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LAX EQUATIONS, FACTORIZATION AND

RIEMANN–HILBERT PROBLEMS

M. Cristina Câmara, António F. dos Santos and Pedro F. dos Santos

Abstract: The paper deals with the problem of existence and calculation of so-

lutions to Lax equations that define finite-dimensional integrable systems. The method

presented in the paper is based on Wiener–Hopf factorization and related Riemann–

Hilbert problems on Riemann surfaces. The idea behind the method was first proposed

by Semenov-Tian-Shansky but, to the authors’ knowledge, is here applied, for the first

time, in an infinite dimensional setting. The method dealt with in the paper enables one

to analyse the global existence of solutions which seems more difficult by other methods.

An example of a dynamical system associated with an elliptic curve is completely worked

out in the paper.

1 – Introduction

In this paper we investigate the existence and calculation of solutions to Lax

equations defining finite-dimensional integrable systems. This is done by means

of the method of Wiener–Hopf factorization of a certain matrix-valued function

G in appropriate function spaces which, as will be shown in section 4, involves

solving a Riemann–Hilbert problem on a Riemann surface defined by the spectral

curve associated to the Lax equation.

The method of factorization was proposed by Semenov-Tian-Shansky and

Reymann ([7], [9], [10]) and may be seen as a generalization to loop algebras

of the AKS theorem (Adler-Konstant-Symes) which applies to finite-dimensional
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Lie algebras ([1], [8]). However, to the authors’ knowledge, no example appears in

the literature for cases where the factorization is done in an infinite dimensional

setting. This is probably due to the fact that certain delicate questions appear

both in the proof of the formulas of the solutions of the Lax equations in terms

of the factorization and in the calculation of the factors themselves which involve

a factorization on a Riemann surface.

The method of solving the Lax equation through a Winer–Hopf factorization

of the above-mentioned function G is closely related to the method of the Baker–

Akhiezer function as shown in [9] section 2.10. However, as is shown in section 2

of the present paper, the factorization method makes it easier to investigate the

global existence of solution which may be important in the investigation of some

dynamical systems. This question is answered in Theorem 2.7 and, we believe,

is done here for the first time.

The paper is organized as follows.

In section 2 the factorization method for the solution of what we call standard

Lax equations is expounded. The presentation avoids the delicate question of

whether the factors of the factorization are differentiable with respect to the

evolution parameter t (cf. Theorems 2.3 and 2.5). This makes the treatment

fully rigorous. For the reduction of more general Lax equations to standard

form we follow the exposition in [6], where an important example is worked out

through the Baker–Akhiezer method. The question of global existence of solution

is treated in this section as mentioned above.

In section 3 we obtain the Baker–Akhiezer function from the factorization of

the function G. This result is known (cf. [9, section 2.10]) but is included here

for completness. The inverse approach i.e. calculating the factorization from

the Baker–Akhiezer function seems to us a very difficult one, contrary to the

suggestion in [9], section 2.10, and leaves, apparently, unanswered the question

of global existence of the solution.

In section 4 we illustrate the application of the factorization method by work-

ing out completely the solution of a nonlinear dynamical system that leads to a

standard Lax equation. This system has certain analogies to the Euler top when

described in terms of Nahm’s equations (cf. [8, chapter 2], but the latter does not

lead to a standard Lax equation and because of that involves an additional step

in the calculations of the solutions (see Theorem 2.9).

The paper ends with two appendices. Appendix A reviews some basic notions

on Wiener–Hopf factorization that are needed in sections 2 to 4. Appendix B

introduces notation and reviews basic facts on Riemann surfaces. A factorization

of the function exp (µt/λ) is also calculated there.
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2 – Lax equations and factorization

We shall begin this section by considering dynamical systems described by

Lax equations of the form

(2.1)
dLt

dt
=
[
L+

t , Lt

]

where the dynamical variables L+
t , Lt depend on a parameter λ (usually called

spectral parameter), varying on the unit circle S1, Lt is a matrix-valued Laurent

polynomial in λ and L+
t is the part of Lt analytical in the unit disc D. Later on,

in this section, we shall generalize equation (2.1) allowing L+
t to be more general

in a way that the Lax equation corresponds to a larger class of finite-dimensional

integrable systems.

In the following definition we make more precise the class of equations corre-

sponding to (2.1).

Definition 2.1. Let [C1 (I)]n×n be the space of continuously differentiable

n × n matrix functions on the open interval I ⊂ R
+

(relative to the dynamical

variable t) and let L (λ) ∈ [C1 (I)]n×n be a Laurent polymomial of the form

Lt (λ) =
1∑

k=−m

L
(k)
t λk

(
m ∈ N, λ ∈ S1

)
.

