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SIMPLICITY OF LYAPUNOV SPECTRA:

A SUFFICIENT CRITERION

Artur Avila and Marcelo Viana

Abstract: We exhibit an explicit sufficient condition for the Lyapunov exponents

of a linear cocycle over a Markov map to have multiplicity 1. This builds on work of

Guivarc’h–Raugi and Gol’dsheid–Margulis, who considered products of random matrices,

and of Bonatti–Viana, who dealt with the case when the base dynamics is a subshift of

finite type. Here the Markov structure may have infinitely many symbols and the ambient

space needs not be compact. As an application, in another paper we prove the Zorich–

Kontsevich conjecture on the Lyapunov spectrum of the Teichmüller flow in the space of

translation surfaces.
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1 – Introduction and statements

Let f̂ : Σ̂ → Σ̂ be an invertible measurable map and Â : Σ̂ → GL(d,C) be a

measurable function with values in the group of invertible d×d complex matrices.

These data define a linear cocycle F̂A over the map f̂ , through

F̂A : Σ̂×C
d → Σ̂×C

d , F̂A(x̂, v) =
(

f̂(x̂), Â(x̂)v
)

.

Note that F̂n
A (x, v) =

(

f̂n(x̂), Ân(x̂)
)

, where Ân(x̂) = Â
(

f̂n−1(x̂)
)

· · · Â
(

f̂(x̂)
)

Â(x̂)

and Ân(x̂) is the inverse of Â−n
(

f̂n(x̂)
)

if n < 0.

Let µ̂ be an f̂ -invariant probability measure on Σ̂ relative to which the log-

arithms of the norms of Â and its inverse are integrable. By the theorem of

Oseledets [13], at µ-almost every x̂ ∈ Σ̂ there exist numbers λ1(x̂) > λ2(x̂) >

· · · > λk(x̂) and a decomposition C
d = E1

x̂ ⊕ E2
x̂ ⊕ · · · ⊕Ek

x̂ into vector subspaces

such that

Â(x̂)Ei
x̂ = Ei

f̂(x̂)
and λi(x̂) = lim

|n|→∞

1

n
log
∥

∥Ân(x̂)v
∥

∥

for every non-zero v ∈Ei
x̂ and 1≤ i ≤ k. We call dimEi

x̂ the multiplicity of λi(x̂).

We assume that µ̂ is ergodic. Then the Lyapunov exponents λi(x̂) are con-

stant on a full measure subset of Σ̂ and so are the dimensions of the Oseledets

subspaces Ei
x̂. The Lyapunov spectrum of Â is the set of all Lyapunov exponents.

We say that the Lyapunov spectrum is simple if it contains exactly d distinct

values (k = d) or, equivalently, if every Lyapunov exponent λi has multiplicity 1.

The main result in this paper, to be stated below, provides an explicit sufficient

condition for the Lyapunov spectrum to be simple. We begin by describing the

class of cocycles to which it applies. In Appendix A we discuss some extensions

and applications.

1.1. Symbolic dynamics

We take Σ̂ = N
Z, the full shift space with countably many symbols, and

f̂ : Σ̂ → Σ̂ to be the shift map:

f̂
(

(xn)n∈Z

)

= (xn+1)n∈Z .

Let us call cylinder of Σ̂ any subset of the form

[

ιm, ..., ι−1; ι0; ι1, ..., ιn

]

=
{

x̂ : xj = ιj for j = m, ..., n
}

.
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Cylinders of Σu = N
{n≥0} and Σs = N

{n<0} are defined similarly, corresponding

to the cases m = 0 and n = −1, respectively, and they are represented as

[ι0, ι1, ..., ιn]u and [ιm, ..., ι−1]
s, respectively. We endow Σ̂, Σu, Σs with the

topologies generated by the corresponding cylinders. Let P u : Σ̂ → Σu and

P s : Σ̂ → Σs be the natural projections. We also consider the one-sided shift

maps fu : Σu → Σu and fs : Σs → Σs defined by

fu ◦P u = P u ◦ f̂ and fs ◦P s = P s ◦ f̂−1 .

For each x̂ = (xn)n∈Z in Σ̂, we denote xu = P u(x̂) and xs = P s(x̂). Then

x̂ 7→ (xs, xu) is a homeomorphism from Σ̂ to the product Σs×Σu. In what

follows we often identify the two sets through this homeomorphism. When there

is no risk of ambiguity, we also identify the local stable set

W s
loc(x

u) = W s
loc(x̂) =

{

(yn)n∈Z : xn = yn for all n≥ 0
}

with Σs

and the local unstable set

W u
loc(x

s) = W u
loc(x̂) =

{

(yn)n∈Z : xn = yn for all n< 0
}

with Σu ,

via the projections P s and P u.

In Section A.1 we shall discuss how more general situations may often be

reduced to this one.

1.2. Product structure

Let µu = P u
∗ µ̂ and µs = P s

∗ µ̂ be the images of the ergodic f̂ -invariant prob-

ability measure µ̂ under the natural projections. It is easy to see that these are

ergodic invariant probabilities for fu and fs, respectively. We take µs and µu

to be positive on cylinders. Moreover, we assume µ̂ to be equivalent to their

product, meaning there exists a measurable function ρ : Σ̂ → (0,∞) such that

µ̂ = ρ(x̂) (µs×µu) , x̂ ∈ Σ̂ .

We assume that ρ is bounded from zero and infinity. For convenience of

notation, we state this condition as follows: there exists some constant K > 0

such that

(1)
1

K
≤
ρ(zs, xu)

ρ(zs, yu)
≤ K and

1

K
≤
ρ(xs, zu)

ρ(ys, zu)
≤ K
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for all xs, ys, zs ∈ Σs and xu, yu, zu ∈ Σu. Notice that
{

µ̂xu = ρ(·, xu)µs : xu ∈ Σu
}

is a disintegration of µ̂ into conditional probabilities along local stable sets.

By this we mean (see Rokhlin [15] or [2, Appendix C]) that µ̂xu(W s
loc(x

u)) = 1

for µu-almost every xu and

µ̂(D) =

∫

µ̂x

(

D ∩W s
loc(x

u)
)

dµu(xu)

for any measurable set D ⊂ Σ̂. Analogously,
{

µ̂xs = ρ(xs, ·)µu : xs ∈ Σs
}

is a

disintegration of µ̂ along local unstable sets. Since the density ρ is positive,

the measures µ̂xu , xu ∈ Σu are all equivalent, and so are all µ̂xs , xs ∈ Σs.

Condition (1) just means that the Radon–Nikodym derivatives

dµ̂xu

dµ̂yu

with xu, yu ∈ Σu and
dµ̂xs

dµ̂ys

with xs, ys ∈ Σs

are uniformly bounded from zero and infinity. This will be used to obtain the

bounded distortion properties (6) and (14) below.

We also assume that the conditional probabilities µ̂xu and µ̂xs vary continu-

ously with the base point, in the sense that the functions

(2) Σu ∋ xu 7→

∫

φ dµ̂xu and Σs ∋ xs 7→

∫

ψ dµ̂xs

are continuous, for any bounded measurable functions φ : Σs →R and ψ : Σu →R.

Equivalently,

xu 7→ µ̂xu

(

[ιm, ..., ι−1]
s
)

and xs 7→ µ̂xu

(

[ι0, ι1, ..., ιn]u
)

are continuous for every choice of the ιj ’s. This will be used to obtain (7) and

Lemma 2.5.

In Section A.2 we show that these hypotheses hold, in particular, whenever

the system satisfies a distortion summability condition. Indeed, in that case

the density ρ may be taken continuous and bounded from zero and infinity.

In general, the hypothesis (2) can probably be avoided: that is the case at least

when the cocycle is locally constant; see the appendix of [1] and also Remark 4.6

below.

1.3. Invariant holonomies

Concerning the function Â : Σ̂ → GL(d,C), we assume that it is continuous

and admits stable and unstable holonomies:
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Definition 1.1. We say Â admits stable holonomies if the limit

Hs
x̂,ŷ = lim

n→+∞
Ân(ŷ)−1Ân(x̂)

exists for any pair of points x̂ and ŷ in the same local stable set, and depends

continuously on (x̂, ŷ). Unstable holonomies Hu
x̂,ŷ are defined in a similar way,

with n→−∞ and x̂ and ŷ in the same local unstable set.

Notice that stable holonomies Hs
x̂,ŷ : C

d → C
d are linear maps and they satisfy

(a) Hs
x̂,ẑ = Hs

ẑ,ŷ ·H
s
x̂,ẑ and Hs

x̂,x̂ = id,

(b) Â(ŷ) ·Hs
x̂,ŷ = Hs

f̂(x̂),f̂(ŷ)
· Â(x̂),

over all points for which the relations make sense. Similar remarks apply for the

unstable holonomies.

For example, if Â is locally constant, meaning that it is constant on each

cylinder [ι], ι∈N, then Hs
x̂,ŷ ≡ id and Hu

x̂,ŷ ≡ id. In Section A.3 we discuss other

situations where these structures occur.

1.4. Statement of main result

Let p̂ ∈ Σ̂ be a periodic point of f̂ and q ≥ 1 be its period. We call ẑ ∈ Σ̂

a homoclinic point of p̂ if ẑ ∈W u
loc(p̂) and there exists some multiple l ≥ 1 of q

such that f̂ l(ẑ) ∈W s
loc(p̂). Then we define the transition map

ψp,z : C
d → C

d , ψp,z = Hs
f̂ l(ẑ),p̂

· Âl(ẑ) ·Hu
p̂,ẑ .

The following notion is our main criterion for simplicity of the Lyapunov spec-

trum. We refer to (p) as the pinching property and to (t) as the twisting property.

Definition 1.2. We say that Â : Σ̂ → GL(d,C) is simple for f̂ if there exists

some periodic point p̂ ∈ Σ̂ of f̂ and some homoclinic point ẑ ∈ Σ̂ of p̂ such that

(p) All the eigenvalues of Âq(p̂) have distinct absolute values.

(t) For any invariant subspaces (sums of eigenspaces) E and F of Âq(p̂) with

dimE + dimF = d, we have ψp,z(E) ∩ F = {0}.

Remark 1.3. Let θj , j=1, ..., d, represent the eigenspaces of Âq(p̂). For d= 2

the twisting condition means that ψp,z(θi) 6= θj for all 1 ≤ i, j ≤ 2. For d = 3

it means that ψp,z(θi) is outside the plane θj ⊕ θk and θi is outside the plane
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ψp,z(θj ⊕ θk), for all choices of 1≤ i, j, k ≤ 3. In general, this condition is equiva-

lent to saying that the matrix of the transition map in a basis of eigenvectors of

Âq(p̂) has all its algebraic minors different from zero. Indeed, it may be restated

as saying that the determinant of the square matrix





B1,i1 · · · B1,ir δ1,j1 · · · δ1,js

· · · · · · · · · · · · · · · · · ·
Bd,i1 · · · Bd,ir δd,j1 · · · δd,js





is non-zero for any I = {i1, ..., is} and J = {j1, ..., jr} with r + s = d, where the

δi,j are Dirac symbols and the Bi,j are the entries of the matrix of ψp,z in the

basis of eigenvectors. Up to sign, this determinant is the algebraic minor B[Jc×I]

corresponding to the lines j /∈ J and columns i ∈ I.

Theorem A. If Â : Σ̂ → GL(d,C) is simple for f̂ then all the Lyapunov

exponents of the cocycle F̂A for the measure µ̂ have multiplicity 1.

Simplicity of the Lyapunov spectrum for independent random matrices was

investigated in the eighties by Guivarc’h, Raugi [8], and Gol’dsheid, Margulis [7].

Theorem A also extends the main conclusions of Bonatti, Viana [4], who treated

the case when the base dynamics f is a subshift of finite type.

The present extension has been carried out to include in the theory such

examples as the Zorich cocycles, whose base dynamics are not of finite type.

It has been conjectured by Zorich and Kontsevich [9, 19, 20] that the correspond-

ing Lyapunov exponents have multiplicity 1. As an application of these ideas,

in [1] we prove this conjecture. See also the comments in Appendix A to the

present paper.

Let us point out that we improve [4] not only in that here we allow for

infinite Markov structures and non-compact ambient spaces, but also because

our criterion is sharper: whereas we only ask the cocycle to be simple, [4] needed

a similar hypothesis on all exterior powers as well.

1.5. Outline of the proof

The starting point is the following observation. Let ℓ ∈ {1, ..., d−1} be fixed

and assume the cocycle has ℓ Lyapunov exponents that are strictly larger than

the remaining ones. Let E(x̂) be the sum of the Oseledets subspaces associated to

those largest exponents at a generic point x̂ ∈ Σ̂. Then x̂ 7→ E(x̂) defines a mea-

surable invariant section of the Grassmannian space of ℓ-dimensional subspaces
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of C
d. This section is invariant along local unstable sets, meaning that

E(ŷ) = Hu
x̂,ŷ ·E(x̂) for all ŷ ∈W u

loc(x̂) ,

because the hypotheses in Section 1.3 imply that

Ân(ŷ) = Hu
f̂n(x̂),f̂n(x̂)

· Ân(x̂) ·Hu
ŷ,x̂ for all n < 0 ,

and the norms of the unstable holonomies are bounded. Let m̂ be the probability

measure on Σ̂×Grass(ℓ, d) which projects down to µ̂ and has the Dirac measures

δE(x̂) as conditional probabilities along the Grassmannian fibers. Then m̂ is an

invariant measure for the action of Â on the Grassmannian bundle Σ̂×Grass(ℓ, d)

and, typically, it is the unique one whose conditional probabilities are invariant

under unstable holonomies.

To try and prove the theorem, we consider the space of all probability mea-

sures m̂ on Σ̂×Grass(ℓ, d) that project down to µ̂, are invariant under the action

of the cocycle, and whose conditional probabilities m̂x̂ along the Grassmannian

fibers are invariant under unstable holonomies. Proposition 4.2 ensures that such

invariant u-states do exist. In Proposition 4.4 we prove that the projection mu

of any u-state m̂ to Σu×Grass(ℓ, d) admits conditional probabilities mu
xu along

the Grassmannian fibers that depend continuously on the base point xu. This is

very important for our arguments: continuity allows us to show that the kind of

behavior the cocycle exhibits on the periodic point p̂ in Definition 1.2 propagates

to almost all orbits on the whole Σ̂. Let us explain this.

Firstly, in Proposition 3.1, we use a simple martingale argument to show that

the measure m̂ may be recovered from mu through

(3) m̂x̂ = lim
n→∞

Ân
(

f̂−n(x̂)
)

∗
mu

P u(f̂−n(x̂))
µ̂-almost everywhere .

The assumption that Âq(p̂) has ℓ largest eigenvalues implies that Âqn(p̂)∗ η

converges to the Dirac measure on the sum of the eigenspaces associated to

the largest eigenvalues, for any probability measure η on Grass(ℓ, d) that gives

zero weight to the hyperplane section defined by the other invariant subspaces.

A crucial step, carried out in Section 6, is to prove that the limit on the right hand

side of (3) is a Dirac measure for almost every x̂. The proof has two main parts.

In Proposition 5.1 we use the assumption that the cocycle is simple to show that

the conditional probabilities of m give zero weight to hyperplane sections of the

Grassmannian. Then, in Proposition 6.1, we use the continuity property in the

previous paragraph, and the assumption that the cocycle is simple, to show that
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the behavior on the periodic point we just described does propagate to almost

every orbit.

This proves that m̂x̂ = δξ(x̂) almost everywhere, where ξ(x̂) is some ℓ-subspace.

In view of what we wrote before, ξ(x̂) should correspond to the subspace E(x̂)

associated to the largest Lyapunov exponents. To prove that this is indeed so, we

must also find the complementary invariant subspace. This is done by applying

the previous theory to the adjoint (relative to some Hermitian form) cocycle

B̂ = Â∗ over the inverse map f̂−1. Since our hypotheses are symmetric under time

reversion, the same arguments as before yield an ℓ-dimensional section x̂ 7→ ξ∗(x̂)

which is invariant under the action of B̂ and under stable holonomies.

Let η(x̂) be the orthogonal complement of ξ∗(x̂). Then ξ and η are Â-invariant

sections with complementary dimensions. Using the simplicity assumption once

more, we check that ξ(x̂) and η(x̂) are transverse to each other at almost every

point. The final step is to deduce from (3) that the Lyapunov exponents of Â

along ξ are strictly larger than those along η.

2 – Preliminary observations

Here we recall a few basic notions and prove a number of technical facts that

will be useful in the sequel. The reader may be well advised to skip this section

in a first reading, and then come back to it when a specific result or concept is

needed.

2.1. Exterior powers and Grassmannians

Fix any ℓ ∈ {1, ..., d−1}. The ℓth exterior power of C
d, denoted by Λℓ(Cd),

is the vector space of alternate ℓ-forms ω : (Cd)∗×· · ·×(Cd)∗ → C on the dual

space (Cd)∗. It has

dim Λℓ(Cd) =

(

d
ℓ

)

.

Every element of Λℓ(Cd) may be written as a sum of elements of the form ω1∧···∧ωℓ

with ωi ∈ (Cd)∗∗. We represent by Λℓ
v(C

d) the subset of elements of this latter

form, that we call ℓ-vectors. Any ℓ-vector may be written as cw1∧· · ·∧wℓ, where

c ∈ C and the wi are orthogonal unit vectors (relative to any fixed Hermitian

form). Hence, Λℓ
v(C

d) is a closed subset of Λℓ(Cd).

Since the bi-dual space is canonically isomorphic to C
d, we may think of

the ωi as vectors in C
d. Thus, there is a natural projection πv from Λℓ

v(C
d)\{0}
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to the Grassmannian Grass(ℓ, d) of ℓ-dimensional subspaces of C
d, associating

to each non-zero ℓ-vector ω1∧· · ·∧ ωℓ the subspace generated by {ω1, ..., ωℓ}.

Two ℓ-vectors have the same image under πv if and only if one is a multiple of

the other. In other words, πv induces a bijection between Grass(ℓ, d) and the

projective space PΛℓ
v(C

d) of the space of ℓ-vectors.

The ℓth exterior power Λℓ(B) : Λℓ(Cd) → Λℓ(Cd) of an operator B : C
d → C

d

is defined by

Λℓ(B)(ω)(φ1, ..., φℓ) = ω(φ1◦B, ..., φℓ ◦B) .

Notice that Λℓ(B)(ω1∧· · ·∧ ωℓ) = B(ω1)∧· · ·∧B(ωℓ), and so Λℓ(B) preserves

the set Λℓ
v(C

d) of ℓ-vectors. Moreover, assuming B is invertible,

(4) πv ◦Λℓ(B) = B#◦πv on Λℓ
v(C

d) ,

where B# denotes the action of B on the Grassmannian.

Let H be a hyperplane, that is, a codimension 1 linear subspace of the vector

space Λℓ(Cd). Then H may be written as

H =
{

ω ∈ Λℓ(Cd) : ω ∧ υ = 0
}

for some non-zero υ ∈ Λd−ℓ(Cd). We call the hyperplane geometric if υ may be

chosen a (d− ℓ)-vector, that is, υ = υℓ+1∧· · ·∧υd for some choice of vectors υi in

C
d = (Cd)∗∗. By definition, a hyperplane section of Grass(ℓ, d) is the image under

the projection πv of the intersection of Λℓ
v(C

d) with some geometric hyperplane

H of Λℓ(Cd). Note that, given any ℓ-vector ω = ω1∧· · ·∧ ωℓ,

ω ∈ H ⇔ ω ∧ υ = 0 ⇔ πv(ω) ∩ πv(υ) 6= {0} .

Hence, the hyperplane section of Grass(ℓ, d) associated toH contains precisely the

ℓ-dimensional subspaces that have non-trivial intersection with the (d− ℓ)-dimen-

sional subspace generated by υ. The orthogonal hyperplane section to V∈Grass(ℓ,d)

is the hyperplane section associated to its orthogonal complement V ⊥.

