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SIMPLICITY OF LYAPUNOV SPECTRA:
A SUFFICIENT CRITERION

ARTUR AviLA and MARCELO VIANA

Abstract: We exhibit an explicit sufficient condition for the Lyapunov exponents
of a linear cocycle over a Markov map to have multiplicity 1. This builds on work of
Guivarc’h—Raugi and Gol’dsheid—Margulis, who considered products of random matrices,
and of Bonatti—Viana, who dealt with the case when the base dynamics is a subshift of
finite type. Here the Markov structure may have infinitely many symbols and the ambient
space needs not be compact. As an application, in another paper we prove the Zorich—
Kontsevich conjecture on the Lyapunov spectrum of the Teichmiiller flow in the space of

translation surfaces.
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1 — Introduction and statements

Let f: & — 3 be an invertible measurable map and A: ¥ — GL(d,C) be a
measurable function with values in the group of invertible dxd complex matrices.
These data define a linear cocycle Fy over the map f, through

Fr: BxC? — 3xC, Fy(d,v) = (f(2), A@@)v) .

Note that F}(z,v) = (f"(2), A*(2)), where A™(#)=A(f*~1(2)) - A(f(2)) A(%)
and A™(%) is the inverse of A~ (f"(i)) if n <0.

Let i be an f—invariant probability measure on % relative to which the log-
arithms of the norms of A and its inverse are integrable. By the theorem of
Oseledets [13], at p-almost every i € 3 there exist numbers A; () > Ap(Z) >
-+ > A\g(#) and a decomposition C? = E} & E2 @ --- @ E¥ into vector subspaces
such that
A(Z)E; = E}(i) and  \;(2) :|nl|i£r1<>O % log||A"(§c)vH
for every non-zero v € E; and 1 <¢ < k. We call dim E; the multiplicity of A\;(Z).

We assume that [ is ergodic. Then the Lyapunov exponents \;(Z) are con-
stant on a full measure subset of ¥ and so are the dimensions of the Oseledets
subspaces E;/, The Lyapunov spectrum of A is the set of all Lyapunov exponents.
We say that the Lyapunov spectrum is simple if it contains exactly d distinct
values (k = d) or, equivalently, if every Lyapunov exponent \; has multiplicity 1.
The main result in this paper, to be stated below, provides an explicit sufficient
condition for the Lyapunov spectrum to be simple. We begin by describing the
class of cocycles to which it applies. In Appendix A we discuss some extensions
and applications.

1.1. Symbolic dynamics

We take ¥ = NZ, the full shift space with countably many symbols, and
f: 3 — 3 to be the shift map:

~

f((xn)nel) = (Tnt1)nez -

Let us call cylinder of 3 any subset of the form

|:Lm,...,l,_1; Lo; Ll,...,Ln] = {ﬁv: xj=1; for j= m,...,n} .



SIMPLICITY OF LYAPUNOV SPECTRA 313

Cylinders of %= N{"20} and 5 = N{"<0} are defined similarly, corresponding
to the cases m =0 and n = —1, respectively, and they are represented as
[L0y L1y ooes )™ and [, ..., t—1]°, respectively. We endow 3, YU, 2% with the
topologies generated by the corresponding cylinders. Let P“: 3 — X% and
P$: % — ¢ be the natural projections. We also consider the one-sided shift
maps f%: X% — X% and f*°: ¥* — ¥ defined by

floPY=P'of and f'oP®=Psof'.

For each & = (zn)nez in ¥, we denote z* = P%(i) and #* = P*(Z). Then
Z +— (2% 2") is a homeomorphism from Y to the product > x X% In what
follows we often identify the two sets through this homeomorphism. When there
is no risk of ambiguity, we also identify the local stable set

@)y =Wi.(z) = {(yn)nez: Ty = yp for all nEO} with X°
and the local unstable set

(@) = Wke(@) = {(gdnez s sn=yn forall n<0} with B,
via the projections P® and P".

In Section A.1 we shall discuss how more general situations may often be
reduced to this one.

1.2. Product structure

Let pu* = P! and p® = P21 be the images of the ergodic f—invariant prob-
ability measure [i under the natural projections. It is easy to see that these are
ergodic invariant probabilities for f* and f°, respectively. We take p® and p*
to be positive on cylinders. Moreover, we assume [i to be equivalent to their
product, meaning there exists a measurable function p: & — (0, 00) such that

fr=p&)(Wxp"), TeX.
We assume that p is bounded from zero and infinity. For convenience of
notation, we state this condition as follows: there exists some constant K > 0

such that
L _ (0" L p(at,2)

(1) ESP < K and

— < <K
(25, y%) — K = p(y®,2v) ~
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for all z° y* 2% € ¥ and % y*, z* € ¥X*. Notice that {ﬂxu =p(,a")ps: x e E“}
is a disintegration of i into conditional probabilities along local stable sets.
By this we mean (see Rokhlin [15] or [2, Appendix C]) that fi« (W5 (z%)) =1
for p“-almost every z* and

(D) = [ (D0 Wi (a®)) d(a)

for any measurable set D C . Analogously, {ﬂxs = p(a® )u*: % € ES} is a
disintegration of i along local unstable sets. Since the density p is positive,
the measures f[iz«, " € X" are all equivalent, and so are all jizs, z° € 5.
Condition (1) just means that the Radon-Nikodym derivatives

d'lfwu with =% y" € ¥* and dlibxs
dfiyyu dfiys

with z° y° € &°

are uniformly bounded from zero and infinity. This will be used to obtain the
bounded distortion properties (6) and (14) below.

We also assume that the conditional probabilities ji,« and fi,s vary continu-
ously with the base point, in the sense that the functions

(2) DI »—>/¢ diize  and  X° 5 2® »—>/1/; dfigs

are continuous, for any bounded measurable functions ¢: ¥* — R and ¢: X% — R.
Equivalently,

% ﬂ$u([Lm, ey L_1]S) and 2%~ ,&Iu([Lg, Ly .ne Ln]“)

are continuous for every choice of the ¢;’s. This will be used to obtain (7) and
Lemma 2.5.

In Section A.2 we show that these hypotheses hold, in particular, whenever
the system satisfies a distortion summability condition. Indeed, in that case
the density p may be taken continuous and bounded from zero and infinity.
In general, the hypothesis (2) can probably be avoided: that is the case at least
when the cocycle is locally constant; see the appendix of [1] and also Remark 4.6
below.

1.3. Invariant holonomies

Concerning the function A: ¥ — GL(d,C), we assume that it is continuous
and admits stable and unstable holonomies:



SIMPLICITY OF LYAPUNOV SPECTRA 315

Definition 1.1. We say A admits stable holonomies if the limit

exists for any pair of points £ and ¢ in the same local stable set, and depends
continuously on (&,y). Unstable holonomies H} ; are defined in a similar way,
with n — —oo0 and Z and g in the same local unstable set. o

Notice that stable holonomies H3 g C¢ — C? are linear maps and they satisfy
(a) H} ., =H;, -H;; and H3 ; = id,

(b) A9)-Hiy = Hig 1)
over all points for which the relations make sense. Similar remarks apply for the
unstable holonomies.

For example, if A is locally constant, meaning that it is constant on each
cylinder [¢], ¢ € N, then H = id and HY = id. In Section A.3 we discuss other

situations where these structures occur.

1.4. Statement of main result

Let p € 3 be a periodic point of f and ¢ > 1 be its period. We call Z € )y
a homoclinic point of p if 2 € Wj"*.(p) and there exists some multiple I > 1 of ¢
such that f!(2) € W% (p). Then we define the transition map

@ij,z: Cdﬁ (Cd , ¢p,z = HSAl(é) Al(é)H]’;é .

7ﬁ

The following notion is our main criterion for simplicity of the Lyapunov spec-
trum. We refer to (p) as the pinching property and to (t) as the twisting property.

Definition 1.2. We say that A: 3 — GL(d, C) is simple for f if there exists
some periodic point p € 3 of f and some homoclinic point Z € ) of p such that
(p) All the eigenvalues of A%(p) have distinct absolute values.

(t) For any invariant subspaces (sums of eigenspaces) E and F of A?(p) with
dim F + dim F' = d, we have ¢, .,(E)NF = {0}. o

Remark 1.3. Let 0;, j=1,...,d, represent the eigenspaces of Ad (p). Ford=2
the twisting condition means that ), .(6;) # 0; for all 1 <4i,j < 2. For d =3
it means that 1, .(6;) is outside the plane §; @ 65, and 6; is outside the plane
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Yp,-(0; @ 0)), for all choices of 1< 4,4,k < 3. In general, this condition is equiva-
lent to saying that the matrix of the transition map in a basis of eigenvectors of
A4(p) has all its algebraic minors different from zero. Indeed, it may be restated
as saying that the determinant of the square matrix

Bii, -+ Bu, 015 -0 01,
Bd,i1 Bd,ir 5(17].1 5d,js

is non-zero for any I = {i1,...,is} and J = {j1, ..., jr} with r + s = d, where the
0;; are Dirac symbols and the B;; are the entries of the matrix of ¢, . in the
basis of eigenvectors. Up to sign, this determinant is the algebraic minor B[J¢x ]
corresponding to the lines j ¢ J and columns i € I. ©

Theorem A. If A:% — GL(d,C) is simple for f then all the Lyapunov
exponents of the cocycle Fy for the measure [ have multiplicity 1.

Simplicity of the Lyapunov spectrum for independent random matrices was
investigated in the eighties by Guivarc’h, Raugi [8], and Gol’dsheid, Margulis [7].
Theorem A also extends the main conclusions of Bonatti, Viana [4], who treated
the case when the base dynamics f is a subshift of finite type.

The present extension has been carried out to include in the theory such
examples as the Zorich cocycles, whose base dynamics are not of finite type.
It has been conjectured by Zorich and Kontsevich [9, 19, 20] that the correspond-
ing Lyapunov exponents have multiplicity 1. As an application of these ideas,
in [1] we prove this conjecture. See also the comments in Appendix A to the
present paper.

Let us point out that we improve [4] not only in that here we allow for
infinite Markov structures and non-compact ambient spaces, but also because
our criterion is sharper: whereas we only ask the cocycle to be simple, [4] needed
a similar hypothesis on all exterior powers as well.

1.5. Outline of the proof

The starting point is the following observation. Let ¢ € {1,...,d —1} be fixed
and assume the cocycle has ¢ Lyapunov exponents that are strictly larger than
the remaining ones. Let E(z) be the sum of the Oseledets subspaces associated to
those largest exponents at a generic point & € 3. Then & — E (Z) defines a mea-
surable invariant section of the Grassmannian space of /-dimensional subspaces
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of C%. This section is invariant along local unstable sets, meaning that
E(g) =Hi,; E(®) forall e Wg.(2),
because the hypotheses in Section 1.3 imply that

An(g) = HY, . A™#)-HY, forall n<0,

fr(@).fr @) b2
and the norms of the unstable holonomies are bounded. Let m be the probability
measure on 3 X Grass(¢, d) which projects down to /i and has the Dirac measures
dp(#) as conditional probabilities alpng the Grassmannian fibers. :Fhen m is an
invariant measure for the action of A on the Grassmannian bundle ¥ x Grass(¢, d)
and, typically, it is the unique one whose conditional probabilities are invariant
under unstable holonomies.

To try and prove the theorem, we consider the space of all probability mea-
sures 7 on 3 X Grass(¢, d) that project down to fi, are invariant under the action
of the cocycle, and whose conditional probabilities m; along the Grassmannian
fibers are invariant under unstable holonomies. Proposition 4.2 ensures that such
invariant u-states do exist. In Proposition 4.4 we prove that the projection m"
of any u-state m to X" x Grass(¢, d) admits conditional probabilities mY. along
the Grassmannian fibers that depend continuously on the base point z*. This is
very important for our arguments: continuity allows us to show that the kind of
behavior the cocycle exhibits on the periodic point p in Definition 1.2 propagates
to almost all orbits on the whole 3. Let us explain this.

Firstly, in Proposition 3.1, we use a simple martingale argument to show that
the measure m may be recovered from m* through

(3) s = lim A" ( f_”(i“)) fi-almost everywhere .

u

n—o0 * mPu(ffn(i))
The assumption that A%(p) has ¢ largest eigenvalues implies that A% (p),n
converges to the Dirac measure on the sum of the eigenspaces associated to
the largest eigenvalues, for any probability measure n on Grass(¢,d) that gives
zero weight to the hyperplane section defined by the other invariant subspaces.
A crucial step, carried out in Section 6, is to prove that the limit on the right hand
side of (3) is a Dirac measure for almost every &. The proof has two main parts.
In Proposition 5.1 we use the assumption that the cocycle is simple to show that
the conditional probabilities of m give zero weight to hyperplane sections of the
Grassmannian. Then, in Proposition 6.1, we use the continuity property in the
previous paragraph, and the assumption that the cocycle is simple, to show that
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the behavior on the periodic point we just described does propagate to almost
every orbit.

This proves that 1z = d¢(z) almost everywhere, where £(2) is some (-subspace.
In view of what we wrote before, £(Z) should correspond to the subspace E(z)
associated to the largest Lyapunov exponents. To prove that this is indeed so, we
must also find the complementary invariant subspace. This is done by applying
the previous theory to the adjoint (relative to some Hermitian form) cocycle
B = A* over the inverse map f —1. Since our hypotheses are symmetric under time
reversion, the same arguments as before yield an ¢-dimensional section & — £*(Z)
which is invariant under the action of B and under stable holonomies.

Let n(z) be the orthogonal complement of £*(#). Then £ and 7 are A-invariant
sections with complementary dimensions. Using the simplicity assumption once
more, we check that (%) and n(Z) are transverse to each other at almost every
point. The final step is to deduce from (3) that the Lyapunov exponents of A
along ¢ are strictly larger than those along 7.

2 — Preliminary observations

Here we recall a few basic notions and prove a number of technical facts that
will be useful in the sequel. The reader may be well advised to skip this section
in a first reading, and then come back to it when a specific result or concept is
needed.

2.1. Exterior powers and Grassmannians

Fix any £ € {1,...,d —1}. The £th exterior power of C?, denoted by A’(C%),
is the vector space of alternate /-forms w: (C%)*x---x(C%)* — C on the dual

space (C%)*. Tt has
. V4 d d
dim A*(C ):<€>.

Every element of A{C% may be written as a sum of elements of the form wiA -+ Awy
with w; € (C?)**. We represent by A (C?%) the subset of elements of this latter
form, that we call £-vectors. Any {-vector may be written as cwiA- - - Awy, where
c € C and the w; are orthogonal unit vectors (relative to any fixed Hermitian
form). Hence, A% (C?) is a closed subset of A‘(C).

Since the bi-dual space is canonically isomorphic to C¢, we may think of
the w; as vectors in C?. Thus, there is a natural projection 7, from A% (C?)\{0}
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to the Grassmannian Grass(/,d) of ¢-dimensional subspaces of C?, associating
to each non-zero f(-vector wjA---Awy the subspace generated by {wi,...,wp}.
Two f-vectors have the same image under 7, if and only if one is a multiple of
the other. In other words, m, induces a bijection between Grass(¢,d) and the
projective space PAY (C?) of the space of (-vectors.

The (th exterior power A’(B): A*(C%) — A(C?) of an operator B: C? — C¢
is defined by

A(B) (W) (p1, -y b0) = W(p10B, ..., dpoB) .

Notice that A“(B)(wiA---Awp) = B(wi)A---AB(w), and so A“(B) preserves
the set AL (C?) of f-vectors. Moreover, assuming B is invertible,

(4) myoN(B) = Bgom, on AL(CY),

where By denotes the action of B on the Grassmannian.
Let H be a hyperplane, that is, a codimension 1 linear subspace of the vector
space A‘(C%). Then H may be written as

H:{wEAK((Cd): w/\v:O}

for some non-zero v € A%~¢(C?). We call the hyperplane geometric if v may be
chosen a (d — £)-vector, that is, v = vy A+ - - A vy for some choice of vectors v; in
C4 = (C%)**. By definition, a hyperplane section of Grass(¢, d) is the image under
the projection m, of the intersection of A (C?) with some geometric hyperplane
H of A(C%). Note that, given any f-vector w = wiA--- A wy,

weH & wAv=0 & my(w)Nm(v) # {0} .