The class of equations (2.1) with

(2.2) L+
t (λ) =

1∑
k=0

L
(k)
t λk

will be called the standard Lax class.

Remark 2.2. Note that equation (2.1), together with the definition of L+
t

in (2.2), implies that L
(1)
t is a constant of the dynamics (i.e. is independent of

t). We state first a well known result for the form of a solution to (2.1).

Theorem 2.3. Let Lt be an n × n matrix-valued function satisfying the

Lax equation (2.1) in a neighborhood I0 of the origin. Then the solution of the

equation in I0 is given by the formulas

(2.3) Lt = G+L0G
−1
+ = G−1

− L0G−
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where L0 = Lt|t=0
and G+, G− satisfy the linear differential equations.

(2.4)
dG+

dt
= L+

t G+ ,
dG−

dt
= G−L

−
t

subject to the initial conditions G+|t=0 = G−|t=0 = In where In is the identity

matrix of order n.

Proof: The first part of our proof follows the lines of Segal’s exposition in

[8, Chapter 3] for an analogous formula for the KdV equation. Let Lt satisfy

(2.1) and define LH by

(2.5) LH = H−1LtH

where H ∈ C1(I) satisfies the equation

dH

dt
= L+

t H ,

subject to the initial condition H (0) = In. Differentiating (2.5) yields:

dLH

dt
= −H−1dH

dt
H−1LtH +H−1dLt

dt
H +H−1Lt

dH

dt
.

Substituting (2.1) and the first equation of (2.4) into the above equation gives

dLH

dt
= 0

i.e.

LH =
[
H−1LtH

]
t=0

= L0 .

For the second of formulas (2.4) we note that

Lt = L−
t + L+

t

where L−
t =

−1∑
k=−m

L
(k)
t λk, from which it follows that (2.1) takes the form

(2.6)
dLt

dt
=
[
Lt, L

−
t

]
.

Consider now LH = HLtH
−1 with

(2.7)
dH

dt
= HL−

t

subject to the initial condition H (0) = In.
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Differentiating LH as above and using (2.6) and (2.7) we get

dLH

dt
= HL−LtH

−1 +H
[
Lt, L

−
]
−HLtH

−1dH

dt
H−1

= H
[
L−

t , Lt

]
H−1 +H

[
Lt,L

−
t

]
= 0 .

Thus LH is constant and equals L0 taking into account the initial condition

for H. This completes the proof of formulas (2.3), (2.4).

Remark 2.4. Formulas (2.3) imply the known result that the spectrum of

Lt is invariant with t i.e.

(2.8) det (µIn − Lt (λ)) = det (µIn − L0 (λ)) .

Since L0 (λ) is a Laurent polynomial in λ the above relations define an algebric

curve which is characteristic of the dynamics.

Next we prove a result that is fundamental for the use of the Riemann–Hilbert

problem as a tool for solving equation (2.1).

Theorem 2.5. Let G = G−G+ where G−, G+ satisfy equations (2.4) in a

neighbourhood of the origin with the normalization G|t=o = In. Then

(2.9) G = exp (tL0) .

Proof: Since G−, G+ satisfy (2.4), G is differentiable and thus we have

dG

dt
=
dG−

dt
G+ +G−

dG+

dt
=

= G−

[
G−1

−

dG−

dt
+
dG+

dt
G−1

+

]
G+

= G−LtG+ = L0G(2.10)

where the last equality follows from L0 =G−LtG
−1
− . Since L0 is constant with t,

the solution to (2.10) is

G = exp (tL0)

taking into account the normalization G|t=o = In.
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The result of Theorem 2.5

(2.11) exp (tL0) = G−G+

is a canonical bounded Wiener–Hopf factorization of exp (tL0) in the interval I0
(see Appendix A). This follows from the fact that L+

t , L
−
t are bounded analytic

matrix-valued functions, respectively, in Ω+ = D and Ω− = C\D. From equations

(2.4) it can be seen that the same is true for G−, G+ and their inverses (it can

be easily seen that the inverses of G−, G+ satisfy equations analogous to (2.4)).

We can now use (2.11) to prove the important result of global existence of the

solution to (2.1).

Remark 2.6. Note that, contrary to what is commonly found in the liter-

ature on integrable systems, our proof of equation (2.11) does not require any

apriori assumption on the differentiability (with respect to t) of the factors in

the factorization of exp(tL0). G−, G+ are defined as solutions of equations (2.4).

Only later in Theorem 2.5 do we prove that they are the factors in the factoriza-

tion of exp(tL0).

Theorem 2.7. The solution to equation (2.1) exists in a given interval [0, T [

if and only if exp (tL0) has a canonical Wiener–Hopf factorization in this interval

with factors G−, G+ differentiable with respect to t in the above interval and G−

normalized as G−|λ=∞ = In.