To any Hermitian form on C
d there is a canonically associated one on Λℓ(Cd)

such that the set of ℓ-vectors ei1∧· · ·∧ eiℓ , 1≤ i1 < · · · < iℓ ≤ d obtained from

an arbitrary orthonormal basis e1, ..., ed of the space E is an orthonormal basis

of its exterior power. If B is a unitary operator then so is Λℓ(B). Let e1, ..., ed
be an orthonormal basis of C

d. We use the polar decomposition B = K ′DK of

a linear isomorphism B : C
d → C

d, where K and K ′ are unitary operators, and

D is a diagonal operator (with respect to the chosen basis) with positive eigen-

values a1, ..., ad. The ai are called singular values of B; we always take them to

be numbered in non-increasing order.
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2.2. Eccentricity of linear maps

Let L : C
d → C

d be a linear isomorphism and 1 ≤ ℓ ≤ d. The ℓ-dimensional

eccentricity of L is defined by

E(ℓ, L) = sup

{

m(L | ξ)

‖L | ξ⊥‖
: ξ ∈ Grass(ℓ, d)

}

, m(L | ξ) =
∥

∥(L | ξ)−1
∥

∥

−1
.

We call most expanded ℓ-subspace any ξ ∈ Grass(ℓ, d) that realizes the supre-

mum. These always exist, since the Grassmannian is compact and the expres-

sion depends continuously on ξ. These notions may be expressed in terms of

the polar decomposition of L with respect to any orthonormal basis: denoting

by a1, ..., ad the eigenvalues of the diagonal operator D, in non-increasing order,

then E(ℓ, L) = aℓ/aℓ+1. The supremum is realized by any subspace ξ whose image

under K is a sum of ℓ eigenspaces of D such that the product of the eigenvalues is

a1 · · · aℓ. It follows that E(ℓ, L)≥ 1, and the most expanded ℓ-subspace is unique

if and only if the eccentricity is larger than 1.

Let e1, ..., ed be a basis of eigenvectors of D corresponding to the eigen-

values a1, ..., ad. For any I ⊂ {1, ..., d} we represent EI =
⊕

i∈I ei. Given any

η ∈ Grass(ℓ, d) one may find a subset I = {i1, ..., iℓ} of {1, ..., d} such that η is

the graph of a linear map

EI → EJ , ei 7→
∑

j∈J

η(i, j) ej ,

where J is the complement of I. We say that η′ ∈Grass(ℓ, d) is in the ε-neighbor-

hood Bε(η) of η if (for some choice of I) it may also be written as the graph of

a linear map from EI to EJ such that all corresponding coefficients η(i, j) and

η′(i, j) differ by less than ε. Given a hyperplane section H of Grass(ℓ, d), defined

by some (d− ℓ)-vector υ, and given δ > 0, we represent by Hδ the union of the

hyperplane sections defined by all the (d− ℓ)-vectors in the Bδ(η).

Lemma 2.1. Given C ≥ 1 and δ > 0 there exists ε > 0 such that, for any

η ∈ Grass(ℓ, d) and any diagonal operator D with eccentricity E(ℓ,D) ≤ C, one

may find a hyperplane section H of Grass(ℓ, d) such that D−1(Bε(η)) ⊂ Hδ.

Proof: Choose I = {i1, ..., iℓ} such that η is a graph over the subspace gen-

erated by ei1 , ..., eiℓ . In other words, η admits a basis of the form
{

ei +
∑

j∈J

η(i, j)ej : i ∈ I

}

,
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where J = {j1, ..., jℓ−d} is the complement of I inside {1, ..., d}. Let a1, ..., ad be

the eigenvalues of D, in non-increasing order. Then

{

fi = ei +
∑

j∈J

ai

aj
η(i, j) ej : i ∈ I

}

,

is a basis of D−1(η). We claim that there exist α ∈ I and β ∈ J such that

aα/aβ ≤ K: if I = {1, ..., ℓ} it suffices to take α = ℓ and β = ℓ+ 1; otherwise,

we may always choose β ∈ {1, ..., ℓ}\I and α ∈ I \{1, ..., ℓ}, and then we even

have aα/aβ ≤ 1. This proves the claim. Now let

υ = ej1∧· · ·∧ eα,β ∧· · ·∧ ejℓ
, eα,β = eα ±

aα

aβ
η(α, β) eβ

be the (d− ℓ)-vector given by the wedge products of all ej , j ∈ J , except that

eβ is replaced by eα,β . Notice that

D−1(η)∧υ = fi1∧· · ·∧ fiℓ ∧ ej1∧· · ·∧ eα,β ∧· · ·∧ ejℓ

=
[

ei1∧· · ·∧ eiℓ

]

∧
[

ej1∧· · ·∧ ±(aα/aβ) η(α, β) eβ ∧· · ·∧ ejℓ

]

+
[

ei1∧···∧ (aα/aβ) η(α,β) eβ ∧ ··· ∧ eiℓ

]

∧
[

ej1∧···∧eα∧···∧ejℓ

]

.

Choosing the sign ± appropriately, the two terms cancel out and soD−1(η)∧υ= 0.

This means thatD−1(η) belongs to the hyperplane sectionH defined by υ. In just

the same way, given any η′ in the ε-neighborhood of η we may find a (d−ℓ)-vector

υ′ = ej1∧· · ·∧ e′α,β ∧· · ·∧ ejℓ
, e′α,β = eα ±

aα

aβ
η′(α, β) eβ

such thatD−1(η′) belongs to the hyperplane section defined by υ′. Since aα/aβ ≤K

and |η(α, β)− η′(α, β)|< ε, we have that υ′ ∈Bδ(υ) as long as ε is small enough.

Then D−1(η′) ∈ Hδ for all η′ in the ε-neighborhood of η, as claimed.

Proposition 2.2. Let N be a weak∗ compact family of probabilities on

Grass(ℓ, d) such that all ν ∈ N give zero weight to all hyperplane sections. Let

Ln : C
d → C

d be linear isomorphisms such that (Ln)∗νn converges to a Dirac

measure δξ as n→∞, for some sequence νn in N. Then the eccentricity E(ℓ, Ln)

goes to infinity and the image Ln(ζa
n) of the most expanding ℓ-subspace of Ln

converges to ξ.
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Proof: Let Ln : C
d→C

d, νn ∈ N , and ξ ∈ Grass(ℓ, d) be as in the statement.

Consider the polar decomposition Ln = K ′
nDnKn, where Dn has eigenvalues

a1, ..., ad, in non-increasing order.

We begin by reducing to the case Kn = K ′
n = id. Let M = U(ℓ, d)∗N , where

U(ℓ, d) is the group of transformations induced on Grass(ℓ, d) by the unitary

group. It is clear that all µ ∈ M give zero weight to every hyperplane sec-

tion of Grass(ℓ, d). Notice also that M is weak∗ compact: given any sequence

µj = (Uj)∗ νj with νj ∈ N and Uj ∈ U(ℓ, d), up to considering subsequences one

may assume that νj converges to some ν ∈ N in the weak∗ topology and Uj con-

verges to some U ∈ U(ℓ, d) uniformly on Grass(ℓ, d), and then (Uj)∗ νj converges

to U∗ν ∈ M in the weak∗ topology. Let µn = (Kn)∗νn ∈ M. Then (K ′
nDn)∗ µn

converges to δξ. In addition, up to considering a subsequence, we may assume

that K ′
n converges to some K ′ ∈ U(ℓ, d) uniformly on Grass(ℓ, d). Note that

(

(K ′)−1K ′
nDn

)

∗
µn converges to δη, where η = (K ′)−1(ξ). Since (K ′)−1K ′

n con-

verges uniformly to the identity, this implies that (Dn)∗ µn also converges to the

Dirac measure at η.

Now, since M and the space of hyperplane sections of Grass(ℓ, d) are compact,

we may find δ > 0 such that ν(Hδ)< 1/2 for every µ ∈ N and every hyperplane

section H of Grass(ℓ, d). On the other hand, given any ε > 0 we have

µn

(

D−1
n (Bε(η))

)

= (Dn)∗ µn(Bε(η)) > 1/2

for every large n. Then D−1
n (Bε(η)) can not contained in Hδ, for any hyperplane

section H. In view of Lemma 2.1, this implies that E(ℓ, Ln) = E(ℓ,Dn) goes to

infinity as n→ ∞, as claimed in the first part of the lemma.

The second part is a consequence, through similar arguments. Given any

ε > 0, fix δ > 0 small enough so that ν(Hδ) < ε for any ν ∈ N and any hyper-

plane section H of Grass(ℓ, d). Let Hn ⊂Grass(ℓ, d) be the hyperplane section

orthogonal to the most expanding direction ζa
n of Ln. By definition, the com-

plement Grass(ℓ, d)\Hn
δ of the δ-neighborhood of Hn consists of the elements of

Grass(ℓ, d) that avoid any (d−ℓ)-subspace δ-close to (ζa
n)⊥. Since the eccentricity

of Ln goes to infinity,

Ln

(

Grass(ℓ, d)\Hn
δ

)

⊂ Bε

(

Ln(ζa
n)
)

for every large n. Then, the (Ln)∗νn-measure of Bε(Ln(ζa
n)) is larger than 1− ε.

Since (Ln)∗νn converges to the Dirac measure at ξ, it follows that ξ ∈ Bε(Ln(ζa
n))

for every large n. As ε > 0 is arbitrary, this proves the second claim in the

proposition.
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2.3. Quasi-projective maps

Let v 7→ [v] be the canonical projection from C
d minus the origin to the pro-

jective space P(Cd). We call P#: P(Cd)→ P(Cd) a projective map if there is some

P ∈ GL(d,C) that induces P# through P#([v]) = [P (v)]. It was pointed out by

Furstenberg [6] that the space of projective maps has a natural compactification,

the space of quasi-projective maps, defined as follows. The quasi-projective map

Q# induced by a non-zero, possibly non-invertible, linear map Q : C
d → C

d is

given by Q#([v]) = [Q(v1)] where v1 is any vector such that v− v1 is in kerQ.

Observe that Q# is defined and continuous on the complement of the projective

subspace kerQ# =
{

[v] : v ∈ kerQ
}

. The space of quasi-projective maps inherits

a topology from the space of non-zero linear maps, through the natural projection

Q 7→Q#. Clearly, every quasi-projective map Q# is induced by some linear map Q

such that ‖Q‖= 1. It follows that the space of quasi-projective maps in P(Cd)

is compact for this topology.

This notion has been extended to transformations on Grassmannian mani-

folds, by Gol’dsheid, Margulis [7]. Namely, one calls P# : Grass(ℓ, d)→Grass(ℓ, d)

a projective map if there is P ∈GL(d,C) that induces P# through P#(ξ) =P (ξ).

Note that P may always be taken such that the map Λℓ(P ) it induces on Λℓ(Cd)

has norm 1. Let Q be the closure of the set of all transformations Λℓ(P ) with

P invertible. Since every Λℓ(P ) preserves the closed subset Λℓ
v(C

d), so does every

Q ∈ Q. The quasi-projective map Q# induced on Grass(ℓ, d) by a map Q ∈ Q

is given by Q#(πv(ω)) = πv(Q(ω)) for any ℓ-vector ω in the complement of kerQ.

The space of all quasi-projective maps on Grass(ℓ, d) inherits a topology from Q,

through the natural projection Q 7→ Q#, and it is compact for this topology,

since we may always take Q with norm equal to 1.

Lemma 2.3. The kernel kerQ# = πv(kerQ) of any quasi-projective map is

contained in some hyperplane section of Grass(ℓ, d).

Proof: We only have to check that kerQ is contained in a geometric hyper-

plane of Λℓ(Cd). Let Pn be any sequence of linear invertible maps such that every

Λℓ(Pn) has norm 1 and they converge to Q. Consider the polar decomposition

Pn = K ′
nDnKn where Dn = diag[an

1 , ..., a
n
d ] relative to some orthonormal basis

e1, ..., ed. Then Λℓ(Pn) = Λℓ(K ′
n) Λℓ(Dn) Λℓ(Kn) is the polar decomposition of

Λℓ(Pn), where Λℓ(Dn) is diagonal relative to the basis ei1∧ · · ·∧ eiℓ , i1< · · ·< iℓ
of Λℓ(Cd). Denote e = e1∧ · · · ∧ eℓ. Since the eigenvalues an

i , i= 1, ..., d, are in

non-increasing order,

an
1 · · · a

n
ℓ =

∥

∥Λℓ(Dn)(e)
∥

∥ =
∥

∥Λℓ(Dn)
∥

∥ =
∥

∥Λℓ(Pn)
∥

∥ = 1 .
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Taking the limit over a convenient subsequence, we get that Q= Λℓ(K ′)DΛℓ(K)

for some unitary operators K, K ′ and some norm 1 operator D diagonal with

respect to the basis ei1∧ · · · ∧ eiℓ . Moreover, ‖D(e)‖ = 1 and the kernel of D is

contained in the hyperplane section H(e) orthogonal to e. Let ω = Λℓ(K)−1(e)

and H = Λℓ(K)−1(H(e)) be the hyperplane section orthogonal to ω. Then

η ∈ kerQ ⇔ Λℓ(K) η ∈ kerD ⇒ Λℓ(K) η ∈ H(e) ⇔ η ∈ H ,

and this proves the statement.

The weak∗ topology in the space of probability measures on Grass(ℓ, d) is

characterized by the property that a sequence (νn)n converges to a probability ν

if and only if, given any continuous function g : Grass(ℓ, d) → R, the integrals
∫

g dνn converge to
∫

g dν. It is well-known that this topology is metrizable and

compact, because the space of continuous functions on the Grassmannian contains

countable dense subsets.

Lemma 2.4. If (Pn)n is a sequence of projective maps converging to some

quasi-projective map Q of Grass(ℓ, d), and (νn)n is a sequence of probability

measures in Grass(ℓ,d) converging weakly to some probability ν with ν(kerQ)=0,

then (Pn)∗νn converges weakly to Q∗ν.

Proof: Let (Km)m be a basis of neighborhoods of kerQ such that ν(∂Km)=0

for all m. Given any continuous g : Grass(ℓ, d) → R, and given ε > 0, fix m ≥ 1

large enough so that ν(Km)≤ ε. Then fix n0 ≥m so that νn(Km)≤ ν(Km)+ε≤ 2ε,

∣

∣

∣

∣

∫

Kc
m

(g ◦Q) dνn −

∫

Kc
m

(g ◦Q) dν

∣

∣

∣

∣

≤ ε and sup
Kc

m

∣

∣

∣g ◦Pn − g ◦Q
∣

∣

∣ ≤ ε

for all n ≥ n0. Then, splitting into integrals over Km and over Kc
m,

∣

∣

∣

∣

∫

(g ◦Pn) dνn −

∫

(g ◦Q) dν

∣

∣

∣

∣

≤ 2ε+ 3ε sup |g|

for all n ≥ n0. This proves the lemma.

For notational simplicity, in what follows we drop the subscript # and use

the same symbol to represent a linear transformation and its action on any of the

spaces Grass(ℓ, d), 0< ℓ< d. In particular, we also denote by F̂A the Grassman-

nian cocycles Σ̂×Grass(ℓ, d) → Σ̂×Grass(ℓ, d) defined by Â over f̂ .
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2.4. Bounded distortion

Let k ≥ 1 be fixed. For each I = (ι0, ..., ιk−1) denote by fu,k
I : Σu → [I]u the

inverse branch of fu,k = (fu)k with values in the cylinder [I]u = [ι0, ..., ιk−1]
u.

Moreover, define

(5) Jfu,k
I (xu) = µ̂xu([I]s) for each xu ∈ Σu ,

where [I]s = [ι0, ...ιk−1]
s. The boundedness condition (1) gives

(6)
1

K
≤

Jfu,k
I (xu)

Jfu,k
I (yu)

≤ K

for every I and any pair of points xu and yu in Σu. This will be used in the proof

of Lemma 2.6 and Corollary 4.7. Moreover, the continuity condition (2) implies

that the function

(7) xu 7→ Jfu,k
I (xu)

is continuous on Σu, for every choice of I. In both cases, we also have dual objects

and statements for inverse branches fs,k
I of the iterates of fs. From (2) we also

get the following fact, which will be used in the proof of Proposition 4.4.

Lemma 2.5. Let Φ: Σ̂ → R be a bounded measurable function such that,

for every fixed xs ∈ Σs, the function xu 7→ Φ(xs, xu) is continuous at some

zu ∈ Σu. Then

xu 7→

∫

Φ(xs, xu) dµ̂xu(xs) is continuous at zu .

There is also a dual statement obtained by interchanging the roles of xs and xu.

Proof: Let zu ∈ Σu and ε > 0 be fixed. Define φ(xs) = Φ(xs, zu) for every

xs ∈ Σs. The continuity condition (2) gives that

(8)

∣

∣

∣

∣

∫

φ(xs) dµ̂xu(xs) −

∫

φ(xs) dµ̂zu(xs)

∣

∣

∣

∣

< ε

for any xu in some neighborhood Z0 of the point zu. Let Zn, n ≥ 0 be a decreasing

basis of neighborhoods of zu. The assumption that Φ is continuous on the second

variable means that for every xs there exists some n ≥ 1 such that

∣

∣

∣
Φ(xs, xu) − φ(xs)

∣

∣

∣
< ε for all xu ∈ Zn .
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Let V (k, ε) ⊂ Σs be the set of points xs ∈ Σs for which we may take n ≤ k.

Consider k large enough so that the µ̂zu-measure of V (k, ε)c is less than ε. Then,

using condition (1),

µ̂xu

(

V (k, ε)c
)

< Kε for every xu ∈ Σu .

The difference
∣

∣

∫

Φ(xs, xu) dµ̂xu(xs) −
∫

φ(xs) dµ̂xu(xs)
∣

∣ is bounded above by

∫

V (k,ε)

∣

∣

∣Φ(xs, xu) − φ(xs)
∣

∣

∣ dµ̂xu(xs) + 2 sup |Φ| µ̂xu

(

V (k, ε)c
)

and so, for any xu ∈ Zk,

(9)

∣

∣

∣

∣

∫

Φ(xs, xu) dµ̂xu(xs) −

∫

φ(xs) dµ̂xu(xs)

∣

∣

∣

∣

< ε+ 2Kε sup |Φ| .

Putting (8) and (9) together, we conclude that

∣

∣

∣

∣

∫

Φ(xs, xu) dµ̂xu(xs) −

∫

Φ(xs, zu) dµ̂zu(xs)

∣

∣

∣

∣

< 2ε+ 2Kε sup |Φ|

for every xu in the neighborhood Zk of zu. This proves the lemma.

Given any measurable set F ⊂ Σu and any I = (ι0, ..., ιk−1), we have

f̂−k
(

[I]s×F
)

= Σs×fu,k
I (F ) = (P u)−1

(

fu,k
I (F )

)

.

Consequently, since µ̂ is invariant under f̂ and µu = P u
∗ µ̂,

∫

F
Jfk

I (xu) dµu(xu) =

∫

F
µ̂xu

(

[I]s
)

dµu(xu) = µ̂
(

[I]s×F
)

= µu
(

fu,k
I (F )

)

.

Thus, Jfu,k
I is a Radon–Nikodym derivative of the measure F 7→ µu

(

fu,k
I (F )

)

with respect to µu. An equivalent formulation is

∫

(ψ · Jfu,k
I ) dµu =

∫

[I]u
(ψ ◦ fu,k) dµu .

for any bounded measurable function ψ : Σu → R, the previous equality corre-

sponding to the case ψ = XF . Considering F = {xu ∈ Σu : Jfu,k
I (xu) = 0}, we

get that Jfu,k
I (fu,k(zu)) > 0 for µu-almost every zu ∈ [I]u. Therefore,

(10) Jfu,k : Σu → (0,+∞) , Jfu,k(zu) =
1

Jfu,k
I

(

fu,k(zu)
)

when zu ∈ [I]u
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is well defined µu-almost everywhere. Moreover, given any bounded measurable

function ξ : [I]u → R and denoting ψ = (ξ ·Jfu,k) ◦ fu,k
I , we have that

∫

(ξ ◦ fu,k
I ) dµu =

∫

(ψ · Jfu,k
I ) dµu =

∫

[I]u
(ψ ◦ fu,k) dµu =

∫

(ξ ·Jfu,k) dµu .