Hence, the hyperplane section of Grass(¢, d) associated to H contains precisely the
¢-dimensional subspaces that have non-trivial intersection with the (d — ¢)-dimen-
sional subspace generated by v. The orthogonal hyperplane section to V€ Grass(¢,d)
is the hyperplane section associated to its orthogonal complement V.

To any Hermitian form on C? there is a canonically associated one on A*(C?)
such that the set of f-vectors e;; A---Ae;,, 1 <141 <--- <ip <d obtained from
an arbitrary orthonormal basis ey, ..., eq of the space E is an orthonormal basis
of its exterior power. If B is a unitary operator then so is A(B). Let ey, ...,eq
be an orthonormal basis of C?. We use the polar decomposition B = K'DK of
a linear isomorphism B: C? — C?, where K and K’ are unitary operators, and
D is a diagonal operator (with respect to the chosen basis) with positive eigen-
values a1, ...,aq. The a; are called singular values of B; we always take them to
be numbered in non-increasing order.
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2.2. Eccentricity of linear maps

Let L: C¢— C? be a linear isomorphism and 1 < ¢ < d. The /-dimensional
eccentricity of L is defined by

m(L[¢)

L) = Sup{ IETes

€€ Grass(ﬁ,d)} , m(L|&) =||(L] 5)_1“71.

We call most expanded (-subspace any & € Grass({,d) that realizes the supre-
mum. These always exist, since the Grassmannian is compact and the expres-
sion depends continuously on £&. These notions may be expressed in terms of
the polar decomposition of L with respect to any orthonormal basis: denoting
by ai, ..., aq the eigenvalues of the diagonal operator D, in non-increasing order,
then £(¢, L) = ag/ap+1. The supremum is realized by any subspace £ whose image
under K is a sum of £ eigenspaces of D such that the product of the eigenvalues is
ay---ag. It follows that £(¢, L) > 1, and the most expanded ¢-subspace is unique
if and only if the eccentricity is larger than 1.

Let e1,...,eq be a basis of eigenvectors of D corresponding to the eigen-
values ai,...,aq. For any I C {1,...,d} we represent E; = P, ;e;. Given any
n € Grass(¢,d) one may find a subset I = {i1,...,77} of {1,...,d} such that n is
the graph of a linear map

Er—E;, e~ Zﬁ(i,j)ej ;
jeJ
where J is the complement of 1. We say that n’ € Grass(¢, d) is in the e-neighbor-
hood B:(n) of n if (for some choice of I) it may also be written as the graph of
a linear map from Fj to Ej such that all corresponding coefficients 7(i, j) and
7' (i, 7) differ by less than . Given a hyperplane section H of Grass(¢, d), defined
by some (d — ¢)-vector v, and given d > 0, we represent by Hs the union of the
hyperplane sections defined by all the (d — ¢)-vectors in the Bs(n).

Lemma 2.1. Given C > 1 and § > 0 there exists € > 0 such that, for any
n € Grass({,d) and any diagonal operator D with eccentricity (¢, D) < C, one
may find a hyperplane section H of Grass(¢,d) such that D~1(B.(n)) C Hs.

Proof: Choose I = {iy,...,i¢} such that 7 is a graph over the subspace gen-
erated by e;,,...,e;,. In other words, n admits a basis of the form

{ei+2n(i,j)€ji i€f}7

jeJ
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where J = {j1, ..., je—q} is the complement of I inside {1, ...,d}. Let aq,...,aq be
the eigenvalues of D, in non-increasing order. Then

{fizei—i-z(?n(i,j)ej: ie]},

jeJ J

is a basis of D71(n). We claim that there exist a € I and 3 € J such that
anfag < K: if I ={1,...,4} it suffices to take o = ¢ and 3 = £+ 1; otherwise,
we may always choose € {1,...,0}\I and a € I'\{1,...,¢}, and then we even
have ao/ag < 1. This proves the claim. Now let

a
v=-ejA--NeagN---Nej, , eaﬂ:eaiﬁn(a,ﬂ)eg

be the (d — ¢)-vector given by the wedge products of all e;, j € J, except that
eg is replaced by e, g. Notice that

D_l(n)A’U = fuN-Nfi, Nejy N Neag N+ Nej,
= [eil/\.../\eie] A [eh/\‘-'/\i(aa/aﬁ)n(%ﬁ)eﬁ/\--~/\ejé}

+ [eil/\~--/\(aa/ag)n(a,ﬂ) eg - /\62‘4] A [ejl/\---/\ea/\---/\ejg] .

Choosing the sign 4 appropriately, the two terms cancel out and so D~}(n)Av = 0.
This means that D~!(n) belongs to the hyperplane section H defined by v. In just
the same way, given any 7’ in the e-neighborhood of  we may find a (d—¢)-vector
(0%6%

— 77,(04, B) eﬁ

U'zejl/\---/\e'aﬂ/\---/\eje, e'aﬁ:ea:taﬁ

such that D~!(n’) belongs to the hyperplane section defined by v'. Since aq/ag < K
and |n(a, 5) —n'(«o, B)| < €, we have that v € Bs(v) as long as ¢ is small enough.
Then D~1(n) € Hy for all / in the e-neighborhood of 7, as claimed. =

Proposition 2.2. Let N be a weak® compact family of probabilities on
Grass(¢,d) such that all v € N give zero weight to all hyperplane sections. Let
L,: C*— C?% be linear isomorphisms such that (L, ).V, converges to a Dirac
measure 0¢ as n— 0o, for some sequence vy, in N. Then the eccentricity £({, Ly,)
goes to infinity and the image L,((%) of the most expanding (-subspace of L,
converges to &.
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Proof: Let L,: C?— C%, v, € N, and ¢ € Grass(/, d) be as in the statement.
Consider the polar decomposition L, = K/ D, K,,, where D,, has eigenvalues
ai, ..., a4, in non-increasing order.

We begin by reducing to the case K, = K, =id. Let M = U(¢,d),. N, where
U(4,d) is the group of transformations induced on Grass(¢,d) by the unitary
group. It is clear that all u € M give zero weight to every hyperplane sec-
tion of Grass(¢,d). Notice also that M is weak® compact: given any sequence
pj = (Uj)s vj with v; € N and U; € U(4,d), up to considering subsequences one
may assume that v; converges to some v € N in the weak* topology and U; con-
verges to some U € U(4, d) uniformly on Grass(¢,d), and then (U;), v; converges
to U,v € M in the weak* topology. Let p, = (K,)«vn € M. Then (K], Dy)y pin
converges to d¢. In addition, up to considering a subsequence, we may assume
that K], converges to some K’ € U({,d) uniformly on Grass(¢,d). Note that
((K")"'K] Dy), pin converges to &, where n = (K')~!(£). Since (K')"'K], con-
verges uniformly to the identity, this implies that (D,,)« u, also converges to the
Dirac measure at 7.

Now, since M and the space of hyperplane sections of Grass(¢, d) are compact,
we may find § > 0 such that v(Hg) < 1/2 for every u € N and every hyperplane
section H of Grass(¢,d). On the other hand, given any £ > 0 we have

pn (D (B:(n)) = (Dn)s pn(Be(n)) > 1/2

for every large n. Then D, }(B:(n)) can not contained in Hg, for any hyperplane
section H. In view of Lemma 2.1, this implies that £(¢, L,) = £(¢, D,,) goes to
infinity as n — oo, as claimed in the first part of the lemma.

The second part is a consequence, through similar arguments. Given any
e >0, fix 6 > 0 small enough so that v(Hgs) < ¢ for any v € N and any hyper-
plane section H of Grass(¢,d). Let H™ C Grass(¢,d) be the hyperplane section
orthogonal to the most expanding direction (2 of L,,. By definition, the com-
plement Grass(¢,d)\ Hj of the é-neighborhood of H™ consists of the elements of
Grass(/, d) that avoid any (d—¢)-subspace d-close to (¢¢)*+. Since the eccentricity
of L, goes to infinity,

Ly (Grass(£,d)\ H}) C B(Ln(C%))

for every large n. Then, the (L)« vy-measure of B.(Ly((})) is larger than 1—¢.
Since (Ly,)« vy, converges to the Dirac measure at &, it follows that £ € B:(L,((%))
for every large n. As & > 0 is arbitrary, this proves the second claim in the
proposition. =
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2.3. Quasi-projective maps

Let v — [v] be the canonical projection from C? minus the origin to the pro-
jective space P(C%). We call Py: P(C?) — P(C%) a projective map if there is some
P € GL(d,C) that induces Py through Py([v]) = [P(v)]. It was pointed out by
Furstenberg [6] that the space of projective maps has a natural compactification,
the space of quasi-projective maps, defined as follows. The quasi-projective map
Q4 induced by a non-zero, possibly non-invertible, linear map Q: Ct— 9 is
given by Qx([v]) = [Q(v1)] where vy is any vector such that v — vy is in ker Q.
Observe that Q4 is defined and continuous on the complement of the projective
subspace ker Q4 = {[v] : v € ker Q}. The space of quasi-projective maps inherits
a topology from the space of non-zero linear maps, through the natural projection
Q — Q. Clearly, every quasi-projective map Q)4 is induced by some linear map @
such that ||Q|| =1. It follows that the space of quasi-projective maps in P(C%)
is compact for this topology.

This notion has been extended to transformations on Grassmannian mani-
folds, by Gol’dsheid, Margulis [7]. Namely, one calls Py : Grass(¢, d) — Grass(¢, d)
a projective map if there is P € GL(d, C) that induces Py through Py (&) = P(&).
Note that P may always be taken such that the map A’(P) it induces on Af(C%)
has norm 1. Let Q be the closure of the set of all transformations A‘(P) with
P invertible. Since every A‘(P) preserves the closed subset A% (C?), so does every
Q € Q. The quasi-projective map Q4 induced on Grass(¢,d) by a map @ € Q
is given by Q4 (my(w)) = my(Q(w)) for any ¢-vector w in the complement of ker Q.
The space of all quasi-projective maps on Grass(¢, d) inherits a topology from Q,
through the natural projection @ +— @4, and it is compact for this topology,
since we may always take ) with norm equal to 1.

Lemma 2.3. The kernel ker Q4 = m,(ker Q) of any quasi-projective map is
contained in some hyperplane section of Grass(¢,d).

Proof: We only have to check that ker ) is contained in a geometric hyper-
plane of A‘(C?%). Let P, be any sequence of linear invertible maps such that every
AY(P,) has norm 1 and they converge to Q. Consider the polar decomposition
P, = K] D, K, where D, = diag[al,...,a}j] relative to some orthonormal basis
e1,...,eq. Then AY(P,) = AY(K!)AY(D,) A (K,) is the polar decomposition of
AY(P,), where A‘(D,,) is diagonal relative to the basis e;, A--- A iy 11 < < iy

n

of A°(C?). Denote e = e; A---A e;. Since the eigenvalues al, i =1, ...,d, are in

non-increasing order,

af -+ af = XD ()] = [N (D[] = A" (P = 1.
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Taking the limit over a convenient subsequence, we get that Q@ = A*(K’) DA(K)
for some unitary operators K, K’ and some norm 1 operator D diagonal with
respect to the basis e;; A--- A e;,. Moreover, |D(e)|| =1 and the kernel of D is
contained in the hyperplane section H(e) orthogonal to e. Let w = AY(K)~!(e)
and H = A°(K)~'(H(e)) be the hyperplane section orthogonal to w. Then

nekerQ & A(K)nekeeD = AN(K)neH(e) & neH,
and this proves the statement. n

The weak* topology in the space of probability measures on Grass(¢,d) is
characterized by the property that a sequence (v,), converges to a probability v
if and only if, given any continuous function g: Grass({,d) — R, the integrals
[ gdvy, converge to [gdv. It is well-known that this topology is metrizable and
compact, because the space of continuous functions on the Grassmannian contains
countable dense subsets.

Lemma 2.4. If (P,), is a sequence of projective maps converging to some
quasi-projective map @ of Grass(¢,d), and (v,), is a sequence of probability
measures in Grass({,d) converging weakly to some probability v with v(ker Q) =0,
then (P,).v, converges weakly to Q.v.

Proof: Let (K,,)m be a basis of neighborhoods of ker @) such that v(0K,,)=0
for all m. Given any continuous g: Grass(¢,d) — R, and given £ > 0, fix m > 1
large enough so that v(K;,) <e. Then fix ng >m so that v, (K,,) < v(Kpy)+e < 2e,

\/K;go@) v, —/Kffgo@) v

for all n > ng. Then, splitting into integrals over K, and over K,

goP,—goQ| < ¢

< e and sup
Kz,

< 2e + 3esup|g|

'/(gopn) dv, —/(goQ) dv

for all n > ng. This proves the lemma. n

For notational simplicity, in what follows we drop the subscript # and use
the same symbol to represent a linear transformation and its action on any of the
spaces Grass(¢,d), 0 </ < d. In particular, we also denote by Fy the Grassman-
nian cocycles 3 x Grass(f, d) — 3 x Grass((, d) defined by A over f.
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2.4. Bounded distortion

Let k > 1 be fixed. For each I = (g, ...,tx—1) denote by f?k X% — [I]* the
inverse branch of f“* = (f“)¥ with values in the cylinder [I]* = [1q, ..., tx_1]"
Moreover, define

(5) Jf?k(w“) = [izu([I]?) for each z"e€ X",
where [I]° = [, ...tk—1]®. The boundedness condition (1) gives

1 I

for every I and any pair of points 2% and y* in X*. This will be used in the proof
of Lemma 2.6 and Corollary 4.7. Moreover, the continuity condition (2) implies
that the function

is continuous on X%, for every choice of I. In both cases, we also have dual objects

and statements for inverse branches f;k of the iterates of f°. From (2) we also
get the following fact, which will be used in the proof of Proposition 4.4.

Lemma 2.5. Let ®: 3 — R be a bounded measurable function such that,
for every fixed z° € ¥°, the function z"+— ®(x* z") is continuous at some
z% € X%, Then

¥ - /Cb(acs, ") dfiyu(x®)  is continuous at z“ .
There is also a dual statement obtained by interchanging the roles of x* and x".

Proof: Let z* € X" and € > 0 be fixed. Define ¢(z®) = ®(2*, z"*) for every
x® € 3°. The continuity condition (2) gives that

< €

®) \ [o) dinta) = [[ota®) i)

for any z* in some neighborhood Zj of the point z“. Let Z,,, n > 0 be a decreasing
basis of neighborhoods of z“. The assumption that ® is continuous on the second
variable means that for every z® there exists some n > 1 such that

O(x% z") — p(2®)| < e forall z%e Z, .



326 ARTUR AVILA and MARCELO VIANA

Let V(k,e) C ¥° be the set of points x® € ¥° for which we may take n < k.
Consider k large enough so that the ji,«-measure of V(k, )¢ is less than . Then,
using condition (1),

fign(V (k,e)¢) < Ke for every z"e€ X" .

The difference ‘ [ ®(2%, ) dfigu(z®) — [ ¢(2®) dfigu( 5)’ is bounded above by

/V(k,s)

and so, for any " € Z,

(9) ' [owa diuta®) — [ o(a°) di(o

Putting (8) and (9) together, we conclude that

(o, 2") — ¢(a")] djig (2°) + 2 sup | o (V (I, £)°)

< e+2Kesup|®| .

