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4. COMPUTATIONAL COMPLEXITY
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Abstract: We determine the easy points of the 3-variable Tutte polynomial of
a matroid perspective. It turns out that all but one of the sporadic easy points of
the 3-variable Tutte polynomial proceed from the 8 sporadic easy points determined in
the seminal paper of Jaeger—Vertigan—Welsh on the computational complexity of the
Tutte polynomial of a matroid. The exceptional easy point, namely (—1,—1,—1), can
be evaluated with polynomial complexity for binary matroid perspectives by a previous

result of the author.

1 — Introduction

The Tutte polynomial of a matroid — introduced by W.T. Tutte in 1954 for
graphs — is a self-dual form of the generating function for cardinality and rank in
the matroid of subsets of elements. This polynomial is relevant in many problems
involving numerical invariants of matroids [2]. We have introduced in 1975 the
Tutte polynomial of a matroid perspective, as a self-dual form of the generating
function for cardinality and ranks in two matroids [8]. The Tutte polynomial of
a matroid perspective is a 3-variable polynomial with non negative coefficients.
For a general pair of matroids the 3-variable Tutte polynomial is a Laurent poly-
nomial in Z[z,y, z, 2~ ], equivalent to the linking polynomial recently considered
by Welsh and Kayibi [13]. The properties of the 3-variable Tutte polynomial
of a matroid perspective generalize and unify properties of the usual 2-variable
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Tutte polynomial of a matroid. For instance, the evaluation at (0,0,1) of the
Tutte polynomial of an oriented matroid perspective contains as particular cases
both the counting of acyclic orientations of a graph and the counting of orienta-
tions with unique source and unique sink, and its generalizations to hyperplane
arrangements and oriented matroids [9].

The seminal paper of Jaeger—Vertigan—Welsh on the computational complex-
ity of the Jones polynomial of knot theory and of the Tutte polynomial contains
a wide range of results on the general intractability of the evaluation of the Tutte
polynomial of a matroid except for a few listed special points and curves [6].
In the present note, we determine the easy points of the Tutte polynomial of a ma-
troid perspective as a corollary of [6, Theorem 2] and of a theorem of G.Etienne
and the author ([4, Th.6.2]). It turns out that all but one of the sporadic easy
points of the 3-variable Tutte polynomial proceed from the easy points of the
2-variable Tutte polynomial. The exceptional easy point, namely (—1,—1,—1),
has a polynomial evalution for a represented binary matroid.

2 — The Tutte polynomial of a matroid perspective

A matroid perspective, a particular case of matroid strong map or quotient,
is the generalization to matroids of linear maps in vector spaces.

Let M, M’ be two matroids on a set E. The following properties (i)—(v) are
equivalent (see [7] or [12, Section 7.3]) :

(i) every flat of M’ is a flat of M,
(i

(iii

every circuit of M is a union of circuits of M’;

for every circuit C' of M and cocircuit D’ of M’ we have |C'N D'| # 1;
v (X) =7y (YY) <rp(X) —rpy(Y) forall Y C X C E,

there is a matroid NV on a set EUA such that M = N\A and M'= N/A.

(iv

~— — — ~—

(v

We write M — M’ when these equivalent properties hold, and say that M — M’
constitutes a matroid perspective. A matroid perspective is the particular case
of a strong map of matroids when both matroids are on a same set. Note that
no significant generality is lost, since it can easily be shown that any strong map
is reducible to a perspective up to a bijection and adding loops and parallel ele-
ments. The matroid M’ is often called a quotient of M in the literature [7], [12].
Standard examples of matroid perspectives are obtained by identification of ver-
tices in graphs or by embeddings of graphs in surfaces, and more generally from
linear maps between vector spaces.
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A matroid N as in (v) is called a major of M — M’. A matroid perspective is
said to be graphic resp. binary if it has a graphic resp. binary major. Let M be
a matroid on a set . We denote by 0 the rank zero matroid on F, and by 1 the
free matroid of rank |E| on E. Then M — M, M — 0 and 1 — M are matroid
perspectives on E. As is easily seen, if M is graphic, these matroid perspectives
are also graphic. We will use them in Section 3.