In particular, taking ξ = XB,

µ
(

fu,k(B)
)

=

∫

B
Jfu,k dµu for every measurable B ⊂ [I]u .

In other words, Jfu,k is a Jacobian of µu for the k th iterate of fu.

Lemma 2.6. Given any I = (ι0, ..., ιk−1) and any zu ∈ [I]u,

f̂k
∗ µ̂zu = Jfu,k(zu)

(

µ̂fu,k(zu) | [I]
s
)

.

Moreover, a dual statement is true for f̂−k
∗ µ̂zs .

Proof: Let xu = fu,k(zu). Clearly, zu = fu,k
I (xu) and f̂k maps W s

loc(z
u)

bijectively to [I]s×{xu} ⊂ W s
loc(x

u). Consider any J = (ιl, ..., ι−1), where l < 0,

and denote JI = (ιl, ..., ι0, ..., ιk−1). By the definition (5),

µ̂xu

(

[JI]s
)

= Jfu,k+l
JI (xu) and (f̂k

∗ µ̂zu)
(

[JI]s
)

= µ̂zu

(

[J ]s
)

= Jfu,l
J (zu) .

Since fu,k+l
JI = fu,l

J ◦fu,k
I , we have that

(11) Jfu,k+l
JI (xu) = Jfu,k

I (xu)Jfu,l
J (zu) at µu-almost every point .

Using the continuity property (7), one concludes that the equality in (11) holds

everywhere on suppµu = Σu. Replacing the previous pair of relations, we find

that

µ̂xu

(

[JI]s
)

= Jfu,k
I (xu) (f̂k

∗ µ̂zu)
(

[JI]s
)

for every zu ∈ Σu and any choice of J = (ιl, ..., ι−1). This means that

(

µ̂xu | [I]s
)

= Jfu,k
I (xu)(f̂k

∗ µ̂zu) ,

which, in view of the definition (10), is just another way of writing the claim

in the lemma. The dual statement is proved in just the same way.
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2.5. Backward averages

For each xu ∈ Σu and k ≥ 1 let the backward average measure µu
k,xu of the

map fu be defined on Σu by

µu
k,xu =

∑

fu,k(zu)=xu

1

Jfu,k(zu)
δzu =

∑

I

Jfu,k
I (xu) δ

fu,k
I

(xu)
,

where the last sum is over all I = (ι0, ..., ιk−1). From (5) we get that

(12)
∑

fu,k(zu)=xu

1

Jfu,k(zu)
=
∑

I

Jfu,k
I (xu) =

∑

I

µ̂xu

(

[I]s
)

= 1

for every xu ∈ Σu. In other words, every µu
k,xu is a probability measure. The

definition also implies that
∫

µu
k,xu(F ) dµu(xu) =

∑

I

∫

fu,k(F∩[I]u)
Jfu,k

I dµu =
∑

I

µu
(

F ∩ [I]u
)

= µu(F )

for every measurable subset F of Σu. Thus,

(13)

∫∫

ψ(zu) dµu
k,xu(zu) dµu(xu) =

∫

ψ(xu) dµu(xu)

for any bounded measurable function ψ on Σu. It is important to notice that

the next result is stated for every (not just almost every) point xu:

Lemma 2.7. For every xu ∈ Σu and every cylinder [J ]u ⊂ Σu,

Kµu
(

[J ]u
)

≥ lim sup
n

1

n

n−1
∑

k=0

µu
k,xu

(

[J ]u
)

≥ lim inf
n

1

n

n−1
∑

k=0

µu
k,xu

(

[J ]u
)

≥
1

K
µu
(

[J ]u
)

Proof: Given any positive µu-measure set X ⊂ Σu, define

µu
k,X =

1

µu(X)

∫

X
µu

k,zu dµu(zu) .

From the definition of the Jacobian one gets that

µu
k,X(F ) =

1

µu(X)
µu
(

F ∩ (fu)−k(X)
)

for every measurable set F and every k ≥ 1. Since µu is ergodic, it follows that

(14)
1

n

n−1
∑

k=0

µu
k,X(F ) → µu(F ) .
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Take F = [J ]u andX= Σu. Assuming k is larger than the length of J , we have that

fu,k
I (X) = [I]u intersects [J ]u if and only if it is contained in it. Then, fu,k

I (yu)∈ [J ]u

if and only if fu,k
I (xu)∈ [J ]u, for any yu∈X. Together with (6), this implies that

1

K
≤
µu

k,yu

(

[J ]u
)

µu
k,xu

(

[J ]u
) ≤ K

for all yu ∈X, and so

1

K
≤

µu
k,X

(

[J ]u
)

µu
k,xu

(

[J ]u
) ≤ K .

Combined with (14), this implies the statement of the lemma.

As a direct consequence, for every cylinder [J ]u ⊂ Σu and every xu ∈ Σu,

(15) lim sup
k

µu
k,xu

(

[J ]u
)

≥ K−1µu
(

[J ]u
)

.

This fact will be used in the proof of Lemma 5.2.

2.6. Holonomy reduction

Fix an arbitrary point x− ∈ Σs and then, for each x̂ ∈ Σ̂, denote by φu(x̂) the

unique point in W u
loc(x−)∩W s

loc(x̂). Using the stable holonomies in Definition 1.1,

define Âu : Σ̂ → GL(d,C) by

(16) Âu(x̂) = Hs
f̂(x̂),φu(f̂(x̂))

· Â(x̂) ·Hs
φu(x̂), x̂ = Hs

f̂(φu(x̂)),φu(f̂(x̂))
· Â
(

φu(x̂)
)

.

Equivalently, the cocycle F̂Au defined by Âu over f is conjugate to the cocycle F̂A

defined by Â through the conjugacy

Φ: Σ̂×C
d → Σ̂×C

d , Φ(x̂, v) =
(

x̂,Hs
x̂,φu(x̂)

)

.

Consequently, the two cocycles have the same Lyapunov exponents, and either

one is simple if and only if the other one is. So, for the purpose of proving

Theorem A one may replace Â by either Âu. On the other hand, the second

equality in (16) implies that Âu is constant on every local stable set, and so

Âu(x̂) = Au(xu) for some Au : Σu → GL(d,C) .

There is a dual construction, using unstable holonomies, where one finds a map

Âs : Σ̂ → GL(d,C) that is constant on every local unstable set and such that

the cocycle it defines over f is also conjugate to F̂A.
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From now on, and until the end of Section 6, we consider Âu instead of Â.

Notice that the corresponding stable holonomies are trivial

Hs
x̂,ŷ = id for all x̂ and ŷ ,

because Âu is constant on local stable sets. For simplicity, we omit the super-

scripts u in the notations for Âu, Au, F̂Au , Σu, P u, fu, xu, µu, mu, Hu
x̂,ŷ, f

u,k
I , etc,

that is, we just represent these objects as Â, A, F̂A, Σ, P , f , x, µ, m, Hx̂,ŷ, f
k
I , etc.

3 – Convergence of conditional probabilities

Let π̂ : Σ̂×Grass(ℓ, d) → Σ̂ and π : Σu×Grass(ℓ, d) → Σu be the natural

projections. The value of ℓ ∈ {1, ..., d−1} will be fixed till very near the end. Note

that if m̂ is an F̂A-invariant probability on Σ̂×Grass(ℓ, d) then m = (P×id)∗ m̂

is an FA-invariant probability on Σ×Grass(ℓ, d). Moreover, if π̂∗ m̂ = µ̂ then

π∗m = µ. Given x̂ ∈ Σ̂ we denote xn = P (f̂−n(x̂)) for n ≥ 0.

Proposition 3.1. Let m̂ be any F̂A-invariant probability on Σ̂×Grass(ℓ, d)

such that π̂∗ m̂ = µ̂. Let {mx : x ∈ Σ} be a disintegration of the measure m=

(P×id)∗ m̂ along the Grassmannian fibers. Then the sequence of probability

measures

An(xn)∗mxn

on Grass(ℓ, d) converges in the weak∗ topology as n→ ∞, for µ̂-almost every

x̂ ∈ Σ̂.

Starting the proof, let B be the Borel σ-algebra of Σ. Consider the sequence

(Bn)n of σ-algebras of Σ̂ defined by B0 = P−1(B) and Bn = f̂(Bn−1) for n ≥ 1.

In other words, Bn is the σ-algebra generated by all cylinders [ι−n, ...; ι0; ..., ιm]

with m ≥ 0 and ιj ∈ N. Fix any continuous function g : Grass(ℓ, d) → R. For

x̂ ∈ Σ̂ and n ≥ 0, define

În(x̂) = În(g, x̂) =

∫

g d
(

An(xn)∗mxn

)

=

∫

(

g ◦An(xn)
)

dmxn .

Notice that În is Bn-measurable: it can be written as În = In ◦P ◦ f̂−n, where

In is the B-measurable function

In(x) = In(g, x) =

∫

(

g ◦An(x)
)

dmx .
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Lemma 3.2. For µ-almost every x ∈ Σ and any n ≥ 0 and k ≥ 1,

In(x) =
∑

z∈f−k(x)

1

Jfk(z)
In+k(z) =

∫

In+k(z) dµk,x(z) .

Proof: Since the measure m is invariant under F k
A , its disintegration must

satisfy

(17) mx =
∑

z∈f−k(x)

1

Jfk(z)
Ak(z)∗mz =

∫

(

Ak(z)∗mz

)

dµk,x(z)

for µ-almost every x ∈ Σ. Then,

In(x) =

∫

(

g ◦An(x)
)

dmx =

∫

(

g ◦An(x)
)

d





∑

z∈f−k(x)

1

Jfk(z)
Ak(z)∗mz





=
∑

z∈f−k(x)

1

Jfk(z)

∫

(

g ◦An+k(z)
)

dmz =
∑

z∈f−k(x)

1

Jfk(z)
In+k(z) ,

for µ-almost every x ∈ Σ, as claimed.

The next lemma means that each În is the conditional expectation of În+k

with respect to the σ-algebra Bn for all k ≥ 1, and so the sequence (În,Bn)n is

a martingale.

Lemma 3.3. For any n ≥ 0 and k ≥ 1 and any Bn-measurable function

ψ : Σ̂ → R, ∫

În+k(x̂)ψ(x̂) dµ̂(x̂) =

∫

În(x̂)ψ(x̂) dµ̂(x̂) .

Proof: Let us write ψ = ψn ◦P ◦ f̂−n, for some B-measurable function ψn.

Since µ̂ is f̂ -invariant and µ = P∗ µ̂,

(18)

∫

În(x̂)ψ(x̂) dµ̂(x̂) =

∫

In(x)ψn(x) dµ(x) .

Analogously, using the relation ψ = (ψn ◦ f
k) ◦P ◦ f̂−(n+k),

(19)

∫

În+k(x̂)ψ(x̂) dµ̂(x̂) =

∫

In+k(x)ψn

(

fk(x)
)

dµ(x) .

By Lemma 3.2, the expression on the right hand side of (18) is equal to
∫∫

In+k(z) dµk,x(z) ψn(x) dµ(x) =

∫∫

In+k(z)ψn

(

fk(z)
)

dµk,x(z) dµ(x) .
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According to the relation (13), this last expression is the equal to the right hand

side of (19). This proves the claim of the lemma.

Proof of Proposition 3.1: By Lemma 3.3 and the martingale convergence

theorem (see Durret [5]), the sequence În = În(g, ·) converges µ̂-almost every-

where to some measurable function I(g, ·). Notice that |În(g, x̂)| ≤ sup |g| for

every n ≥ 1, and so |I(g, x̂)| is also bounded above by sup |g|, for µ̂-almost every

x̂ ∈ Σ̂. Considering a countable dense subset of the space of continuous functions,

we find a full µ̂-measure set of points x̂ such that

În(g, x̂) =

∫

g d
(

An(xn)∗mxn

)

→ I(g, x̂)

for every continuous function g : Grass(ℓ, d) → R. Let m̃x̂ be the probability

measure on Grass(ℓ, d) defined by
∫

g dm̃x̂ = I(g, x̂) for every continuous g : Grass(ℓ, d) → R .

Then the previous relation means that An(xn)∗mxn converges weakly to m̃x̂.

Corollary 3.4. For µ̂-almost every x̂ ∈ Σ̂, the limit of An(xn)∗mxn coin-

cides with the conditional probability m̂x̂ of the measure m̂.

Proof: Taking the limit k → ∞ in Lemma 3.3, and using the dominated

convergence theorem, we get that
∫

I(g, x̂)ψ(x̂) dµ̂(x̂) =

∫

În(g, x̂)ψ(x̂) dµ̂(x̂)

for every Bn-measurable integrable function ψ. This may be rewritten as
∫

ψ(x̂)

∫

g(ξ) dm̃x̂(ξ) dµ̂(x̂) =

∫

ψ(x̂)

∫

g
(

An(xn) ξ
)

dmxn(ξ) dµ̂(x̂) .

Let ψ = X[I] be the characteristic function of a generic cylinder [I] in Bn. Chang-

ing variables x̂ = f̂n(ẑ), and using the fact that µ̂ is f̂ -invariant, we get that the

right hand side of the previous equality is equal to
∫

X[I]

(

f̂n(ẑ)
)

∫

g
(

An(z) ξ
)

dmz(ξ) dµ̂(ẑ)

where z = P (ẑ). Moreover, since the inner integrand z 7→ g(An(z) ξ) is constant

on local stable leaves, this may be rewritten as
∫

X[I]

(

f̂n(ẑ)
)

∫

g
(

An(ẑ) ξ
)

dm̂ẑ(ξ) dµ̂(ẑ) =

∫

X[I](x̂)

∫

g(η) dm̂x̂(η) dµ̂(x̂) .
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In the last step we changed variables (x̂, η) = F̂n
A (ẑ, ξ) and used the fact that

m̂ is invariant under F̂A. Summarizing, at this point we have shown that
∫∫

X[I](x̂) g(ξ) dm̃x̂(ξ) dµ̂(x̂) =

∫∫

X[I](x̂) g(η) dm̂x̂(η) dµ̂(x̂) .

This relation extends immediately to linear combinations of functions X[I]×g.

Since these linear combinations form a dense subset of all bounded measurable

functions on Σ̂×Grass(ℓ, d), this implies that m̃x̂ = m̂x̂ for µ̂-almost every x̂,

as claimed.

4 – Properties of u-states

Let m̂ be a probability measure on Σ̂×Grass(ℓ,d) that projects down to µ̂ on Σ̂,

in the sense that π̂∗ m̂ = µ̂. We call m̂ a u-state if it admits some disintegration

{m̂x̂ : x̂ ∈ Σ̂} into conditional probabilities along the fibers {x̂}×Grass(ℓ,d) that

is invariant under unstable holonomies:

m̂ŷ = (Hx̂,ŷ)∗ m̂x̂ whenever y ∈W u
loc(x̂) .

We call the u-state invariant if, in addition, it is invariant under F̂A. We also call

(invariant) u-states the projections m = (P×id)∗ m̂ down to Σ×Grass(ℓ, d) of

the (invariant) u-states m̂ on Σ̂×Grass(ℓ, d). Notice that π∗m = µ, and m is

invariant under FA if m̂ is invariant under F̂A.

Here we prove that invariant u-states m do exist. Moreover, every u-state

admits some disintegration {mx : x ∈ Σ} into conditional probabilities along

the fibers {x}×Grass(ℓ, d) varying continuously with the base point x, relative

to the weak∗ topology. The formal statements are in Propositions 4.2 and 4.4.

The proofs use the assumption that µ̂ has product structure (recall Section 1.2).

4.1. Existence of invariant u-states

Let M be the space of probability measures on Σ̂×Grass(ℓ, d) that project

down to µ̂ on Σ̂. The weak∗ topology on M is the smallest topology such that

the map η 7→
∫

ψ dη is continuous, for every bounded continuous function

ψ : Σ̂×Grass(ℓ,d) → R. Notice that M is a compact separable space for this topol-

ogy. This is easy to see from the following alternative description of the topology.

Let Kn ⊂ Σ̂, n ≥ 1, be pairwise disjoint compact sets such that µ̂(Kn) > 0 and
∑

µ̂(Kn) = 1. Let Mn be the space of measures on Kn×Grass(ℓ, d) that project
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down to (µ̂ |Kn). The usual weak∗ topology makes Mn a compact separable space.

Given η ∈ M, let ηn ∈ Mn be obtained by restriction of η. The correspondence

η 7→ (ηn)n identifies M with
∏

Mn and the product topology on
∏

Mn corre-

sponds to the weak∗ topology on M under this identification. Thus, the latter is

a compact separable space, as claimed.

Remark 4.1. If ηj converges to η in the weak∗ topology then

(20)

∫

ψ(x̂, ξ)J(x̂) dηj(x̂, ξ) →

∫

ψ(x̂, ξ)J(x̂) dη(x̂, ξ)

for any continuous function ψ : Σ̂×Grass(ℓ, d) → R and any measurable bounded

(or even µ̂-integrable) function J : Σ̂ → R. To prove this it suffices to consider the

case when J =XB for some measurable set B, because every bounded measurable

function is the uniform limit of linear combinations of characteristic functions.

Now, using that µ̂ is a regular measure (see Theorem 6.1 in [18]), we may find

continuous functions Jn : Σ̂ → [0, 1] such that µ̂
({

x̂ ∈ Σ̂ : Jn(x̂) 6= J(x̂)
})

is arbi-

trarily small. By the definition of the topology,

∫

ψ(x̂, ξ)Jn(x̂) dηj(x̂, ξ) →

∫

ψ(x̂, ξ)Jn(x̂) dη(x̂, ξ) as j→∞ .

This implies the convergence in (20), because corresponding terms in these two

relations differ by not more than sup |ψ| µ̂
({

x̂ ∈ Σ̂ : Jn(x̂) 6= J(x̂)
})

, which can

be made arbitrarily small.

Remark also, for future use, that in these arguments µ̂ may be replaced by

any other probability in Σ̂.

Proposition 4.2. There exists some invariant u-state m̂ on Σ̂×Grass(ℓ, d).

Here is an outline of the proof. The space U of all u-states is non-empty and

forward invariant under the cocycle. Every Cesaro weak∗ limit of the forward

iterates of an element of U is an invariant u-state. The proposition follows by

noting that weak∗ limits do exist, because U is compact relative to the weak∗

topology. The last step demands some caution, because conditional probabilities

do not behave well under weak∗ limits, in general. We fix an arbitrary point w ∈Σ

and observe that, restricted to the cylinder, the space U may be identified with

the space N of probabilities on W s
loc(w)×Grass(ℓ, d) that project down to µ̂w.

Then it suffices to use that the latter space is weak∗ compact.
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Let us fill the details. Let {µ̂x : x ∈ Σ} be the disintegration of µ̂ along local

stable sets in Section 1.2. Denote by Jx the Radon–Nikodym derivatives of the

conditional measure µ̂x with respect to µ̂w, for each x ∈ Σ. According to (6),

these Jx are uniformly bounded from zero and infinity. We use x̂ and ŵ to

denote generic points in W s
loc(x) and W s

loc(w), respectively, with the convention

that whenever they appear in the same expression they are related by

ŵ ∈ W s
loc(w) ∩W u

loc(x̂) .

Let N be the space of all probability measures λ on W s
loc(w)×Grass(ℓ, d) that

project down to µ̂w on W s
loc(w). Recall, from the observation at the beginning of

this section, that N is weak∗ compact. We denote by U the space of all u-states,

that is, all probability measures η on Σ̂×Grass(ℓ, d) that project down to µ̂

and admit some disintegration {ηx̂ : x̂ ∈ Σ̂} along the Grassmannian fibers that

is invariant under unstable holonomy:

(21) ηx̂ = (Hŵ,x̂)∗ ηŵ for all x̂ ∈ Σ̂ .