‘/CI)(:US, %) dfigu(x®) —/@(ms, z") dﬂzu(xs)’ < 2e+42Ke sup ||
for every z* in the neighborhood Z; of z%. This proves the lemma. n
Given any measurable set F' C X% and any I = (cq, ..., tp—1), we have
FHUPRF) = S P E) = (P E)) -

Consequently, since i is invariant under f and p* = P!p,
U Ul U ~ s Ul ~ s u [ pu,k
[t dutat) = [ o (09 @) = 00 %F) = (1P

Thus, J f]“’k is a Radon-Nikodym derivative of the measure F +— p*( f}‘k(F))
with respect to u*. An equivalent formulation is

/ (- JFR) dut = / (o ) d
R

for any bounded measurable function 3 : ¥* — R, the previous equality corre-
sponding to the case ¢ = Xp. Considering F = {z" € ¥": Jf?k(x“) =0}, we
get that Jffk(f“k(z“)) > 0 for p“-almost every 2" € [I]*. Therefore,

1
JFEE(fuk(zv))

(10)  JfwF: 8% = (0,400), JfUF(Y) = when 2" e [I]*
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is well defined p“-almost everywhere. Moreover, given any bounded measurable
function &: [I]* — R and denoting 1 = (¢-Jf%F)o }"k, we have that

Jeorryan =[5 an - /muwof“”w it = [(€Tpy aut

In particular, taking £ = X,
,u(f“’k(B)) = / Jfu* du®  for every measurable B C [I]" .
B

In other words, Jf%* is a Jacobian of p* for the kth iterate of f.
Lemma 2.6. Given any I = (v, ..., tk—1) and any z* € [I]%,
FEzn = TR (frpu gy [ T]°) -
Moreover, a dual statement is true for f; ks

Proof: Let 2% = f“*(z%). Clearly, 2" = f?k(x“) and f* maps Wis.(2")
bijectively to [I]*x{z"} C WS (2z"). Consider any J = (t,...,t—1), where | < 0,
and denote JI = (i1, ..., L0, ..., Lk—1). By the definition (5),

fiae ((J1°) = Tf577 @) and (o) (1)) = fine (]°) = TS5 ()
Since fff}kﬂ = f;7lof}‘7k, we have that
(11) Jf;}k“(x“) = Jf}tk(:vu) Jff;’l(z“) at p“-almost every point .

Using the continuity property (7), one concludes that the equality in (11) holds
everywhere on supp u* = X*. Replacing the previous pair of relations, we find
that

~ s LTN AN "IN s
Hx“([JI] ) = Jf] (=) (fs ﬂz“)([JI] )
for every z* € ¥* and any choice of J = (¢, ...,¢—1). This means that

(e | [1]°) = JF7" (") (fF fian)

which, in view of the definition (10), is just another way of writing the claim
in the lemma. The dual statement is proved in just the same way. =
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2.5. Backward averages

For each z“ € X" and k >1 let the backward average measure puj . of the
map f* be defined on X" by

u o Uk u
e = ) W ZJfI [RCOR
fu,k(zu)zxu
where the last sum is over all I = (¢0, ..., tx—1). From (5) we get that
u,k u ~ s
(12) > quk = ZJfI = e ([1F) =1
fu,k:(zu):zu I

for every x% € X%. In other words, every ,uz’zu is a probability measure. The
definition also implies that

Koo F) dut(a") = TR dpt =" (F (") = p(F
[ () e ;memﬂh it = S EOUP) = )

for every measurable subset F' of ¥%. Thus,

(13) //w ) dp pu(2") dp( /w ) dp(z*)

for any bounded measurable function 7 on ¥*. It is important to notice that
the next result is stated for every (not just almost every) point z*:

Lemma 2.7. For every 2" € " and every cylinder [J]* C X",
n—1 n—1 1

Kpt (7)) > lim sup % > w1 = lim inf % > (1Y) = = i (171Y)
k=0 k=0

Proof: Given any positive p“-measure set X C 3%, define
M = iy [ dt G
’ pi(X) Jx 7

From the definition of the Jacobian one gets that

W (F 0 (7))

HEx(F) = o

for every measurable set F' and every k > 1. Since p“ is ergodic, it follows that

-1

3

(14) puiex (F) — p(F) .

k=0

S
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Take F'=[J]* and X = ¥". Assuming k is larger than the length of J, we have that
}*k(X) = [I]" intersects [J]*if and only if it is contained in it. Then, }’“k (y*) e [J]™
if and only if f?k(x“) € [J]*, for any y* € X. Together with (6), this implies that

1 pgu([I7Y)

— < < K
K =

M%,x“([‘]]u) B

for all y* € X, and so

i < N%,X([J]u) < K.

K~ H}é,x“([J]u)

Combined with (14), this implies the statement of the lemma. =

As a direct consequence, for every cylinder [J]* C X" and every z* € X",
(15) limsup o ([J]Y) > K~ ([J]") -
k

This fact will be used in the proof of Lemma 5.2.

2.6. Holonomy reduction

Fix an arbitrary point z_ € ¥* and then, for each & € 3, denote by ¢"“(Z) the

unique point in W% (z_)NW5.(&). Using the stable holonomies in Definition 1.1,

loc

define A*: 3 — GL(d, C) by
(16)  A%(@) = Hio) puisan @) Hon@re = Higuay,omisian A@" @)

Equivalently, the cocycle Fau defined by A over f is conjugate to the cocycle Fy
defined by A through the conjugacy
®: xC?— BxC, B2, v) = (&, H yu(sy) -

T

Consequently, the two cocycles have the same Lyapunov exponents, and either
one is simple if and only if the other one is. So, for the purpose of proving
Theorem A one may replace A by either A®. On the other hand, the second
equality in (16) implies that A" is constant on every local stable set, and so

A%(#) = A%z")  for some A%: X% — GL(d,C) .

There is a dual construction, using unstable holonomies, where one finds a map
A%: ¥ — GL(d,C) that is constant on every local unstable set and such that
the cocycle it defines over f is also conjugate to Fj.
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From now on, and until the end of Section 6, we consider A* instead of A.
Notice that the corresponding stable holonomies are trivial

Hg’g =id for all z and 3 ,

because A" is constant on local stable sets. For simplicity, we omit the super-
scripts u in the notations for A“ A FAu XU PY Ut ut,mY H“y, f}‘k, etc,

that is, we just represent these objects as A, A, FA, X, P, f,x, p,m, Hy g, fI, etc.

3 — Convergence of conditional probabilities

Let #: Y xGrass(f,d) — % and 7: X¥x Grass(f,d) — $% be the natural
projections. The value of ¢ € {1, ...,d—1} will be fixed till very near the end. Note
that if 77 is an Fj-invariant probability on 3 x Grass(f,d) then m = (Pxid), 1
is an Fj4-invariant probablhty on ZxGrass(€ d). Moreover, if T, = i then
mem = p. Given & € ¥ we denote 2™ = P(f~"(&)) for n > 0.

Proposition 3.1. Let 1 be any Fy-invariant probability on 3 x Grass(¢,d)
such that w.m = fi. Let {my:x € ¥} be a disintegration of the measure m =
(Pxid),m along the Grassmannian fibers. Then the sequence of probability
measures

A" (") mgn
on Grass(¢,d) converges in the weak* topology as n — oo, for fi-almost every

e,

Starting the proof, let B be the Borel o-algebra of 3. Consider the sequence
(By)n of o-algebras of ¥ defined by By = P~'(B) and B, = f(Bn_1) for n > 1.
In other words, B, is the o-algebra generated by all cylinders [t_y, ...; L0} -.y L]
with m >0 and ¢; € N. Fix any continuous function g: Grass(¢,d) — R. For
e and n> 0, define

() = I,(g, %) = /gd(A”(m”)*mxn) = /(gOA”(:c")) dmgn .

Notice that fn is B,-measurable: it can be written as fn =],0Po f‘”, where
I, is the B-measurable function

I, (x) = I,(9,z) = /(goA"(x)) dm, .
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Lemma 3.2. For u—a]most every x € X and any n > 0 and k > 1,

Z Jfk n+k( ) = /In+k(z) d,ukﬂ;(z) .

Proof: Since the measure m is invariant under F jf, its disintegration must
satisfy

1
(17) me = > o AR2)ame = [ (A¥(2).m2) dpgo(2)
el J R (z) /

for p-almost every x € X. Then,

I(z) = /(goA”(a:)) dm, = /(goA”(m)) d Z ! AR (2).m,

T
— Z Jf':(z) /(goAn+k dmz = Z Jfk n+k( )
z€f~*(x) z€f~k(z)

for p-almost every x € ¥, as claimed. n

The next lemma means that each I,, is the conditional expectation of fn+k
with respect to the o-algebra B, for all k > 1, and so the sequence (I, B,), is
a martingale.

Lemma 3.3. For any n >0 and k >1 and any B,-measurable function
P Y — R,
[ esa@)0(@) dits) = [ 1.() 6(a) (@)

Proof: Let us write ¢ = ¢, 0 Po f~™, for some B-measurable function t,.
Since fi is f-invariant and pu = Py i,
(18) [ 1@ 0(@) di@) = [ 1262 u(a) dute)
Analogously, using the relation ¢ = (¢, o f¥) o Po f~(n+k)
(19) [ ssl@)0(@) dia) = [ Lusnta) on(F@) duo)

By Lemma 3.2, the expression on the right hand side of (18) is equal to

[ e () @) dute) = [ [ s 0ulrG) dina ) duta)
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According to the relation (13), this last expression is the equal to the right hand
side of (19). This proves the claim of the lemma. u

Proof of Proposition 3.1: By Lemma 3.3 and the martingale convergence
theorem (see Durret [5]), the sequence I, = I,(g, ) converges ji-almost every-
where to some measurable function Z(g,-). Notice that |I,(g,Z)| < sup|g| for
every n > 1, and so |Z(g, )| is also bounded above by sup |g|, for ji-almost every
ey, Considering a countable dense subset of the space of continuous functions,
we find a full ji-measure set of points # such that

N

I.(g,%) :/gd(A"(x")* man) — Z(g,%)

for every continuous function g: Grass(¢,d) — R. Let mj; be the probability
measure on Grass(¢,d) defined by

/g dm; = Z(g,2)  for every continuous g¢: Grass(¢,d) — R .
Then the previous relation means that A™(x™), mgn converges weakly to mgz. m

Corollary 3.4. For ji-almost every & € 3, the limit of A™(x™) myn coin-
cides with the conditional probability ms; of the measure m.

Proof: Taking the limit £ — oo in Lemma 3.3, and using the dominated
convergence theorem, we get that

[ 20,8 0(@) dits) = [ Lu(9.)v(2) i)
for every B,-measurable integrable function ¢. This may be rewritten as
[ 0@ [ o€ dins@) dnta) = [0(@) [a(ar@")€) diman(©) dita)

Let ¢ = X[y} be the characteristic function of a generic cylinder [I] in B,,. Chang-
ing variables & = f”(é), and using the fact that [ is f-invariant, we get that the
right hand side of the previous equality is equal to

/ X(F(2) / (A" () €) dm.(€) du(2)

where z = P(Z). Moreover, since the inner integrand z — g(A™(z) ) is constant
on local stable leaves, this may be rewritten as

/ X (F7(2) / g(A™(2) €) diis(€) di(2) = / Xin(#) / o) diins(n) di(2)
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In the last step we changed variables (&,7) = F}(2,€) and used the fact that
m is invariant under Fy. Summarizing, at this point we have shown that

/ Xy(8) 9(€) din (€) du() = / / Xy (&) g(n) drina(n) dA(2) -

This relation extends immediately to linear combinations of functions X[;x g.
Since these linear combinations form a dense subset of all bounded measurable
functions on fJxGrass(ﬁ,d), this implies that ms; =y for f-almost every &,
as claimed. n

4 — Properties of u-states

Let 7iv be a probability measure on f]xGrass(&d) that projects down to /i on 3,
in the sense that 7, m = 1. We call m a u-state if it admits some disintegration
{1g: & € 3} into conditional probabilities along the fibers {#} x Grass(f,d) that
is invariant under unstable holonomies:

my = (Hzg)« Mz  whenever y € Wii.(2) .

We call the u-state invariant if, in addition, it is invariant under Fy. We also call
(invariant) u-states the projections m = (Pxid),m down to ¥ x Grass(¢,d) of
the (invariant) u-states 1 on X x Grass(¢,d). Notice that m,m = p, and m is
invariant under Fy if /n is invariant under FA.

Here we prove that invariant u-states m do exist. Moreover, every u-state
admits some disintegration {m,: x € ¥} into conditional probabilities along
the fibers {z} x Grass(¢, d) varying continuously with the base point z, relative
to the weak™ topology. The formal statements are in Propositions 4.2 and 4.4.
The proofs use the assumption that £ has product structure (recall Section 1.2).

4.1. Existence of invariant u-states

Let M be the space of probability measures on )y x Grass(¢, d) that project
down to ji on 3. The weak* topology on M is the smallest topology such that
the map 7 +— [t dn is continuous, for every bounded continuous function
P fJxGrass(E, d) — R. Notice that M is a compact separable space for this topol-
ogy. This is easy to see from the following alternative description of the topology.
Let K,, C fl, n > 1, be pairwise disjoint compact sets such that f(K,) > 0 and
> (Ky) =1. Let M,, be the space of measures on K, x Grass(¢,d) that project
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down to (ft|K,). The usual weak* topology makes M,, a compact separable space.
Given n € M, let n,, € M,, be obtained by restriction of 1. The correspondence
N — (Nn)n identifies M with [[M,, and the product topology on [[ M,, corre-
sponds to the weak* topology on M under this identification. Thus, the latter is
a compact separable space, as claimed.

Remark 4.1. If 7/ converges to 7 in the weak* topology then
(20) [ 0.9 @) a6 — [ 0.6 dnfa6)

for any continuous function v : 3 x Grass(¢,d) — R and any measurable bounded
(or even fi-integrable) function J: 32 — R. To prove this it suffices to consider the
case when J = X' for some measurable set B, because every bounded measurable
function is the uniform limit of linear combinations of characteristic functions.
Now, using that /i is a regular measure (see Theorem 6.1 in [18]), we may find
continuous functions .J, : & — [0, 1] such that a({ e S0 J(d) # J(2)}) is arbi-
trarily small. By the definition of the topology,

[ 66,0 0@ a6 — [ 6.0 0@ i@ as jooo.

This implies the convergence in (20), because corresponding terms in these two
relations differ by not more than sup [¢|({Z € S Ju(2) # J(2)}), which can
be made arbitrarily small. o

Remark also, for future use, that in these arguments ji may be replaced by
any other probability in X.

Proposition 4.2. There exists some invariant u-state rm on 3 x Grass(/, d).

Here is an outline of the proof. The space U of all u-states is non-empty and
forward invariant under the cocycle. Every Cesaro weak® limit of the forward
iterates of an element of U is an invariant u-state. The proposition follows by
noting that weak™® limits do exist, because U is compact relative to the weak*
topology. The last step demands some caution, because conditional probabilities
do not behave well under weak* limits, in general. We fix an arbitrary point w € ¥
and observe that, restricted to the cylinder, the space U may be identified with
the space N of probabilities on W3 (w) x Grass(¢,d) that project down to fi,.
Then it suffices to use that the latter space is weak™ compact.
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Let us fill the details. Let {/i,: « € 3} be the disintegration of /i along local
stable sets in Section 1.2. Denote by J, the Radon—-Nikodym derivatives of the
conditional measure i, with respect to fi,, for each x € ¥. According to (6),
these J, are uniformly bounded from zero and infinity. We use £ and w to
denote generic points in W3 (x) and WS (w), respectively, with the convention
that whenever they appear in the same expression they are related by

W € Wige(w) N Wige() .

Let N be the space of all probability measures A on WS (w) x Grass(¢,d) that
project down to fi, on WS (w). Recall, from the observation at the beginning of
this section, that A is weak* compact. We denote by U the space of all u-states,
that is, all probability measures n on f]xGrass(ﬁ,d) that project down to [
and admit some disintegration {n;: & € ﬁ]} along the Grassmannian fibers that
is invariant under unstable holonomy:

(21) Nz = (Hpz)s Mo forall 2.