The Tutte polynomial of a matroid perspective defined in [8], [10], [11] is
a variant of the rank generating function of two matroids. We have

HM, M 2,,2) = 3 (2= 1) 00 =00 (3 1) A= (@) @D =r01)=(rns ()=rypr(4)
ACE

where 7r)7(A) denotes the rank of A in M.
The rank generating function of two matroids R(M, M’) is defined by

R(Mv Ml?'UJaUvTI)) = Z wlAl pram(A) g yrap (4)
ACFE

The equivalence of ¢(M, M) and R(M, M') is given by the formulas

’ ’ 1 z
M, M — (p—1yWM) o(M)=r (M) p(Af My —1, —
t( ) 7'%'72/72) (.CE ) z R ’ 'Y ’<y—1)2’71'—1 )

/ 1 1
R(M,M’;u,v,w) = (uv)r(M) w" M) t<M,M’; —— +1,u+1, ) .
uvw uv

In general, the function #(M,M’) is a Laurent polynomial in Z[z,y,z,2"!],
and its coefficients may be positive or negative integers. In the case of a ma-
troid perspective M — M’, the function t(M, M’) is a polynomial in z,y, z with
non negative integer coefficients, and many fundamental properties of the usual
Tutte polynomial generalize [8], [10], [11].

Another variant of the rank generating function of two matroids, a 4-variable
polynomial called the linking polynomial, has been recently considered by D.J.A.
Welsh and K.K. Kayibi [13]. We have
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The linking polynomial Q(M, M’) is equivalent to the Tutte polynomial of
two matroids t(M, M’). We have

Q(MaMl;xayuu7v) =

= (p—1)r)-rQ) t(M, M;(z—1)(u—-1)+1,(y—1)(v—1) +1, :U_D ’
o

2\ )= (y—1)z x—1 w
t(M, M 2,y,2) = () Q(M,M’;wH, +1, +1,+1>.
w w z

w

In the last formula the variable w can take any value. In particular for w = z
we recover the formula in [13, p. 394, (14)]; see also [14].

It follows from this equivalence that properties can be stated in terms of either
polynomials. Theorem 6.1 of [8] (see also [9, Th. 8.1]), which gives an expression of
t(M,M’) in terms of activities when M, M’ is a matroid perspective — equivalently,
a strong map — on a linearly ordered set of elements, is restated in [13] in terms
of Q(M, M') as Theorem 3 (see the acknowledgement [14]).

When M — M’; the polynomial t(M,M’) can also be considered as the
Tutte polynomial of a matroid pointed by a subset of elements [8], [10], [11].
With notation of (v) in the equivalences defining a matroid perspective, we have
t(M,M'; z,y,z) = t(N; A; x,y, z) (see details in [11, section 3]). When (M) =
r(M') + 1, or, equivalently, when A is reduced to one element, say A = {e},
the polynomial t(M, M’) = t(N;{e}) is equivalent to the 4-variable polynomial
introduced by T. Brylawski in [1]. Generalizations of certain results of Brylawski
to Tutte polynomials of set-pointed matroids are studied in [3].

3 — Easy points
Two results of the literature will be used in the proof of Theorem 1.

Theorem A (F.Jaeger, D.Vertigan and D.J.A.Welsh [6, Th.2]). The prob-
lem of evaluating the Tutte polynomial of a graph at a point in the (z,y)-plane
is #P-hard except when (x—1)(y—1) =1 or when (z,y) equals (1,1) (=1, —1)
(07 _1) (_170) (i, _i) (_ivi) (37]2) (]27]) where J= 62m/?” n

We refer the reader to [6] for the interpretation of the special points in
Theorem A (see also [5] for (4,72) and (52,7)).
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Theorem B (G. Etienne, M. Las Vergnas [4, Th.6.2]). Let M — M’ be a
binary matroid perspective, i.e. such that M =S(V) and M'=S(V') for binary
subspaces V C V' C GF(2)¥, where S(V') denotes the matroid on E whose circuits
are the inclusion-minimal supports of non zero vectors of V. We have

0 if 15 V+V'E,
t(M,M';—1,-1,-1) = _ L . N
(_1)\E|—d1m(VﬂV ) 9dim(VNV’'—) if 1lgeV+V'" . »

Extending definitions of Jaeger—Vertigan—Welsh, we say that a point (a, b, c)
of the complex 3-space is an easy point of the 3-variable Tutte polynomial of a
matroid perspective if there is a polynomial algorithm to evaluate t(M, M’; a, b, ¢)
on graphic matroid perspectives M — M.

