1,1(0, 2π) is such that

u′+p u+− qu− ≥ 0 , u(0) ≥ u(2π) .

Then u ≥ 0 on [0, 2π].

3 – Fourth order periodic problem

Consider the problem

(3.1)
uiv = f(t, u, u′′) ,

u(0) = u(2π) , u′(0) = u′(2π) , u′′(0) = u′′(2π) , u′′′(0) = u′′′(2π) .

Our aim is to define iteration schemes that converge toward solutions of (3.1).

First approximations will be given by lower and upper solutions. A lower solution

of (3.1) is a function α ∈ W 4,1(0, 2π) such that

αiv ≤ f(t, α, α′′) ,

α(0) = α(2π) , α′(0) = α′(2π) , α′′(0) = α′′(2π) , α′′′(0) ≤ α′′′(2π) .

Similarly, we define an upper solution of (3.1) as a function β ∈W 4,1(0, 2π) such

that

βiv ≥ f(t, β, β′′) ,

β(0) = β(2π) , β′(0) = β′(2π) , β′′(0) = β′′(2π) , β′′′(0) ≥ β′′′(2π) .

To build the iteration scheme, we write (3.1) as

Lu = uiv + a u′′ + b u = h(t, u, u′′) ,

where L is defined on the space
{

u ∈ W 4,1(0, 2π) | u(0) = u(2π), u′(0) = u′(2π),

u′′(0) = u′′(2π), u′′′(0) = u′′′(2π)
}

. The idea is to factorize L as a product of two

second order operators L = L1L2. Four cases are then possible according as the

Maximum or the Anti-maximum principle applies to L1 or L2.
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3.1. Well-ordered lower and upper solutions

Let us first factorize L into two operators that verify the Maximum principle,

i.e.

Lu = (D2− λ) (D2− κ)u ,

where κ > 0 and λ > 0 are given. It turns out that in such a case the first

approximations α and β have to be “well-ordered”: α ≤ β. The factorization

implies we can write (3.1) as

u′′− κu = v , u(0) = u(2π) , u′(0) = u′(2π) ,(3.2)

v′′− λv = g(t, u, v) , v(0) = v(2π) , v′(0) = v′(2π) ,(3.3)

where

(3.4) g(t, u, v) = f(t, u, v + κu) − (λ + κ)v − κ2 u .

Let us assume f(t, u, v) is an L1-Carathéodory function, i.e. measurable in t for

all (u, v), continuous in (u, v) for almost all t, and for any compact set K ⊂ R2

there exists h ∈ L1(0, 2π) such that for all (u, v) ∈ K, |g(t, u, v)| ≤ h(t). With

such assumptions, it is well-known that solutions of

u′′− κu = v̂ , u(0) = u(2π) , u′(0) = u′(2π) ,(3.5)

v′′− λv = g(t, û, v̂) , v(0) = v(2π) , v′(0) = v′(2π) ,(3.6)

read

u = R(v̂) and v = S(û, v̂) ,

where

R : C([0, 2π]) → C([0, 2π]) and S : C([0, 2π])×C([0, 2π]) → C([0, 2π]) .

It follows that solutions of (3.2) and (3.3) are such that

u = R(v) and v = S(u, v) .

The following theorem describes iteration schemes that converge to extremal

solutions. As a by-product, we have both existence of at least one solution of

(3.1) and its localization between the lower and upper solutions.
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Theorem 3.1. Let f : [0, 2π]×R2 → R be an L1-Carathéodory function and

α, β ∈ W 4,1(0, 2π) be respectively lower and upper solutions such that α ≤ β.

Assume there exist 0 < A≤B such that

A(v2 − v1) ≤ f(t, u, v2) − f(t, u, v1) ≤ B(v2 − v1)

for a.e. t ∈ [0, 2π], all u ∈ [α(t), β(t)] and all v1, v2 ∈ R with v2 ≥ v1, and

f(t, u2, v) − f(t, u1, v) ≥ −A2

4 (u2 − u1)

for a.e. t ∈ [0, 2π], all u1, u2 ∈ [α(t), β(t)] with u2 ≥ u1, and all v ∈ R. Let

κ = A
2 > 0 and λ = B− A

2 . Then the sequences (αn)n and (βn)n defined from

α0 = α , µ0 = α′′− κα ,

αn = R(µn−1) , µn = S(αn−1, µn−1) , n ∈ N∗ ,

β0 = β , ν0 = β′′− κβ ,

βn = R(νn−1) , νn = S(βn−1, νn−1) , n ∈ N∗ ,

converge uniformly and monotonically to solutions umin and umax of (3.1) such

that

α ≤ umin ≤ umax ≤ β .