Lemma 4.3. U is homeomorphic to N.

Proof: Every A € N/ may be lifted to some n € U in the following natural
fashion: choose a disintegration {)\wl w e lgc(w)} of X\ and then let 1 be the
measure on 3 x Grass(/, d) whose projection coincides with /i and which admits

(22) N = (Hpz)x Ao

as conditional probabilities along the fibers {#} x Grass(¢, d). This definition does
not depend on the choice of the disintegration of A. Indeed, let {Ay: @ € WS (w) }
be any other disintegration. By essential uniqueness, we have

A = Ay for fi,-almost every we W (w) .

Since the measures i, = € %, are all equivalent, it follows that 7z = n; for
fiz-almost every & € W (x) and every x € X. So, the lifts constructed from
the two disintegrations do coincide. It is clear from the construction that n € U.

Let W: N — U, U(\) =7, be the map defined in this way. We are going to
prove that ¥ is a homeomorphism. To prove injectivity, suppose ¥(\) = 7 =
¥ (6). By (22), this means that

(Hw,i)* >\'zI} = mi = (Hw@)* 912}
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for fi-almost every & € 3. Since the conditional probabilities 1 are all equivalent,
this is the same as Ay = 0y for fig-almost every w € W _(w). In other words,
A= 0. To prove surjectivity, consider any measure 1 € U. By definition, n admits
some disintegration {n,: x € X} satisfying (21). Define A\, = (Hz )« 1z for any
& € WY (W), and then let A be the measure on W} (w) x Grass(¢, d) that projects
down to fi,, and has these Ay as conditional probabilities along the fibers. Then
A €N and n=T(N).

We are left to check that ¥ is continuous. Let 1: 3 x Grass(¢,d) — R be any
bounded continuous function and let A’ be any sequence of measures converging
to some A in /. Using Remark 4.1,

/ Bl 2,€) dXL(€) dfiali / B, 5,€) Ty (1) AN (€) dfiny(1D)

converges to

[ 668,09 aa(€) din(@) = [ 000,8,€) L) dra(€) dia()

as j — 0o, for every x € X. Integrating with respect to p, and using the bounded
convergence theorem, we get that

J[ w50 aN© dinta) duto) — [ [ 000,8,6) a©) din () duto)

as j — 0o. This means that ¥(\) converges to ¥(\) as j — oc. m

Proof of Proposition 4.2: In view of the previous lemma, I/ is non-empty
and compact relative to the weak* topology. Moreover, U is invariant under
iteration by Fj: this follows from the invariance property (b) in Section 1.3 for
unstable holonomies, together with the fact that local unstable sets are mapped
inside local unstable sets by the inverse of f . Consider any probability measure
m € U. The sequence

1 n—1 N
]:

has accumulation points m in Y. Since FE} is a continuous map, the push-forward
operator (Fj). is continuous relative to the weak* topology. It follows that any
such accumulation point is F4-invariant and, consequently, an invariant u-state. m
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4.2. Continuity of conditional probabilities

Now we prove that conditional probabilities of u-states along the Grassman-
nian fibers depend continuously on the base point:

Proposition 4.4. Any u-state m in ¥ x Grass(¢, d) admits some disintegra-
tion {m,: x € ¥} into conditional probabilities along the Grassmannian fibers
varying continuously with x € ¥ in the weak™ topology.

This continuous disintegration is necessarily unique, because disintegrations
are essentially unique and g is supported on the whole 3. For the proof of the

proposition we need the following simple observation:

Lemma 4.5. Let {ry;: & € fl} be a disintegration along {{#} x Grass((,d):
S i} of some probability measure 7 on % x Grass({,d) such that #, m = fi.

Then
— / s diia(2)

is a disintegration of m = (Pxid), m along {{z} x Grass({,d): z € ©}.

Proof: For any ¢: ¥ x Grass({,d) — R and ¢ = po(Pxid),

J[ e amsauto) = [[( [ ote) s diat@)) aute)
= [[ ([ ote.0) dinet)) dia(a) itz
= /(/@(m) dwv)) (@) = [pdin = [ dm

and this proves that {mz: T € E} is a disintegration of m.

Remark 4.6. For u-states this gives that, for any measurable set E C
Grass(¢,d),

B) = [inaE) @) = [ ing(113,() GG i)

for any pair of points  and y in the same cylinder. When the cocycle is locally

constant the stable holonomies H . P =1id. In this case it immediately follows

that the conditional probabilities m, and m, are all equivalent. Moreover, their
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Radon—Nikodym derivatives are uniformly bounded, as a consequence of the
boundedness condition (1). Starting from this observation, in the appendix of [1]
we give a version of Theorem A for locally constant cocycles that does not require
the continuity hypothesis (2). o

Proof of Proposition 4.4: Let {mx z € f)} be a disintegration of m into
conditional probabilities that are invariant under unstable holonomies: m; =
(Hz )« 1z for every &, ¢ in the same local unstable set. Let {mm: x € E} be the
disintegration of m given by Lemma 4.5. For any continuous g: Grass({,d) — R
and any points x and y in the same cylinder of X, we have

/( £) dmy (& / / §) ding(§) djiz (2 / / 7 drivg (1) ditz(Z)

where ¢ denotes the unique point in W3 (y) N W2.(2). Fix y and consider the
function

O(2%2") = /g(Hg;(n)) dimg(n), where 2 = (2% 2") .

It is clear that ® is measurable and bounded by the sup |g|. Moreover, it is con-
tinuous on z* for each fixed z*. To check this it suffices to note that my does not
depend on x%, while the function g and the holonomies depend continuously on &
(recall Definition 1.1). It follows from Lemma 2.5 that

x H/ €) dmy (¢ :/ (2%, 2) dite(2®)

is continuous. This proves the claim of the proposition. s

Corollary 4.7. If m is an invariant u-state and {mz: x € E} is the con-
tinuous disintegration of m, then

1
z = Z 714’“(,2)* m, = Ak(z)* my d,ukﬂz(z)
sef—k(x) T1H(z) /

for every x € ¥ and every k > 1.

Proof: The second equality is just the definition of the backward averages,
see Section 2.5. As for the first equality, it must hold for every k > 1 and p-almost
every x, because m is invariant under f. Moreover, all the expressions involved
vary continuously with x € 3: this follows from Proposition 4.4, property (7),
and our assumption that the cocycle is continuous. Hence, the first equality
must hold at every point of supppu = 3. n
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Corollary 4.8. If {mx T e i} is a disintegration of an invariant u-state m
into conditional probabilities invariant under unstable holonomies then

for every n > 1, every x € ¥, and [i,-almost every & € W3 (x).

Proof: Since m is FA-invariant, the equality is true for all n > 1 and fi-almost
all 2 € X or, equivalently, for fi.-almost every Z € W)? (2) and p-almost every
z € 3. Consider an arbitrary point x € 3. Since p is positive on open sets,
x may be approximated by points z such that

mfn(é) = A”(z)* mg
for every n > 1 and fi.-almost every 2 € W3 (2). Since the conditional probabil-
ities of m are invariant under unstable holonomies, it follows that

Minie) = (Hingoy ey ) A" (D)= 1iz = A"(@). (Hzg), iz = A™(2). s

for ji,-almost every £ € W5 (2), where & is the unique point in W3 (z) " WL.(2).
Since the measures i, and ji, are equivalent, this is the same as saying that the
last equality holds for fi,-almost every & € WS (x), as claimed. »

5 — Invariant measures of simple cocycles

In this section we prove that invariant u-states of simple cocycles are fairly
smooth along the Grassmannian fibers: they give zero weight to every hyperplane
section.

Proposition 5.1. Suppose that A is simple. Let m be any invariant u-state
in ¥ x Grass({,d) and {m,: x € £} be the continuous disintegration of m. Then
mg (V) = 0 for every x € ¥ and any hyperplane section V' of Grass(¢,d).

In Section 5.1 we argue by contradiction to reduce the proof of Proposition 5.1
to Proposition 5.5, a combinatorial result about intersections of hyperplane sec-
tions. The latter is proved in Section 5.2. See also Appendix B.
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5.1. Smoothness of conditional probabilities

Suppose there is some point of ¥ and some hyperplane section of the corre-
sponding Grassmannian fiber which has positive conditional measure. Let vg > 0
be the supremum of the values of m, (V') >~ over all x € ¥ and all hyperplane
sections V. The supremum is attained at every point:

Lemma 5.2. For every = € X there exists some hyperplane section V of
Grass(¢, d) such that m, (V) = 7.

Proof: Fix any cylinder [J] C ¥ and any positive constant ¢ < u([J])/K,
where K is the constant in (15). Let z € ¥ and V be a hyperplane section with
m,(V) > 0. For each y € f%(2), let V,, = A¥(y)~1(V). By Corollary 4.7,

m(V) =/my(Vy) itz (y) < pz ([7]) sup{my(Vy): y € [T} + (1= .2 ([]) 70 -
By (15), there exist arbitrarily large values of k such that jy .([J]) > ¢. Then
m.(V) < esup{my(Vy): y€[J]} + (1— )0 .

Varying the point z € ¥ and the hyperplane section V, we can make the left hand
side arbitrarily close to vg. It follows that

sup{m,(V,): y€[J]} >0 .

This proves that the supremum over any cylinder [J] coincides with ~y. Then,
given any x € ¥ we may find a sequence z, — x and hyperplane sections V,,
such that m,, (V) — 1. Moreover, we may assume that V;, converges to some
hyperplane section V' in the Hausdorff topology. Given any neighborhood U of V,
we have mg, (U) > mg, (V) for all large n. By Proposition 4.4, the conditional
probabilities m,, converge weakly to my;. Assuming U is closed, it follows that

mg(U) > limsup m,, (U) > limsup my, (Vi) > 7o -

n n

Making U — V, we conclude that m, (V') > ~9. This proves that the supremum
is realized at x, as claimed. m

Lemma 5.3. For any x € ¥ and any hyperplane section V of Grass(¢,d),
we have my (V') =~y if and only if m,, (A(y)_1 V) = o for every y € f~1(x).
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Proof: This is a direct consequence of Corollary 4.7 and the relation (12):
for every x € 3,

e 71 m -1 an 71 =
V)= 2, gy AWV D Sy

yef~H(z) yef~'(z)

Since 7y is the maximum value of the measure of any hyperplane section,
we get that m, (V) = if and only if m,(A(y)~1V) = for every y € f~1(z),
as stated. m

Lemma 5.4. For any x € ¥ and any hyperplane section V of Grass(/, d),
we have 1; (V') < v for fiz-almost every & € WS _(x). Hence, m,(V') =~ if and
only if mz(V') = o for fiy-almost every & € WS (x).

Proof: Suppose there is y € ¥, a hyperplane section V, a constant v; > o,
and a positive ji-measure subset X of WS (y) such that 1my;(V) > 1 for every
y € X. For each m < 0, consider the partition of W3 (y) =~ ¥° determined by
the cylinders [I]° = [t ..., t—1]®, with ¢; € N. Since these partitions generate the
o-algebra of the local stable set, given any € > 0 we may find m and I such that

(XA I) > (1= 2) i, (11)%).

Observe that [I]® ~ [I]*x{y} coincides with f”(T/Vlf)c(ac)), where = = f; " (y).
So, using also Lemma 2.6,

oo (F O MWL (@) = (F21) (XN T)7) = Ty () oy (X O [1T7).
By the previous inequality and Lemma 2.6, this is bounded below by
(L= &) T (@) iy (1) = (1= &) (72 i) (1)) = o (Wike() = 1< .
In this way we have shown that
iy (F (0N Wia(@) = (1—2) .
Fix € > 0 small enough so that (1—¢&)~; > . Using Corollary 4.8, we find that
s (A" ()71 V) = my(V) > m

for fiz-almost every & € f~"(X) N Ws.(z). It follows that

mg (A™(2)"1V) :/m@(A"(x)lv) diiz(2) > (1—¢)y > v,
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which contradicts the definition of 7y. This contradiction proves the first part of
the lemma. The second one is a direct consequence, using the fact that m, (V)
is the jiz-average of all 7z (V). n

Before we proceed, let us introduce some useful terminology. Recall that a
hyperplane section V of Grass(¢, d) is the image of A% (C%) N H under the projec-
tion 7, where H is the geometric hyperplane of A’(C?%) defined by some non-zero
element v € AY~¢(C?). Notice that, for any linear isomorphism B of C,

A(B)H = {w: wAAT(B)(v) = o} and B(V) =, (Aﬁ(cd) OAZ(B)H) .

Suppose B is diagonalizable. Then we say V is invariant for B if the subspace
my(v) is a sum of eigenspaces of B. Likewise, we say V contains no eigenspace
of B if m,(v) intersects any sum of ¢ eigenspaces of B at the origin only or,
equivalently, if H contains no ¢-vector w such that m,(w) is a sum of eigenspaces
of B. A subset J of {0,1,..., N—1} is called e-dense if #J > Ne.

Proposition 5.5. For any € > 0 there exists N > 1 such that

(B (V) =19

jeJ

for every e-dense set J C {0,1, ..., N—1}, every linear isomorphism B: C¢ — C?
whose eigenvalues all have distinct absolute values, and every hyperplane section
V of Grass(¢,d) containing no eigenspace of B.

This proposition will be proved in Section 5.2. Right now let us explain how
it can be used to finish the proof of Proposition 5.1.

Fix a periodic point p € S of f and a homoclinic point 2z € $ as in Defini-
tion 1.2. Let p = P(p) be the corresponding periodic point of f and let z = P(2).
By Lemma 5.2, we may find a hyperplane section V of Grass(¢,d) with m, (V) =o.
Write V = m, (Afj (CHNH ), where H is the geometric hyperplane defined by some
non-zero (d—¢)-vector v. Let V" =A""(p)V and H™ be the geometric hyperplane
defined by A="(p) v. Then, V"= m,(AL(CY) N H") for each n > 0. Since all the
eigenvalues of A9(p) have distinct absolute values, A" (p) v converges to some
(d—¢)-vector vy such that m,(v1) is a sum of eigenspaces of A%(p). This means
that V™ converges to Vi = m, (Aﬁ(Cd) N Hl), where Hy = {w: WAV = 0} is the
geometric hyperplane section defined by v1. On the other hand, using Lemma 5.3
we find that m,(V"™) =1y for all n > 0. By lower semi-continuity of the measure,
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it follows that m,(Vi) = v9. Note that V; is invariant for A9(p). This shows that
we may suppose, right from the start, that V' is invariant for A9(p).

Now define W= A!(z)~!'V. From Lemmas 5.3 and 5.4 we get that m. (W) = 7o
and m¢ (W) =~ for fi,-almost every ¢ € W (z). For each n € W _(p), define
W, = H¢n(W), where ¢ is the unique point in W¢.(n) N WS.(2). Since 7 is a
u-state and the measures fi, and fi, are equivalent, we have 7, (W) = m¢(W) =
for fip-almost every n. For each j > 0, let

Wi = A~99(p) W

Fia(n) (in particular, Wg = A7q) (W) .

Using Corollary 4.8, we get that mn(Wﬁ) = mqu(n)(qu(n)) =~ for every j >0
and jip-almost every n. It is clear that every Wg is an ¢-dimensional projective
subspace. Moreover, it depends continuously on 7, for each fixed j, because
unstable holonomies vary continuously with the base points (Definition 1.1).

Notice that

Wp = Hs 5 Al(2)7'V = ¢, 1V (recall H;3=HY; and H’

p.f1(2) id).

