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Abstract: We determine the easy points of the 3-variable Tutte polynomial of

a matroid perspective. It turns out that all but one of the sporadic easy points of

the 3-variable Tutte polynomial proceed from the 8 sporadic easy points determined in

the seminal paper of Jaeger–Vertigan–Welsh on the computational complexity of the

Tutte polynomial of a matroid. The exceptional easy point, namely (−1,−1,−1), can

be evaluated with polynomial complexity for binary matroid perspectives by a previous

result of the author.

1 – Introduction

The Tutte polynomial of a matroid — introduced by W.T. Tutte in 1954 for

graphs — is a self-dual form of the generating function for cardinality and rank in

the matroid of subsets of elements. This polynomial is relevant in many problems

involving numerical invariants of matroids [2]. We have introduced in 1975 the

Tutte polynomial of a matroid perspective, as a self-dual form of the generating

function for cardinality and ranks in two matroids [8]. The Tutte polynomial of

a matroid perspective is a 3-variable polynomial with non negative coefficients.

For a general pair of matroids the 3-variable Tutte polynomial is a Laurent poly-

nomial in Z[x, y, z, z−1], equivalent to the linking polynomial recently considered

by Welsh and Kayibi [13]. The properties of the 3-variable Tutte polynomial

of a matroid perspective generalize and unify properties of the usual 2-variable
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Tutte polynomial of a matroid. For instance, the evaluation at (0, 0, 1) of the

Tutte polynomial of an oriented matroid perspective contains as particular cases

both the counting of acyclic orientations of a graph and the counting of orienta-

tions with unique source and unique sink, and its generalizations to hyperplane

arrangements and oriented matroids [9].

The seminal paper of Jaeger–Vertigan–Welsh on the computational complex-

ity of the Jones polynomial of knot theory and of the Tutte polynomial contains

a wide range of results on the general intractability of the evaluation of the Tutte

polynomial of a matroid except for a few listed special points and curves [6].

In the present note, we determine the easy points of the Tutte polynomial of a ma-

troid perspective as a corollary of [6, Theorem 2] and of a theorem of G. Etienne

and the author ([4, Th. 6.2]). It turns out that all but one of the sporadic easy

points of the 3-variable Tutte polynomial proceed from the easy points of the

2-variable Tutte polynomial. The exceptional easy point, namely (−1,−1,−1),

has a polynomial evalution for a represented binary matroid.

2 – The Tutte polynomial of a matroid perspective

A matroid perspective, a particular case of matroid strong map or quotient,

is the generalization to matroids of linear maps in vector spaces.

Let M, M ′ be two matroids on a set E. The following properties (i)–(v) are

equivalent (see [7] or [12, Section 7.3]) :

(i) every flat of M ′ is a flat of M ;

(ii) every circuit of M is a union of circuits of M ′;

(iii) for every circuit C of M and cocircuit D′ of M ′ we have |C ∩ D′| 6= 1;

(iv) rM ′(X) − rM ′(Y ) ≤ rM (X) − rM (Y ) for all Y ⊆ X ⊆ E ;

(v) there is a matroid N on a set E ∪A such that M = N\A and M ′= N/A.

We write M→M ′ when these equivalent properties hold, and say that M→M ′

constitutes a matroid perspective. A matroid perspective is the particular case

of a strong map of matroids when both matroids are on a same set. Note that

no significant generality is lost, since it can easily be shown that any strong map

is reducible to a perspective up to a bijection and adding loops and parallel ele-

ments. The matroid M ′ is often called a quotient of M in the literature [7], [12].

Standard examples of matroid perspectives are obtained by identification of ver-

tices in graphs or by embeddings of graphs in surfaces, and more generally from

linear maps between vector spaces.
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A matroid N as in (v) is called a major of M → M ′. A matroid perspective is

said to be graphic resp. binary if it has a graphic resp. binary major. Let M be

a matroid on a set E. We denote by 0 the rank zero matroid on E, and by 1 the

free matroid of rank |E| on E. Then M → M , M → 0 and 1 → M are matroid

perspectives on E. As is easily seen, if M is graphic, these matroid perspectives

are also graphic. We will use them in Section 3.

The Tutte polynomial of a matroid perspective defined in [8], [10], [11] is

a variant of the rank generating function of two matroids. We have

t
(

M,M ′; x,y,z
)

=
∑

A⊆E

(x−1)r(M ′)−r
M′ (A) (y−1)|A|−rM (A) zr(M)−r(M ′)−(rM (A)−r

M′(A))

where rM (A) denotes the rank of A in M .