Further, any solution u of (3.1) such that α ≤ u ≤ β, verifies

umin ≤ u ≤ umax .

Remark. The iterations defined in this theorem are such that the converging

sequences (µn)n and (νn)n are respectively monotone decreasing and monotone

increasing.

Example. Consider the problem

uiv = f(t, u, u′′) = Au′′ + k2 sin u + h(t) ,

u(0) = u(2π) , u′(0) = u′(2π) , u′′(0) = u′′(2π) , u′′′(0) = u′′′(2π) ,

where A ≥ 2k > 0.

If h∈L∞(0, 2π) and ‖h‖∞ ≤ k2, it is easy to see that α(t) = π
2 and β(t) = 3π

2

are respectively lower and upper solutions of the problem. Further, α(t) ≤ u1 ≤
u2 ≤ β(t), implies

f(t, u2, v) − f(t, u1, v) = k2(sinu2 − sin u1)

≥ −k2(u2 − u1) ≥ −A2

4 (u2 − u1) .
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Hence, Theorem 3.1 applies and we have existence of a solution u ∈ [π
2 , 3π

2 ].

Notice that the theorem applies if we choose α(t) = π
2 and β(t) = 7π

2 . In this

case, u and u+2π are solutions, which implies that umin and umax do not always

coincide.

A more elaborate analysis is needed if h ∈ L1(0, 2π) is unbounded. In such

a case, we shall look for a lower solution of the form α(t) = π
2 + w(t). Given a

function u ∈ L1(0, 2π), we define

ū =
1

2π

∫ 2π

0
u(t) dt and ũ(t) = u(t) − ū .

We then choose w(t) to be such that

wiv−Aw′′ = h̃(t) ,

w(0) = w(2π) , w′(0) = w′(2π) , w′′(0) = w′′(2π) , w′′′(0) = w′′′(2π) ,

w̄ = 0 .

Such a solution exists and is such that

‖w‖∞ ≤ K ‖h̃‖L1 ,

where we can chose K= π
6 min

(

1
A ,π2

5!

)

. It follows then that α(t) is a lower solution if

K‖h̃‖L1 ≤ π and k2 cos
(

K‖h̃‖L1

)

+ h̄ ≥ 0. Similarly, we show that β(t) = 3π
2 +w(t)

is an upper solution if K‖h̃‖L1 ≤ π and k2 cos
(

K‖h̃‖L1

)

− h̄ ≥ 0. Hence, Theo-

rem 3.1 applies if

K ‖h̃‖L1 ≤ π
2 and k2 cos

(

K ‖h̃‖L1

)

≥ |h̄| .

Proof of Theorem 3.1: Let

W 2,1
per(0, 2π) =

{

u ∈ W 2,1(0, 2π) | u(0) = u(2π), u′(0) = u′(2π)
}

,

X = W 2,1
per(0, 2π)×W 2,1

per(0, 2π) ,

Z = C([0, 2π])× C([0, 2π])

and define the order cone K =
{

(u, v) ∈ Z | u ≥ 0, v ≤ 0
}

. Next, we consider

α̂ = (α0, µ0) and β̂ = (β0, ν0).

Claim 1. α̂ ≤ β̂.

First, we notice that the function g(t, u, v) defined by (3.4) is non-decreasing
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in u, i.e. u2 ≥ u1 implies

g(t, u2, v) − g(t, u1, v) = f(t, u2, v +κu2) − f(t, u1, v +κu2)

+ f(t, u1, v+κu2) − f(t, u1, v +κu1) − κ2(u2 − u1)

≥
[

−A2

4 +Aκ − κ2
]

(u2 − u1) = 0 .

Next, we verify that g(t, u, v) is non-increasing in v and Lipschitz in v with

Lipschitz constant L = B − A. Let v2 ≥ v1 and check that

−L(v2 − v1) = (A − λ − κ) (v2 − v1)

≤ g(t, u, v2) − g(t, u, v1)

= f(t, u, v2 +κu) − f(t, u, v1+κu) − (λ + κ) (v2 − v1)

≤ (B−λ− κ) (v2 − v1) = 0 .

Notice now that

µ′′
0 − λ µ0 ≤ f(t, α, α′′) − (κ+λ)µ0 − κ2α = g(t, α, µ0)

and

ν ′′
0 − λ ν0 ≥ f(t, β, β′′) − (κ+λ)ν0 − κ2β = g(t, β, ν0) .

It follows that

(ν0 − µ0)
′′ − λ(ν0 − µ0) ≥ g(t, β, ν0) − g(t, α, µ0)

≥ g(t, α, ν0) − g(t, α, µ0) ≥ −L |ν0 − µ0| ,

ν0(0) − µ0(0) = ν0(2π) − µ0(2π) , ν ′
0(0) − µ′

0(0) ≥ ν ′
0(2π) − µ′

0(2π) .