Thus, the second condition in Definition 1.2 implies that W}, contains no eigenspace
of Al(p).
Taking € = 79, V= W}, B= A9(p) in Proposition 5.5 we find N > 1 such that

ﬂ W]g =10 for every ~p-dense subset J of {0,1,...., N—1} .
Jje€J

Since the family of sets J is finite, we may use continuity to conclude that

(23) m Wg =10 for every ~p-dense subset J of {0,1,...,N—1}
JjeJ

and any 7 in a neighborhood of p inside the local stable set. On the other hand,
the fact that m, (WW;)) = for all j > 0 implies (use a Fubini argument) that
there exists some w € Grass({,d) such that the set

J = {ogjgN—L wewg}

is yo-dense in {0,1,...,N—1}. This contradicts (23). This contradiction shows
that we have reduced the proof of Proposition 5.1 to proving Proposition 5.5.
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5.2. Intersections of hyperplane sections

Now we prove Proposition 5.5. We say that I C N is a k-cube of sides
1, ...,c;x € N based on ¢ € NU{0} if I is the set of all z € N that can be written
as r =c+ ZZ a;c; with a; = 0 or a; = 1. We shall need the following couple of
lemmas on k-cubes.

Lemma 5.6. Let H C C? be a codimension 1 subspace, B: C¢— C% be a
linear isomorphism, and I be a k-cube for some 1 < k < d. If H(I)=(,c; B'(H)
has codimension at most k then there exists a subcube I' C I and an integer | > 1
such that B'(H(I')) = H(I").

Proof: The proof is by induction on k. The case k =1 is easy. Indeed, the
l-cube I = {c¢,c+c1} and so H(I) = BS(H) N B°t°1(H). Since H has codimen-
sion 1, if H(I) has codimension at most 1 then all the subspaces involved must
coincide:

H(I) = B(H) = B"'(H) ,

and this gives the claim with [ = ¢; and I’ = {¢}. Now assume the statement
holds for kK —1. Let I be a k-cube of sides cq,...,c; based on c. Let I and I
be the (k—1)-cubes of sides ¢1,...,cx—1 based on ¢ and on ¢ + ¢, respectively.
Then I = I; U I5. If either H(I;) or H(I2) has codimension at most k—1, then
the conclusion follows from the induction hypothesis. Otherwise, both H(I') and
H (I?) have codimension at least k. Since their intersection H(I) has codimension
at most k, they must all coincide:

H(I) = H(I) = H(Iy) = B*(H(I))

and the conclusion follows, with [ =cj, and I’=1;.

Lemma 5.7. For every ¢ >0 and k > 1 there exists § > 0 such that for
all sufficiently large N > 1 the following holds: for every e-dense subset J of
{0,1,..., N—1} there exist c1, ...,c; € N and a 6-dense subset J* of {0,1, ..., N—1}
such that for every ¢ € J* the set J contains the k-cube with sides ¢y, ..., ¢, based
on c.

Proof: The proof is by induction on k. Let us start with the case k = 1.
Let aj, j=1,...,4J be the elements of J, in increasing order. By assumption,
#J > eN. Then, clearly,

#il _ N-1 _2N _

it — Qs o0
< 1+1 l_#J—l_#J_

1
471

(LI )
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(assume N is large enough so that #J > &N > 2). Then at least half of these
differences are less than twice the average: there exists I' C {1,...,#J — 1} with
#I' > (#J —1)/2 > #J/4 such that a;41 — a; < 4/e for all i € I'. Then there
must be some ¢; > 1 and a subset I” of I’ such that

2
S ST S e N

I
a;11— a; = c1 for all icI” and #I//Z%_ 16 1

[«

It follows that § =2/16 and J* = {a;: i € I"'} satisfy the conclusion of the lemma
for k = 1.

Now assume the conclusion holds for £ —1. Then there exists §;_1= d(¢) >0,
positive integers ci,...,cx_1, and a &_i-dense subset J*~! of {0,1,..,N — 1}
such that J contains a (k —1)-cube of sides cy, ..., cx—; based on every ¢ € J+~1.
Applying case k =1 of the lemma with d;_1 in the place of €, we find § =d(¢) > 0,
a positive integer ¢y, and a d-dense subset J* of {0,1,..., N—1} such that {c, c+c;}
€ JE1 for every ¢ € J¥. Then cy,...,c; and J* satisfy the conclusion of the
lemma. m

We now conclude the proof of the proposition. Fix k = dim A*(C?) — 1.
Assume N is large enough so that Lemma 5.7 applies. It follows from the lemma
that J contains some k-cube I. Let H be the geometric hyperplane corresponding
to V. If (N;e; B (V) C Grass(¢,d) is not empty then H(I) = (\;c; B'(H) has pos-
itive dimension, that is, its codimension in A*(C?) is at most k. So, Lemma 5.6
implies that there exists a subcube I’ C I and an integer [ > 1 such that H(I’) is
invariant under B'. Thus, (,c;, B'(V) C Grass(/,d) is non-empty and invariant
under B'. Since all the eigenvalues of B have different absolute values, for every
(-subspace W C C¢ we have that B7(WW) converges to a sum of eigenspaces of B
as j —oo. Since (V;cp BJ(V) is non-empty, invariant, and closed, we conclude
that it contains some sum of eigenspaces of B. In particular, V' contains a sum
of eigenspaces of B, which contradicts the hypothesis. This contradiction proves
Proposition 5.5.

6 — Convergence to a Dirac measure

In this section we prove that, for simple cocycles, the limit of the iterates of
any invariant u-state m is a Dirac measure on almost every Grassmannian fiber.
Recall that, given any & € X, we denote 2" = P(f_"(:i')) for n > 0.
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Proposition 6.1. If A is simple then, for every invariant u-state m and
f-almost every & € 3, the sequence A™(x™), myn converges to a Dirac measure
O¢(z) in the fiber {x} x Grass(¢,d) when n — oo.

Proof: In view of Proposition 3.1, we only have to show that for ji-almost
every & € X there exists some subsequence (n;); and a point {(z) € Grass(¢, d)
such that

(24) A"z ) myn; — Ogz)  when j— o0 .

Let p € S be a periodic point, with period ¢ > 1, and % € 3 be a homoclinic
point as in Definition 1.2. Denote p = P(p) and z = P(2). Let [I] = [t0, ..., tg—1]
be the cylinder of ¥ that contains p. It is no restriction to assume that z € [I]:
this may always be achieved replacing Z by some f ~94(2) which, clearly, does not
affect the conditions in Definition 1.2.

Figure 1 — Proof of Proposition 6.1: case £(2) not in ker Q.

For fi-almost every & € 3 there exists a sequence (nj); such that (&)
converges to 2. That is because i is ergodic and positive on open sets. Let k > 1
be fixed. From Proposition 3.1 we conclude that

lim A™(2" ) myn; = lim A" TR (@R
j—00 j—00 v
= lim A™(z™), Aqk($nj+qk)*mxnj+qk .
Jj—00

Note that 2" 19* converges to z9¥ when j — co. See Figure 1. Then, by Propo-
sition 4.4, the probability m_n;+q converges to m . when j — oo. So, since A is
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continuous,

Aqk(a:”f+qk)*mmnj+qk — A% m i when j— o0 .

Since the space of quasi-projective maps is compact, up to replacing (n;); by a
subsequence we may suppose that A™(z™i) converges to some quasi-projective
map @ on Grass({,d). By Lemma 2.3, the kernel of @) is contained in some
hyperplane of Grass(¢,d). Hence, by Proposition 5.1, the subspace ker @) has zero
measure relative to A% (27%), m_q. So, we may apply Lemma 2.4 to conclude
that

(25) i AT s = Qu AT
for any k£ > 1 (in particular, the latter expression does not depend on k).

Now, the pinching condition (p) in Definition 1.2 implies that A9(p) has
¢ eigenvalues that are strictly larger, in norm, than all the other ones. Denote
by £(p) € Grass(¢,d) the sum of the eigenspaces corresponding to those largest
eigenvalues, and define {(2) = Hp ;- £(D).

Lemma 6.2. The sequence A% (29%), m_q converges to d¢(s) when k — oo.

Proof: Using the relations A% (p)~! = A=9%(p) and A% (z9%)~1 = A9k (2),
we find that

AT (Y = (A*q’f(,as)*l-A*qk(ﬁ))*m’f(p)*mzqk .

By the Definition 1.1 of unstable holonomies, A~ ()=t A= () converges to Hj :
when k — co. Observe also that A9 (p),m,q converges to the Dirac measure
at {(p) € Grass({,d) when k— oco. That is because m_q converges to my, by
Proposition 4.4, and m,, gives zero weight to the hyperplane section defined by
the sum of the eigenspaces of A4(p) complementary to £(p), by Proposition 5.1.
It follows that A%(z%%), m e converges to (Hp:)«0¢(s) = 0gz) when k — oo,
as stated in the lemma.

Suppose, for the time being, that £(2) is in the domain Grass({,d)\ ker @ of
the quasi-projective map (). From Lemma 2.4 we get that

Qu A%(p)s moak — Qube(z) = Oga

when k — oo, where £(#) = Q(£(2)). Combined with the relation (25), this gives
that A"(x"),.m,n; converges to the Dirac measure d¢;) when j— oco. This
proves (24) and Proposition 6.1 in this case.
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S

nj+ak+i+qm 2
—e o0 o0 o ——

n;j +qk+1

3

Y Y

i +qk g

Figure 2 — Proof of Proposition 6.1: avoiding ker Q.

Next, we show that one can always reduce the proof to the previous case. Let
[ >1 be as in Definition 1.2. For each j much larger than £, let m; = n;+ gk +1
and g = 9(j, k) be defined by

(26) Frramtg) € Wise(f (@) N e (F1(2)) -

See Figure 2. By construction, 3™ 9™ is sent to ™% by the map f!T9™.
Hence, using Proposition 3.1,

lim A™(2™ ), myn; = lim ATt R)
o7 j—00 Jj—00 z
( ) = Amj+qm m;i+qm
= 'lm (y )* mymj+qm 5
J—o0

for any fixed k and m. We are going to prove that the limit is indeed a Dirac
measure. For this, let & = w(k) be defined by

(28) Fl() € Wi (F7(2) N W (f1(2)) -

Notice that w is in W% (£) = W% (p). Let k and m be fixed, for the time being.
As j — o0, the sequence f‘”]"qk(f) converges to f‘qk(é) and so, combining
(26) and (28), the sequence f~™~9%(j) converges to f!(w). It follows that y™
converges to w = P(w), and so

Amj(ymj) _ Anj(ajnj)Aqk+l(ymj)

converges to Q=Qo A%+ () in the space of quasi-projective maps, as j — oo.
Define £(w) = Hp i - £(p). The key observation is
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Lemma 6.3. Assuming k is large enough, £(w) is not contained in ker Q.

Proof: From the definitions of Q and @ we get that
ker Q = AMH ()™l ker@Q = Al(w)™! AT (%) ker Q .

By the invariance property of unstable holonomies, we have

~

AT (p) - H

AT = AR (2) = H Iy

Jak(z)

So, the previous equality may be rewritten as

kerQ = Al(w)™' H.

p,f—ak(2) A_qk(ﬁ) “Hzp- ker @ .

Notice that f‘qk(é) converges to p and so, by (28), the point w converges to Z,
as k — o0o. By the continuity of the cocycle and the holonomies, it follows that
Hy - qr(z) converges to the identity and Al() converges to Al(2), as k goes to co.
By Lemma 2.3, the kernel of () is contained in some hyperplane section of
Grass({,d). Then the same is true for H; ;- ker Q: it is contained in the set of
all /-dimensional subspaces that intersect the (d — ¢)-dimensional subspace 7, (v)
associated to some (d—¢)-vector v. Since all eigenvalues of A9(p) have distinct
absolute values, the backward iterates of m,(v) under A9(p) converge to some
(d — ¢)-dimensional sum m,(n) of eigenspaces of A%(p). It follows that, as k — oo,
the sequence A~k (p)-Hj - ker @ converges to some subset V; of the hyperplane
section V defined by 1. Combining these two observations we get that, as k — oo,

(29) kerQ — Al(2)71 (Vo) c Al(z)~H(V) .
It is easy to see that £(2) does not belong to A(2)~1(V): otherwise,
Al(2)-€(2) = A2) - Hps - £(0) = p- €(D)

would intersect 7, (1) and, since £(p) and m,(n) correspond to sums of eigenspaces
with complementary dimensions, that would contradict the twisting condition in
Definition 1.2. Using (29) and the fact that £(w) converges to £(2) when k — oo,
we deduce that £(w) is not in ker Q if k is large enough, as claimed. u

We can now finish the proof of Proposition 6.1. The arguments are the same
as in the previous case, with n; and z replaced by m;=n;+ gk +1 and w,
respectively, and ¢gm in the role of ¢k. Indeed, from (26) and (28) we get that
fmi () converges to @ as j — oo. Consequently, A9 (y™it4™) converges to
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AT (w?™) and, using also Proposition 4.4, M, mj+am CONVETEes tO Myyam as J — o0.
So, in view of (27),

lim A™(z"),myn; = lim A™I T (y"i ™) my e gm
j—o0 j—o0 y
= Q* AT (p) s Myam

for any m > 1, which is an analogue of (25). By Proposition 4.4, the measure
Myam converges to my, as m — oo. By Proposition 5.1, the measure m, gives
zero weight to the hyperplane section defined by the sum of the eigenspaces
complementary to £(p). Therefore, just as in Lemma 6.2, we conclude that
AT (@DI™) . mygem converges to ¢ () when m — oo. Hence, fixing & as in Lemma 6.3
and using Lemma 2.4,

lim Q* Aqm(p)* Mypyam = 5«@) s

m—00

where £(#) = Q. O¢(iy- This shows that lim; o A™(2"7)« myn; = 6¢(z). Now the
proof of Proposition 6.1 is complete. u

In the next proposition we summarize some consequences of the previous
results that are needed for the next section:

Proposition 6.4. Suppose that Ais simple. Then there exists a measurable
section &: 3 — Grass(¢,d) such that, on a full i-measure subset of X,

(1) € is invariant under the cocycle and under unstable holonomies: A(z) &(&) =
f(f(ﬁc)) and §(§) = Hj ;- £(2) for & and § in the same local unstable set;

(2) for any compact set I' C S, the eccentricity S(E,A"(f*”(i"))) — 00, and

the image under fl"( f_"(:i‘)) of the (-subspace most expanded by A" ( f ”(:%))
converges to £(), restricted to the subsequence of iterates f~"(&) € T.

Proof: From Corollary 3.4 and Proposition 6.1 we get that the conditional
probabilities of the original measure m along the Grassmannian fibers coincide
with the Dirac measures d¢(;) almost everywhere. Since 77 is an invariant u-state,
it follows that & is almost everywhere invariant under the cocycle and under the
unstable holonomies, as stated in part 1 of the proposition.

Part 2 follows from Proposition 2.2, with N = {mp(;c): T €T}, vy =myn,
L, = A"(2") = A" (f_”(i’)), and £ = &(2). By Proposition 4.4, the family is
N is weak* compact if I is compact. It follows that the eccentricity £(¢, A f*"(:?:)))
tends to infinity, and the image under Ar ( f n (a%)) of the subspace most expanded
by A" (f_”(:%)) converges to (z), as claimed. m
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Remark 6.5. In Section 2.6 we replaced the original cocycle A by another
one conjugate to it,

A2) = Hi g iy A@)  Hiuy o = Higu ey, guiy A0" @)

which is constant on local unstable sets and, consequently, whose stable holonomies
are trivial. The statement of Proposition 6.4 is not affected by such substitution.
Indeed, if £ is an invariant section for A" as in the proposition, then

Hju(z),s €(2)

is an invariant section for A, and it is invariant also under the corresponding
unstable holonomies. In addition,

AM(fT@) = Hjugay,a (A" (F"@)  Hi ) guiioniay)

Considering only iterates in a compact set, the corresponding conjugating iso-
morphisms H?® belong to a bounded family. Hence, the claims in part 2 of Propo-
sition 6.4 hold for A if and only if they hold for A". ©

7 — Proof of the main theorem

We are going to show that & — &(&) € Grass(¢,d) corresponds to the sum
of the Oseledets subspaces of the cocycle associated to the ¢ largest (strictly)
Lyapunov exponents. In particular, £(Z) is uniquely defined almost everywhere.
This will also prove that the invariant u-state is unique if the cocycle is simple.