Lemma 4.3. U is homeomorphic to N .

Proof: Every λ ∈ N may be lifted to some η ∈ U in the following natural

fashion: choose a disintegration
{

λŵ : ŵ ∈W s
loc(w)

}

of λ and then let η be the

measure on Σ̂×Grass(ℓ, d) whose projection coincides with µ̂ and which admits

(22) ηx̂ = (Hŵ,x̂)∗ λŵ

as conditional probabilities along the fibers {x̂}×Grass(ℓ, d). This definition does

not depend on the choice of the disintegration of λ. Indeed, let
{

λ̃ŵ : ŵ ∈W s
loc(w)

}

be any other disintegration. By essential uniqueness, we have

λ̃ŵ = λŵ for µ̂w-almost every ŵ ∈W s
loc(w) .

Since the measures µ̂x, x ∈ Σ, are all equivalent, it follows that η̃x̂ = ηx̂ for

µ̂x-almost every x̂ ∈W s
loc(x) and every x ∈ Σ. So, the lifts constructed from

the two disintegrations do coincide. It is clear from the construction that η ∈ U .

Let Ψ : N → U , Ψ(λ) = η, be the map defined in this way. We are going to

prove that Ψ is a homeomorphism. To prove injectivity, suppose Ψ(λ) = m̂ =

Ψ(θ). By (22), this means that

(Hŵ,x̂)∗ λŵ = m̂x̂ = (Hŵ,x̂)∗ θŵ
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for µ̂-almost every x̂ ∈ Σ̂. Since the conditional probabilities µ̂x are all equivalent,

this is the same as λŵ = θŵ for µ̂ξ-almost every ŵ ∈W s
loc(w). In other words,

λ= θ. To prove surjectivity, consider any measure η ∈ U . By definition, η admits

some disintegration {ηx : x ∈ Σ} satisfying (21). Define λŵ = (Hx̂,ŵ)∗ ηx̂ for any

x̂ ∈W u
loc(ŵ), and then let λ be the measure on W s

loc(w)×Grass(ℓ, d) that projects

down to µ̂w and has these λŵ as conditional probabilities along the fibers. Then

λ ∈ N and η = Ψ(λ).

We are left to check that Ψ is continuous. Let ψ : Σ̂×Grass(ℓ, d) → R be any

bounded continuous function and let λj be any sequence of measures converging

to some λ in N . Using Remark 4.1,

∫

ψ(x, x̂, ξ) dλj
x̂(ξ) dµ̂x(x̂) =

∫

ψ(x, x̂, ξ)Jx(ŵ) dλj
ŵ(ξ) dµ̂w(ŵ)

converges to

∫

ψ(x, x̂, ξ) dλx̂(ξ) dµ̂x(x̂) =

∫

ψ(x, x̂, ξ)Jx(ŵ) dλŵ(ξ) dµ̂w(ŵ)

as j→∞, for every x ∈ Σ. Integrating with respect to µ, and using the bounded

convergence theorem, we get that

∫∫

ψ(x, x̂, ξ) dλj
x̂(ξ) dµ̂x(x̂) dµ(x) →

∫∫

ψ(x, x̂, ξ) dλx̂(ξ) dµ̂x(x̂) dµ(x)

as j→∞. This means that Ψ(λj) converges to Ψ(λ) as j→∞.

Proof of Proposition 4.2: In view of the previous lemma, U is non-empty

and compact relative to the weak∗ topology. Moreover, U is invariant under

iteration by F̂A: this follows from the invariance property (b) in Section 1.3 for

unstable holonomies, together with the fact that local unstable sets are mapped

inside local unstable sets by the inverse of f̂ . Consider any probability measure

m̄∈ U . The sequence

m̂n =
1

n

n−1
∑

j=0

(

F̂ j
A

)

∗
m̄

has accumulation points m̂ in U . Since F̂A is a continuous map, the push-forward

operator (F̂A)∗ is continuous relative to the weak∗ topology. It follows that any

such accumulation point is F̂A-invariant and, consequently, an invariant u-state.
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4.2. Continuity of conditional probabilities

Now we prove that conditional probabilities of u-states along the Grassman-

nian fibers depend continuously on the base point:

Proposition 4.4. Any u-state m in Σ×Grass(ℓ, d) admits some disintegra-

tion {mx : x ∈ Σ} into conditional probabilities along the Grassmannian fibers

varying continuously with x ∈ Σ in the weak∗ topology.

This continuous disintegration is necessarily unique, because disintegrations

are essentially unique and µ is supported on the whole Σ. For the proof of the

proposition we need the following simple observation:

Lemma 4.5. Let
{

m̂x̂ : x̂ ∈ Σ̂
}

be a disintegration along
{

{x̂}×Grass(ℓ, d) :

x̂ ∈ Σ̂
}

of some probability measure m̂ on Σ̂×Grass(ℓ, d) such that π̂∗ m̂ = µ̂.

Then
mx =

∫

m̂x̂ dµ̂x(x̂)

is a disintegration of m = (P× id)∗ m̂ along
{

{x}×Grass(ℓ, d) : x ∈ Σ
}

.

Proof: For any ϕ : Σ×Grass(ℓ, d) → R and ϕ̂ = ϕ ◦ (P× id),

∫∫

ϕ dmx dµ(x) =

∫∫ (∫

ϕ(x, v) dm̂x̂(v) dµ̂x(x̂)

)

dµ(x)

=

∫∫ (∫

ϕ̂(x, v) dm̂x̂(v)

)

dµ̂x(x̂) dµ(x)

=

∫ (∫

ϕ̂(x, v) dm̂x̂(v)

)

dµ̂(x̂) =

∫

ϕ̂ dm̂ =

∫

ϕ dm

and this proves that
{

mx : x ∈ Σ
}

is a disintegration of m.

Remark 4.6. For u-states this gives that, for any measurable set E ⊂

Grass(ℓ, d),

mx(E) =

∫

m̂x̂(E) dµ̂x(x̂) =

∫

m̂ŷ

(

Hs
x̂,ŷ(E)

) dµ̂x

dµ̂y
(ŷ) dµ̂y(ŷ)

for any pair of points x and y in the same cylinder. When the cocycle is locally

constant the stable holonomies Hs
x̂,ŷ = id. In this case it immediately follows

that the conditional probabilities mx and my are all equivalent. Moreover, their
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Radon–Nikodym derivatives are uniformly bounded, as a consequence of the

boundedness condition (1). Starting from this observation, in the appendix of [1]

we give a version of Theorem A for locally constant cocycles that does not require

the continuity hypothesis (2).

Proof of Proposition 4.4: Let
{

m̂x̂ : x̂ ∈ Σ̂
}

be a disintegration of m̂ into

conditional probabilities that are invariant under unstable holonomies: m̂ŷ =

(Hx̂,ŷ)∗ m̂x̂ for every x̂, ŷ in the same local unstable set. Let
{

mx : x ∈ Σ
}

be the

disintegration of m given by Lemma 4.5. For any continuous g : Grass(ℓ, d) → R

and any points x and y in the same cylinder of Σ, we have
∫

g(ξ) dmx(ξ) =

∫∫

g(ξ) dm̂x̂(ξ) dµ̂x(x̂) =

∫∫

g
(

Hŷ,x̂(η)
)

dm̂ŷ(η) dµ̂x(x̂)

where ŷ denotes the unique point in W s
loc(y) ∩W

u
loc(x̂). Fix y and consider the

function

Φ(xs, xu) =

∫

g
(

Hŷ,x̂(η)
)

dm̂ŷ(η), where x̂ = (xs, xu) .

It is clear that Φ is measurable and bounded by the sup |g|. Moreover, it is con-

tinuous on xu for each fixed xs. To check this it suffices to note that m̂ŷ does not

depend on xu, while the function g and the holonomies depend continuously on x̂

(recall Definition 1.1). It follows from Lemma 2.5 that

x 7→

∫

g(ξ) dmx(ξ) =

∫

Φ(xs, x) dµ̂x(xs)

is continuous. This proves the claim of the proposition.

Corollary 4.7. If m is an invariant u-state and
{

mx : x ∈ Σ
}

is the con-

tinuous disintegration of m, then

mx =
∑

z∈f−k(x)

1

Jfk(z)
Ak(z)∗mz =

∫

Ak(z)∗mz dµk,x(z)

for every x ∈ Σ and every k ≥ 1.

Proof: The second equality is just the definition of the backward averages,

see Section 2.5. As for the first equality, it must hold for every k ≥ 1 and µ-almost

every x, because m is invariant under f . Moreover, all the expressions involved

vary continuously with x ∈ Σ: this follows from Proposition 4.4, property (7),

and our assumption that the cocycle is continuous. Hence, the first equality

must hold at every point of suppµ = Σ.
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Corollary 4.8. If
{

m̂x̂ : x̂ ∈ Σ̂
}

is a disintegration of an invariant u-state m̂

into conditional probabilities invariant under unstable holonomies then

m̂f̂n(x̂) = An(x)∗ m̂x̂

for every n ≥ 1, every x ∈ Σ, and µ̂x-almost every x̂ ∈W s
loc(x).

Proof: Since m̂ is F̂A-invariant, the equality is true for all n ≥ 1 and µ̂-almost

all ẑ ∈ Σ̂ or, equivalently, for µ̂z-almost every ẑ ∈W s
loc(z) and µ-almost every

z ∈ Σ. Consider an arbitrary point x ∈ Σ. Since µ is positive on open sets,

x may be approximated by points z such that

m̂f̂n(ẑ) = An(z)∗ m̂ẑ

for every n ≥ 1 and µ̂z-almost every ẑ ∈W s
loc(z). Since the conditional probabil-

ities of m̂ are invariant under unstable holonomies, it follows that

m̂f̂n(x̂) =
(

Hf̂n(z), f̂n(x)

)

∗
An(z)∗ m̂ẑ = An(x)∗

(

Hẑ,x̂

)

∗
m̂ẑ = An(x)∗ m̂x̂

for µ̂z-almost every ẑ ∈W s
loc(z), where x̂ is the unique point in W s

loc(x)∩W
u
loc(ẑ).

Since the measures µ̂x and µ̂z are equivalent, this is the same as saying that the

last equality holds for µ̂x-almost every x̂ ∈W s
loc(x), as claimed.

5 – Invariant measures of simple cocycles

In this section we prove that invariant u-states of simple cocycles are fairly

smooth along the Grassmannian fibers: they give zero weight to every hyperplane

section.

Proposition 5.1. Suppose that Â is simple. Let m be any invariant u-state

in Σ×Grass(ℓ, d) and
{

mx : x ∈ Σ
}

be the continuous disintegration of m. Then

mx(V ) = 0 for every x ∈ Σ and any hyperplane section V of Grass(ℓ, d).

In Section 5.1 we argue by contradiction to reduce the proof of Proposition 5.1

to Proposition 5.5, a combinatorial result about intersections of hyperplane sec-

tions. The latter is proved in Section 5.2. See also Appendix B.
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5.1. Smoothness of conditional probabilities

Suppose there is some point of Σ and some hyperplane section of the corre-

sponding Grassmannian fiber which has positive conditional measure. Let γ0 > 0

be the supremum of the values of mx(V ) ≥ γ over all x ∈ Σ and all hyperplane

sections V . The supremum is attained at every point:

Lemma 5.2. For every x ∈ Σ there exists some hyperplane section V of

Grass(ℓ, d) such that mx(V ) = γ0.

Proof: Fix any cylinder [J ] ⊂ Σ and any positive constant c < µ([J ])/K,

where K is the constant in (15). Let z ∈ Σ and V be a hyperplane section with

mz(V ) > 0. For each y ∈ f−k(z), let Vy = Ak(y)−1(V ). By Corollary 4.7,

mz(V ) =

∫

my(Vy) dµk,z(y) ≤ µk,z

(

[J ]
)

sup
{

my(Vy) : y ∈ [J ]
}

+
(

1−µk,z([J ])
)

γ0 .

By (15), there exist arbitrarily large values of k such that µk,z([J ]) ≥ c. Then

mz(V ) ≤ c sup
{

my(Vy) : y ∈ [J ]
}

+ (1− c) γ0 .

Varying the point z ∈ Σ and the hyperplane section V , we can make the left hand

side arbitrarily close to γ0. It follows that

sup
{

my(Vy) : y ∈ [J ]
}

≥ γ0 .

This proves that the supremum over any cylinder [J ] coincides with γ0. Then,

given any x ∈ Σ we may find a sequence xn→ x and hyperplane sections Vn

such that mxn(Vn) → γ0. Moreover, we may assume that Vn converges to some

hyperplane section V in the Hausdorff topology. Given any neighborhood U of V ,

we have mxn(U) ≥ mxn(Vn) for all large n. By Proposition 4.4, the conditional

probabilities mxn converge weakly to mx. Assuming U is closed, it follows that

mx(U) ≥ lim sup
n

mxn(U) ≥ lim sup
n

mxn(Vn) ≥ γ0 .

Making U→ V , we conclude that mx(V )≥ γ0. This proves that the supremum γ0

is realized at x, as claimed.

Lemma 5.3. For any x ∈ Σ and any hyperplane section V of Grass(ℓ, d),

we have mx(V ) = γ0 if and only if my

(

A(y)−1V
)

= γ0 for every y ∈ f−1(x).
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Proof: This is a direct consequence of Corollary 4.7 and the relation (12):

for every x ∈ Σ,

mx(V ) =
∑

y∈f−1(x)

1

Jf(y)
my

(

A(y)−1V
)

and
∑

y∈f−1(x)

1

Jf(y)
= 1 .

Since γ0 is the maximum value of the measure of any hyperplane section,

we get that mx(V ) = γ0 if and only if my(A(y)−1V ) = γ0 for every y ∈ f−1(x),

as stated.

Lemma 5.4. For any x ∈ Σ and any hyperplane section V of Grass(ℓ, d),

we have m̂x̂(V )≤ γ0 for µ̂x-almost every x̂ ∈W s
loc(x). Hence, mx(V ) = γ0 if and

only if m̂x̂(V ) = γ0 for µ̂x-almost every x̂ ∈W s
loc(x).

Proof: Suppose there is y ∈ Σ, a hyperplane section V , a constant γ1 > γ0,

and a positive µ̂-measure subset X of W s
loc(y) such that m̂ŷ(V ) ≥ γ1 for every

ŷ ∈X. For each m < 0, consider the partition of W s
loc(y) ≈ Σs determined by

the cylinders [I]s = [ιm, ..., ι−1]
s, with ιj ∈N. Since these partitions generate the

σ-algebra of the local stable set, given any ε > 0 we may find m and I such that

µ̂y

(

X ∩ [I]s
)

≥ (1− ε) µ̂y

(

[I]s
)

.

Observe that [I]s ≈ [I]s×{y} coincides with f̂n
(

W s
loc(x)

)

, where x = f−n
I (y).

So, using also Lemma 2.6,

µ̂x

(

f̂−n(X)∩W s
loc(x)

)

= (f̂n
∗ µ̂x)

(

X ∩ [I]s
)

= Jµ f
n(x) µ̂y

(

X ∩ [I]s
)

.

By the previous inequality and Lemma 2.6, this is bounded below by

(1− ε)Jµ f
n(x) µ̂y

(

[I]s
)

= (1− ε) (f̂n
∗ µ̂x)

(

[I]s
)

= µ̂x

(

W s
loc(x)

)

= 1− ε .

In this way we have shown that

µ̂y

(

f̂−n(X)∩W s
loc(x)

)

≥ (1− ε) .

Fix ε > 0 small enough so that (1− ε) γ1 > γ0. Using Corollary 4.8, we find that

m̂x̂

(

An(x)−1V
)

= m̂ŷ(V ) ≥ γ1

for µ̂x-almost every x̂ ∈ f̂−n(X) ∩W s
loc(x). It follows that

mx

(

An(x)−1V
)

=

∫

m̂x̂

(

An(x)−1V
)

dµ̂x(x̂) ≥ (1− ε) γ1 > γ0 ,
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which contradicts the definition of γ0. This contradiction proves the first part of

the lemma. The second one is a direct consequence, using the fact that mx(V )

is the µ̂x-average of all m̂x̂(V ).

Before we proceed, let us introduce some useful terminology. Recall that a

hyperplane section V of Grass(ℓ, d) is the image of Λℓ
v(C

d) ∩H under the projec-

tion πv, where H is the geometric hyperplane of Λℓ(Cd) defined by some non-zero

element υ ∈ Λd−ℓ
v (Cd). Notice that, for any linear isomorphism B of C

d,

Λℓ(B)H =
{

ω : ω ∧ Λd−ℓ(B)(υ) = 0
}

and B(V ) = πv

(

Λℓ
v(C

d) ∩ Λℓ(B)H
)

.

Suppose B is diagonalizable. Then we say V is invariant for B if the subspace

πv(υ) is a sum of eigenspaces of B. Likewise, we say V contains no eigenspace

of B if πv(υ) intersects any sum of ℓ eigenspaces of B at the origin only or,

equivalently, if H contains no ℓ-vector ω such that πv(ω) is a sum of eigenspaces

of B. A subset J of {0, 1, ..., N−1} is called ε-dense if #J ≥Nε.

Proposition 5.5. For any ε > 0 there exists N ≥ 1 such that

⋂

j∈J

Bj(V ) = ∅

for every ε-dense set J ⊂ {0, 1, ..., N−1}, every linear isomorphism B : C
d → C

d

whose eigenvalues all have distinct absolute values, and every hyperplane section

V of Grass(ℓ, d) containing no eigenspace of B.

This proposition will be proved in Section 5.2. Right now let us explain how

it can be used to finish the proof of Proposition 5.1.

Fix a periodic point p̂ ∈ Σ̂ of f̂ and a homoclinic point ẑ ∈ Σ̂ as in Defini-

tion 1.2. Let p =P (p̂) be the corresponding periodic point of f and let z =P (ẑ).

By Lemma 5.2, we may find a hyperplane section V of Grass(ℓ,d) with mp(V ) = γ0.

Write V = πv

(

Λℓ
v(C

d) ∩H
)

, whereH is the geometric hyperplane defined by some

non-zero (d−ℓ)-vector υ. Let V n =A−nq(p)V andHn be the geometric hyperplane

defined byA−nq(p) υ. Then, V n = πv

(

Λℓ
v(C

d)∩Hn
)

for each n ≥ 0. Since all the

eigenvalues of Aq(p) have distinct absolute values, A−nq(p) υ converges to some

(d− ℓ)-vector υ1 such that πv(υ1) is a sum of eigenspaces of Aq(p). This means

that V n converges to V1 = πv

(

Λℓ
v(C

d) ∩H1

)

, where H1 =
{

ω : ω ∧ υ1 = 0
}

is the

geometric hyperplane section defined by υ1. On the other hand, using Lemma 5.3

we find that mp(V
n) = γ0 for all n ≥ 0. By lower semi-continuity of the measure,
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it follows that mp(V1) = γ0. Note that V1 is invariant for Aq(p). This shows that

we may suppose, right from the start, that V is invariant for Aq(p).

Now defineW =Al(z)−1V . From Lemmas 5.3 and 5.4 we get thatmz(W ) = γ0

and m̂ζ(W ) = γ0 for µ̂z-almost every ζ ∈W s
loc(z). For each η ∈W s

loc(p), define

Wη = Hζ,η(W ), where ζ is the unique point in W u
loc(η) ∩W

s
loc(ẑ). Since m̂ is a

u-state and the measures µ̂z and µ̂p are equivalent, we have m̂η(Wη) = m̂ζ(W) = γ0

for µ̂p-almost every η. For each j ≥ 0, let

W j
η = A−jq(p)Wf̂jq(η)

(

in particular, W j
p̂ = A−jq(q)(Wp̂)

)

.