Proof: Suppose first that equation (2.1) has a solution in the given interval

[0, T [. Then, by Theorem 2.3, there exist functions G−, G+ satisfying equa-

tions (2.4) in [0, T [, that is, differentiable in this interval. By Theorem 2.5,

G−G+ = exp(tL0) in [0, T [ which is equivalent to saying that exp(tL0) has a

canonical Wiener–Hopf factorization in [0, T [ (note that G−1
− and G−1

+ exist and

are differentiable in the same interval).

For the sufficiency part of the proof assume that exp(tL0) = G−G+ with

factors G−, G+ differentiable in [0, T [. Differentiating the above equality gives:

(2.12) G+L0G
−1
+ = G−1

−

dG−

dt
+
dG+

dt
G−1

+ .

Let

(2.13) Lt = G+L0G
−1
+ .
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Then from (2.12) we get, for the part of Lt analytic in the unit disc D,

(2.14) L+
t =

dG+

dt
G−1

+ .

Now, differentiating (2.13) yields:

dLt

dt
=
dG+

dt
G−1

+ Lt − Lt
dG+

dt
G−1

+

and using (2.14)
dLt

dt
=
[
Lt, L

+
t

]

i.e. Lt satisfies equation (2.1) as we wanted to prove.

Remark 2.8. As t varies, the solution to equation (2.1) must remain a Lau-

rent polynomial of the same degree in λ and λ−1 as L0. Formulas (2.3) appear to

hide this fact since G± and their inverses are, in general, transcendental functions

of λ. However, noting that

Lt = G+L0G
−1
+ = G−1

− L0G− ,

Liouville’s theorem applied to the second equality immediately shows that the

degree of the polynomial dependence of Lt in λ and λ−1 is independent of t.

To end this section we consider in the theorem that follows the reduction to

standard form, of a Lax equation more general than (2.1) (cf. [6]).

Theorem 2.9. Let Lt =
1∑

k=−m

L
(k)
t λk satisfy the Lax equations

(2.15)
dLt

dt
=
[
Lt, L̃

+
]

where L̃+ = γL
(0)
t + L

(1)
t λ, γ ∈ C (note that L̃+ is strictly related but not equal

to the analytic part of Lt). Then there exists F satisfying

(2.16)
dF

dt
= (1 − γ)L0F

such that L̂t = F−1LtF belongs to the standard Lax class i.e. satisfies the

equation

(2.17)
dL̂t

dt
=
[
L̂t, L̂

+
t

]

where L̂+
t = L̂

(0)
t + L̂

(1)
t λ as in Definition 2.1.
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Proof: To prove (2.17) we differentiate the expression for L̂t to get

dL̂t

dt
= −F−1 dF

dt
F−1LtF + F−1dLt

dt
F + F−1Lt

dF

dt
.

Substituting (2.15) and(2.16) in this expression gives

dL̂t

dt
= (1 − γ)

[
L̂t, L̂0

]
+ F−1

[
Lt, L̃

+
]
F

where L̂o = F−1L0F . Noting that F−1
[
Lt, L̃

+
]
F =

[
L̂t, F

−1L̃+F
]

we obtain

expression (2.17) where L̂+
t =F−1L̃+F = L̂o+L̂1λ, with L̂i =F−1LiF (i = 0, 1).

3 – Factorization and Baker–Akhiezer functions

Although our approach to solving equation (2.1) is through Wiener–Hopf

factorization, since the method based on the Baker–Akhiezer function is widely

used in the literature on integrable systems (cf. [5], [6] and [9]), we review below

how the Baker–Akhiezer function can be calculated from the factorization of

exp (tL0). In this exposition we follow, in part, references [6] and [9].

We begin by defining a differential operator associated with the analytic part

of Lt (we continue to consider the standard Lax class).

Definition 3.1. Let C1 (R+) be the space of continuosly differentiable func-

tions on R
+. Define the operator on C1 (R+)

(D − L+)ϕ =
d

dt
ϕ−

(
L

(0)
t + L

(1)
t λ

)
ϕ

where L
(0)
t ∈ C1(R

+) and L
(1)
t is constant.

Proposition 3.2. Let Lt ∈ C1 (R+) and (D − L+) be as in Definition 2.1.

Then the operators D − L+ and Lt commute i.e.

[D − L+, Lt] = 0

if and only if Lt satisfies equation (2.1).
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Proof: For any ϕ ∈ C1 (R+) we have

(
D − L+

)
Ltϕ =

dLt

dt
ϕ+ Lt

dϕ

dt
− L+Ltϕ

Lt

(
D − L+

)
ϕ = Lt

dϕ

dt
− LtL

+ϕ

from which it follows that

[D − L+, Lt]ϕ =
dLt

dt
ϕ− [Lt, L+]ϕ

which is equal to zero if and only if Lt satisfies (2.1).