We deduce then from the Maximum principle (Proposition 2.2) that ν0− µ0 ≤ 0

and the claim follows.

Notations. Let us write E =
{

(u, v) ∈ X | α0 ≤ u ≤ β0, ν0 ≤ v ≤ µ0

}

and

T : E →X, (u, v) 7→ T (u, v) =
(

R(v), S(u, v)
)

.

Claim 2. T is monotone increasing, i.e. u1 ≤ u2 and v1 ≥ v2 implies R(v1) ≤
R(v2) and S(u1, v1) ≥ S(u2, v2).

Assume u1≤ u2 and v1≥ v2. The function w = R(v1) − R(v2) is such that

w′′− κw = v1− v2 ≥ 0 ,

w(0) = w(2π) , w′(0) = w′(2π) ,
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and it follows from the Maximum principle (Proposition 2.2) that w = R(v1) −
R(v2) ≤ 0.

As g is non-decreasing in u and non-increasing in v, the function z = S(u1, v1)−
S(u2, v2) verifies

z′′− λz = g(t, u1, v1) − g(t, u2, v2) ≤ 0 ,

z(0) = z(2π) , z′(0) = z′(2π) ,

and it follows as above that z = S(u1, v1) − S(u2, v2) ≥ 0.

Claim 3. α̂ ≤ T α̂ and T β̂ ≤ β̂, i.e. α0 ≤ R(µ0), µ0 ≥ S(α0, µ0), β0 ≥ R(ν0)

and ν0 ≤ S(β0, ν0).

Recall that u = R(µ0) is such that

u′′− κu = α′′
0 − κα0 ,

u(0) − α0(0) = u(2π) − α0(2π) , u′(0) − α′
0(0) = u′(2π) − α′

0(2π) .

We deduce then that α0 = u = R(µ0). Also v = S(α0, µ0) is such that

v′′− λv = f(t, α0, α
′′
0) − (λ + κ) (α′′

0 − κα0) − κ2α0

≥ αiv

0 − κα′′
0 − λ(α′′

0 − κα0) = µ′′
0 − λµ0 ,

v(0) − µ0(0) = v(2π) − µ0(2π) , v′(0) − µ′
0(0) ≥ v′(2π) − µ′

0(2π) ,

so that we deduce from the Maximum principle (Proposition 2.2) that µ0 ≥ v =

S(α0, µ0). In a similar way, we prove β0 = R(ν0) and ν0 ≤ S(β0, ν0).

Conclusion. As T (E) is relatively compact in X, the proof follows from

Theorem 2.1. The sequences (αn)n and (βn)n converge towards solutions umin

and umax that are extremal in E . To prove these are also extremal between α

and β, let u be a solution of (3.1) such that α ≤ u ≤ β. We have u = R(v),

v = S(u, v), where v = u′′− κu. We prove then as in Claim 1

(v − µ0)
′′− λ(v − µ0) ≥ −L|v − µ0| ,

(v − µ0)(0) = (v − µ0)(2π) , (v − µ0)
′ (0) ≥ (v − µ0)

′ (2π)

and it follows from the Maximum principle (Proposition 2.2) that v ≤ µ0. In a

similar way, we prove v ≥ ν0 so that (u, v) ∈ E which implies umin ≤ u ≤ umax.

Remark. Theorem 3.1 holds, with the same proof, if we assume that α′(0) ≥
α′(2π) and β′(0) ≤ β′(2π), instead of equality.
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An alternative result can be obtained if we decompose the differential opera-

tor into a product L1L2 such that the Anti-maximum principle applies to both

operators L1 and L2. To this end we write problem (3.1) as

u′′ + κu = v , u(0) = u(2π) , u′(0) = u′(2π) ,(3.7)

v′′ + λv = g(t, u, v) , v(0) = v(2π) , v′(0) = v′(2π) ,(3.8)

where κ, λ > 0 and

g(t, u, v) = f(t, u, v − κu) + (λ + κ)v − κ2u .

In case f(t, u, v) is an L1-Carathéodory function and λ and κ are not square of

integers, we can proceed as for (3.5), (3.6) and define

R : C([0, 2π]) → C([0, 2π]) and S : C([0, 2π])×C([0, 2π]) → C([0, 2π]) ,

so that solutions of (3.7) and (3.8) read

u = R(v) and v = S(u, v) .

Theorem 3.2. Let f : [0, 2π]×R2 → R be an L1-Carathéodory function and

α, β ∈ W 4,1(0, 2π) be respectively lower and upper solutions such that α ≤ β.