Using Corollary 4.8, we get that m̂η(W
j
η ) = m̂f̂jq(η)(Wf̂jq(η)) = γ0 for every j ≥ 0

and µ̂p-almost every η. It is clear that every W j
η is an ℓ-dimensional projective

subspace. Moreover, it depends continuously on η, for each fixed j, because

unstable holonomies vary continuously with the base points (Definition 1.1).

Notice that

Wp̂ = Hẑ,p̂ A
l(z)−1V = ψ−1

p,z V
(

recall Hẑ,p̂ =Hu
ẑ,p̂ and Hs

p̂,f̂ l(ẑ)
= id

)

.

Thus, the second condition in Definition 1.2 implies thatWp̂ contains no eigenspace

of Aq(p).

Taking ε = γ0, V = Wp̂, B =Aq(p) in Proposition 5.5 we find N ≥ 1 such that

⋂

j∈J

W j
p̂ = ∅ for every γ0-dense subset J of {0, 1, ..., N−1} .

Since the family of sets J is finite, we may use continuity to conclude that

(23)
⋂

j∈J

W j
η = ∅ for every γ0-dense subset J of {0, 1, ..., N−1}

and any η in a neighborhood of p̂ inside the local stable set. On the other hand,

the fact that m̂η(W
j
η ) = γ0 for all j ≥ 0 implies (use a Fubini argument) that

there exists some ω ∈ Grass(ℓ, d) such that the set

J =
{

0≤ j ≤N−1: ω ∈W j
η

}

is γ0-dense in {0, 1, ..., N−1}. This contradicts (23). This contradiction shows

that we have reduced the proof of Proposition 5.1 to proving Proposition 5.5.
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5.2. Intersections of hyperplane sections

Now we prove Proposition 5.5. We say that I ⊂ N is a k-cube of sides

c1, ..., ck ∈ N based on c ∈ N∪{0} if I is the set of all x ∈ N that can be written

as x = c +
∑

i aici with ai = 0 or ai = 1. We shall need the following couple of

lemmas on k-cubes.

Lemma 5.6. Let H ⊂ C
d be a codimension 1 subspace, B : C

d → C
d be a

linear isomorphism, and I be a k-cube for some 1≤ k ≤ d. If H(I) =
⋂

i∈IB
i(H)

has codimension at most k then there exists a subcube I ′⊂ I and an integer l≥ 1

such that Bl
(

H(I ′)
)

= H(I ′).

Proof: The proof is by induction on k. The case k = 1 is easy. Indeed, the

1-cube I = {c, c+ c1} and so H(I) = Bc(H) ∩Bc+c1(H). Since H has codimen-

sion 1, if H(I) has codimension at most 1 then all the subspaces involved must

coincide:
H(I) = Bc(H) = Bc+c1(H) ,

and this gives the claim with l = c1 and I ′ = {c}. Now assume the statement

holds for k− 1. Let I be a k-cube of sides c1, ..., ck based on c. Let I1 and I2
be the (k−1)-cubes of sides c1, ..., ck−1 based on c and on c + ck, respectively.

Then I = I1∪ I2. If either H(I1) or H(I2) has codimension at most k− 1, then

the conclusion follows from the induction hypothesis. Otherwise, both H(I1) and

H(I2) have codimension at least k. Since their intersection H(I) has codimension

at most k, they must all coincide:

H(I) = H(I1) = H(I2) = Bck
(

H(I1)
)

and the conclusion follows, with l= ck and I ′= I1.

Lemma 5.7. For every ε > 0 and k ≥ 1 there exists δ > 0 such that for

all sufficiently large N ≥ 1 the following holds: for every ε-dense subset J of

{0, 1, ..., N−1} there exist c1, ..., ck ∈ N and a δ-dense subset Jk of {0, 1, ..., N−1}

such that for every c ∈ Jk the set J contains the k-cube with sides c1, ..., ck based

on c.

Proof: The proof is by induction on k. Let us start with the case k = 1.

Let aj , j = 1, ...,#J be the elements of J , in increasing order. By assumption,

#J ≥ εN . Then, clearly,

1

#J−1

#J−1
∑

i=1

ai+1− ai ≤
N−1

#J−1
≤

2N

#J
≤

2

ε
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(assume N is large enough so that #J ≥ εN ≥ 2). Then at least half of these

differences are less than twice the average: there exists I ′⊂ {1, ...,#J −1} with

#I ′ ≥ (#J − 1)/2 ≥ #J/4 such that ai+1 − ai ≤ 4/ε for all i ∈ I ′. Then there

must be some c1 ≥ 1 and a subset I ′′ of I ′ such that

ai+1− ai = c1 for all i∈I ′′ and #I ′′ ≥
ε#I ′

4
≥
ε#J

16
≥
ε2

16
N .

It follows that δ= ε2/16 and J1 = {ai : i∈ I
′′} satisfy the conclusion of the lemma

for k = 1.

Now assume the conclusion holds for k−1. Then there exists δk−1 = δ(ε)> 0,

positive integers c1, ..., ck−1, and a δk−1-dense subset Jk−1 of {0, 1, ..., N − 1}

such that J contains a (k−1)-cube of sides c1, ..., ck−1 based on every c ∈ Jk−1.

Applying case k= 1 of the lemma with δk−1 in the place of ε, we find δ= δ(ε)> 0,

a positive integer ck, and a δ-dense subset Jk of {0,1,...,N−1} such that {c, c+ck}

∈ Jk−1 for every c ∈ Jk. Then c1, ..., ck and Jk satisfy the conclusion of the

lemma.

We now conclude the proof of the proposition. Fix k = dim Λℓ(Cd) − 1.

Assume N is large enough so that Lemma 5.7 applies. It follows from the lemma

that J contains some k-cube I. Let H be the geometric hyperplane corresponding

to V . If
⋂

i∈IB
j(V ) ⊂ Grass(ℓ, d) is not empty then H(I) =

⋂

i∈IB
i(H) has pos-

itive dimension, that is, its codimension in Λℓ(Cd) is at most k. So, Lemma 5.6

implies that there exists a subcube I ′ ⊂ I and an integer l ≥ 1 such that H(I ′) is

invariant under Bl. Thus,
⋂

i∈I′B
i(V ) ⊂ Grass(ℓ, d) is non-empty and invariant

under Bl. Since all the eigenvalues of B have different absolute values, for every

ℓ-subspace W ⊂ C
d we have that Bj(W ) converges to a sum of eigenspaces of B

as j→∞. Since
⋂

i∈I′B
j(V ) is non-empty, invariant, and closed, we conclude

that it contains some sum of eigenspaces of B. In particular, V contains a sum

of eigenspaces of B, which contradicts the hypothesis. This contradiction proves

Proposition 5.5.

6 – Convergence to a Dirac measure

In this section we prove that, for simple cocycles, the limit of the iterates of

any invariant u-state m is a Dirac measure on almost every Grassmannian fiber.

Recall that, given any x̂ ∈ Σ̂, we denote xn =P
(

f̂−n(x̂)
)

for n ≥ 0.
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Proposition 6.1. If Â is simple then, for every invariant u-state m and

µ̂-almost every x̂ ∈ Σ̂, the sequence An(xn)∗mxn converges to a Dirac measure

δξ(x̂) in the fiber {x}×Grass(ℓ, d) when n→ ∞.

Proof: In view of Proposition 3.1, we only have to show that for µ̂-almost

every x̂ ∈ Σ̂ there exists some subsequence (nj)j and a point ξ(x̂) ∈ Grass(ℓ, d)

such that

(24) Anj(xnj )∗mxnj → δξ(x̂) when j→∞ .

Let p̂ ∈ Σ̂ be a periodic point, with period q ≥ 1, and ẑ ∈ Σ̂ be a homoclinic

point as in Definition 1.2. Denote p = P (p̂) and z = P (ẑ). Let [I] = [ι0, ..., ιq−1]

be the cylinder of Σ that contains p. It is no restriction to assume that z ∈ [I]:

this may always be achieved replacing ẑ by some f̂−qi(ẑ) which, clearly, does not

affect the conditions in Definition 1.2.

p̂ ẑ

x̂

p zzqk

xnj+qk xnj

f̂ qk
f̂nj

Figure 1 – Proof of Proposition 6.1: case ξ(ẑ) not in kerQ.

For µ̂-almost every x̂ ∈ Σ̂ there exists a sequence (nj)j such that f̂−nj (x̂)

converges to ẑ. That is because µ̂ is ergodic and positive on open sets. Let k ≥ 1

be fixed. From Proposition 3.1 we conclude that

lim
j→∞

Anj(xnj )∗mxnj = lim
j→∞

Anj+qk(xnj+qk)∗mxnj+qk

= lim
j→∞

Anj(xnj )∗A
qk(xnj+qk)∗mxnj+qk .

Note that xnj+qk converges to zqk when j→∞. See Figure 1. Then, by Propo-

sition 4.4, the probability m
xnj+qk converges to mzqk when j→∞. So, since A is
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continuous,

Aqk(xnj+qk)∗mxnj+qk → Aqk(zqk)∗mzqk when j→∞ .

Since the space of quasi-projective maps is compact, up to replacing (nj)j by a

subsequence we may suppose that Anj(xnj ) converges to some quasi-projective

map Q on Grass(ℓ, d). By Lemma 2.3, the kernel of Q is contained in some

hyperplane of Grass(ℓ, d). Hence, by Proposition 5.1, the subspace kerQ has zero

measure relative to Aqk(zqk)∗mzqk . So, we may apply Lemma 2.4 to conclude

that

(25) lim
j→∞

Anj(xnj )∗mxnj = Q∗A
qk(zqk)∗mzqk ,

for any k ≥ 1 (in particular, the latter expression does not depend on k).

Now, the pinching condition (p) in Definition 1.2 implies that Aq(p) has

ℓ eigenvalues that are strictly larger, in norm, than all the other ones. Denote

by ξ(p̂) ∈ Grass(ℓ, d) the sum of the eigenspaces corresponding to those largest

eigenvalues, and define ξ(ẑ) = Hp̂,ẑ · ξ(p̂).

Lemma 6.2. The sequence Aqk(zqk)∗mzqk converges to δξ(ẑ) when k→∞.

Proof: Using the relations Aqk(p)−1 = Â−qk(p̂) and Aqk(zqk)−1 = Â−qk(ẑ),

we find that

Aqk(zqk)∗mzqk =
(

Â−qk(ẑ)−1 · Â−qk(p̂)
)

∗
Aqk(p)∗ mzqk .

By the Definition 1.1 of unstable holonomies, Â−qk(ẑ)−1Â−qk(p̂) converges toHp̂,ẑ

when k → ∞. Observe also that Aqk(p)∗mzqk converges to the Dirac measure

at ξ(p̂) ∈ Grass(ℓ, d) when k→∞. That is because mzqk converges to mp, by

Proposition 4.4, and mp gives zero weight to the hyperplane section defined by

the sum of the eigenspaces of Aq(p) complementary to ξ(p̂), by Proposition 5.1.

It follows that Aqk(zqk)∗mzqk converges to (Hp̂,ẑ)∗ δξ(p̂) = δξ(ẑ) when k → ∞,

as stated in the lemma.

Suppose, for the time being, that ξ(ẑ) is in the domain Grass(ℓ, d)\ kerQ of

the quasi-projective map Q. From Lemma 2.4 we get that

Q∗A
qk(p)∗mzqk → Q∗ δξ(ẑ) = δξ(x̂)

when k → ∞, where ξ(x̂) = Q
(

ξ(ẑ)
)

. Combined with the relation (25), this gives

that Anj(xnj )∗mxnj converges to the Dirac measure δξ(x̂) when j→∞. This

proves (24) and Proposition 6.1 in this case.
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p̂ ẑ

x̂
ŷ

p z

f̂ l(ẑ)

x
njx

nj+qk

y
nj+qk+l

y
nj+qk+l+qm

f̂qk

f̂qk

f̂
nj

f̂
nj

f̂l

f̂qm

Figure 2 – Proof of Proposition 6.1: avoiding kerQ.

Next, we show that one can always reduce the proof to the previous case. Let

l ≥ 1 be as in Definition 1.2. For each j much larger than k, let mj = nj + qk+ l

and ŷ = ŷ(j, k) be defined by

(26) f̂−nj−qk(ŷ) ∈ W s
loc

(

f̂−nj−qk(x̂)
)

∩W u
loc

(

f̂ l(ẑ)
)

.

See Figure 2. By construction, ymj+qm is sent to xnj+qk by the map f l+qm.

Hence, using Proposition 3.1,

(27)

lim
j→∞

Anj(xnj )∗mxnj = lim
j→∞

Anj+qk(xnj+qk)∗mxnj+qk

= lim
j→∞

Amj+qm(ymj+qm)∗mymj+qm ,

for any fixed k and m. We are going to prove that the limit is indeed a Dirac

measure. For this, let ŵ = ŵ(k) be defined by

(28) f̂ l(ŵ) ∈ W s
loc

(

f̂−qk(ẑ)
)

∩W u
loc

(

f̂ l(ẑ)
)

.

Notice that ŵ is in W u
loc(ẑ) =W u

loc(p̂). Let k and m be fixed, for the time being.

As j→∞, the sequence f̂−nj−qk(x̂) converges to f̂−qk(ẑ) and so, combining

(26) and (28), the sequence f̂−nj−qk(ŷ) converges to f̂ l(ŵ). It follows that ymj

converges to w = P (ŵ), and so

Amj(ymj ) = Anj(xnj )Aqk+l(ymj )

converges to Q̃ = Q ◦Aqk+l(w) in the space of quasi-projective maps, as j→∞.

Define ξ(ŵ) = Hp̂,ŵ · ξ(p̂). The key observation is
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Lemma 6.3. Assuming k is large enough, ξ(ŵ) is not contained in ker Q̃.

Proof: From the definitions of Q̃ and ŵ we get that

ker Q̃ = Akq+l(w)−1 · kerQ = Al(w)−1 ·Aqk(zqk)−1 · kerQ .

By the invariance property of unstable holonomies, we have

Aqk(zqk)−1 = Â−qk(ẑ) = Hp̂,f̂−qk(ẑ) · Â
−qk(p̂) ·Hẑ,p̂ .

So, the previous equality may be rewritten as

ker Q̃ = Âl(ŵ)−1 ·Hp̂,f̂−qk(ẑ) · Â
−qk(p̂) ·Hẑ,p̂ · kerQ .

Notice that f̂−qk(ẑ) converges to p̂ and so, by (28), the point ŵ converges to ẑ,

as k→∞. By the continuity of the cocycle and the holonomies, it follows that

Hp̂,f̂−qk(ẑ) converges to the identity and Âl(ŵ) converges to Âl(ẑ), as k goes to ∞.

By Lemma 2.3, the kernel of Q is contained in some hyperplane section of

Grass(ℓ, d). Then the same is true for Hẑ,p̂ · kerQ : it is contained in the set of

all ℓ-dimensional subspaces that intersect the (d− ℓ)-dimensional subspace πv(υ)

associated to some (d− ℓ)-vector υ. Since all eigenvalues of Âq(p̂) have distinct

absolute values, the backward iterates of πv(υ) under Âq(p̂) converge to some

(d− ℓ)-dimensional sum πv(η) of eigenspaces of Âq(p̂). It follows that, as k→∞,

the sequence Â−qk(p̂)·Hẑ,p̂ · kerQ converges to some subset V0 of the hyperplane

section V defined by η. Combining these two observations we get that, as k→∞,

(29) ker Q̃ → Âl(ẑ)−1(V0) ⊂ Âl(ẑ)−1(V ) .

It is easy to see that ξ(ẑ) does not belong to Âl(ẑ)−1(V ): otherwise,

Âl(ẑ) · ξ(ẑ) = Âl(ẑ) ·Hp̂,ẑ · ξ(p̂) = ψp,z · ξ(p̂)

would intersect πv(η) and, since ξ(p̂) and πv(η) correspond to sums of eigenspaces

with complementary dimensions, that would contradict the twisting condition in

Definition 1.2. Using (29) and the fact that ξ(ŵ) converges to ξ(ẑ) when k→∞,

we deduce that ξ(ŵ) is not in ker Q̃ if k is large enough, as claimed.

We can now finish the proof of Proposition 6.1. The arguments are the same

as in the previous case, with nj and z replaced by mj = nj + qk + l and w,

respectively, and qm in the role of qk. Indeed, from (26) and (28) we get that

f̂−mj (ŷ) converges to ŵ as j → ∞. Consequently, Aqm(ymj+qm) converges to
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Aqm(wqm) and, using also Proposition 4.4, m
ymj+qm converges to mwqm as j→∞.

So, in view of (27),

lim
j→∞

Anj(xnj )∗mxnj = lim
j→∞

Amj+qm(ymj+qm)∗mymj+qm

= Q̃∗A
qm(p)∗mwqm

for any m ≥ 1, which is an analogue of (25). By Proposition 4.4, the measure

mwqm converges to mp as m→∞. By Proposition 5.1, the measure mp gives

zero weight to the hyperplane section defined by the sum of the eigenspaces

complementary to ξ(p̂). Therefore, just as in Lemma 6.2, we conclude that

Aqm(ŵqm)∗mŵqm converges to δξ(ŵ) whenm→∞. Hence, fixing k as in Lemma 6.3

and using Lemma 2.4,

lim
m→∞

Q̃∗A
qm(p)∗mwqm = δξ(x̂) ,

where ξ(x̂) = Q̃∗ δξ(ŵ). This shows that limj→∞Anj(xnj )∗mxnj = δξ(x̂). Now the

proof of Proposition 6.1 is complete.

In the next proposition we summarize some consequences of the previous

results that are needed for the next section:

Proposition 6.4. Suppose that Â is simple. Then there exists a measurable

section ξ : Σ̂ → Grass(ℓ, d) such that, on a full µ̂-measure subset of Σ̂,

(1) ξ is invariant under the cocycle and under unstable holonomies: Â(x̂) ξ(x̂) =

ξ
(

f̂(x̂)
)

and ξ(ŷ) =Hu
x̂,ŷ · ξ(x̂) for x̂ and ŷ in the same local unstable set;

(2) for any compact set Γ ⊂ Σ̂, the eccentricity E
(

ℓ, Ân(f̂−n(x̂))
)

→∞, and

the image under Ân
(

f̂−n(x̂)
)

of the ℓ-subspace most expanded by Ân
(

f̂−n(x̂)
)

converges to ξ(x̂), restricted to the subsequence of iterates f̂−n(x̂) ∈ Γ.

Proof: From Corollary 3.4 and Proposition 6.1 we get that the conditional

probabilities of the original measure m̂ along the Grassmannian fibers coincide

with the Dirac measures δξ(x̂) almost everywhere. Since m̂ is an invariant u-state,

it follows that ξ is almost everywhere invariant under the cocycle and under the

unstable holonomies, as stated in part 1 of the proposition.

Part 2 follows from Proposition 2.2, with N = {mP (x̂) : x̂ ∈ Γ}, νn = mxn ,

Ln = An(xn) = Ân
(

f̂−n(x̂)
)

, and ξ = ξ(x̂). By Proposition 4.4, the family is

N is weak∗compact if Γ is compact. It follows that the eccentricity E
(

ℓ,Ân(f̂−n(x̂))
)

tends to infinity, and the image under Ân
(

f̂−n(x̂)
)

of the subspace most expanded

by Ân
(

f̂−n(x̂)
)

converges to ξ(x̂), as claimed.
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Remark 6.5. In Section 2.6 we replaced the original cocycle Â by another

one conjugate to it,

Âu(x̂) = Hs
f̂(x̂), φu(f̂(x̂))

· Â(x̂) ·Hs
φu(x̂), x̂ = Hs

f̂(φu(x̂)), φu(f̂(x̂))
· Â
(

φu(x̂)
)

,

which is constant on local unstable sets and, consequently, whose stable holonomies

are trivial. The statement of Proposition 6.4 is not affected by such substitution.