Remark 3.3. Since L
(1)
t is constant, with the additional assumption that

L(1) is invertible, we may take L(1) = In. Then the conditions [D − L+, Lt] = 0

and [D − L0, Lt] are equivalent. This means that a common eigenfunction of

D−L+ and Lt is also a common eigenfunction of D−L0 and Lt. This fact is at

the base of the definition that follows.

Definition 3.4. A Baker–Akhiezer function for the Lax equation (2.1) is

any common eigenfunction of the operators D − L0 and Lt, i.e. ϕ is a common

solution to the equations

(3.1) (D − L0)ϕ = λϕ

(3.2) Ltϕ = µϕ

i.e. λ and µ are, respectively, the eigenvalues of D − L
(0)
t and Lt corresponding

to the common eigenfunction ϕ.

Remark 3.5. Since Lt depends on λ the above definition implies an alge-

braic relation between µ and λ. This is precisely the algebraic curve defined

by

det (µIn − L0) = det (µIn − Lt) = 0 ,

which, in turn, means that the common eigenfunctions of the operators D−L
(0)
t

and Lt are parametrized by the points of the above algebraic curve.

The method of solution of (2.1) based on the calculation of the Baker–

Akhiezer function involves identifying the singularities of ϕ on the spectral curve:
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poles at the poles of µ, essencial singularities at the poles of λ. Since this does

not define ϕ uniquely, a certain degree of intuition is required to complete the

calculation which is unnecessary if we use the factorization method. For our next

result we follow [9]. In Proposition 3.5, Ω+ and Ω− are the inverse images of D

and C\D under the canonical projection from the spectral curve det(µIn−Lt) = 0

to C.

Proposition 3.6. Let G−G+ be the Wiener–Hopf factorization of exp(tL0)

and Ψ0 an eigenfunction of L0 i.e.

exp (tL0) = G−G+

L0Ψ0 = µΨ0 .

Then the function

Ψt =

{
G+Ψ0

G−1
− Ψ0

in Ω+

in Ω−

is an eigenfunction of Lt i.e.

(3.3) LtΨt = µΨt

on the spectral curve det (µIn − Lt) = 0

Proof: The proof is straightforward. Ψ0 is a meromorphic function on the

spectral curve. From formulas (2.3) we get

in Ω+

in Ω−

G−1
+ LtG+Ψ0 = µΨ0 ⇔ Lt (G+Ψ0) = µG+Ψ0

G−LtG
−1
− Ψ0 = µΨ0 ⇔ Lt

(
G−1

− Ψ0

)
= µG−1

− Ψ0 .

Following Reymann and Semenov-Tian-Shansky [9, II, Section 2.10] we note

that writing Ψ+
t = G+Ψ0,Ψ

t = G−1
− Ψ0 we conclude that the function Ψt satisfies

the following Riemann–Hilbert problem on the spectral curve

G−1
+ Ψ+

t = G−Ψ−
t ⇔ Ψ+

t = G+Ψ−
t

i.e.

exp (−tL0)Ψ+
t = Ψ−

t .

This is, precisely, the Riemann–Hilbert problem associated to the factorization

of exp(tL0) encountered in section 2, equation (2.11).

Remark 3.7. In [9] the objective of the authors is the opposite of ours: to

determine the factorization from the Baker–Akhiezer function, although only in

an abstract formulation.
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4 – Example

In this section we solve a standard Lax equation for a concrete integrable

system, as an illustration of the results of the preceding sections.

Consider the Lax equation

(4.1)
dLt

dt
=
[
L+

t , Lt

]

where Lt is the matrix-valued function given by

(4.2) Lt(λ) =

[
v(λ) u(λ)
w(λ) −v(λ)

]

where λ ∈ S1 and

(4.3)

v (λ) = zλ−1

u (λ) = aλ+ yλ−1 + x, a ∈ C

w (λ) = aλ+ yλ−1 − x .

Here x, y, z are the dynamical variables and a is a constant. Lt (λ) is a Laurent

polynomial in λ,

(4.4) Lt(λ) = L
(−1)
t λ−1 + Lt(0) + L

(1)
t λ

where L(1) is constant. With

(4.5) L+
t (λ) = L

(0)
t + L

(1)
t λ

equation (4.1) becomes a standard Lax equation. It can easily be shown that

with Lt given by (4.2) and (4.3), (4.1) is equivalent to the following nonlinear

system of ordinary differential equations:

(4.6)

dx

dt
= −2az

dy

dt
= −2xz

dz

dt
= 2xy .