Assume there exist A ≤ B < 0 such that 3B
2 − 2A < 1

4 ,

A(v2 − v1) ≤ f(t, u, v2) − f(t, u, v1) ≤ B(v2 − v1)

for a.e. t ∈ [0, 2π], all u ∈ [α(t), β(t)] and all v1, v2 ∈ R with v2 ≥ v1, and

f(t, u2, v) − f(t, u1, v) ≥ −B2

4 (u2 − u1)

for a.e. t ∈ [0, 2π], all u1, u2 ∈ [α(t), β(t)] with u2 ≥ u1, and all v ∈ R. Let

κ = −B
2 > 0 and λ = −A + B

2 > 0. Then the sequences (αn)n and (βn)n defined

from
α0 = α , µ0 = α′′ + κα ,

αn = R(µn−1) , µn = S(αn−1, µn−1) , n ∈ N∗ ,

β0 = β , ν0 = β′′ + κβ ,

βn = R(νn−1) , νn = S(βn−1, νn−1) , n ∈ N∗ ,

converge uniformly and monotonically to solutions umin and umax of (3.1) such

that
α ≤ umin ≤ umax ≤ β .

Further, any solution u of (3.1) such that α ≤ u ≤ β, verifies

umin ≤ u ≤ umax .
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Idea of the proof. The proof is similar to the proof of Theorem 3.1.

Here, we introduce the order cone K =
{

(u, v) ∈ Z | u ≥ 0, v ≥ 0
}

and use the

Anti-maximum principle (Proposition 2.3) rather than the Maximum principle.

The function g(t, u, v) turns out to be non-decreasing in u, non-decreasing in v

and lipschitzian in v with Lipschitz constant L = B−A.

3.2. Lower and upper solutions in the reversed order

In this section, we use a factorization L = L1L2 such that the Maximum

principle applies to one of the factors Li and the Anti-maximum principle to the

other. In such instances, the iteration scheme is such that the first approximations

α and β have to be in the reversed order: β ≤ α.

Let us first write problem (3.1) as

u′′ + κu = v , u(0) = u(2π) , u′(0) = u′(2π) ,(3.9)

v′′− λv = g(t, u, v) , v(0) = v(2π) , v′(0) = v′(2π) ,(3.10)

where κ, λ > 0 and

g(t, u, v) = f(t, u, v−κu) − (λ − κ)v − κ2u .

It is known that if f(t, u, v) is an L1-Carathéodory function and κ is not the

square of an integer, we can define as above

R : C([0, 2π]) → C([0, 2π]) and S : C([0, 2π])×C([0, 2π]) → C([0, 2π]) ,

so that solutions of (3.9) and (3.10) read

u = R(v) and v = S(u, v) .

The following result describes the iteration scheme based on (3.9), (3.10).

Notice that, as we use a monotone method, this theorem provides a localization

of solutions β ≤ u ≤ α which is stronger than corresponding results on lower

and upper solutions in the reversed order and are based on other methods (see

Theorem 3.2 in [7] for a fourth order problem or Chapter 3 in [12] for second

order ones).

Theorem 3.3. Let f : [0, 2π]×R2 → R be an L1-Carathéodory function and

α, β ∈ W 4,1(0, 2π) be respectively lower and upper solutions such that β ≤ α.

Assume there exist A, B and C such that A < 0 < B, 0 ≤ C ≤ 1
16 + A

4 ,

A(v2 − v1) ≤ f(t, u, v2) − f(t, u, v1) ≤ B(v2 − v1)
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for a.e. t ∈ [0, 2π], all u ∈ [β(t), α(t)] and all v1, v2 ∈ R with v2 ≥ v1, and

f(t, u2, v) − f(t, u1, v) ≤ C(u2 − u1)

for a.e. t ∈ [0, 2π], all u1, u2 ∈ [β(t), α(t)] with u2 ≥ u1, and all v ∈ R. Let

κ∈
]

−A+
√

A2+4C
2 , 1

4

[

and λ =B+κ. Then the sequences (αn)n and (βn)n defined

from
α0 = α , µ0 = α′′ + κα ,

αn = R(µn−1) , µn = S(αn−1, µn−1) , n ∈ N∗ ,

β0 = β , ν0 = β′′ + κβ ,

βn = R(νn−1) , νn = S(βn−1, νn−1) , n ∈ N∗ ,

converge uniformly and monotonically to solutions umax and umin of (3.1) such

that
β ≤ umin ≤ umax ≤ α .

Further, any solution u of (3.1) such that β ≤ u ≤ α, verifies

umin ≤ u ≤ umax .