Indeed, if ξ is an invariant section for Âu as in the proposition, then

Hs
φu(x̂), x̂ ξ(x̂)

is an invariant section for Â, and it is invariant also under the corresponding

unstable holonomies. In addition,

Ân
(

f̂−n(x̂)
)

= Hs
φu(x̂), x̂ · (Â

u)n
(

f̂−n(x̂)
)

·Hs
f̂−n(x̂),φu(f̂−n(x̂))

.

Considering only iterates in a compact set, the corresponding conjugating iso-

morphisms Hs belong to a bounded family. Hence, the claims in part 2 of Propo-

sition 6.4 hold for Â if and only if they hold for Âu.

7 – Proof of the main theorem

We are going to show that x̂ 7→ ξ(x̂) ∈ Grass(ℓ, d) corresponds to the sum

of the Oseledets subspaces of the cocycle associated to the ℓ largest (strictly)

Lyapunov exponents. In particular, ξ(x̂) is uniquely defined almost everywhere.

This will also prove that the invariant u-state is unique if the cocycle is simple.

The first step is to exhibit the sum η(x̂) of the subspaces associated to the

remaining Lyapunov exponents. This is done in Section 7.1, through applying

the previous theory to the adjoint cocycle. Then, in Section 7.2 we use the second

part of Proposition 6.4 to show that vectors along ξ(x̂) are more expanded than

those along η(x̂).

7.1. Adjoint cocycle

Let · be a Hermitian form on C
d, that is, a complex 2-form (u, v) 7→ u · v

which is linear on the first variable and satisfies u · v = v ·u for every u and v.

The adjoint of a linear operator L : C
d → C

d relative to the Hermitian form

is the linear operator L∗ : C
d → C

d defined by

L∗(u) · v = u ·L(v) for every u and v in C
d .
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The matrix of L∗ in any orthonormal basis for the Hermitian form is the conjugate

transpose of the matrix of L in that basis: L∗
i,j = Lj,i. The eigenvalues of L∗

are the conjugates of the eigenvalues of L, and the operator norms of the two

operators coincide: ‖L∗‖ = ‖L‖.

Let B̂(x̂) : C
d → C

d be defined by B̂(x̂) = Â
(

f̂−1(x̂)
)∗

or, equivalently,

(30) B̂(x̂)u · v = u · Â
(

f̂−1(x̂)
)

v for every u and v in C
d .

Consider the linear cocycle defined over f̂−1 by

F̂B : Σ̂×C
d → Σ̂×C

d , (x̂, u) 7→
(

f̂−1(x̂), B̂(x̂)u
)

,

as well as the induced Grassmannian cocycle. Notice that

B̂n(x̂) = Â
(

f̂−n(x̂)
)∗

· · · Â
(

f̂−2(x̂)
)∗
Â
(

f̂−1(x̂)
)∗

= Ân
(

f̂−n(x̂)
)∗
.

The choice of the Hermitian form is not important: different choices yield cocycles

that are conjugate. For convenience, we fix once and for all such that eigenvectors

of Âq(p̂) form an orthonormal basis.

The integrability condition in the Oseledets theorem holds for B̂ if and only if

it holds for Â, because
∥

∥B̂(x̂)
∥

∥ =
∥

∥Â
(

f̂−1(x̂)
)∥

∥ and the measure µ̂ is invariant

under f̂ . It is easy to check that the previous results apply to the cocycle defined

by B̂. To begin with, our hypotheses on the dynamics (Section 1.1) and on the

invariant measure (Section 1.2) are, evidently, symmetric under time reversion.

The hypotheses on the cocycle (Section 1.3) are also clearly satisfied: a simple

calculation shows that B̂ admits stable and unstable holonomies given by

(31) Hu,B̂
x̂,ŷ =

(

Hs,Â
ŷ,x̂

)∗
and Hs,B̂

x̂,ŷ =
(

Hu,Â
ŷ,x̂

)∗
.

Lemma 7.1. B̂ is simple for f̂−1 if and only if Â is simple for f̂ .

Proof: Let p̂ be a periodic point of f̂ . For any orthonormal basis of C
d, the

matrix of B̂q(p̂) = Âq(p̂)∗ is the conjugate transpose of the matrix of Âq(p̂), and

the eigenvalues of the former are the complex conjugates of the eigenvalues of

the latter. Hence, the pinching condition in Definition 1.2 holds for any of them

if and only if it holds for the other. Next, notice that ẑ is a homoclinic point for f̂

if and only if ŵ = f̂ l(ẑ) is a homoclinic point for the inverse: ẑ ∈W u
loc(p̂, f̂) and

f̂ l(ẑ) ∈W s
loc(p̂, f̂) if and only if f̂−l(ŵ) ∈W s

loc(p̂, f̂
−1) and ŵ ∈W u

loc(p̂, f̂
−1).
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We have chosen the Hermitian form in such a way that eigenvectors of Âq(p̂)

form an orthonormal basis. Then the matrix of B̂l(ŵ) = Âl(ẑ)∗ in this basis is

the conjugate transpose of the matrix of Âl(ẑ), and so the algebraic minors of the

former are the complex conjugates of the algebraic minors of the latter. Thus,

the twisting condition in Definition 1.2 holds for B̂ if and only if it holds for Â.

This ensures that the previous results do apply to B̂. From Proposition 6.4

we obtain that

(i) there exists a section ξ∗ : Σ̂ → Grass(ℓ, d) which is invariant under the

cocycle F̂B and under the unstable holonomies of B̂;

(ii) given any compact Γ⊂ Σ̂, restricted to the subsequence of iterates f̂n(x̂)

in Γ, the eccentricity E
(

ℓ, B̂n(f̂n(x̂))
)

= E
(

ℓ, Ân(x̂)
)

goes to infinity and

the image B̂n
(

f̂n(x̂)
)

ζa
n

(

f̂n(x̂)
)

of the ℓ-subspace ζa
n

(

f̂n(x̂)
)

most ex-

panded by B̂n
(

f̂n(x̂)
)

tends to ξ∗(x̂) as n→ ∞.

Let us show that ξ(x̂) is outside the hyperplane section orthogonal to ξ∗(x̂):

Lemma 7.2. For µ̂-almost every x̂, the subspace ξ(x̂) is transverse to the

orthogonal complement of ξ∗(x̂).

Proof: Recall, from Section 2.6 and Remark 6.5, that we may take the stable

holonomies of Â to be trivial. Then, by (31), the unstable holonomies of B̂ are

also trivial. So, the fact that ξ∗ is invariant under unstable holonomies just means

that it is constant on local unstable sets of f̂−1, that is, on local stable sets of f̂ .

Then the same is true about the orthogonal complement of ξ∗(x̂). In other words,

the hyperplane section of Grass(ℓ,d) orthogonal to ξ∗(x̂) depends only on x=P (x̂).

Denote it as Hx. Using Proposition 5.1 and then Proposition 6.4, we obtain

0 = mx(Hx) =

∫

δξ(x̂)(Hx) dµ̂x(x̂) = µ̂x

({

x̂ ∈W s
loc(x) : ξ(x̂)∈Hx

})

,

for µ-almost every x. Consequently, µ̂
({

x̂ ∈ Σ̂ : ξ(x̂) ∈ Hx

})

= 0. This means

that, for almost every point, the subspace ξ(x̂) intersects the orthogonal comple-

ment of ξ∗(x̂) at the origin only, which is precisely the claim in the lemma.

Let η(x̂) ∈ Grass(d−ℓ, d) denote the orthogonal complement of ξ∗(x̂). Recall

that ξ and ξ∗ are invariant under the corresponding cocycles:

Â(x̂) ξ(x̂) = ξ
(

f̂(x̂)
)

and B̂(x̂) ξ∗(x̂) = ξ∗
(

f̂−1(x̂)
)

µ̂-almost everywhere. The latter implies that η(x̂) is also invariant under Â.
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According to Lemma 7.2, we have C
d = ξ(x̂) ⊕ η(x̂) at almost every point.

We want to prove that the Lyapunov exponents of Â along ξ are strictly big-

ger than those along η. To this end, let

ξ(x̂) = ξ1(x̂) ⊕ · · · ⊕ ξu(x̂) and η(x̂) = ηs(x̂) ⊕ · · · ⊕ η1(x̂)

be the Oseledets decompositions of Â restricted to the two invariant subbundles.

Take the factors to be numbered in such a way that ξu corresponds to the smallest

Lyapunov exponent among all ξi, and ηs corresponds to the largest Lyapunov

exponent among all ηj . Denote du = dim ξu and ds = dim ηs, and let λu and λs

be the Lyapunov exponents associated to these two subbundles, respectively.

7.2. Direction of maximum expansion

Given a linear map L : C
d → C

d and a subspace V of C
d, we denote by

det(L, V ) the determinant of L along V , defined as the quotient of the volumes

of the parallelograms determined by {Lv1, ..., Lvs} and {v1, ..., vs}, respectively,

for any basis v1, ..., vs of V . Then we define, for each n ≥ 1,

(32) ∆n(x̂) =
det
(

Ân(x̂), ξu(x̂)
)1/du

det
(

Ân(x̂),W (x̂)
)1/(du+ds)

where W (x̂) = ξu(x̂)⊕ηs(x̂) .

According to the theorem of Oseledets [13],

1

n
log det

(

Ân(x̂), ξu(x̂)
)

→ duλu and
1

n
log det

(

Ân(x̂),W (x̂)
)

→ duλu+dsλs .

Consequently,

(33) lim
n→∞

1

n
log ∆n(x̂) =

ds

du + ds
(λu− λs) .

So, to prove that λu is strictly larger than λs we must show that log ∆n goes

linearly to infinity at almost every point. The main step is

Proposition 7.3. For any compact set Γ⊂ Σ̂ and for µ̂-almost every x̂∈ Σ̂,

lim
n→∞

∆n(x̂) = +∞

restricted to the subsequence of values of n for which f̂n(x̂) ∈ Γ.
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Proof: Let ξa
n(x̂) = B̂n

(

f̂n(x̂)
)

ζa
n(x̂) be the image of the ℓ-dimensional sub-

space most expanded by B̂n
(

f̂n(x̂)
)

= Ân(x̂)∗. Equivalently, ξa
n(x̂) is the ℓ-dimen-

sional subspace most expanded by Ân(x̂). Throughout, we consider only the

values of n for which f̂n(x̂) ∈ Γ. Then we may use property (ii) in Section 7.1:

the eccentricity

En = E
(

ℓ, B̂n(f̂n(x̂))
)

= E
(

ℓ, Ân(x̂)
)

tends to infinity, and ξa
n(x̂) tends to ξ∗(x̂), as n → ∞. In view of Lemma 7.2,

the latter fact implies that the subspace ξ(x̂) is transverse to the orthogonal

complement of ξa
n(x̂), with angle uniformly bounded from zero for all large n.

Let us consider the orthogonal splitting

C
d = ξa

n(x̂) ⊕ ξa
n(x̂)⊥ .

Let ξu
n(x̂)⊂ ξa

n(x̂) be the image of the subspace ξu(x̂)⊂ ξ(x̂) under the orthogonal

projection. We claim that

(34) det
(

Ân(x̂) | ξu
n(x̂)

)

≤ C1 det
(

Ân(x̂) | ξu(x̂)
)

,

for some constant C1 independent of n. To see this, observe that any basis α of

ξu
n(x̂) may be lifted to a basis β of ξu(x̂). This operation increases the volume

of the corresponding parallelogram by, at most, some factor C1 that depends

only on a bound for the angle between ξ(x̂) and the orthogonal complement of

ξa
n(x̂). Note also that, the Ân(x̂)-images of ξa

n(x̂) and ξa
n(x̂)⊥ are orthogonal to

each other, because ξa
n(x̂) is the ℓ-subspace most expanded by Ân(x̂). Hence,

the Ân(x̂)-image of α may be obtained from the Ân(x̂)-image of β by orthogonal

projection, an operation that can only decrease the volume of the parallelogram.

Combining these observations, we get (34). Next, let ηs
n(x̂) be the subspace of

ξa
n(x̂)⊥ characterized by

W (x̂) = ξu(x̂) ⊕ ηs(x̂) = ξu(x̂) ⊕ ηs
n(x̂) .

Equivalently, ηs
n(x̂) is the projection of ηs(x̂) to the orthogonal complement

of ξa
n(x̂) along the direction of ξ(x̂). Since the angle between ξu(x̂) and ηs

n(x̂)

is bounded from zero,

(35) det
(

Ân(x̂),W (x̂)
)

≤ C2 det
(

Ân(x̂), ξu(x̂)
)

det
(

Ân(x̂), ηs
n(x̂)

)

where the constant C2 is independent of n. Furthermore,

det
(

Ân(x̂), ηs
n(x̂)

)

≤
∥

∥Ân(x̂) | ηs
n(x̂)

∥

∥

ds ≤
∥

∥Ân(x̂) | ξa
n(x̂)⊥

∥

∥

ds ,

det
(

Ân(x̂), ξu
n(x̂)

)

≥ m
(

Ân(x̂) | ξu
n(x̂)

)du ≥ m
(

Ân(x̂) | ξa
n(x̂)

)du
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because ηs
n(x̂)⊂ ξa

n(x̂)⊥ and ξu
n(x̂)⊂ ξa

n(x̂). Consequently,

(36) En =
m
(

Ân(x̂) | ξa
n(x̂)

)

∥

∥Ân(x̂) | ξa
n(x̂)⊥

∥

∥

≤
det
(

Ân(x̂), ξu
n(x̂)

)1/du

det
(

Ân(x̂), ηs
n(x̂)

)1/ds
.

From (34)–(36) we obtain

det
(

Ân(x̂),W (x̂)
)

≤ CE−ds
n det

(

Ân(x̂), ξu(x̂)
)1+ds/du

with C = C
s/u
1 C2. Consequently,

∆n(x̂) =
det
(

Ân(x̂), ξu(x̂)
)1/du

det
(

Ân(x̂),W (x̂)
)1/(du+ds)

≥
(

C−1Es
n

)1/du+ds

and this goes to infinity when n→∞. The proof of the proposition is complete.

Now we are ready for the proof of Theorem A. Fix any compact set Γ ⊂ Σ̂

such that µ̂(Γ) > 0. By Poincaré recurrence, the first return map

g : Γ→ Γ , g(x̂) = f̂ r(x̂)(x̂)

is well defined on a full µ̂-measure subset of Σ̂. The normalized restriction µ̂/µ̂(Γ)

of the measure µ̂ to Γ is invariant and ergodic for g. Moreover, F̂A induces a linear

cocycle

G : Γ×C
d → Γ×C

d , G(x̂, v) =
(

g(x̂), G(x̂) v
)

where G(x̂) = Âr(x̂)(x̂). Clearly, this cocycle preserves the subbundles ξ(x̂) and

η(x̂), as well as their Oseledets decompositions

ξ(x̂) = ξ1(x̂) ⊕ · · · ⊕ ξu(x̂) and η(x̂) = ηs(x̂) ⊕ · · · ⊕ η1(x̂) .

It is also clear (see Section A.1) that the Lyapunov exponents of G with respect

to µ̂/µ̂(Γ) are the products of the exponents of F̂A by the average return time

1/µ̂(Γ).

Thus, to show that λu > λs it suffices to prove the corresponding statement

for G. Define

Dk(x̂) =
det
(

Gk(x̂), ξu(x̂)
)1/du

det
(

Gk(x̂),W (x̂)
)1/(du+ds)

where W (x̂) = ξu(x̂) ⊕ ηs(x̂) .
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Notice that, since ξu and ηs are both G-invariant,

Dk(x̂) = D(x̂) D
(

g(x̂)
)

· · · D
(

gk−1(x̂)
)

for all k ≥ 1, where we write D = D1. Notice also that Dk(x̂) is a subsequence of

the sequence ∆n(x̂) defined in (32). Since g is a return map to Γ, this subsequence

corresponds to values of n for which f̂n(x̂) ∈ Γ. So, Proposition 7.3 may be

applied to conclude that

(37) lim
k→∞

k−1
∑

j=0

log D
(

gj(x̂)
)

= lim
k→∞

Dk(x̂) = ∞ for µ̂-almost every x̂ ∈ Γ .

We use the following well-known fact (see [10, Corollary 6.10]) to conclude that

the growth is even linear:

Lemma 7.4. Let T : X→X be a measurable transformation preserving a

probability measure ν in X, and ϕ : X→ R be a ν-integrable function such that

limn→∞
∑n−1

j=0

(

ϕ ◦T j
)

= +∞ at ν-almost every point. Then
∫

ϕ dν > 0.

Applying the lemma to T = g and ϕ = logD, we find that

(38) lim
k→∞

1

k
logDk(x̂) = lim

k→∞

1

k

k−1
∑

j=0

logD
(

gj(x̂)
)

=

∫

logD
dµ̂

µ̂(Γ)
> 0

at µ̂-almost every point. On the other hand, from (33) and the relation between

the Lyapunov spectra of F̂A and G,

(39) lim
k→∞

1

k
logDk(x̂) =

ds

du + ds
(λu− λs)

1

µ̂(Γ)
.

These two relations imply that λu > λs. In this way, we have shown that there is a

definite gap between the first ℓ Lyapunov exponents and the remaining d−ℓ ones.

Since this applies for every 1≤ ℓ < d, we conclude that the Lyapunov spectrum

is simple. The proof of Theorem A is complete.

Remark 7.5. A posteriori, we get from (33), (38), (39) that ∆n(x) goes

linearly to infinity when n→∞, that is, we do not need to restrict to f̂n(x̂) ∈ Γ.
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APPENDIX

A – Extensions and applications

In this appendix we check that our methods apply to the Zorich cocycles

introduced in [19, 20]. We start with a few simple comments on our hypotheses.

A.1. Inducing

Here we explain how cocycles over more general maps can often be reduced

to the case of the full countable shift. We begin by treating the case of subshifts

of countable type. In particular, we recover the main results of [4], in a stronger

form.

Let I be a finite or countable set and T =
(

t(i, j)
)

i,j∈I
be a transition matrix,

meaning that every entry t(i, j) is either 0 or 1. Define

Σ̂T =
{

(ιn)n∈Z ∈ IZ : t(ιn, ιn+1) = 1 for all n∈Z

}

and let f̂T : Σ̂T → Σ̂T be the restriction to Σ̂T of the shift map on IZ. By defi-

nition, the cylinders [ · ] of Σ̂T are its intersections with the cylinders of the full

space IZ. One-sided shift spaces Σu
T ⊂ I{n≥0} and Σs

T ⊂ I{n<0}, and cylinders

[ · ]u ⊂ Σu
T and [ · ]s ⊂ Σs

T are defined analogously.

Let ν̂T be a probability measure on Σ̂T invariant under f̂T and whose sup-

port contains some cylinder [I] = [ι0; ι1, ..., ιk−1] of Σ̂T . By Poincaré recurrence,

the subset X of points that return to [I] infinitely many times in forward and

backward time has full measure. Let r(x̂) ≥ 1 be the first return time and

ĝ(x̂) = f̂ r(x̂)(x̂) , for x̂ ∈ X .

This first return map ĝ : X→X may be seen as a shift on Σ̂ = N
Z. Indeed, let

{

J(ℓ) : ℓ ∈ N
}

be an enumeration of the family of cylinders of the form

(40)
[

ι0; ι1, ..., ιr−1, ιr, ..., ιr+k−1

]

, with ιr+i = ιi for i= 0, 1, ..., k−1

and r ≥ 1 minimum with this property. Then

N
Z → X, (ℓn)n∈Z 7→

⋂

n∈Z

ĝ−n
(

J(ℓn)
)
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conjugates ĝ to the shift map. Let ν̂ be the normalized restriction of ν̂T to X.

Then ν̂ is a ĝ-invariant probability measure and, assuming ν̂T is ergodic for f̂T ,

it is ĝ-ergodic. The measure ν̂ is positive on cylinders, since [I] is contained in

the support of ν̂T . It has product structure if ν̂T has. The latter makes sense

because every cylinder [ι] of Σ̂T is homeomorphic to a product of cylinders of Σu
T

and Σs
T .