The first step is to exhibit the sum 7(Z) of the subspaces associated to the
remaining Lyapunov exponents. This is done in Section 7.1, through applying
the previous theory to the adjoint cocycle. Then, in Section 7.2 we use the second
part of Proposition 6.4 to show that vectors along £(Z) are more expanded than
those along 1(Z).

7.1. Adjoint cocycle

Let - be a Hermitian form on CY, that is, a complex 2-form (u,v) — u-v
which is linear on the first variable and satisfies u-v =v-u for every u and v.
The adjoint of a linear operator L: C? — C? relative to the Hermitian form
is the linear operator L*: C* — C? defined by

L*(u)-v = u- L(v) for every u and v in C?.
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The matrix of L* in any orthonormal basis for the Hermitian form is the conjugate
transpose of the matrix of L in that basis: L;,; = Lj;. The eigenvalues of L*
are the conjugates of the eigenvalues of L, and the operator norms of the two
operators coincide: ||L*|| = || L]

Let B(#): C¢— C% be defined by B(i) = /l(ffl(j:))* or, equivalently,

(30) B@)u-v=u- A(ffl(a?))v for every u and v in C?.

Consider the linear cocycle defined over f 1 by

Fp: $xCl—SxC?,  (#,u) — (f1(2), B(#)u),
as well as the induced Grassmannian cocycle. Notice that
BY(&) = A(f (@) - A(f2@)A(f @) = AM(f@)"

The choice of the Hermitian form is not important: different choices yield cocycles
that are conjugate. For convenience, we fix once and for all such that eigenvectors
of A4(p) form an orthonormal basis.

The integrability condition in the Oseledets theorem holds for B if and only if
it holds for A, because “E(i)” =
under f. It is easy to check that the previous results apply to the cocycle defined

/l(f_l(fc)) H and the measure [ is invariant

by B. To begin with, our hypotheses on the dynamics (Section 1.1) and on the
invariant measure (Section 1.2) are, evidently, symmetric under time reversion.
The hypotheses on the cocycle (Section 1.3) are also clearly satisfied: a simple
calculation shows that B admits stable and unstable holonomies given by

N AN K ~ AN\ K
(31) HYP = (HA> and  HYY = (H“A) .

Lemma 7.1. B is simple for f‘l if and only if A is simple for f

Proof: Let p be a periodic point of f. For any orthonormal basis of C%, the
matrix of Bq(ﬁ) = flq(ﬁ)* is the conjugate transpose of the matrix of A¢ (p), and
the eigenvalues of the former are the complex conjugates of the eigenvalues of
the latter. Hence, the pinching condition in Definition 1.2 holds for any of them
if and only if it holds for the other. Next, notice that 2 is a homoclinic point for f
if and only if @ = f!(2) is a homoclinic point for the inverse: 2 € WL (p, f) and
fL(2) e W (B, f) if and only if fl(w) € WS (p, f~1) and w € Wk (p, f~1).

loc
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We have chosen the Hermitian form in such a way that eigenvectors of flq(ﬁ)
form an orthonormal basis. Then the matrix of B!(w) = A'(2)* in this basis is
the conjugate transpose of the matrix of fll(é), and so the algebraic minors of the
former are the complex conjugates of the algebraic minors of the latter. Thus,
the twisting condition in Definition 1.2 holds for B if and only if it holds for A w

This ensures that the previous results do apply to B. From Proposition 6.4
we obtain that

(i) there exists a section £*: 3 — Grass(¢,d) which is invariant under the
cocycle Fp and under the unstable holonomies of B;

(i) given any compact I' C 3., restricted to the subsequence of iterates f”(ﬁu)
in I, the eccentricity £ (¥, E”(f"(:i“))) =£&(¢, A”(.%)) goes to infinity and
the image B" (f‘"(i)) ¢e (f”(fc)) of the f¢-subspace (¢ (f"(ﬁ:)) most ex-
panded by B" (f”(:f:)) tends to £*(z) as n — oo.

Let us show that £(z) is outside the hyperplane section orthogonal to £*(&):

Lemma 7.2. For ji-almost every &, the subspace £(%) is transverse to the
orthogonal complement of £*(z).

Proof: Recall, from Section 2.6 and Remark 6.5, that we may take the stable
holonomies of A to be trivial. Then, by (31), the unstable holonomies of B are
also trivial. So, the fact that £* is invariant under unstable holonomies just means
that it is constant on local unstable sets of f —1 that is, on local stable sets of f .
Then the same is true about the orthogonal complement of £*(). In other words,
the hyperplane section of Grass(¢,d) orthogonal to *(z) depends only on x = P(Z).
Denote it as H,. Using Proposition 5.1 and then Proposition 6.4, we obtain

0 = my(H,) = / (o) (Hz) dita(8) = iz ({7 € Wise(@): €(@) € L }),

for p-almost every x. Consequently, [L({i’ e: &(z) € Hx}) = 0. This means
that, for almost every point, the subspace £(Z) intersects the orthogonal comple-
ment of £*(Z) at the origin only, which is precisely the claim in the lemma. n

Let n(z) € Grass(d—/, d) denote the orthogonal complement of £*(Z). Recall
that £ and £* are invariant under the corresponding cocycles:

A(@)€(2) =€(f(2)) and  B(2)& (@) =& (f (@)

fi-almost everywhere. The latter implies that 7(Z) is also invariant under A.
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According to Lemma 7.2, we have C? = ¢(#) @ n(#) at almost every point.
We want to prove that the Lyapunov exponents of A along & are strictly big-
ger than those along 7. To this end, let

(@) =¢@ e o) and (@) =n’@) o - @n'(d)

be the Oseledets decompositions of A restricted to the two invariant subbundles.
Take the factors to be numbered in such a way that £* corresponds to the smallest
Lyapunov exponent among all £, and n® corresponds to the largest Lyapunov
exponent among all /. Denote d, = dim &% and dy = dim7®, and let A, and A
be the Lyapunov exponents associated to these two subbundles, respectively.

7.2. Direction of maximum expansion

Given a linear map L: C¢— C? and a subspace V of C% we denote by
det(L, V) the determinant of L along V', defined as the quotient of the volumes
of the parallelograms determined by {Lvy, ..., Lvs} and {v1,...,vs}, respectively,
for any basis v, ...,vs of V. Then we define, for each n > 1,

1/du

(32)  AYE) = det (A" (), £%(2))

= det(An(j),W(i))l/(dﬁds) where W (2) = (&) ®n°(&) .

According to the theorem of Oseledets [13],
1 P . 1 P .
- log det (A™(2),£"(2)) — duA and ;logdet(A"(a:), W (2)) — dydu+dsAs .

Consequently,

.1 noay  ds
(33) nh_)ngoﬁlogA (z) = it d (A — As) -

So, to prove that A, is strictly larger than A\s we must show that log A" goes
linearly to infinity at almost every point. The main step is

Proposition 7.3. For any compact set I' C S and for fi-almost every & € f],

lim A"(z) = 400

n—oo

restricted to the subsequence of values of n for which f”(;f:) erl.
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Proof: Let £%(i)=B" (f”(i:)) ¢%(z) be the image of the ¢-dimensional sub-
space most expanded by B” (f"(aﬁ)) — A™(%)*. Equivalently, £%(&) is the /-dimen-
sional subspace most expanded by fl”(i) Throughout, we consider only the
values of n for which f(#) € I'. Then we may use property (i) in Section 7.1:
the eccentricity

B, = £(LB"(F(2)) = &(t A"(2)
tends to infinity, and £2(z) tends to £*(Z), as n — oco. In view of Lemma 7.2,
the latter fact implies that the subspace £(Z) is transverse to the orthogonal
complement of £2(%), with angle uniformly bounded from zero for all large n.
Let us consider the orthogonal splitting

C= (@) @ (@)

Let (%) C £2(&) be the image of the subspace £"(Z) C (&) under the orthogonal
projection. We claim that

(34) det(A" () | £:(2)) < Crdet(A"(7) | (1)) ,

for some constant C independent of n. To see this, observe that any basis « of
¢4(z) may be lifted to a basis 3 of £%(Z). This operation increases the volume
of the corresponding parallelogram by, at most, some factor C; that depends
only on a bound for the angle between £(Z) and the orthogonal complement of
€(2). Note also that, the A™(Z)-images of £%(2) and €%(2)+ are orthogonal to
each other, because £%(#) is the f-subspace most expanded by A"(#). Hence,
the A”(ﬁ:)—image of @ may be obtained from the A"(i’)—image of 8 by orthogonal
projection, an operation that can only decrease the volume of the parallelogram.
Combining these observations, we get (34). Next, let 72 (%) be the subspace of
€4(2)* characterized by

W(t) = (@) & n*(2) = £"(2) & mp(2) -
Equivalently, n?(z) is the projection of n®(Z) to the orthogonal complement

of £2(z) along the direction of £(Z). Since the angle between £“(Z) and n}(z)
is bounded from zero,

(35) det(A™(2), W(2)) < Co det(A™(2),£"(2)) det(A™(2),n5 (1))

where the constant Cs is independent of n. Furthermore,

ds<

ds
Y

det (A™(2),n5(2)) < [|A"(@) | n5 (@) A™(3) | €x(a)*

det(A™(2),£2(2)) > m(A™(@) | €4(2)™ > m(A™(@) | €4(2))™
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because 13 (%) C £€4(2)* and £%(2) C £€%(2). Consequently,

m(A"(#)| €1(3)) _ den(An(@), (@)
[An@) [ €2@) ] = det(An(a), ny () *

(36) En =

From (34)—(36) we obtain
det (A" (%), W (2)) < CE;®% det(A™(2), &))" T/ ™

with C'= Cf/ “(Cy. Consequently,

det (A" (2), £4(2)) /™ S (O )t

A"(i) = . >
det (An (&), W(z)) "/ (Fte)

and this goes to infinity when n — oco. The proof of the proposition is complete. n

Now we are ready for the proof of Theorem A. Fix any compact set I' C )y
such that (I") > 0. By Poincaré recurrence, the first return map

g:T =T, g = /@)

is well defined on a full fi-measure subset of 3. The normalized restriction /i//i(T")
of the measure i to I is invariant and ergodic for g. Moreover, Fy induces a linear
cocycle

G:I'xC!'—TxC*, G(&,v) = (9(2), G(3)v)

where G(2) = A"@)(#). Clearly, this cocycle preserves the subbundles &(i) and
n(z), as well as their Oseledets decompositions

£@)=¢@@e--a (@) and @) =@ e on(@).

It is also clear (see Section A.1) that the Lyapunov exponents of G with respect
to i/fi(T") are the products of the exponents of E4 by the average return time
1/i(D).

Thus, to show that A, > A4 it suffices to prove the corresponding statement
for G. Define

det(gk(A) gu(a)) /™

k(s —
D"(z) = det(gk )1/(du+ds)

where W (z) = £“(z) ® n’(z) .




SIMPLICITY OF LYAPUNOV SPECTRA 357

Notice that, since £ and n® are both G-invariant,
DM(#) = D(#) D(g(%)) --- D(¢" ()

for all k > 1, where we write D = D!. Notice also that D*(Z) is a subsequence of
the sequence A"(Z) defined in (32). Since g is a return map to I', this subsequence
corresponds to values of n for which f"( )€ I'. So, Proposition 7.3 may be
applied to conclude that

k-1
li 1 D J(% =1 Dk r) = i (-al t 7 T.
(37) Jm jzo og D(¢°(2)) Jim (%) = oo for fi-almost every & €

We use the following well-known fact (see [10, Corollary 6.10]) to conclude that
the growth is even linear:

Lemma 7.4. Let T: X — X be a measurable transformation preserving a
probability measure v in X, and ¢: X — R be a v-integrable function such that
limy, 00 Z?;ol (go oTj) =400 at v-almost every point. Then [¢ dv > 0.

Applying the lemma to T'= g and ¢ = log D, we find that

k‘

(38) Jim. % log D* (&) = Jim ;Zologl)(gj(i)) = / logDﬂC?;,)

at fi-almost every point. On the other hand, from (33) and the relation between
the Lyapunov spectra of F4 and G,

— k 7 —
(39) lggok; log D" () I d

(/\u - )‘8)

Ay -
These two relations imply that A\, > As. In this way, we have shown that there is a
definite gap between the first £ Lyapunov exponents and the remaining d—# ones.

Since this applies for every 1 < ¢ < d, we conclude that the Lyapunov spectrum
is simple. The proof of Theorem A is complete.

Remark 7.5. A posteriori, we get from (33), (38), (39) that A”( ) goes
linearly to infinity when n — oo, that is, we do not need to restrict to f*(z) € I'. o
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APPENDIX

A — Extensions and applications

In this appendix we check that our methods apply to the Zorich cocycles
introduced in [19, 20]. We start with a few simple comments on our hypotheses.

A.1. Inducing

Here we explain how cocycles over more general maps can often be reduced
to the case of the full countable shift. We begin by treating the case of subshifts
of countable type. In particular, we recover the main results of [4], in a stronger
form.

Let Z be a finite or countable set and T = (t(i, j))i’j eI be a transition matrix,
meaning that every entry (i, j) is either 0 or 1. Define

S = {(Ln)neZ €T%: t(tnytng1) =1 forallne Z}

and let fT: f]T — f]T be the restriction to f)T of the shift map on 7%, By defi-
nition, the cylinders [-] of 37 are its intersections with the cylinders of the full
space Z%. One-sided shift spaces X% C 7{n=0} and X3 C 7{n<0} " and cylinders
[-]*C XY and [-]° C X% are defined analogously.

Let 7 be a probability measure on f]T invariant under fT and whose sup-
port contains some cylinder [I] = [t0;¢1, ..., tg—1] Of $7. By Poincaré recurrence,
the subset X of points that return to [I] infinitely many times in forward and
backward time has full measure. Let r(Z) > 1 be the first return time and

§(&) = fr&), for deX.

This first return map §: X — X may be seen as a shift on 3 = NZ. Indeed, let
{J (0): LeN } be an enumeration of the family of cylinders of the form

(40) [Lo; ULy eeey b1y by ones LT+k,1], with ¢p4;=1¢; for i=0,1,...,k—1
and r > 1 minimum with this property. Then

NZ — X, (En)nez — ﬂ g—n (J(gn))
neEL
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conjugates § to the shift map. Let o be the normalized restriction of o7 to X.
Then 7 is a g-invariant probability measure and, assuming o is ergodic for fT,
it is g-ergodic. The measure ¥ is positive on cylinders, since [/] is contained in
the support of . It has product structure if o7 has. The latter makes sense
because every cylinder [¢] of $7 is homeomorphic to a product of cylinders of P
and X7

To each cocycle defined over f by some Ap: Sp — GL(d, C) we may associate
a cocycle defined over § by

B(#) = A7(@) .

Notice that B is continuous if Az is, since the return time r(&) is constant
on each cylinder as in (40). Also, B admits stable and unstable holonomies if
Aqp does: the holonomy maps for the two cocycles coincide on the domain of B.
Furthermore, the Lyapunov exponents of B are obtained by multiplying those
of Ap by the average return time. Indeed, given any non-zero vector v,

n—1
lim %logHB"(j:) || = lim %logHAS’”(i)(i) of|,  Sar(@) =) r(d(@)),
j=0
and, for r-almost every &, this is equal to
1 o L A 1 N A A
nh_}rgo - Sy r(Z) w%gnoo - logHA (2) ’UH = ff([[]) ﬂ}gnoo - logHA (z)v|,

since n=1S, r(2) converges [rdp = 1/0([I]). In particular, the Lyapunov spec-
trum of either cocycle is simple if and only if the other one is.