Idea of the proof. The argument is similar to the proof of Theorem 3.1.

It uses the cone K =
{

(u, v) ∈ Z | u ≤ 0, v ≤ 0
}

, α̂ = (α0, µ0), β̂ = (β0, ν0), and

both the Maximum and Anti-maximum principle (Propositions 2.2 and 2.3).

Here, the function g(t, u, v) is non-increasing in u, non-increasing in v and lips-

chitzian in v with Lipschitz constant L = B−A.

Example. The theorems we described can be used to prove some multiplicity

results. Consider for instance the problem

uiv = f(t, u, u′′) = u′′ + k(u4− u2) + h(t) ,

u(0) = u(2π) , u′(0) = u′(2π) , u′′(0) = u′′(2π) , u′′′(0) = u′′′(2π) ,

where k > 0 and h ∈ L∞(0, 2π) is such that 0 � h(t) � k/4. It is straightforward

that the constants −1, 0 and 1 are lower solutions and −1/
√

2 and 1/
√

2 are

upper solutions. If k is small enough, we deduce then from Theorem 3.3 the

existence of two solutions u2 and u4 and from Theorem 3.1 the existence of two

other solutions u1 and u3 such that

−1 ≤ u1 ≤ −1/
√

2 ≤ u2 ≤ 0 ≤ u3 ≤ −1/
√

2 ≤ u4 ≤ 1 .

Notice that no two such solutions can coincide since the lower and upper solutions

are not solutions.
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An alternative result interchanges the use of the Maximum and Anti-maximum

principle. To this end we write problem (3.1) as

u′′− κu = v , u(0) = u(2π) , u′(0) = u′(2π) ,(3.11)

v′′ + λv = g(t, u, v) , v(0) = v(2π) , v′(0) = v′(2π) ,(3.12)

where κ > 0, λ > 0 and

g(t, u, v) = f(t, u, v +κu) + (λ − κ)v − κ2u .

If f(t, u, v) is an L1-Carathéodory function and λ is not the square of an integer,

we define as previously

R : C([0, 2π]) → C([0, 2π]) and S : C([0, 2π])×C([0, 2π]) → C([0, 2π]) ,

so that solutions of (3.11) and (3.12) read

u = R(v) and v = S(u, v) .

Theorem 3.4. Let f : [0, 2π]×R2 → R be an L1-Carathéodory function and

α, β ∈ W 4,1(0, 2π) be respectively lower and upper solutions such that β ≤ α.

Assume there exist A < 0 < B, and C > 0 such that 3B+
√

B2+4C
2 − 2A < 1

4 ,

A(v2 − v1) ≤ f(t, u, v2) − f(t, u, v1) ≤ B(v2 − v1)

for a.e. t ∈ [0, 2π], all u ∈ [β(t), α(t)] and all v1, v2 ∈ R with v2 ≥ v1, and

f(t, u2, v) − f(t, u1, v) ≤ C(u2 − u1)

for a.e. t ∈ [0, 2π], all u1, u2 ∈ [β(t), α(t)] with u2 ≥ u1, and all v ∈ R. Let

κ = B+
√

B2+4C
2 and λ = κ − A. Then the sequences (αn)n and (βn)n defined

from
α0 = α , µ0 = α′′− κα ,

αn = R(µn−1) , µn = S(αn−1, µn−1) , n ∈ N∗ ,

β0 = β , ν0 = β′′− κβ ,

βn = R(νn−1) , νn = S(βn−1, νn−1) , n ∈ N∗ ,

converge uniformly and monotonically to solutions umax and umin of (3.1) such

that
β ≤ umin ≤ umax ≤ α .

Further, any solution u of (3.1) such that β ≤ u ≤ α, verifies

umin ≤ u ≤ umax .
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Idea of the proof. The proof uses the previous arguments with the cone

K =
{

(u, v)∈Z | u≤ 0, v ≥ 0
}

. Here, the function g(t, u, v) is non-increasing in u,

non-decreasing in v and lipschitzian in v with Lipschitz constant L = B−A.

4 – The simply supported beam

The approximation method we worked for the periodic problem can also be

developed for other boundary value problems such as the simply supported beam

problem

(4.1)
uiv = f(t, u, u′′) ,

u(0) = u(π) = 0 , u′′(0) = u′′(π) = 0 .

A lower solution α ∈ W 4,1(0, π) of (4.1) is defined as follows

αiv ≤ f(t, α, α′′) ,

α(0) ≤ 0 , α(π) ≤ 0 , α′′(0) ≥ 0 , α′′(π) ≥ 0 .