As shown in section 2 the solution of equation (4.1) by the factorization

method involves solving the following Wiener–Hopf factorization problem:

(4.7) G = exp (tL0) = G−G+
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where L0 = Lt|t=0 as in Section 2. As will be seen later, this, in turn, involves,

a fundamental step consisting of obtaining a factorization on a Riemann surface

Σ of the scalar exponential function

(4.8) Eν (λ) = exp (tν (λ))

where ν (λ) is defined by the characteristic equation of L0 (λ):

(4.9) det (νI2 − L0 (λ)) = 0 .

The Riemann surface Σ is precisely defined by equation (4.9).

Next we proceed to derive a Riemann–Hilbert problem whose solution gives

us the factors G−, G+ in (4.7). From (4.7) we get

(4.10) exp (tL0)G
−1
+ = G− .

Denoting by φ+ (φ−) the first column in the matrix function G−1
+ (respectively

G−) we have the following vector Riemann–Hilbert problem

(4.11) exp (tL0)φ
+ = φ−

in the original contour S1.

This is also true for the second column (in fact it will be seen that the above

problem has two linearly-independent solutions corresponding to the two columns

of G−1
+ and G−).

We shall deduce next a scalar Riemann–Hilbert problem on the Riemann

surface defined by (4.9), which is equivalent to the Riemann–Hilbert problem

(4.11). Firstly we note that

(4.12) det (νI2 − L0(λ)) = ν2 − λ−2p(λ)

with

(4.13) p(λ) = a2λ4 −
(
x2 − 2ay

)
λ2 + z2 + y2 .

In what follows we shall assume that all the zeros of p(λ) are real. This is true,

for example, for a sufficiently small. Diagonalization of L0 gives:

(4.14) L0 = SD0S
−1

where D0 = diag
(
λ−1µ,−λ−1µ

)
and

(4.15) S =




1 −1
µ− z

p2

µ+ z

p2



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with µ =
√
p(λ) (here we take Re(µ) > 0) and

(4.16) p2(λ) = λu = a2λ2 + xλ+ y .

From (4.14) we get

(4.17) exp (tL0) = SDS−1

where D = diag
(
exp

(
tλ−1µ

)
, exp

(
−tλ−1µ

))
.

From (4.15) and (4.16) it follows that the Riemann–Hilbert problem (4.11)

takes the form

(4.18)
d1

(
zφ+

1 + p2φ
+
2 + µφ+

2

)
= φ−1 + p2φ

−
2 + µφ−2

d2

(
zφ+

1 + p2φ
+
2 − µφ+

2

)
= φ−1 + p2φ

−
2 − µφ−2

where φ± =
(
φ±1 , φ

±
2

)
, d1 = exp

(
tλ−1µ

)
and d2 = exp

(
−tλ−1µ

)
.

Consider now the nonsingular algebraic curve Σ0 defined by the equation

(4.19) µ2 = p (λ)

where p(λ) is the polynomial defined in (4.13). It can be completed by adding two

“points at infinity”. The completion of Σ0 is an elliptic curve, which we denote

by Σ (see Appendix B for more details). Consider now the contour Γ ⊂ Σ0 that is

the pre-image of the original contour S1 under the projection λ : Σ0 → C defined

by (λ, µ) 7→ λ. It is easily seen that the two scalar equations in (4.18) correspond

to a single scalar equation on the disconnected contour Γ. This equation may be

written

(4.20) d

(
φ+

2 +
z + µ

p2
φ+

1

)
= φ−2 +

z + µ

p2
φ−1

where d = d1 on one of the two components of Γ and d = d2 on the other

component. In simple words: under the projection λ, Σ0 is a two-sheeted covering

of the complex plane. Equation (4.20) corresponds to the first equation of (4.18),

in one sheet, and to the second equation, in the other sheet.

In (4.20) φ±1,2 are understood as functions analytic and bounded in the region

Ω+ = λ−1 (D) and φ−1,2 similarly for the region Ω− = λ−1
(
C \ D

)
. Note that from

the original formulation of the Riemann–Hilbert problem d belongs to Cµ (Γ) (in

fact d ∈ C∞ (Γ)).

Since µ changes into −µ through the involution τ : (λ, µ) → (λ,−µ), from the

expressions for d1 and d2, it follows that

(4.21) d (λ, µ) = exp
(µ
λ
t
)
, (λ, µ) ∈ Γ .
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It is shown in Appendix B that d has a factorization of the form

(4.22) d = d−t rt d
+
t

with (d±t )±1 ∈ H∞(Ω±) (see Definition A.1) and rt a rational function on Σ with

one pole and one zero in each region Ω±. From (4.20) and (4.22) we get

(4.23) rtd
+
t ψ

+ =
(
d−t
)−1

ψ− = R

where R is a rational function on Σ and

ψ± =
z + µ

p2
φ±1 + φ±2

are meromorphic functions in Ω±.