Finally, the cocycle B is simple for § if Arp is simple for fT. More precisely,
suppose fT admits points p and Z satisfying the conditions in Definition 1.2 for
the cocycle defined by Aq and such that p is in the interior of the support of op.
Let ¢ > 1 be the minimum period of p and [I] = [t0; 1, ..., tgs—1] be a cylinder
that contains p, with s > 1. Taking s sufficiently large, we may assume that [I] is
contained in the support of . Replacing Z and fl(é) by appropriate backward
and forward iterates, respectively, we may also assume that they are both in [1].
Then p is also a periodic point for ¢ and Z is an associated homoclinic point.
Since the holonomies of the cocycles defined by Ap and B coincide, it follows that
the pinching and twisting conditions in Definition 1.2 hold also for the cocycle
defined by B.

In this way we have shown that our simplicity criterion extends directly to
cocycles over any subshift of countable type fr: S — Sp. There is also a non-
invertible version of this construction, where one starts with a one-sided subshift
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of countable type fr:Yr — X7 and an invariant probability vy on Xp, and
one constructs a first return map g(x) = f"*)(z) to some cylinder [I] contained
in the support of vy. Then ¢ is conjugate to the shift map on N{"=0} and
the normalized restriction v of the measure vr to its domain is a g-invariant
probability. Moreover, the measure v is ergodic for g if vp is ergodic for fr. The
natural extension § of the return map may be realized as the shift map on NZ.
The lift o of the probability v is a g-invariant measure, and it is g-ergodic if
v is ergodic for g. In Section A.2 we discuss conditions on v under which the lift
has product structure. Given any Ap: X7 — GL(d, C), the map B(x) :AA;(:E)(I‘)
defines a cocycle over g. Moreover, B lifts canonically to a cocycle B over g,
constant on local stable sets, and having the same Lyapunov exponents. Thus,
the Lyapunov spectrum of Ap is simple if and only if the Lyapunov spectrum
of B (or B) is.

More generally, let f: M — M be a transformation preserving a probability vf
and assume there exists a return map g to some domain D C supp vy which is
a Markov map. By this we mean that there exists a finite or countable partition
{J(¢): €N} of D such that (i) g maps each J(¢) bijectively to the whole domain D
and (ii) for any sequence (£,,),, in N#"20} the intersection of g~"(.J(£,,)) over all n>0
consists of exactly one point. Then ¢ may be seen as the shift map on N{7=0},
The normalized restriction v of v; to the domain of g is a g-invariant probability,
and it is g-ergodic if v is ergodic for f. As before, to any cocycle over f we may
associate a cocycle over g, or its natural extension, such that the Lyapunov spec-
trum of either is simple if and only if the other one is. This type of construction
will be used in Section A.4.

A.2. Bounded oscillation

Let f: ¥ — ¥ be the shift map on ¥ = N{"20} The lift of an f-invariant
probability measure p is the unique f-invariant measure i on 3 = NZ such that
P, i = p. The k-oscillation of a function ¢: ¥ — R is defined by

osck(¢) = sup sup{w(x) —Y(y): z,y € [I}}
I

where the first supremum is over all sequences I = (i, ..., x) in N¥. We say v has
bounded oscillation if Y 72, osck() < co. This implies osck(1)) — 0 and so
1 is continuous, in a uniform sense. We are going to prove

Proposition A.1. If the Jacobian of v for f has bounded oscillation then
the lift i has product structure.
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Lemma A.2. Letx andy be in ¥ = X*. For each point & € Wy (x), define
g€ We.(2) N W (y). Then the limit
Jfn (g™ R o
Juy(#) = Tim M where 2= P(f~"(&)) and y"= P(f~"(5)),
exists, uniformly on xz, y and Z. Moreover, the function (x,y,Z) — Jy (&) is
continuous and uniformly bounded from zero and infinity.

Proof: The arguments are quite standard. Begin by noting that

Iy

) 8 TP

Z log Jf(x7) —log Jf(y”) .
j=1

Notice that 27 and y’ are in the same cylinder [t_j,...,t_1]%, for each j > 1.
Hence, the jth term in the sum is bounded in norm by the j-oscillation of log Jf.
It follows that the series in (41) converges absolutely and uniformly, and the sum
is bounded by }; oscj(log J f). This implies all the claims in the lemma. u

Lemma A.3. Let {ﬂx T € E} be any disintegration of the lift {1 of u. For

a full p-measure subset of points x € 3, we have
. 1
fe(§n) = w5~

&) = T

for every cylinder &, = [t_p,...,t—1]°, n > 1, and every point & € &, x{x}.

Proof: Let F be any measurable subset of . Then f~"(&,xF) = P~1(F},),
where F), is the subset of [t_, ..., t_1]" that is sent bijectively to F by the map f™.

Consequently,
(42) plenxF) _ A(PTH(Fy) _ p(Fn)
fu(F) pu(F) Je T du
On the other hand, for py-almost any point « € ¥ and any cylinder &, C %%,
fi(§n X F)

fiz(&n) = }IE; )

where the limit is over a basis of neighborhoods F' of x. As F' — =z, the sets F),
converge to the unique point in [t_p,...,¢—1]" that is mapped to x by f™. This
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point is precisely 2" = P(f‘”(i‘)), for any choice of & € &, x{z}. In view of (42),

this gives that
o) =
T (am)

for every cylinder &, and any x in some full y-measure subset. =

Lemma A.4. There exists a disintegration { flg: x € Z} of the lift i such
that fi, = Jg 4 fi, for every x and y in ¥.

Proof: Let { Oyt X € E} be an arbitrary disintegration. By the previous
lemma, there exists a full measure subset S of ¥ such that

fy(&n) _ Jf"(z")
fa(n)  Jf(y")

where 2" = P(f*”(:%)) and y" = P(f*”(g))) for any & € {,x{z} and § € &, x{y}.
Define J,, 54 to be the function on W3 _(x) which is constant equal to the right

(43) for any &, = [t—n,...,t—1)° and any z,y € S,

hand side of (43) on each &, x{z}. Given any cylinder n C ¥* and any large n >1,
we may write

) = 3 i) = 3 Ty (@) () = / Tne(®) din(2)
&nCn &nCn n

where the sum is over all the cylinders &, that form 7. Passing to the limit as
n — 0o, we obtain from Lemma A.2 that

fy(n) = / Joy diiy  for any cylinder n C X°.
7

This shows that ji, = J, 4 fi, for every x and y in the full measure set S. Fix any
z € S and define ji, = Jz, fiz for every y € ¥. Then f, = fi, for every y € S,
and so {fi,} is a disintegration of ji. Moreover,

by = Jzyle = Joy Jzalle = Joyfla

for any z,y € ¥, as claimed in the lemma. =

Proof of Proposition A.1: Fix an arbitrary point w in ¥ and then define

~

r(z®,z") = Jypu(x®,2")  for every & = (z°2") € X .
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By the previous lemma, fiyu = r(z% x") fi,, for every 2% € ¥. The lift i projects
to u* =p on X, by definition. The projection u® to X¢ is given by

= / r(a®,2%) dp(a®) .

It follows that 1 = p(z® %) u®x pu*, with

r(z®, ")
Js (s, z) dp(av)

S u)

p(a®, @

Since the function r(z% z") is continuous and uniformly bounded from zero and
infinity, so is the density p. This implies that { has product structure. =

A.3. Fiber bunched cocycles

As pointed out in Section 1.3, existence of stable and unstable holonomies is
automatic when the cocycle is locally constant. Another, more robust, construc-
tion of cocycles with stable and unstable holonomies was given in [3]. Let us
recall it briefly here.

Definition A.5. We say that A: 3 — GL(d,C) is s-fiber bunched (or s-domi-
nated) for f: ¥ — 3 if there exist constants N >1, C'>0, ve (0,1], 7€ (0,1)
and 0 € (0,1), and a distance d on ¥, such that

(a) (fN( ), N )) < 0d(Z,9) if &, are in the same local stable set,
(b) ﬂH < C and ||AN(2) — AN(p)|| < C d(2,9),
(c) (fv) z)~tor <,

for every #,9 € 3. We say that A is u-fiber bunched (or u-dominated) for f
if A=1is s-fiber bunched for f‘l. a

Proposition A.6. If A is s-fiber bunched (respectively, u-fiber bunched)
then it admits stable holonomies (respectively, unstable holonomies).

Proof: Replacing f by fN in Definition A.5, we may assume N = 1. Denote
H,(&,9) = A"(§)"*A"(%) for each n>1 and # and § in the same local stable set.
Then

Hai1(2,9) = Ha(2,9) = A"@) " A(F@) 7 [A(f"@) = AP @) | A (@) -
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A~

By condition (a), we have d(f”(i‘),f”(@)) < 60"d(z,y). Using condition (b),
it follows that

| 1 (&2, 9) — Ha(,5) AF @) HAF @)l o).

n—1
| < cd@g) T](
§=0

Fix 7 € (7,1). By conditions (a) and (b), fl(f]@)) is close to A(f](aﬁ)) when
j is large, uniformly on Z and y. Combining this with condition (c¢), we get that
there exists k > 1, independent of z and ¢, such that

A7 @) | [JA(F (@)]] 0 < 7

for all 7 > k. Thus, the previous inequality implies that

HHn-i-l(:ilag)_Hn(iag)H < C2d(j7y)yc2k9ky7ﬁnik < é%nd(‘%7g)ya

for some appropriate constant C' > 0. This implies that H,, is a Cauchy sequence,
uniformly on (x,y). Hence, it is uniformly convergent, as claimed. This proves
that A admits stable holonomies if A is s-fiber bunched. The dual statement
is proved in just the same way. n

We say that A: 3 — GL(d, C) is fiber bunched if it is simultaneously s-fiber
bunched and wu-fiber bunched. From Proposition A.6 we immediately get that
if A is fiber bunched then it admits stable and unstable holonomies.

Remark A.7. In some cases it is possible to reduce non-fiber bunched co-
cycles to the fiber bunched case. For instance, let F'=(f, A) be a linear cocycle
F =(f,A) over a shift map, say, which is not fiber bunched but whose Lyapunov
spectrum is narrow, meaning that the difference between all Lyapunov expo-
nents is sufficiently small. Then we may use inducing to construct from F' a fiber
bunched cocycle. o

A.4. Zorich cocycles

Finally, we are going to explain how the methods in this paper can be applied
to Zorich cocycles [19, 20]. We begin by recalling the definition of these cocycles.
Motivations and proofs for the results we quote can be found in Kontsevich,
Zorich [9], Marmi, Moussa, Yoccoz [11], Rauzy [14], Veech [16, 17], Zorich [19, 20],
and references therein. See also [1], where we show that Zorich cocycles are
simple, thus proving the Zorich—Kontsevich conjecture that the corresponding
Lyapunov spectra are simple.
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A.4.1. The Rauzy algorithm

Fix some integer d > 2. Let II = II; be the set of all irreducible pairs
m = (mp,m) of permutations m. = (af,a5,...,a5) of the alphabet {1,...,d}.
By irreducible we mean that 7 o 7r0_1 preserves no subset {1,...,k} with k < d.
We shall denote the rightmost symbol «f simply as a(e) for € € {0,1}. Let
A = Ay be the standard open simplex of dimension d— 1, that is, the set of all
vectors A = (A1, A2, ..., Ag) such that A\; >0 for all j and Z;l:l Aj = 1. We call
g: A — A a projective map if there exists a linear isomorphism G: R? — R?
with non-negative coefficients such that

G G
(44) g()\) - Z?:l G(}\)l o Z;‘i,jzl Gi,j )\j ‘

If the coefficients of G are strictly positive then the image of ¢ is relatively com-

pact in A. In this case g is a contraction for the projective metric defined in A
by

, NN
d(\, \") = log max Y i,j=1,...,d ;.
j i

The contraction rate depends only on a lower bound for the coefficients of G or,
equivalently, for the Euclidean distance from g(A) to the boundary of A.

Let R: (m,A) — (7', \') be defined on an open dense subset of IIxA, as fol-
lows. For each m € IT and € € {0, 1}, let

A(m) = {)‘ € A: Aa(e) > Aa(l—a)} .
We say that (7, A) has type € if A € A®(7w). Then, by definition, 7. = 7. and
T_e = (a%_e, - a}g:i, a(l—c¢), a,lg_g, ey aé:i)

where k € {1,...,d—1} is defined by a;, "® = a(e). In other words, 7|_, is obtained
from m_. by looking for the position k the last symbol of m. occupies in m_,,
leaving all symbols to the left of k& unchanged, and rotating the symbols to the
right of k one position to the right. Moreover,
1 . 1 .
N = o Aj for j#ale), Nj= . ()\a(g) —Aa(l_a)) for j=a(e)

where the normalizing factor a = 1— A, 1_.). Notice that A — N sends each A®
bijectively onto A. Moreover, this map is just the projectivization of the linear
isomorphism R y: R? — R4

<)\1, ey Al=15 Aa(e)s Al1s -os /\d> — (/\17 ooy A=15 Aa(e) = Aa(1—e)y A+l -y )\d) ;
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in the sense that \' = (1/a) Ry(\) with a = >>% | (R; A);. Tt is interesting to write
this also as A = aR;&()\’ ), because the inverse operator

()\1, s N1y Aa(eys ALt oo Ad) - ()\1, s M1y Aa(e) F Aa(ioe)s Atts o )\d) .

has non-negative integer coefficients.

Let us call a Rauzy component of II xA any smallest set of the form IIpxA
which is invariant under R. From now on we always consider the restriction of the
algorithm to some Rauzy component. The map R admits an absolutely contin-
uous invariant measure v, that is, an invariant measure such that the restriction
to each {m}xA is absolutely continuous with respect to Lebesgue measure on
the standard simplex. However, v is usually infinite. This can be overcome by
considering the following accelerated algorithm.

A.4.2. The Zorich algorithm

Define Z(m,A) = (R")(m, \), where the acceleration time n = n(mw, \) > 1
is the largest number of consecutive iterates by the Rauzy algorithm during which
the type remains unchanged. In precise terms, n = n(m, \) is characterized by
(assume (W(i), )\(i)) = Ri(m, ) is defined for all 0 <i < n)

(w(i), )\(i)) has type ¢ for 0<i<n and (W(”), )\(")) has type 1—¢ .

Since each R: {70} x A® (7)) — {z+D} x A is a projective bijection, the map
R™ sends some sub-simplex {7} xD(m,\) C {r} x A®(7) containing (7, \) bijectively
onto {7} x A=¢(z(")). Moreover, its inverse is the restriction of a projective
map {7} x A — {7} x A. By definition, Z = R" restricted to D(m,\). Let D
be the (countable) family of all these sub-simplices D(w, A). The union of its
elements has full measure on IIxA.

The transformation Z admits an absolutely continuous invariant probability
measure ;4 on each Rauzy component, and this measure is ergodic. Moreover, the
density of y is a rational function of the form

du B 1 .
(45) %()\) = Za: PalV on each domain {7}xA

where the sum is over some finite set of polynomials P, with non-negative coeffi-
cients and degree d. In particular, the density is smooth and bounded from zero
on every {m}xA. In general, the density is not bounded from infinity, because
the P, may have zeros on the boundary of A.
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A.4.3. Linear cocycles

The Rauzy cocycle over R is defined by
Fp: IxAxR? — TIxAxRY,  (7,\,v) — (R(m, A), RN (v))

Notice that this cocycle is constant on each A®(7), because R, ) depends only
on 7w and the type € of A. The Zorich cocycle over Z is defined by

Fz: TIXAXR? - TIXAXRY | Fy(m, A, v) = FR™ (7, ), 0) .

Notice that Fy (77, )\,v) = (Z(T{', A), Zm,\(v)) where Z ) is constant on each ele-
ment of D and its inverse has non-negative integer coefficients. The Zorich cocycle
is integrable with respect that the Z-invariant measure p, meaning that logHZi)l\ H
are integrable functions. Thus, its Lyapunov exponents are well-defined at
p-almost every point. By ergodicity, the exponents are constant p-almost every-
where.