Similarly, an upper solution β ∈ W 4,1(0, 2π) of (4.1) is such that

βiv ≥ f(t, β, β′′) ,

β(0) ≥ 0 , β(π) ≥ 0 , β′′(0) ≤ 0 , β′′(π) ≤ 0 .

Given real numbers κ and λ, we can write problem (4.1) as

u′′− κu = v , u(0) = 0 , u(π) = 0 ,(4.2)

v′′− λv = g(t, u, v) , v(0) = 0 , v(π) = 0 ,(4.3)

where

(4.4) g(t, u, v) = f(t, u, v +κu) − (λ + κ)v − κ2u .

If f(t, u, v) is an L1-Carathéodory function, −κ < 1 and −λ < 1, we define as in

the previous section

R : C([0, π]) → C([0, π]) and S : C([0, π])×C([0, π]) → C([0, π]) ,

so that solutions of (4.2) and (4.3) read

u = R(v) and v = S(u, v) .

Our first result assumes the function f(t, u, v) to be increasing in v.
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Theorem 4.1. Let f : [0, π] × R2 → R be an L1-Carathéodory function and

α, β ∈ W 4,1(0, π) be respectively lower and upper solutions such that α ≤ β.

Assume there exist A ≤ B and C such that

A(v2 − v1) ≤ f(t, u, v2) − f(t, u, v1) ≤ B(v2 − v1)

for a.e. t ∈ [0, π], all u ∈ [α(t), β(t)] and all v1, v2 ∈ R with v2 ≥ v1, and

f(t, u2, v) − f(t, u1, v) ≥ C(u2 − u1)

for a.e. t ∈ [0, π], all u1, u2 ∈ [α(t), β(t)] with u2 ≥ u1, and all v ∈ R. Assume

further

(A-1) A ≥ 0, C = −A2

4

and define

(A-2) κ = A
2 and λ = B − κ.

Then the sequences (αn)n and (βn)n defined from

α0 = α , µ0 = α′′− κα ,

αn = R(µn−1) , µn = S(αn−1, µn−1) , n ∈ N∗ ,

β0 = β , ν0 = β′′− κβ ,

βn = R(νn−1) , νn = S(βn−1, νn−1) , n ∈ N∗ ,

converge uniformly and monotonically to solutions umin and umax of (4.1) such

that
α ≤ umin ≤ umax ≤ β .

Further, any solution u of (4.1) such that α ≤ u ≤ β, verifies

umin ≤ u ≤ umax .

Proof: Let

W 2,1
0 (0, π) =

{

u ∈ W 2,1(0, π) | u(0) = 0, u(π) = 0
}

,

X = W 2,1
0 (0, π)×W 2,1

0 (0, π) ,

Z = C([0, π])×C([0, π])

and define the order cone K =
{

(u, v) ∈ Z | u ≥ 0, v ≤ 0
}

. Next, we consider

α̂ = (α0, µ0) and β̂ = (β0, ν0).

Claim 1. α̂ ≤ β̂.

First, as in the proof of Theorem 3.1, we can show that the function g(t, u, v)

defined by (4.4) is non-decreasing in u and is non-increasing in v and Lipschitz
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in v with Lipschitz constant L = B−A. Notice now that

µ′′
0 − λµ0 ≤ f(t, α, α′′) − (κ + λ)µ0 − κ2α = g(t, α, µ0)

and

ν ′′
0 − λν0 ≥ f(t, β, β′′) − (κ + λ)ν0 − κ2β = g(t, β, ν0) .

It follows, using the properties of g and the boundary conditions of α and β, that

(ν0 − µ0)
′′ − λ(ν0 − µ0) ≥ g(t, β, ν0) − g(t, α, µ0)

≥ g(t, α, ν0) − g(t, α, µ0) ≥ −L |ν0 − µ0| ,

ν0(0) − µ0(0) ≤ 0 , ν0(π) − µ0(π) ≤ 0 .

Since L < λ + 1 we deduce then from the Maximum principle (Proposition 2.4)

that ν0 − µ0 ≤ 0 and the claim follows.

Notations. Let us write E =
{

(u, v) ∈ X | α0 ≤ u ≤ β0, ν0 ≤ v ≤ µ0

}

and

T : E →X, (u, v) 7→ T (u, v) =
(

R(v), S(u, v)
)

.

Claim 2. T is monotone increasing, i.e. u1 ≤ u2 and v1 ≥ v2 implies R(v1)≤
R(v2) and S(u1, v1) ≥ S(u2, v2).

Assume u1 ≤ u2 and v1 ≥ v2. The function w = R(v1) − R(v2) is such that

w′′− κw = v1 − v2 ≥ 0 ,

w(0) = 0 , w(π) = 0 ,

and it follows from the Maximum principle (Proposition 2.4) that w = R(v1) −
R(v2) ≤ 0.