In (4.23) we look for a solution that is zero at a chosen point in Ω+. Then

R is completely determined apart from a multiplicative constant and an explicit

expression can be deduced. Since Σ has genus 1, R is as an elliptic function in

the variable u related to (λ, µ) by the Abel map:

(λ, µ) 7→ u :=
1

4K

∫ (λ,µ)

01

dλ

µ
,

where K is a constant determined by equation (4.19) and 01 is the origin of the

first sheet (we review this transformation in Appendix B). For simplicity, we write

R(u) to denote the result of this change of variable. We also abuse notation and

denote the image of the regions Ω± under this transformation by Ω± as well. We

have the following conditions for R(u):

(i) it has a zero at a point v1 ∈ Ω+ that we fix;

(ii) it has a pole at the pole of rt in Ω+;

(iii) it has a zero at the zero of rt in Ω+ that we denote by v0;

(iv) it has two poles at the zeros of p2 that do not coincide with zeros of

z + µ (it is easily shown that z + µ and p2 have two common zeros).

These poles will be denoted by u1, u2;

(v) Abel’s condition for a rational function on Σ now gives for the third

zero (denoted v2)

v2 ≡ u0 + u1 + u2 − (v0 + v1)

where ≡ denotes equality modulo elements of the lattice Λ of periods of

the differential dλ/4Kµ (see Appendix B for more details).
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Hence R has the representation

(4.24) R(u) = γ
ϑ1(u− v0)ϑ1(u− v1)ϑ1(u− v2)

ϑ1(u− u0)ϑ1(u− u1)ϑ1(u− u2)

where γ ∈ C and ϑ1 is the theta function defined in Appendix B.

From (4.23) and (4.24) we now get

(4.25) φ+
1 =

p2

2µ
D, φ+

2 =
zD − µS

2µ

where

(4.26) D = (rtd+)−1R−
[
(rtd+)−1R

]

τ

(4.27) S = (rtd+)−1R+
[
(rtd+)−1R

]

τ

where the subscript τ denotes the image by the involution of the expression in

brackets.

We can now state the following proposition:

Proposition 4.1. The Riemann–Hilbert problem (4.20) has two linearly-

independent solutions given by formulas (4.25) corresponding to two functions R

determined by two distinct pairs of zeros (v1, v2) of ψ+.

Proof: The only part of the proposition that remains to be proven is the

statement that the dimension of the space of solutions is two. This is a conse-

quence of the fact that, in (4.23), the dimension of the space of rational functions

with three fixed poles and one fixed zero is two, in view of the Riemann-Roch

theorem.

Since the expressions for φ+
1 and φ+

2 are invariant for the involution τ , formulas

(4.25) give the solution of original Riemann–Hilbert problem

exp(tL0)φ
+ = φ−

where φ± =
(
φ±1 , φ

±
2

)
. The factor G+ in the statement of Theorem 2.6 is given

by

(4.28) G−1
+ =

[
φ+

1 φ̂+
1

φ+
2 φ̂+

2

]
, G+ =

1

∆

[
φ̂+

2 −φ̂+
1

−φ+
2 φ+

1

]
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where φ+
1,2 and φ̂+

1,2 are two distinct solutions of (4.25) and △ = φ+
1 φ̂

+
2 − φ+

2 φ̂
+
1 .

The final formula for Lt is

(4.29) Lt = G+L0G
−1
+

as indicated in Theorem 2.3.

Proposition 4.2. The solution (4.28) to the Lax equation (4.1) is valid for

all t in the interval [0, 1].

Proof: The statement is a direct consequence of Proposition B.9 which gives

the factorization of exp(µt/λ).

Remark 4.3. The factorization of exp(µt/λ) allows us only to obtain the

solution to (4.1) in the interval [0, 1] which, however, goes significantly beyond

just knowing that the solution exists in some unspecified neighborhood of the

origin.

A more thorough investigation of the conditions imposed by the expressions

for d±t (p) in Definition B.7 might allow one to obtain a solution valid for any

specified interval by adjusting the radius of the original contour in which the

spectral parameter λ takes values.

Appendix A – Wiener–Hopf factorization and

Riemann–Hilbert problems

Let Γ be a system of oriented piecewise-smooth closed curves in C such that

the index or winding number of Γ relative to any point of C \ Γ takes the values

1 or 0. We denote by Ω+ the component (or union of components) of C \ Γ for

which points ind Γ takes the value 1 and Ω− the component for which indΓ takes

only the value 0. A simple example is the unit circle, oriented counterclockwise,

for which Ω+ is the unit disk D and Ω− is C \ D. In this case Ω+ is a simply-

connected region. A slightly more complicated example is a system of two circles,

the unit circle oriented as above and a second circle centred at the origin with

radius less than 1 and oriented clockwise. In this case Ω+ is the annular region

bounded by the two circles (not simply connected) and Ω− = C\Ω+ is the union

of two separate open sets.