Consider the linear map Q: R? — R? defined by

QN = DN = DA

3 mi(§)<mi (i) j: mo(s)<mo (%)
This map € is anti-symmetric (not necessarily an isomorphism), and so
wr (e (1), Qr(v)) = w- Qr(v)

defines a symplectic form on the range H, = Q,(R%). In particular, the dimension
of H, is even. The map (), also satisfies

(46) Q- Repo= RN Q.
This implies that the Rauzy cocycle leaves invariant the subbundle
Hn = {(71',)\,1}) € IxAxR?: UEHﬂ}

and even preserves the symplectic form w, on it. Then the same is true for the
Zorich cocycle.

It follows that the Lyapunov spectrum of the Zorich cocycle restricted to the
subbundle Hyr has the form

(47) A > 220> =g > 2> =)\ (where 2g = dim H) .

The other Lyapunov exponents of Fyz, corresponding to directions transverse
to H, vanish identically and are not of interest here. The Zorich—Kontsevich
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conjecture states that all the inequalities in (47) are strict or, in other words,
the Lyapunov spectrum of the restricted Zorich cocycle is simple. We are going
to argue that, modulo the simple observations in Sections A.1 and A.2, all the
hypotheses of Theorem A are satisfied in the context of Zorich cocycles, and so
our methods can be used to prove this conjecture.

A.4.4. Inducing on a compact simplex

Let D be the family of sub-simplices introduced in the definition of the Zorich
algorithm: Z maps each element of D bijectively to some {7’} xA!~¢ and the
inverse is the restriction of a projective map {7’} xA — {7} xA. Pulling D back
under Z we obtain, for each n > 1, a countable family D™ of sub-simplices each of
which is mapped bijectively to some {7r(”)}><A1*€ by the iterate Z™, the inverse
being the restriction of a projective map {7(™}xA — {7}xA. For p-almost
every (m,\), there exists some n > 1 for which this projective map has strictly
positive coefficients, and so the image {m}xI" is relatively compact in {m}xA.
Let us fix such n, 7, X once and for all, and denote by {7} x D, the corresponding
element of D™. In particular, D, C IT" is relatively compact in A. It follows that
D, has finite diameter for the projective metric of A, and also that the density
dp/dm is smooth and bounded from zero and infinity on D,. For notational
simplicity, we identify {7} xA ~ A and {7}xD, ~ D, in what follows.

By Poincaré recurrence, there exists a first return map G of the map Z" to
the domain D,. More precisely, using the Markov structure of Z”, there exists a
countable family {DL: L€ N} C Ug>1Din of sub-simplices of D, such that their
union has full measure in D,, each D, is mapped bijectively to the whole D, by G,
and the inverse of each G: D, — D, is the restriction of a projective map A — A.
By construction, the images of these inverse branches are all contained in I,
and so they all contract the projective metric, with uniform contraction rates.
Let D C D, be the (full measure) subset of points that return infinitely many
times to D,. In particular, the map

o: N2 D (1p)n = (G7(Du)

n>0

is well defined (the intersection consists of exactly one point), and it conjugates
G: D — D to the shift map on N {n>0} Then the natural extension of G is realized
by the shift map on NZ,

On the one hand, as observed before, the invariant density du/dm is smooth
and bounded from zero and infinity on D. It follows that its logarithm is bounded
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and Lipschitz continuous, for either Euclidean or projective metric, with uniform
constants. On the other hand, the inverse branches of G are all projective maps
with range contained in the same relatively compact domain I'. This implies that
the logarithms of their derivatives are also bounded and Lipschitz continuous, for
either metric, with uniform constants. Putting these two facts together we get
that the logarithm of the Jacobian of G with respect to the measure p is uniformly
bounded and Lipschitz continuous on each D,. Combining this with the previous
observation that inverse branches of G contract the projective metric uniformly,
we easily obtain that log JG has bounded oscillation in the sense of Section A.2.
Consequently, the lift of 1| D to the natural extension of G has product structure.

Recall that the Zorich cocycle Fz is constant on each element of D. It is clear
from the construction that points in each D, visit exactly the same elements of D
all the way up to their return to D.. Thus, the linear cocycle Fg induced by Fz
over the return map G is also locally constant, meaning that it is constant on
each D,. In particular, the cocycle F is continuous for the shift topology, and
it admits stable and unstable holonomies.

A.4.5. Pinching and twisting conditions

The only missing ingredient to establish the Zorich—Kontsevich conjecture
is to prove that the Zorich cocycles are simple, in the sense of Definition 1.2.
This is done in [1]. In fact, the pinching and twisting conditions appear in
a slightly different guise in that paper, in terms of the monoid generated by
the cocycle.

In this context, a monoid is just a subset of GL(d,C) closed under multi-
plication and containing the identity. The associated monoid B = B(F') is the
smallest monoid that contains the image of F'. We call B is simple if it is both
pinching and twisting, where B is

e pinching if it contains elements with arbitrarily large eccentricity Ecc(B);

e twisting if for any F € Grass(/,d) and any finite family Gy, ..., Gy of ele-
ments of Grass(/,d) there exists B € B such that B(F') N G; = {0} for all

j=1,..,N.
The eccentricity of a linear map B € GL(d, C) is defined by
Ecc(B) = min L
1<t<d 0041

where o2 > ... > 03 are the eigenvalues of the self-adjoint operator B*B, in
non-increasing order. (Geometrically, the positive square roots o1 > --- > gy
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correspond to the lengths of the semi-axes of the ellipsoid {B(v): [|v]=1}.
It is evident from the definition that any monoid that contains a pinching sub-
monoid is also pinching, and analogously for twisting.

It is not difficult to see that the two formulations of the definition of simplic-
ity are equivalent, for locally constant real cocycles. Indeed, Lemma A.5 in [1]
states that if the associated monoid is simple then there exists some periodic
point and some homoclinic point as in Definition 1.2. Conversely, the condi-
tions in Definition 1.2 imply that the associated monoid is simple. Indeed, the
first condition implies that B contains some element B; whose eigenvalues all
have distinct norms. Then the powers B} have arbitrarily large eccentricity as
n — oo, and so B is pinching. Moreover, the second condition implies that the
monoid contains some element By satisfying Ba(V) N W = {0} for any pair of
subspaces V and W which are sums of eigenspaces of By and have complementary
dimensions. Given any F, G, ..., G, as in the definition, we have that B}'(F) is
close to some sum V of ¢ eigenspaces of By, and every B;"(G;) is close to some
sum W; of d— ¢ eigenspaces of Bj, as long as n is large enough. It follows that
By (BT(F)) N By "(G;) = {0}, that is, BBy B'(F) N G; = {0}. This proves B is
twisting.

B — Intersections of hyperplane sections

Here we give an alternative proof of Proposition 5.1 under the assumption
that the eigenvalues of the cocycle at the fixed point p are real. Observe that
this is automatic for real cocycles, since we also assume that the absolute values
of the eigenvalues are all distinct. Instead of Proposition 5.5 we use the following
result, which has a stronger conclusion.

Proposition B.1. There exists N = N(¢,d) such that
B™™WV)Nn---NnB™NV) =10

for any B: C?*— C¢ whose eigenvalues all have distinct absolute values, any
hyperplane section V of Grass(¢,d) containing no eigenspace of B, and any
0<mi < - <mpn.

To deduce Proposition 5.1 from this result, one can use the same arguments
as in Section 5, just replacing the paragraph that contains (23) by the following
one.
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Applying Proposition B.1 with B = A%(p) and V = W} we conclude that the
W are N-wise disjoint:
%mlﬂ---ﬂ%m]v =0 forall 1<mi<---<mpy.

Fix C' > 1 such C'yp > 1. By continuity, we have W™ N ... N W~ = () for all
1<mp< -+ <my < CN and every 7 in a small neighborhood of p inside the
local stable set. Then, for fi,-almost every 7 in that neighborhood,

CN } 1 CN )
mn(Umg) > & D m(Wi) = Cyo > 1.
j=1 j=1

This is a contradiction, since 7, is a probability. This contradiction reduces the
proof of Proposition 5.1 to proving Proposition B.1.

In the proof of Proposition B.1 we use the following classical fact about Van-
dermonde type determinants (see Mitchell [12]). Given N > 1, z = (z1,...,zN) €
RY, and m = (my,...,mn) € (NU{O})N, define

mi mi

xl ... xN

Ap(z) =
my my

T x N

Proposition B.2. Suppose 0 < mj<mo < --- < my. Then

Am(z) = Prl(x) [] (25— 1)

1<i<j<d

where P, is a positive polynomial, in the sense that all its monomials have
positive coefficients. In particular, Ap,(x) is different from zero whenever the x;
are all positive and distinct. m

Notice that the contents of the proposition remains the same if one replaces
B by its square. Indeed, it is trivial that the statement for B implies the one
for B2, and the converse is also easy to check: if the B?-iterates of any hyperplane
section V as in the statement are N-wise disjoint then, using this fact both for
V and for B(V), the B-iterates of any such hyperplane section V are 2 N-wise
disjoint. Thus, we may always assume the eigenvalues of B to be positive.

Let {01, ...,04} be a basis of eigenvectors of B, in decreasing order of the eigen-
values by >+ > by > 0. Let V= m,(A(C%) N H) be as in the statement, where
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H is the geometric hyperplane of A’(C?) defined by some non-zero (d—¢)-vector v.
Let us write

v = Zv(il,...,ig) (9j€+1/\"'/\9j ),
I

where the sum is over all sequences I = (i1, ...,1¢) with 1 <i; <--- <y < d, the
v(I) are scalars, and jy41 <--- < jq are the elements of {1, ..., d} that are not in 1.
The assumption that V contains no eigenspaces of B implies that every v(I) is
non-zero: otherwise, v A (6;; A---A8;,) would vanish, that is, m,(v) would have

a non-trivial intersection with the subspace generated by 6;,, ..., 0;,. Likewise,

e
let us write

(48) w =Y Wi, .rig) (Bs AN,
I

where the w(I) are scalars. Then B~™(H) = {w: w AB™™v =0}, and

wAB My = ZbI_mU] w(l)v(I)
I

where by =bj, -+ bj, >0 and or = O0;; A--- N0, ANOj, ., A---\Bj, is either £1.
Fix N = dim A*(C%) and then let 0 < mj < --- < my. In view of the previous

paragraph, in order to prove that the intersection of all the B~™«(H) is empty

it suffices to show that there does not exist any non-zero w € A (C?) such that

(49) Y ™ orw(Iv(I) =0 forall u=1,.. N,
I

that is, such that the vector (o7w(I)v(I)); is in the kernel of X = (b’I”“)Lu.
It is useful to consider first the special case when the by are all distinct (and
positive). Then, by Proposition B.2, the kernel of X is trivial. This means that
(49) implies o7 w(I)v(I) = 0 for every I. Since o7 v(I) never vanishes, this means
that w(I) =0 for every I. This proves Proposition B.1 in this case. Notice that
this argument applies to any element w of A‘(C?%), not only f-vectors. Hence,
it proves that, under this stronger assumption, the relation (49) has no non-zero
solution in the whole exterior power A’(CY).

In general, when the products by are not all distinct, condition (49) may hold
on a subspace of A(C?) with positive dimension. The main point in the proof of
Proposition B.1 is then to show that this subspace intersects the set of f-vectors
at the origin only. From Proposition B.2 we do get that the relation (49) implies

(50) Z ojw(J)v(J) =0  for any admissible sequence I
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(admissible means that 1 <i; <--- < iy < d), where the sum is over all admissible
sequences J such that by = b;. So, what we really need to prove is

Lemma B.3. If an (-vector w = wiA---Awy is a solution of (50) then
w(I) = 0 for every admissible sequence I = (i1, ...,1;).

Proof: Begin by noting that, for an ¢-vector w = w1 A- - -Awy, the coeflicients
w(I) in (48) may be expressed in terms of the vectors w;, as follows:

Wi Wy
W(I) = | e |
i1 g
Wy Wy
where w; = (w},...,w?). For each 1 <j <d, let w' = (wi,...,w}) be a column
vector. Hence, w(iy,...,i¢) # 0 if and only if the vectors w', ..., w", are lin-

early independent. More generally, given any 1< s </ and ji, ..., js, we write
w(j1, -, js) # 0 to mean the vectors w’l, ..., w’s are linearly independent.

Consider first I = (1, ...,£). Since we assume by > - -- > by, we have by > b for
any admissible sequence J # I. Thus, relation (50) reduces to o7 w(I)v(I) = 0.
Since oy v(I) is non-zero, that gives w(/) = 0. Now the proof of Lemma B.3 con-
tinues by induction: we consider any admissible sequence I, and assume w(J) =0
for every admissible sequence J such that by > b;. We use the following simple
observation:

Lemma B.4. Suppose w(j1,-..,Js,J,Js+1) =0 and w(j1, ..., js, J, js+2) = 0,
but w(jla "'7j8>j) 7& 0. Then w(jla ---ajs,js+1ajs+2) = 0.

Proof: The assumptions mean that both w’s+1 and w’s+2 are linear combi-
nations of {w’t,...,w’s w7}, and so the set {w’l, ..., w’s wis+1 wIs+2} is contained
in the (s+1)-dimensional subspace generated by {w’!,...,w’s,w/}. This implies
that w(ji1, ..., Js, Js+1, Js+2) = 0. u

Lemma B.5. If w(I)#0 then we have w(ji, ..., Js,j) = 0 for every 0 <s <
¢—1, every j ¢ {i1,...,i¢}, and every {ji,...,j5s} C {i1,...,3¢} that contains all
1t < J.

Proof: Consider first the case £ —s = 1. Then (ji, ..., js) misses exactly one
element i; of I, and we have j < i;. Let J be the admissible sequence obtained
by ordering (j1,...,Js,7). Notice that by > b, because b; > b;,. By induction,
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we get that w(J) =0, as claimed. Now the proof proceeds by induction on ¢ —s.
Suppose £—s > 2 and let ji, ..., js, j be as in the statement. Choose two different
elements js+1 and jsio of {i1,...,7¢} \{j1, ..., Js}. By induction,

w(jl?"'vjsujujs-i-l) - 0 and w(jl)"'7j87j7js+2) - 0 .

Suppose w(j1, .-, Js, J) # 0. Then, we would be able to use Lemma B.4 to conclude
that

w(jl?""jsvjerlajSJr?) =0.

Since the j; are distinct elements of {iy, ..., 4,}, that would imply w(iy,...,i7) = 0,
which would contradict the hypothesis. This proves that w(ji, ..., js,j) =0, and so
the proof of Lemma B.5 is complete. n

Remark B.6. Notice that s =0 is compatible with the other assumptions
only if 43 > 1. Then the lemma gives that w(j) = 0 or, equivalently, the column
vector w/ = 0, for every 1< j < i;. This means that the /-vector w really lives
inside a lower dimensional space, corresponding to coordinates ¢; through d only.
This case could be easily disposed of, just by assuming Lemma B.3 has already
been proved for dimensions smaller than d. o

Let < be the usual lexicographical order: (ji,...,7r) < (i1, ..., %) if and only if
there exists 0 < s < r—1 such that j1 =11, ..., js = is, and js11 < t541-

Corollary B.7. If w(I) # 0 then w(J) =0 for every J < I.

Proof: Fix 0 <s</{—1 as in the definition of J < I, that is, such that
J1=11, .oy js = 15, and js4+1 < i541. By Lemma B.5, we have w(j1, ..., Js, Js+1) = 0.
Consequently, w(j1,...,7¢) = 0, as claimed. u

Now the inductive step in the proof of Lemma B.3 is an easy consequence.
By Corollary B.7, inside the class of all sequences J with b; = by there exists at
most one J such that w(J) # 0. Then the relation (50) reduces to o w(J) v(J) =0.
Since oy v(J) never vanishes, this gives w(J)=0. In other words, w(J) =0 for
every J such that by = b;. This finishes the proof of Lemma B.3. n

The proof of Proposition B.1 is complete. n
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