As g is non-decreasing in u and non-increasing in v, the function z = S(u1, v1)−
S(u2, v2) verifies

z′′− λz = g(t, u1, v1) − g(t, u2, v2) ≤ 0 ,

z(0) = 0 , z(π) = 0 ,

and it follows as above that z = S(u1, v1) − S(u2, v2) ≥ 0.

Claim 3. α̂ ≤ T α̂ and T β̂ ≤ β̂, i.e. α0 ≤ R(µ0), µ0 ≥ S(α0, µ0), β0 ≥ R(ν0)

and ν0 ≤ S(β0, ν0).

Recall that u = R(µ0) is such that

u′′− κu = α′′
0 − κα0 ,

u(0) − α0(0) = −α(0) ≥ 0 , u(π) − α0(π) = −α(π) ≥ 0 .
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We deduce then that α0 ≤ u = R(µ0). Also v = S(α0, µ0) is such that

v′′− λv = f(t, α0, α
′′
0) − (λ + κ) (α′′

0 − κα0) − κ2α0

≥ αiv

0 − κα′′
0 − λ(α′′

0 − κα0) = µ′′
0 − λµ0 ,

v(0) − µ0(0) = −α′′(0) + κα(0) ≤ 0 , v(π) − µ0(π) = −α′′(π) + κα(π) ≤ 0 ,

so that we deduce from the Maximum principle (Proposition 2.4) that µ0 ≥ v =

S(α0, µ0). In a similar way, we prove β0 ≥ R(ν0) and ν0 ≤ S(β0, ν0).

Conclusion. As T (E) is relatively compact in X, the proof follows from

Theorem 2.1. The final assertion may be checked in the same way as we did in

the proof of Theorem 3.1.

Remark. The above theorem still holds if the lower and upper solutions are

such that
κα(0) = 0 , κ α(π) = 0 , κ β(0) = 0 , κ β(π) = 0 ,

and we replace (A-1) and (A-2) by

(B-1) −2 < A < 0, B̂ = min(B, 0) < 2(A + 1) and C = − B̂2

4 ;

(B-2) κ = B̂
2 and λ = B − κ.

An alternative replaces (A-1) and (A-2) by

(C-1) −2 < A < 0, min(B, 0) ≥ 2(A + 1) and C > (A + 1) (A + 1 − B);

(C-2) κ ∈ ]−1, A+1[ such that C ≥ κ(κ − B) and λ = B − κ.

The proof of these remarks is identical to the proof of Theorem 4.1.

Example. Consider the boundary value problem

(4.5)
uiv = φ(u′′) + g(u) ,

u(0) = u(π) = 0 , u′′(0) = u′′(π) = 0 .

and assume φ and g are real functions with the following properties:

(i) φ(0) = g(0) = 0 and φ′(0) + 1 < g′(0);

(ii) there exist B > A ≥ 0 such that A ≤ φ′(v) ≤ B for all v ∈ R and

g′(u) ≥ −A2

4 for all u ≥ 0;

(iii) max
u∈ [0,π2/4]

g(u) + φ(−2) ≤ 0.

Then it is easy to see that α(t) = ǫ sin t, for ǫ > 0 sufficiently small, and β(t) =

πt − t2 are lower and upper solutions of (4.5). From Theorem 4.1 it follows

that this problem has a strictly positive solution that can be found by iteration

starting from β which is explicitely known.
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5 – Second order periodic problems

In this final section we remark that the operator decomposition procedure al-

lows also to deal with a class of second order periodic problems. In fact, following

steps analogue to those of Section 3, we may construct an iterative process quite

similar to the method devised by Bellen [4].

Let f : [0, 2π]×R2 → R be a L1-Carathéodory function. Consider the problem

(5.1)
u′′ = f(t, u, u′) ,

u(0) = u(2π) , u′(0) = u′(2π) .

A lower solution α ∈ W 2,1(0, 2π) of (5.1) is defined as follows

α′′ ≥ f(t, α, α′) , α(0) = α(2π) , α′(0) ≥ α′(2π) .

Similarly, an upper solution β ∈ W 2,1(0, 2π) of (5.1) is such that

β′′ ≤ f(t, β, β′) , β(0) = β(2π) , β′(0) ≤ β′(2π) .

Given κ and λ > 0, we can write problem (5.1) as

u′− κu = v , u(0) = u(2π) ,(5.2)

v′ + λv = g(t, u, v) , v(0) = v(2π) ,(5.3)

where

(5.4) g(t, u, v) = f(t, u, v +κu) + (λ − κ)v − κ2u .