The above definition can be readily generalized to a contour Γ in a Riemann

surface.
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We can now define a canonical bounded Wiener–Hopf factorization of a func-

tion defined on Γ.

Definition A.1. Let Γ be a countour in C and G a Hölder continuous n×n
matrix-valued function on Γ

(
G ∈ [Cµ (Γ)]n×n , 0 < µ ≤ 1

)
. G is said to possess

a canonical bounded Wiener–Hopf factorization if it can be represented in the

form

(A.1) G = G−G+

where G−, G+ and their inverses belong to the Hardy spaces H∞(Ω−), H∞(Ω+),

respectively (these are the spaces of analytic andbounded in functions in Ω−,Ω+).

Remark A.2.

(i) In general for a contour Γ in C the factorization takes the more general

form

(A.2) G = G−DG+

where D = diag
(
rk1, ..., rkn

)
with k1 ≥ k2 ≥ · · · kn and r is a rational

function with a zero in Ω+ and a pole in Ω−. However, we will only

need the canonical form (A.1)

(ii) For functions that are not Hölder continuous or that do not belong to

other special spaces of continuous functions (e.g., the Wiener algebra),

the factors may be unbounded. For these more general symbols the

notion of factorization to be used is generalized factorization (cf. [3],

[4]).

(iii) Outside the area of operator theory the factorization (A.2) is often called

(perhaps improperly) Birkhoff factorization. Another designation that

is found in the literature is Riemann–Hilbert factorization.

Factorizations (A.1) and (A.2) have close connections with Fredholm proper-

ties of Toeplitz operators with symbol G (cf. [4]) and the problem of solvability

of Riemann–Hilbert problems with coefficient G, i.e.

(A.3) Gφ+ = φ− ,

for φ+, φ− in appropriate spaces. The last question is the one that is relevant for

the present paper.
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To illustrate this connection we consider the simple example of the unit circle

S1 with G a Hölder continuous function on S1 (i.e. G ∈ Cµ[(S1)]n×n). It is

wellknown that Cµ(S1) decomposes into a direct sum of closed subspaces,

Cµ

(
S1
)

= C+
µ

(
S1
)
⊕ C−

µ

(
S1
)

where the functions in C+
µ (S1) have bounded analytic continuations into Ω+ = D

and functions in C−
µ (S1) have bounded analytic continuations into Ω− = C \ D

vanishing at infinity. For vector-valued functions we have a similar decomposition

(A.4)
[
Cµ

(
S1
)]n

=
[
C+

µ

(
S1
)]n ⊕

[
C−

µ

(
S1
)]n

.

Then if G has a factorization of the form (A.1) (canonical), the Riemann–Hilbert

problem

(A.5) Gφ+ = φ−

with φ±∈ [C±
µ (S1)]n has only the trivial solution. If we consider φ−∈ [C−

µ (S1)]n ⊕
C

n, i.e. if we drop the condition φ−(∞) = 0, the Riemann–Hilbert problem (A5)

has n linearly independent solutions. This is the setting considered in section 4.

Appendix B – Factorization of exp(µt/λ)

In this section we compute a factorization of the function exp(µt/λ), on the

Riemann surface Σ, used in Section 4. We also introduce notation and review

some of the basic theory of Riemann surfaces needed for this computation. Our

general reference on this subject is [11].

Let Σ denote the compact Riemann surface obtained by completing the alge-

braic curve

Σ0 =
{
(ξ, η) ∈ C

2 | η2 = (1 − ξ2)(1 − κ2ξ2)
}

where 0 < κ < 1. Hence Σ is obtained from Σ0 by adding two points “at infinity”

such that ζ = ξ−1 is a local parameter at these points. At the points where η = 0

(the branch points of the function (ξ, η) 7→ ξ) η is a local parameter. At all other

points ξ is a local parameter.

Assumption B.1. In order that Σ represents the Riemann surface of sec-

tion 4, for an appropriate value of κ, we make the assumption that the polynomial

p(λ) defined in equation (4.13) has real roots. This is true, for example, if the
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leading coefficient a is small enough. Under this assumption the Riemann surface

defined by the polynomial p(λ) is isomorphic to Σ with κ = λ1/λ2, where λ1 < λ2

are the positive roots of p(λ). The isomorphism is given by

(λ, µ) 7→ (ξ(λ, µ), η(λ, µ)) =
(
λλ−1

1 , µ(aλ1λ2)
−1
)
.

Note that, in particular, we have µ/λ = eη/ξ, where e = e(a, x, y, z) = aλ2.