To each cocycle defined over f̂ by some ÂT : Σ̂T → GL(d,C) we may associate

a cocycle defined over ĝ by

B̂(x̂) = Â
r(x̂)
T (x̂) .

Notice that B̂ is continuous if ÂT is, since the return time r(x̂) is constant

on each cylinder as in (40). Also, B̂ admits stable and unstable holonomies if

ÂT does: the holonomy maps for the two cocycles coincide on the domain of B̂.

Furthermore, the Lyapunov exponents of B̂ are obtained by multiplying those

of ÂT by the average return time. Indeed, given any non-zero vector v,

lim
n→∞

1

n
log
∥

∥B̂n(x̂) v
∥

∥ = lim
n→∞

1

n
log
∥

∥ÂSnr(x̂)(x̂) v
∥

∥ , Snr(x̂) =
n−1
∑

j=0

r
(

gj(x̂)
)

,

and, for ν̂-almost every x̂, this is equal to

lim
n→∞

1

n
Sn r(x̂) lim

m→∞

1

m
log
∥

∥Âm(x̂) v
∥

∥ =
1

ν̂T

(

[I]
) lim

m→∞

1

m
log
∥

∥Âm(x̂) v
∥

∥ ,

since n−1Sn r(x̂) converges
∫

r dν̂ = 1/ν̂([I]). In particular, the Lyapunov spec-

trum of either cocycle is simple if and only if the other one is.

Finally, the cocycle B̂ is simple for ĝ if ÂT is simple for f̂T . More precisely,

suppose f̂T admits points p̂ and ẑ satisfying the conditions in Definition 1.2 for

the cocycle defined by ÂT and such that p̂ is in the interior of the support of ν̂T .

Let q ≥ 1 be the minimum period of p̂ and [I] = [ι0; ι1, ..., ιqs−1] be a cylinder

that contains p̂, with s ≥ 1. Taking s sufficiently large, we may assume that [I] is

contained in the support of ν̂T . Replacing ẑ and f̂ l(ẑ) by appropriate backward

and forward iterates, respectively, we may also assume that they are both in [I].

Then p̂ is also a periodic point for ĝ and ẑ is an associated homoclinic point.

Since the holonomies of the cocycles defined by ÂT and B̂ coincide, it follows that

the pinching and twisting conditions in Definition 1.2 hold also for the cocycle

defined by B̂.

In this way we have shown that our simplicity criterion extends directly to

cocycles over any subshift of countable type fT : Σ̂T → Σ̂T . There is also a non-

invertible version of this construction, where one starts with a one-sided subshift
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of countable type fT : ΣT → ΣT and an invariant probability νT on ΣT , and

one constructs a first return map g(x) = f r(x)(x) to some cylinder [I] contained

in the support of νT . Then g is conjugate to the shift map on N
{n≥0} and

the normalized restriction ν of the measure νT to its domain is a g-invariant

probability. Moreover, the measure ν is ergodic for g if νT is ergodic for fT . The

natural extension ĝ of the return map may be realized as the shift map on N
Z.

The lift ν̂ of the probability ν is a ĝ-invariant measure, and it is ĝ-ergodic if

ν is ergodic for g. In Section A.2 we discuss conditions on ν under which the lift

has product structure. Given any AT : ΣT → GL(d,C), the map B(x) =A
r(x)
T (x)

defines a cocycle over g. Moreover, B lifts canonically to a cocycle B̂ over ĝ,

constant on local stable sets, and having the same Lyapunov exponents. Thus,

the Lyapunov spectrum of AT is simple if and only if the Lyapunov spectrum

of B̂ (or B) is.

More generally, let f : M→M be a transformation preserving a probability νf

and assume there exists a return map g to some domain D ⊂ supp νf which is

a Markov map. By this we mean that there exists a finite or countable partition
{

J(ℓ) : ℓ∈N
}

ofD such that (i) g maps each J(ℓ) bijectively to the whole domainD

and (ii) for any sequence (ℓn)n in N
{n≥0} the intersection of g−n(J(ℓn)) over all n≥0

consists of exactly one point. Then g may be seen as the shift map on N
{n≥0}.

The normalized restriction ν of νf to the domain of g is a g-invariant probability,

and it is g-ergodic if νf is ergodic for f . As before, to any cocycle over f we may

associate a cocycle over g, or its natural extension, such that the Lyapunov spec-

trum of either is simple if and only if the other one is. This type of construction

will be used in Section A.4.

A.2. Bounded oscillation

Let f : Σ → Σ be the shift map on Σ = N
{n≥0}. The lift of an f -invariant

probability measure µ is the unique f̂ -invariant measure µ̂ on Σ̂ = N
Z such that

P∗ µ̂ = µ. The k-oscillation of a function ψ : Σ → R is defined by

osck(ψ) = sup
I

sup
{

ψ(x) − ψ(y) : x, y ∈ [I]
}

where the first supremum is over all sequences I = (ι0, ..., ιk) in N
k. We say ψ has

bounded oscillation if
∑∞

k=1 osck(ψ) <∞. This implies osck(ψ) → 0 and so

ψ is continuous, in a uniform sense. We are going to prove

Proposition A.1. If the Jacobian of ν for f has bounded oscillation then

the lift µ̂ has product structure.



SIMPLICITY OF LYAPUNOV SPECTRA 361

Lemma A.2. Let x and y be in Σ = Σu. For each point x̂ ∈W s
loc(x), define

ŷ ∈W u
loc(x̂) ∩W

s
loc(y). Then the limit

Jx,y(x̂) = lim
n→∞

Jfn(xn)

Jfn(yn)
, where xn = P

(

f̂−n(x̂)
)

and yn = P
(

f̂−n(ŷ)
)

,

exists, uniformly on x, y and x̂. Moreover, the function (x, y, x̂) 7→ Jx,y(x̂) is

continuous and uniformly bounded from zero and infinity.

Proof: The arguments are quite standard. Begin by noting that

(41) log
Jfn(xn)

Jfn(yn)
=

n
∑

j=1

log Jf(xj) − log Jf(yj) .

Notice that xj and yj are in the same cylinder [ι−j , ..., ι−1]
u, for each j ≥ 1.

Hence, the j th term in the sum is bounded in norm by the j-oscillation of log Jf .

It follows that the series in (41) converges absolutely and uniformly, and the sum

is bounded by
∑

j oscj(log Jf). This implies all the claims in the lemma.

Lemma A.3. Let
{

µ̂x : x ∈ Σ
}

be any disintegration of the lift µ̂ of µ. For

a full µ-measure subset of points x ∈ Σ, we have

µ̂x(ξn) =
1

Jfn(xn)

for every cylinder ξn = [ι−n, ..., ι−1]
s, n ≥ 1, and every point x̂ ∈ ξn×{x}.

Proof: Let F be any measurable subset of Σ. Then f̂−n(ξn×F ) = P−1(Fn),

where Fn is the subset of [ι−n, ..., ι−1]
u that is sent bijectively to F by the map fn.

Consequently,

(42)
µ̂(ξn×F )

µ(F )
=
µ̂
(

P−1(Fn)
)

µ(F )
=

µ(Fn)
∫

Fn
Jfn dµ

.

On the other hand, for µ-almost any point x ∈ Σ and any cylinder ξn ⊂ Σs,

µ̂x(ξn) = lim
F→x

µ̂(ξn×F )

µ(F )

where the limit is over a basis of neighborhoods F of x. As F → x, the sets Fn

converge to the unique point in [ι−n, ..., ι−1]
u that is mapped to x by fn. This
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point is precisely xn =P
(

f̂−n(x̂)
)

, for any choice of x̂ ∈ ξn×{x}. In view of (42),

this gives that

µ̂x(ξn) =
1

Jfn(xn)

for every cylinder ξn and any x in some full µ-measure subset.

Lemma A.4. There exists a disintegration
{

µ̂x : x ∈ Σ
}

of the lift µ̂ such

that µ̂y = Jx,y µ̂x for every x and y in Σ.

Proof: Let
{

µ̄x : x ∈ Σ
}

be an arbitrary disintegration. By the previous

lemma, there exists a full measure subset S of Σ such that

(43)
µ̄y(ξn)

µ̄x(ξn)
=
Jfn(xn)

Jfn(yn)
for any ξn = [ι−n, ..., ι−1]

s and any x, y ∈ S ,

where xn =P
(

f̂−n(x̂)
)

and yn =P
(

f̂−n(ŷ)
)

for any x̂ ∈ ξn×{x} and ŷ ∈ ξn×{y}.

Define Jn,x,y to be the function on W s
loc(x) which is constant equal to the right

hand side of (43) on each ξn×{x}. Given any cylinder η⊂ Σs and any large n≥1,

we may write

µ̄y(η) =
∑

ξn⊂η

µ̄y(ξn) =
∑

ξn⊂η

Jn,x,y(x̂) µ̄x(ξn) =

∫

η
Jn,x,y(x̂) dµ̂x(x̂) ,

where the sum is over all the cylinders ξn that form η. Passing to the limit as

n→∞, we obtain from Lemma A.2 that

µ̄y(η) =

∫

η
Jx,y dµ̄x for any cylinder η ⊂ Σs .

This shows that µ̄y = Jx,y µ̄x for every x and y in the full measure set S. Fix any

x̄ ∈ S and define µ̂y = Jx̄,y µ̄x̄ for every y ∈ Σ. Then µ̂y = µ̄y for every y ∈ S,

and so {µ̂x} is a disintegration of µ̂. Moreover,

µ̂y = Jx̄,y µ̄x̄ = Jx,y Jx̄,x µ̄x̄ = Jx,y µ̂x

for any x, y ∈ Σ, as claimed in the lemma.

Proof of Proposition A.1: Fix an arbitrary point w in Σ and then define

r(xs, xu) = Jw,xu(xs, xu) for every x̂ = (xs, xu) ∈ Σ̂ .
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By the previous lemma, µ̂xu = r(xs, xu) µ̂w for every xu ∈ Σ. The lift µ̂ projects

to µu = µ on Σ, by definition. The projection µs to Σs is given by

µs = µ̂w

∫

Σ
r(xs, xu) dµ(xu) .

It follows that µ̂ = ρ(xs, xu)µs×µu, with

ρ(xs, xu) =
r(xs, xu)

∫

Σ r(x
s, xu) dµ(xu)

.

Since the function r(xs, xu) is continuous and uniformly bounded from zero and

infinity, so is the density ρ. This implies that µ̂ has product structure.

A.3. Fiber bunched cocycles

As pointed out in Section 1.3, existence of stable and unstable holonomies is

automatic when the cocycle is locally constant. Another, more robust, construc-

tion of cocycles with stable and unstable holonomies was given in [3]. Let us

recall it briefly here.

Definition A.5. We say that Â : Σ̂→GL(d,C) is s-fiber bunched (or s-domi-

nated) for f̂ : Σ̂→ Σ̂ if there exist constants N ≥ 1, C > 0, ν ∈ (0, 1], τ ∈ (0, 1)

and θ ∈ (0, 1), and a distance d on Σ̂, such that

(a) d
(

f̂N(x̂), f̂N(ŷ)
)

≤ θ d(x̂, ŷ) if x̂, ŷ are in the same local stable set,

(b)
∥

∥ÂN(x̂)±1
∥

∥ ≤ C and
∥

∥ÂN(x̂) − ÂN(ŷ)
∥

∥ ≤ C d(x̂, ŷ)ν ,

(c)
∥

∥ÂN(x̂)
∥

∥

∥

∥ÂN(x̂)−1
∥

∥θ ν < τ ,

for every x̂, ŷ ∈ Σ̂. We say that Â is u-fiber bunched (or u-dominated) for f̂

if Â−1 is s-fiber bunched for f̂−1.

Proposition A.6. If Â is s-fiber bunched (respectively, u-fiber bunched)

then it admits stable holonomies (respectively, unstable holonomies).

Proof: Replacing f̂ by f̂N in Definition A.5, we may assume N = 1. Denote

Hn(x̂, ŷ) = Ân(ŷ)−1Ân(x̂) for each n≥ 1 and x̂ and ŷ in the same local stable set.

Then

Hn+1(x̂, ŷ) −Hn(x̂, ŷ) = Ân(ŷ)−1Â
(

f̂n(ŷ)
)−1

[

Â
(

f̂n(x̂)
)

− Â
(

f̂n(ŷ)
)

]

Ân(x̂) .
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By condition (a), we have d
(

f̂n(x̂), f̂n(ŷ)
)

≤ θnd(x̂, ŷ). Using condition (b),

it follows that

∥

∥Hn+1(x̂, ŷ) −Hn(x̂, ŷ)
∥

∥ ≤ C2 d(x̂, ŷ)ν
n−1
∏

j=0

(

∥

∥Â
(

f̂ j(ŷ)
)−1∥
∥

∥

∥Â
(

f̂ j(x̂)
)∥

∥ θν
)

.

Fix τ̂ ∈ (τ, 1). By conditions (a) and (b), Â
(

f̂ j(ŷ)
)

is close to Â
(

f̂ j(x̂)
)

when

j is large, uniformly on x̂ and ŷ. Combining this with condition (c), we get that

there exists k ≥ 1, independent of x̂ and ŷ, such that
∥

∥Â
(

f̂ j(ŷ)
)−1∥
∥

∥

∥Â
(

f̂ j(x̂)
)∥

∥ θν < τ̂

for all j ≥ k. Thus, the previous inequality implies that
∥

∥Hn+1(x̂, ŷ) −Hn(x̂, ŷ)
∥

∥ ≤ C2 d(x̂, ŷ)ν C2k θkν τ̂n−k ≤ Ĉ τ̂n d(x̂, ŷ)ν ,

for some appropriate constant Ĉ > 0. This implies that Hn is a Cauchy sequence,

uniformly on (x, y). Hence, it is uniformly convergent, as claimed. This proves

that Â admits stable holonomies if Â is s-fiber bunched. The dual statement

is proved in just the same way.

We say that Â : Σ̂ → GL(d,C) is fiber bunched if it is simultaneously s-fiber

bunched and u-fiber bunched. From Proposition A.6 we immediately get that

if Â is fiber bunched then it admits stable and unstable holonomies.

Remark A.7. In some cases it is possible to reduce non-fiber bunched co-

cycles to the fiber bunched case. For instance, let F = (f,A) be a linear cocycle

F = (f,A) over a shift map, say, which is not fiber bunched but whose Lyapunov

spectrum is narrow, meaning that the difference between all Lyapunov expo-

nents is sufficiently small. Then we may use inducing to construct from F a fiber

bunched cocycle.

A.4. Zorich cocycles

Finally, we are going to explain how the methods in this paper can be applied

to Zorich cocycles [19, 20]. We begin by recalling the definition of these cocycles.

Motivations and proofs for the results we quote can be found in Kontsevich,

Zorich [9], Marmi, Moussa, Yoccoz [11], Rauzy [14], Veech [16, 17], Zorich [19, 20],

and references therein. See also [1], where we show that Zorich cocycles are

simple, thus proving the Zorich–Kontsevich conjecture that the corresponding

Lyapunov spectra are simple.
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A.4.1. The Rauzy algorithm

Fix some integer d ≥ 2. Let Π = Πd be the set of all irreducible pairs

π = (π0, π1) of permutations πε = (αε
1, α

ε
2, ..., α

ε
d) of the alphabet {1, ..., d}.

By irreducible we mean that π1 ◦ π
−1
0 preserves no subset {1, ..., k} with k < d.

We shall denote the rightmost symbol αε
d simply as α(ε) for ε ∈ {0, 1}. Let

∆ = ∆d be the standard open simplex of dimension d−1, that is, the set of all

vectors λ = (λ1, λ2, ..., λd) such that λj > 0 for all j and
∑d

j=1 λj = 1. We call

g : ∆→∆ a projective map if there exists a linear isomorphism G : R
d → R

d

with non-negative coefficients such that

(44) g(λ) =
G(λ)

∑d
i=1G(λ)i

=
G(λ)

∑d
i,j=1Gi,j λj

.

If the coefficients of G are strictly positive then the image of g is relatively com-

pact in ∆. In this case g is a contraction for the projective metric defined in ∆

by

d(λ, λ′) = log max

{

λi λ
′
j

λj λ′i
: i, j = 1, ..., d

}

.

The contraction rate depends only on a lower bound for the coefficients of G or,

equivalently, for the Euclidean distance from g(∆) to the boundary of ∆.

Let R : (π, λ) 7→ (π′, λ′) be defined on an open dense subset of Π×∆, as fol-

lows. For each π ∈ Π and ε ∈ {0, 1}, let

∆ε(π) =
{

λ ∈ ∆: λα(ε) > λα(1−ε)

}

.

We say that (π, λ) has type ε if λ ∈ ∆ε(π). Then, by definition, π′ε = πε and

π′1−ε =
(

α1−ε
1 , ..., α1−ε

k−1, α(1− ε), α1−ε
k , ..., α1−ε

d−1

)

where k ∈ {1, ..., d−1} is defined by α1−ε
k = α(ε). In other words, π′1−ε is obtained

from π1−ε by looking for the position k the last symbol of πε occupies in π1−ε,

leaving all symbols to the left of k unchanged, and rotating the symbols to the

right of k one position to the right. Moreover,

λ′j =
1

a
λj for j 6=α(ε) , λ′j =

1

a

(

λα(ε)−λα(1−ε)

)

for j =α(ε)

where the normalizing factor a = 1−λα(1−ε). Notice that λ 7→ λ′ sends each ∆ε

bijectively onto ∆. Moreover, this map is just the projectivization of the linear

isomorphism Rπ,λ : R
d → R

d

(

λ1, ..., λl−1, λα(ε), λl+1, ..., λd

)

7→
(

λ1, ..., λl−1, λα(ε)−λα(1−ε), λl+1, ..., λd

)

,
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in the sense that λ′ = (1/a)Rπ(λ) with a =
∑d

i=1(Rπλ)i. It is interesting to write

this also as λ = aR−1
π,λ(λ

′), because the inverse operator

(

λ1, ..., λl−1, λα(ε), λl+1, ..., λd

)

7→
(

λ1, ..., λl−1, λα(ε) +λα(1−ε), λl+1, ..., λd

)

.

has non-negative integer coefficients.

Let us call a Rauzy component of Π×∆ any smallest set of the form Π0×∆

which is invariant under R. From now on we always consider the restriction of the

algorithm to some Rauzy component. The map R admits an absolutely contin-

uous invariant measure ν, that is, an invariant measure such that the restriction

to each {π}×∆ is absolutely continuous with respect to Lebesgue measure on

the standard simplex. However, ν is usually infinite. This can be overcome by

considering the following accelerated algorithm.

A.4.2. The Zorich algorithm

Define Z(π, λ) = (Rn)(π, λ), where the acceleration time n = n(π, λ) ≥ 1

is the largest number of consecutive iterates by the Rauzy algorithm during which

the type remains unchanged. In precise terms, n = n(π, λ) is characterized by
(

assume
(

π(i), λ(i)
)

= Ri(π, λ) is defined for all 0 ≤ i ≤ n
)

(

π(i), λ(i)
)

has type ε for 0≤ i < n and
(

π(n), λ(n)
)

has type 1−ε .

Since each R : {π(i)}×∆ε(π(i)) → {π(i+1)}×∆ is a projective bijection, the map

Rn sends some sub-simplex {π}×D(π,λ)⊂{π}×∆ε(π) containing (π,λ) bijectively

onto {π(n)}×∆1−ε(π(n)). Moreover, its inverse is the restriction of a projective

map {π(n)}×∆ → {π}×∆. By definition, Z = Rn restricted to D(π, λ). Let D

be the (countable) family of all these sub-simplices D(π, λ). The union of its

elements has full measure on Π×∆.