In case f(t, u, v) is L1-Carathéodory, we define as previously

R : C([0, 2π]) → C([0, 2π]) and S : C([0, 2π])×C([0, 2π]) → C([0, 2π]) ,

so that solutions of (5.2) and (5.3) read

u = R(v) and v = S(u, v) .

Theorem 5.1. Let f : [0, 2π] × R2 → R be a L1-Carathéodory function and

α, β ∈ W 2,1(0, 2π) be respectively lower and upper solutions such that α ≤ β.

Assume there exist A ≤ B and C such that

A(v2 − v1) ≤ f(t, u, v2) − f(t, u, v1) ≤ B(v2 − v1)
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for a.e. t ∈ [0, 2π], all u ∈ [α(t), β(t)] and all v1, v2 ∈ R with v2 ≥ v1, and

f(t, u2, v) − f(t, u1, v) ≤ C(u2 − u1)

for a.e. t ∈ [0, 2π], all u1, u2 ∈ [α(t), β(t)] with u2 ≥ u1, and all v ∈ R. Let us

assume further

(A-1) A < 0 < B and C > 0,

and write

(A-2) κ =
B +

√
B2 + 4C

2
and λ = κ − A.

Then the sequences (αn)n and (βn)n defined from

α0 = α , µ0 = α′− κα ,

αn = R(µn−1) , µn = S(αn−1, µn−1) , n ∈ N∗ ,

β0 = β , ν0 = β′− κβ ,

βn = R(νn−1) , νn = S(βn−1, νn−1) , n ∈ N∗ ,

converge uniformly and monotonically to solutions umin and umax of (5.1) such

that
α ≤ umin ≤ umax ≤ β .

Further, any solution u of (5.1), such that α ≤ u ≤ β, verifies

umin ≤ u ≤ umax .

Proof: Let W 1,1
per(0,2π) =

{

u∈W 1,1(0,2π) | u(0) = u(2π)
}

, X = W 1,1
per(0,2π)×

W 1,1
per(0, 2π), Z = C([0, 2π])×C([0, 2π]) and define the order cone K =

{

(u, v) ∈ Z |
u ≥ 0, v ≤ 0

}

. Next, we consider α̂ = (α0, µ0) and β̂ = (β0, ν0).

Given that g(t, u, v) defined by (5.4) is non-increasing in u and non-decreasing

in v and Lipschitz in v with Lipschitz constant L = B + λ − κ < λ we can check

with the aid of Proposition 2.6 that α̂ ≤ β̂.

Next we consider the space E =
{

(u, v) ∈ X | α0 ≤ u ≤ β0, ν0 ≤ v ≤ µ0

}

and

the operator

T : E →X, (u, v) 7→ T (u, v) =
(

R(v), S(u, v)
)

.

It is easy to see, using Propositions 2.5 and 2.6, that T is monotone increasing

and α̂ ≤ T α̂ and β̂ ≤ T β̂, i.e. α0 ≤ R(µ0), µ0 ≥ S(α0, µ0), β0 ≥ R(ν0) and

ν0 ≤ S(β0, ν0).

Finally, since T (E) is relatively compact in X, the proof follows from Theorem

2.1, the final assertion being proved as in the theorems of the previous sections.
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To study the case where the lower and upper solutions are in the reversed

order, we write problem (5.1) as

u′− κu = v , u(0) = u(2π) ,(5.5)

v′− λv = g(t, u, v) , v(0) = v(2π) ,(5.6)

where κ > 0, λ > 0 and

g(t, u, v) = f(t, u, v +κu) − (λ + κ)v − κ2u .

Define as above

R : C([0, 2π]) → C([0, 2π]) and S : C([0, 2π])×C([0, 2π]) → C([0, 2π]) ,

so that solutions of (5.5) and (5.6) read

u = R(v) and v = S(u, v) .

A version of Theorem 5.1 for the case α ≥ β still holds within the above framework

provided (A-1), (A-2) are replaced by

(B-1) 0 < A < B and C = −A2

4 ,

(B-2) κ = A
2 and λ = B − κ .

To prove such a result, the argument follows the lines of the proof of Theorem 5.1,

but uses the order cone K =
{

(u, v) ∈ Z | u ≤ 0, v ≥ 0
}

. The function

g(t, u, v) = f(t, u, v +κu) − (λ + κ)v − κ2u ,

which is the equivalent of (5.4), turns out to be non-decreasing in u, non-increasing

in v and lipschitzian in v with Lipschitz constant L = −A + λ + κ.

In a similar way, we can replace (A-1), (A-2) by

(C-1) A < B < 0 and C = −B2

4 ,

(C-2) κ = −B
2 and λ = −κ − A .
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