The rank generating function of two matroids R(M, M ′) is defined by

R
(

M, M ′; u, v, w
)

=
∑

A⊆E

u|A| vrM (A) wr
M′ (A) .

The equivalence of t(M, M ′) and R(M, M ′) is given by the formulas

t
(

M, M ′; x, y, z
)

= (x−1)r(M ′) zr(M)−r(M ′) R

(

M, M ′; y−1 ,
1

(y−1)z
,

z

x−1

)

,

R
(

M, M ′; u, v, w
)

= (uv)r(M) wr(M ′) t

(

M, M ′;
1

uvw
+1 , u+1 ,

1

uv

)

.

In general, the function t(M, M ′) is a Laurent polynomial in Z[x, y, z, z−1],

and its coefficients may be positive or negative integers. In the case of a ma-

troid perspective M → M ′, the function t(M, M ′) is a polynomial in x, y, z with

non negative integer coefficients, and many fundamental properties of the usual

Tutte polynomial generalize [8], [10], [11].

Another variant of the rank generating function of two matroids, a 4-variable

polynomial called the linking polynomial, has been recently considered by D.J.A.

Welsh and K.K. Kayibi [13]. We have

Q
(

M, M ′; x, y, u, v
)

=

=
∑

A⊆E

(x−1)r(M)−rM (A) (y−1)|A|−rM (A) (u−1)r(M ′)−r
M′ (A) (v−1)|A|−r

M′ (A) .
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The linking polynomial Q(M, M ′) is equivalent to the Tutte polynomial of

two matroids t(M, M ′). We have

Q
(

M, M ′; x, y, u, v
)

=

= (v−1)r(M)−r(M ′) t

(

M, M ′; (x−1)(u−1) +1, (y−1)(v−1) +1,
x−1

v−1

)

,

t
(

M,M ′; x, y, z
)

=

(

z

w

)r(M)−r(M ′)

Q

(

M, M ′; w+1 ,
(y−1)z

w
+1 ,

x−1

w
+1 ,

w

z
+1

)

.

In the last formula the variable w can take any value. In particular for w = z

we recover the formula in [13, p. 394, (14)]; see also [14].

It follows from this equivalence that properties can be stated in terms of either

polynomials. Theorem 6.1 of [8] (see also [9, Th. 8.1]), which gives an expression of

t(M,M ′) in terms of activities when M,M ′ is a matroid perspective — equivalently,

a strong map — on a linearly ordered set of elements, is restated in [13] in terms

of Q(M, M ′) as Theorem 3 (see the acknowledgement [14]).

When M → M ′, the polynomial t(M, M ′) can also be considered as the

Tutte polynomial of a matroid pointed by a subset of elements [8], [10], [11].

With notation of (v) in the equivalences defining a matroid perspective, we have

t(M, M ′; x, y, z) = t(N ; A; x, y, z) (see details in [11, section 3]). When r(M) =

r(M ′) + 1, or, equivalently, when A is reduced to one element, say A = {e},

the polynomial t(M, M ′) = t(N ; {e}) is equivalent to the 4-variable polynomial

introduced by T. Brylawski in [1]. Generalizations of certain results of Brylawski

to Tutte polynomials of set-pointed matroids are studied in [3].

3 – Easy points

Two results of the literature will be used in the proof of Theorem 1.

Theorem A (F. Jaeger, D.Vertigan and D.J.A.Welsh [6, Th. 2]). The prob-

lem of evaluating the Tutte polynomial of a graph at a point in the (x, y)-plane

is #P-hard except when (x−1)(y−1) = 1 or when (x, y) equals (1, 1) (−1,−1)

(0,−1) (−1, 0) (i,−i) (−i, i) (j, j2) (j2, j) where j = e2πi/3.

We refer the reader to [6] for the interpretation of the special points in

Theorem A (see also [5] for (j, j2) and (j2, j)).
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Theorem B (G. Etienne, M. Las Vergnas [4, Th. 6.2]). Let M → M ′ be a

binary matroid perspective, i.e. such that M = S(V ) and M ′= S(V ′) for binary

subspaces V ⊆ V ′⊆GF (2)E, where S(V ) denotes the matroid on E whose circuits

are the inclusion-minimal supports of non zero vectors of V . We have

t
(

M, M ′;−1,−1,−1
)

=







0 if 1E 6∈ V +V ′⊥,

(−1)|E|−dim(V ∩V ⊥) 2dim(V ∩V ′⊥) if 1E ∈ V +V ′⊥ .