Theorem 1. The easy points of the 3-variable Tutte polynomial of a matroid
perspective are

(i) all points of the curve (t+1,1/t+1,t);

(ii) 15 points obtained from the 8 sporadic easy points of the 2-variable Tutte
polynomial of a matroid, namely for each (a,b) in the list of Jaeger—
Vertigan—-Welsh the points (a,b,a—1) and (a,b,1/(b—1)) if b# 1;

(iii) (—1,-1,-1).

Proof: Let M be a graphic matroid. Then M — 0 and 1 — M are graphic
matroid perspectives. By straightforward substitutions we have ¢(M,0; z,y, z) =
t(M;z+1,y) and t(1,M; z,y,2) = MM (M2, 1/24+1) ([11, (5.4), (5.5)]).
It follows that if (a, b, ¢) is an easy point of the 3-variable Tutte polynomial then
(c+1,b) and (a,1/c+1) are easy points of the 2-variable Tutte polynomial.
By Theorem A, we have ¢(b—1) =1 or (c+1,b) € £ = {(1,1),(—1,—-1),(0,-1),
(—=1,0), (i,—i), (=i,4), (4,72, (% j) }, and (a—1)/c =1 or (a,1/c+1) € L. There-
fore either ¢(b—1)=1and (a—1)/c=1—case (i), or ¢(b—1)=1and (a,1/c+1) €L,
equivalently (a,b) € L and c=1/(b—1), or (a—1)/c=1 and (¢+1,b) € L, equiv-
alently (a,b) € £ and ¢ = a—1 — case (ii), or (a,1/c+1) € £ and (¢+1,b) e L
— case (ili). If (a,1/c+1) € L then ¢ € {-1/2, -1, -1/2+i/2, -1/2 —i/2,
—1/3+j/3,-1/3+ %3} and if (c+1,b) € £ then c € {0, -2, -1, —1+i, —1—14,
—1+47, —1+j2}. The intersection of the two lists is ¢=—1, and then a=b= —1.

We prove that conversely each point in (i)—(ii)—(iii) is easy. Let M — M’ be
a matroid perspective on a set FE.
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(1) We have t(M, M';t4+1,1/t+1,t) = t"MD—rQM) 5~ | =1l = gr () —r(M)—|B]
hence (t+1,1/t+1,t) is easy for any matroid perspective.

(ii) By straightforward substitutions in the formula defining ¢(M, M’) we have
HOM M 2y, 1) = t(M: ) and ¢(M,M" 2,7, 1/(g—1) = (y—1) COD7O0) e (art )
It follows that the 15 points of case (ii) amount to easy points of 2-variable Tutte
polynomials, hence are easy by Theorem A.

(iii) With notation of Theorem B, if V and V' are defined by bases, all nec-
essary computations to evaluate ¢(M,M’;—1,—1,—1) can be made by means of
polynomial algorithms. It follows that (—1,—1,—1) can be polynomially eval-
uated for binary matroid perspectives with a succint presentation in the sense
of [6], hence is an easy point for the 3-variable Tutte polynomial of a matroid
perspective. n

An alternate proof of Theorem 1 is obtained by using the perspective M — M
in place of M — 0 resp. 1 — M.

When (a,b) = (1,1), the point (a,b,1/(b—1)) is not defined. However, in
view of the identity (y —1)"(M)—r(M") (M, M';3,y,1/(y—1)) =t(M';2,y), we
may consider that the limit evaluation at (1,1, 00) is also an easy point, dual to
the evaluation at (1,1,0). This limit is equal to the evaluation at (1,1) of the
2-variable polynomial coefficient of z"(M)=r(M) jp t(M,M';2z,y,z). With this
convention, we get 16 easy points in case (ii).
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