The transformation Z admits an absolutely continuous invariant probability

measure µ on each Rauzy component, and this measure is ergodic. Moreover, the

density of µ is a rational function of the form

(45)
dµ

dm
(λ) =

∑

α

1

Pα(λ)
on each domain {π}×∆

where the sum is over some finite set of polynomials Pα with non-negative coeffi-

cients and degree d. In particular, the density is smooth and bounded from zero

on every {π}×∆. In general, the density is not bounded from infinity, because

the Pα may have zeros on the boundary of ∆.
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A.4.3. Linear cocycles

The Rauzy cocycle over R is defined by

FR : Π×∆×R
d → Π×∆×R

d ,
(

π, λ, v
)

7→
(

R(π, λ), R−1∗
π,λ (v)

)

.

Notice that this cocycle is constant on each ∆ε(π), because Rπ,λ depends only

on π and the type ε of λ. The Zorich cocycle over Z is defined by

FZ : Π×∆×R
d → Π×∆×R

d , FZ

(

π, λ, v
)

= F
n(π,λ)
R

(

π, λ, v
)

.

Notice that FZ

(

π, λ, v
)

=
(

Z(π, λ), Zπ,λ(v)
)

where Zπ,λ is constant on each ele-

ment of D and its inverse has non-negative integer coefficients. The Zorich cocycle

is integrable with respect that the Z-invariant measure µ, meaning that log
∥

∥Z±1
π,λ

∥

∥

are integrable functions. Thus, its Lyapunov exponents are well-defined at

µ-almost every point. By ergodicity, the exponents are constant µ-almost every-

where.

Consider the linear map Ωπ : R
d → R

d defined by

Ωπ(λ)i =
∑

j: π1(j)<π1(i)

λj −
∑

j: π0(j)<π0(i)

λj .

This map Ωπ is anti-symmetric (not necessarily an isomorphism), and so

ωπ

(

Ωπ(u),Ωπ(v)
)

= u · Ωπ(v)

defines a symplectic form on the range Hπ = Ωπ(Rd). In particular, the dimension

of Hπ is even. The map Ωπ also satisfies

(46) Ωπ′ ·Rπ,λ = R−1∗
π,λ · Ωπ .

This implies that the Rauzy cocycle leaves invariant the subbundle

HΠ =
{

(π, λ, v) ∈ Π×∆×R
d : v ∈Hπ

}

and even preserves the symplectic form ωπ on it. Then the same is true for the

Zorich cocycle.

It follows that the Lyapunov spectrum of the Zorich cocycle restricted to the

subbundle HΠ has the form

(47) λ1 ≥ · · · ≥ λg ≥ 0 ≥ −λg ≥ · · · ≥ −λ1 (where 2g = dimHπ) .

The other Lyapunov exponents of FZ , corresponding to directions transverse

to Hπ, vanish identically and are not of interest here. The Zorich–Kontsevich
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conjecture states that all the inequalities in (47) are strict or, in other words,

the Lyapunov spectrum of the restricted Zorich cocycle is simple. We are going

to argue that, modulo the simple observations in Sections A.1 and A.2, all the

hypotheses of Theorem A are satisfied in the context of Zorich cocycles, and so

our methods can be used to prove this conjecture.

A.4.4. Inducing on a compact simplex

Let D be the family of sub-simplices introduced in the definition of the Zorich

algorithm: Z maps each element of D bijectively to some {π′}×∆1−ε, and the

inverse is the restriction of a projective map {π′}×∆ → {π}×∆. Pulling D back

under Z we obtain, for each n ≥ 1, a countable family Dn of sub-simplices each of

which is mapped bijectively to some {π(n)}×∆1−ε by the iterate Zn, the inverse

being the restriction of a projective map {π(n)}×∆ → {π}×∆. For µ-almost

every (π, λ), there exists some n ≥ 1 for which this projective map has strictly

positive coefficients, and so the image {π}×Γ is relatively compact in {π}×∆.

Let us fix such n, π, λ once and for all, and denote by {π}×D∗ the corresponding

element of Dn. In particular, D∗⊂ Γ is relatively compact in ∆. It follows that

D∗ has finite diameter for the projective metric of ∆, and also that the density

dµ/dm is smooth and bounded from zero and infinity on D∗. For notational

simplicity, we identify {π}×∆ ≈ ∆ and {π}×D∗ ≈ D∗ in what follows.

By Poincaré recurrence, there exists a first return map G of the map Zn to

the domain D∗. More precisely, using the Markov structure of Zn, there exists a

countable family
{

Dι : ι ∈ N
}

⊂
⋃

k≥1Dkn of sub-simplices of D∗ such that their

union has full measure in D∗, each Dι is mapped bijectively to the whole D∗ by G,

and the inverse of each G : Dι →D∗ is the restriction of a projective map ∆→∆.

By construction, the images of these inverse branches are all contained in Γ,

and so they all contract the projective metric, with uniform contraction rates.

Let D⊂D∗ be the (full measure) subset of points that return infinitely many

times to D∗. In particular, the map

Φ: N
{n≥0}→D , (ιn)n 7→

⋂

n≥0

G−n(Dιn)

is well defined (the intersection consists of exactly one point), and it conjugates

G : D→D to the shift map on N
{n≥0}. Then the natural extension of G is realized

by the shift map on N
Z.

On the one hand, as observed before, the invariant density dµ/dm is smooth

and bounded from zero and infinity on D. It follows that its logarithm is bounded
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and Lipschitz continuous, for either Euclidean or projective metric, with uniform

constants. On the other hand, the inverse branches of G are all projective maps

with range contained in the same relatively compact domain Γ. This implies that

the logarithms of their derivatives are also bounded and Lipschitz continuous, for

either metric, with uniform constants. Putting these two facts together we get

that the logarithm of the Jacobian of G with respect to the measure µ is uniformly

bounded and Lipschitz continuous on each Dι. Combining this with the previous

observation that inverse branches of G contract the projective metric uniformly,

we easily obtain that log J G has bounded oscillation in the sense of Section A.2.

Consequently, the lift of µ |D to the natural extension of G has product structure.

Recall that the Zorich cocycle FZ is constant on each element of D. It is clear

from the construction that points in each Dι visit exactly the same elements of D

all the way up to their return to D∗. Thus, the linear cocycle FG induced by FZ

over the return map G is also locally constant, meaning that it is constant on

each Dι. In particular, the cocycle FG is continuous for the shift topology, and

it admits stable and unstable holonomies.

A.4.5. Pinching and twisting conditions

The only missing ingredient to establish the Zorich–Kontsevich conjecture

is to prove that the Zorich cocycles are simple, in the sense of Definition 1.2.

This is done in [1]. In fact, the pinching and twisting conditions appear in

a slightly different guise in that paper, in terms of the monoid generated by

the cocycle.

In this context, a monoid is just a subset of GL(d,C) closed under multi-

plication and containing the identity. The associated monoid B = B(F ) is the

smallest monoid that contains the image of F . We call B is simple if it is both

pinching and twisting, where B is

• pinching if it contains elements with arbitrarily large eccentricity Ecc(B);

• twisting if for any F ∈Grass(ℓ, d) and any finite family G1, ..., GN of ele-

ments of Grass(ℓ, d) there exists B ∈ B such that B(F ) ∩Gi = {0} for all

j = 1, ..., N .

The eccentricity of a linear map B ∈ GL(d,C) is defined by

Ecc(B) = min
1≤ℓ<d

σℓ

σℓ+1

where σ2
1 ≥ · · · ≥ σ2

d are the eigenvalues of the self-adjoint operator B∗B, in

non-increasing order. Geometrically, the positive square roots σ1 ≥ · · · ≥ σd
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correspond to the lengths of the semi-axes of the ellipsoid
{

B(v) : ‖v‖= 1
}

.

It is evident from the definition that any monoid that contains a pinching sub-

monoid is also pinching, and analogously for twisting.

It is not difficult to see that the two formulations of the definition of simplic-

ity are equivalent, for locally constant real cocycles. Indeed, Lemma A.5 in [1]

states that if the associated monoid is simple then there exists some periodic

point and some homoclinic point as in Definition 1.2. Conversely, the condi-

tions in Definition 1.2 imply that the associated monoid is simple. Indeed, the

first condition implies that B contains some element B1 whose eigenvalues all

have distinct norms. Then the powers Bn
1 have arbitrarily large eccentricity as

n→ ∞, and so B is pinching. Moreover, the second condition implies that the

monoid contains some element B2 satisfying B2(V ) ∩W = {0} for any pair of

subspaces V and W which are sums of eigenspaces of B1 and have complementary

dimensions. Given any F, G1, ..., Gn as in the definition, we have that Bn
1 (F ) is

close to some sum V of ℓ eigenspaces of B1, and every B−n
1 (Gi) is close to some

sum Wi of d− ℓ eigenspaces of B1, as long as n is large enough. It follows that

B2(B
n
1 (F )) ∩B−n

1 (Gi) = {0}, that is, Bn
1B2B

n
1 (F ) ∩Gi = {0}. This proves B is

twisting.

B – Intersections of hyperplane sections

Here we give an alternative proof of Proposition 5.1 under the assumption

that the eigenvalues of the cocycle at the fixed point p are real. Observe that

this is automatic for real cocycles, since we also assume that the absolute values

of the eigenvalues are all distinct. Instead of Proposition 5.5 we use the following

result, which has a stronger conclusion.

Proposition B.1. There exists N = N(ℓ, d) such that

B−m1(V ) ∩ · · · ∩B−mN(V ) = ∅

for any B : C
d → C

d whose eigenvalues all have distinct absolute values, any

hyperplane section V of Grass(ℓ, d) containing no eigenspace of B, and any

0 ≤ m1 < · · · < mN .

To deduce Proposition 5.1 from this result, one can use the same arguments

as in Section 5, just replacing the paragraph that contains (23) by the following

one.
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Applying Proposition B.1 with B =Aq(p) and V = Wp̂ we conclude that the

Wn
p̂ are N -wise disjoint:

Wm1

p̂ ∩ · · · ∩WmN

p̂ = ∅ for all 1≤m1< · · ·< mN .

Fix C ≥ 1 such C γ0 > 1. By continuity, we have Wm1
η ∩ · · · ∩WmN

η = ∅ for all

1 ≤ m1 < · · · < mN ≤ CN and every η in a small neighborhood of p̂ inside the

local stable set. Then, for µ̂p-almost every η in that neighborhood,

m̂η

(

CN
⋃

j=1

W j
η

)

≥
1

N

CN
∑

j=1

m̂η(W
j
η ) = C γ0 > 1 .

This is a contradiction, since m̂η is a probability. This contradiction reduces the

proof of Proposition 5.1 to proving Proposition B.1.

In the proof of Proposition B.1 we use the following classical fact about Van-

dermonde type determinants (see Mitchell [12]). Given N ≥ 1, x= (x1, ..., xN ) ∈

R
N, and m = (m1, ...,mN ) ∈

(

N∪{0}
)N

, define

∆m(x) =

∣

∣

∣

∣

∣

∣

xm1

1 · · · xm1

N

· · · · · · · · ·
xmN

1 · · · xmN

N

∣

∣

∣

∣

∣

∣

.

Proposition B.2. Suppose 0 ≤ m1 < m2 < · · · < mN . Then

∆m(x) = Pm(x)
∏

1≤i<j≤d

(xj − xi)

where Pm is a positive polynomial, in the sense that all its monomials have

positive coefficients. In particular, ∆m(x) is different from zero whenever the xj

are all positive and distinct.

Notice that the contents of the proposition remains the same if one replaces

B by its square. Indeed, it is trivial that the statement for B implies the one

for B2, and the converse is also easy to check: if the B2-iterates of any hyperplane

section V as in the statement are N -wise disjoint then, using this fact both for

V and for B(V ), the B-iterates of any such hyperplane section V are 2N -wise

disjoint. Thus, we may always assume the eigenvalues of B to be positive.

Let {θ1, ..., θd} be a basis of eigenvectors of B, in decreasing order of the eigen-

values b1 > · · · > bd > 0. Let V = πv

(

Λℓ
v(C

d) ∩H
)

be as in the statement, where
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H is the geometric hyperplane of Λℓ(Cd) defined by some non-zero (d−ℓ)-vector υ.

Let us write

υ =
∑

I

υ(i1, ..., iℓ)
(

θjℓ+1
∧· · ·∧ θjd

)

,

where the sum is over all sequences I = (i1, ..., iℓ) with 1≤ i1 < · · · < iℓ ≤ d, the

υ(I) are scalars, and jℓ+1< · · ·< jd are the elements of {1, ..., d} that are not in I.

The assumption that V contains no eigenspaces of B implies that every υ(I) is

non-zero: otherwise, υ ∧ (θi1∧ · · ·∧ θiℓ) would vanish, that is, πv(υ) would have

a non-trivial intersection with the subspace generated by θi1 , ..., θiℓ . Likewise,

let us write

(48) ω =
∑

I

ω(i1, ..., iℓ) (θi1∧· · ·∧ θiℓ) ,

where the ω(I) are scalars. Then B−m(H) =
{

ω : ω ∧B−mυ = 0
}

, and

ω ∧B−mυ =
∑

I

b−m
I σI ω(I) υ(I) ,

where bI = bjℓ+1
· · · bjd

> 0 and σI = θi1∧· · ·∧ θiℓ ∧ θjℓ+1
∧· · ·∧ θjd

is either ±1.

Fix N = dim Λℓ(Cd) and then let 0 ≤ m1 < · · · < mN . In view of the previous

paragraph, in order to prove that the intersection of all the B−mu(H) is empty

it suffices to show that there does not exist any non-zero ω ∈Λℓ
v(C

d) such that

(49)
∑

I

b−mu

I σI ω(I) υ(I) = 0 for all u= 1, ..., N ,

that is, such that the vector
(

σI ω(I) υ(I)
)

I
is in the kernel of X =

(

bmu

I

)

I,u
.

It is useful to consider first the special case when the bI are all distinct (and

positive). Then, by Proposition B.2, the kernel of X is trivial. This means that

(49) implies σI ω(I) υ(I) = 0 for every I. Since σI υ(I) never vanishes, this means

that ω(I) = 0 for every I. This proves Proposition B.1 in this case. Notice that

this argument applies to any element ω of Λℓ(Cd), not only ℓ-vectors. Hence,

it proves that, under this stronger assumption, the relation (49) has no non-zero

solution in the whole exterior power Λℓ(Cd).

In general, when the products bI are not all distinct, condition (49) may hold

on a subspace of Λℓ(Cd) with positive dimension. The main point in the proof of

Proposition B.1 is then to show that this subspace intersects the set of ℓ-vectors

at the origin only. From Proposition B.2 we do get that the relation (49) implies

(50)
∑

bJ=bI

σJ ω(J) υ(J) = 0 for any admissible sequence I
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(admissible means that 1≤ i1< · · · < iℓ ≤ d), where the sum is over all admissible

sequences J such that bJ = bI . So, what we really need to prove is

Lemma B.3. If an ℓ-vector ω = ω1∧· · ·∧ ωℓ is a solution of (50) then

ω(I) = 0 for every admissible sequence I = (i1, ..., il).

Proof: Begin by noting that, for an ℓ-vector ω = ω1∧· · ·∧ωℓ, the coefficients

ω(I) in (48) may be expressed in terms of the vectors ωi, as follows:

ω(I) =

∣

∣

∣

∣

∣

∣

ωi1
1 · · · ωiℓ

1

· · · · · · · · ·

ωi1
ℓ · · · ωiℓ

ℓ

∣

∣

∣

∣

∣

∣

,

where ωj = (ω1
j , ..., ω

d
j ). For each 1 ≤ j ≤ d, let ωi = (ωi

1, ..., ω
i
ℓ) be a column

vector. Hence, ω(i1, ..., iℓ) 6= 0 if and only if the vectors ωi1 , ..., ωiℓ , are lin-

early independent. More generally, given any 1≤ s ≤ ℓ and j1, ..., js, we write

ω(j1, ..., js) 6= 0 to mean the vectors ωj1 , ..., ωjs are linearly independent.

Consider first I = (1, ..., ℓ). Since we assume b1> · · ·> bd, we have bI> bJ for

any admissible sequence J 6= I. Thus, relation (50) reduces to σI ω(I) υ(I) = 0.

Since σI υ(I) is non-zero, that gives ω(I) = 0. Now the proof of Lemma B.3 con-

tinues by induction: we consider any admissible sequence I, and assume ω(J) = 0

for every admissible sequence J such that bJ > bI . We use the following simple

observation:

Lemma B.4. Suppose ω(j1, ..., js, j, js+1) = 0 and ω(j1, ..., js, j, js+2) = 0,

but ω(j1, ..., js, j) 6= 0. Then ω(j1, ..., js, js+1, js+2) = 0.

Proof: The assumptions mean that both ωjs+1 and ωjs+2 are linear combi-

nations of {ωj1 , ..., ωjs , ωj}, and so the set {ωj1 , ..., ωjs , ωjs+1 , ωjs+2} is contained

in the (s+1)-dimensional subspace generated by {ωj1 , ..., ωjs , ωj}. This implies

that ω(j1, ..., js, js+1, js+2) = 0.

Lemma B.5. If ω(I) 6= 0 then we have ω(j1, ..., js, j) = 0 for every 0 ≤ s≤

ℓ− 1, every j /∈ {i1, ..., iℓ}, and every {j1, ..., js} ⊂ {i1, ..., iℓ} that contains all

it < j.

Proof: Consider first the case ℓ−s = 1. Then (j1, ..., js) misses exactly one

element it of I, and we have j < it. Let J be the admissible sequence obtained

by ordering (j1, ..., js, j). Notice that bJ > bI , because bj > bit . By induction,
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we get that ω(J) = 0, as claimed. Now the proof proceeds by induction on ℓ−s.

Suppose ℓ−s ≥ 2 and let j1, ..., js, j be as in the statement. Choose two different

elements js+1 and js+2 of {i1, ..., iℓ}\{j1, ..., js}. By induction,

ω
(

j1, ..., js, j, js+1

)

= 0 and ω
(

j1, ..., js, j, js+2

)

= 0 .

Suppose ω(j1, ..., js, j) 6= 0. Then, we would be able to use Lemma B.4 to conclude

that

ω
(

j1, ..., js, js+1, js+2

)

= 0 .

Since the ji are distinct elements of {i1, ..., iℓ}, that would imply ω(i1, ..., iℓ) = 0,

which would contradict the hypothesis. This proves that ω(j1, ..., js, j) = 0, and so

the proof of Lemma B.5 is complete.

Remark B.6. Notice that s= 0 is compatible with the other assumptions

only if i1 > 1. Then the lemma gives that ω(j) = 0 or, equivalently, the column

vector ωj = 0, for every 1≤ j < i1. This means that the ℓ-vector ω really lives

inside a lower dimensional space, corresponding to coordinates i1 through d only.

This case could be easily disposed of, just by assuming Lemma B.3 has already

been proved for dimensions smaller than d.

Let ≺ be the usual lexicographical order: (j1, ..., jr) ≺ (i1, ..., ir) if and only if

there exists 0 ≤ s ≤ r−1 such that j1 = i1, ..., js = is, and js+1< is+1.

Corollary B.7. If ω(I) 6= 0 then ω(J) = 0 for every J ≺ I.

Proof: Fix 0 ≤ s ≤ ℓ−1 as in the definition of J ≺ I, that is, such that

j1 = i1, ..., js = is, and js+1< is+1. By Lemma B.5, we have ω(j1, ..., js, js+1) = 0.

Consequently, ω(j1, ..., jℓ) = 0, as claimed.

Now the inductive step in the proof of Lemma B.3 is an easy consequence.

By Corollary B.7, inside the class of all sequences J with bJ = bI there exists at

most one J such that ω(J) 6= 0. Then the relation (50) reduces to σJ ω(J) υ(J) = 0.

Since σJ υ(J) never vanishes, this gives ω(J) = 0. In other words, ω(J) = 0 for

every J such that bJ = bI . This finishes the proof of Lemma B.3.

The proof of Proposition B.1 is complete.
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