Extending definitions of Jaeger–Vertigan–Welsh, we say that a point (a, b, c)

of the complex 3-space is an easy point of the 3-variable Tutte polynomial of a

matroid perspective if there is a polynomial algorithm to evaluate t(M,M ′; a, b, c)

on graphic matroid perspectives M → M ′.

Theorem 1. The easy points of the 3-variable Tutte polynomial of a matroid

perspective are

(i) all points of the curve (t+1, 1/t+1, t);

(ii) 15 points obtained from the 8 sporadic easy points of the 2-variable Tutte

polynomial of a matroid, namely for each (a, b) in the list of Jaeger–

Vertigan–Welsh the points (a, b, a−1) and (a, b, 1/(b−1)) if b 6= 1;

(iii) (−1,−1,−1).

Proof: Let M be a graphic matroid. Then M → 0 and 1→M are graphic

matroid perspectives. By straightforward substitutions we have t(M,0 ; x, y, z) =

t(M ; z +1, y) and t(1, M ; x, y, z) = z|M |−r(M) t(M ; x, 1/z +1) ([11, (5.4), (5.5)]).

It follows that if (a, b, c) is an easy point of the 3-variable Tutte polynomial then

(c+1, b) and (a, 1/c+1) are easy points of the 2-variable Tutte polynomial.

By Theorem A, we have c(b −1) = 1 or (c+1, b) ∈ L =
{

(1, 1), (−1,−1), (0,−1),

(−1,0), (i,−i), (−i, i), (j, j2), (j2, j)
}

, and (a−1)/c = 1 or (a, 1/c+1) ∈ L. There-

fore either c(b−1)=1 and (a−1)/c=1 — case (i), or c(b−1)=1 and (a,1/c+1)∈L,

equivalently (a, b)∈L and c = 1/(b−1), or (a−1)/c = 1 and (c+1, b)∈L, equiv-

alently (a, b) ∈ L and c = a−1 — case (ii), or (a, 1/c +1) ∈ L and (c +1, b)∈L

— case (iii). If (a, 1/c +1) ∈ L then c ∈
{

−1/2, −1, −1/2 + i/2, −1/2 − i/2,

−1/3+j/3, −1/3+j2/3
}

and if (c+1, b) ∈ L then c ∈
{

0, −2, −1, −1+ i, −1− i,

−1+j, −1+j2
}

. The intersection of the two lists is c =−1, and then a = b =−1.

We prove that conversely each point in (i)–(ii)–(iii) is easy. Let M → M ′ be

a matroid perspective on a set E.
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(i) We have t(M,M′; t+1,1/t+1, t)= tr(M)−r(M′)
∑

A⊆E
t−|A|= tr(M)−r(M ′)t−|E|,

hence (t+1, 1/t+1, t) is easy for any matroid perspective.

(ii) By straightforward substitutions in the formula defining t(M,M′) we have

t(M,M′;x,y,x−1)= t(M;x,y) and t
(

M,M′;x,y,1/(y−1)
)

=(y−1)−(r(M)−r(M′))t(M′;x,y).

It follows that the 15 points of case (ii) amount to easy points of 2-variable Tutte

polynomials, hence are easy by Theorem A.

(iii) With notation of Theorem B, if V and V ′ are defined by bases, all nec-

essary computations to evaluate t(M,M ′;−1,−1,−1) can be made by means of

polynomial algorithms. It follows that (−1,−1,−1) can be polynomially eval-

uated for binary matroid perspectives with a succint presentation in the sense

of [6], hence is an easy point for the 3-variable Tutte polynomial of a matroid

perspective.

An alternate proof of Theorem 1 is obtained by using the perspective M →M

in place of M → 0 resp. 1→M .

When (a, b) = (1, 1), the point
(

a, b, 1/(b−1)
)

is not defined. However, in

view of the identity (y −1)r(M)−r(M ′) t
(

M, M ′; x, y, 1/(y−1)
)

= t(M ′; x, y), we

may consider that the limit evaluation at (1, 1,∞) is also an easy point, dual to

the evaluation at (1, 1, 0). This limit is equal to the evaluation at (1, 1) of the

2-variable polynomial coefficient of zr(M)−r(M ′) in t(M, M ′; x, y, z). With this

convention, we get 16 easy points in case (ii).
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