In order to simplify some of the arguments below we will also assume that

the initial values a, x, y and z are small enough so that e < 1.

There are two natural merormorphic functions on Σ: those induced by the

projections (ξ, η) 7→ ξ and (ξ, η) 7→ η. They will be denoted respectively by ξ

and η.

As usual, it is convenient to view Σ as a 2-branched cover of P(C2) under the

map ξ : Σ → P(C2) = C ∪ {∞}. We denote by Si, i = 1, 2, the component of

ξ−1(C \ {t ∈ R | 1 ≤ |t| ≤ 1/κ}) such that (0, (−1)i+1) ∈ Si, and refer to its

closure Si as the i-th sheet of Σ. The “point at infinity” in the i-th sheet will be

denoted by ∞i . We also say that 0i =
(
0, (−1)i+1

)
is the origin of the i-th sheet.

The figure below represents the basis for the homology group H1(Σ; Z) that

will be used throughout. The solid lines represent the lift of the curve depicted,

under the map ξ, such that it lies in the first sheet. The broken lines represent

the lift that lies in the second sheet.

a b

1−1

Re ξ

Im ξ

1
κ

Figure 1 – Basis for H1(Σ; Z).

Once the homology basis {a,b} is fixed, we can choose a normalized holo-

morphic differential. That is, a holomorphic 1-form ω such that
∫
a
ω = 1.
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An easy computation shows that dξ/η is holomorphic. Thus ω = c−1dξ/η, where

c =

∫

a

dξ

η
= 4

∫ 1

0

dξ√
(1 − ξ2)(1 − κ2ξ2)

.

The integral above is called a complete elliptic integral and it is usually denoted

by K(κ) or just K. Using this notation, the normalized holomorphic differential

is ω = dξ/4Kη.

Notation B.2. We will use the following notation for elliptic integrals [2],

where κ ∈]0, 1[ and κ′ =
√

1 − κ2.

(i) K = K(κ) =
∫ 1
0

dξ√
(1−ξ2)(1−κ2ξ2)

;

(ii) K′ = K′(κ) = K(κ′) =
∫ 1/κ
1

dξ√
(ξ2−1)(1−κ2ξ2)

;

(iii) E = E(κ) =
∫ 1
0

√
1−κ2ξ2

1−ξ2 dξ.

The first two integrals above are called complete elliptic integrals of the first

kind and the last one is called a complete elliptic integral of the second kind.

We will also need the Abel-Jacobi map given by the holomorphic differential

ω. It is a biholomorphic map from Σ to its image Jac(Σ) and it is defined as

A(p) =

∫ p

01

ω .

Its image Jac(Σ) is the torus C/Λ where Λ is the lattice of periods of ω. We have

Λ = Z · 1 + Z · τ with τ =
∫
b
ω = iK′/2K. The point in Jac(Σ) determined by

u ∈ C is denoted by [u].

A convenient way to represent rational functions on Σ is to write them as

quotients of theta functions. For this purpose we will use the theta function of

characteristic (1, 1):

ϑ1(u) = ϑ1(u | τ) = ieπi(u−τ/4)ϑ3(u+ (1 − τ)/2 | τ) ,

where ϑ3(u | τ) =
∑

n∈Z
expπi(n2τ + 2nu). We recall that ϑ1 satisfies:

(i) ϑ1(u+ n+mτ) = e−2πi( 1

2
m2τ+mu)ϑ1(u);

(ii) ϑ1(u) = 0 ⇔ [u] ∈ Λ;

and refer to [2] for more details.

We need another definition in order to state the factorization problem we

want to address.
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Definition B.3. Let p = A−1([e/4]) ∈ Σ (see Assumption B.1 for the

definition of the constant e), and let D ⊂ C be the open disk of radius ξ(p),

centered at the origin. Define

Ω+ = ξ−1(D) ⊂ Σ

Ω− = Σ \ Ω+ ⊂ Σ .

In particular Σ = Ω+ ∪ Ω−.

Remark B.4. The reason for the choice of the radius of D will become clear

after Definition B.7 below.

3

4

τ

A(Ω−)

− 1

4 1

2

A(Ω+)

e

4

A(Ω+)

1−2t

2
U

Figure 2 – The image of regions Ω+ and Ω+ under the Abel map.
(See Definition B.7 for the definition of U .)

The factorization problem that appears in the example of Section 4 is the

following: for each t ∈ C, find functions d±t and a rational function rt on Σ such

that (d±t )±1 ∈ H(Ω±) and

(B.1) exp
(µ
λ
t
)

= d+
t rtd

−
t ,

on Ω+ ∩ Ω−.

Since µ/λ = eη/ξ, where e is a constant defined in Assumption B.1, it will be

useful to analyse the function η/ξ. The next two results concern its differential.
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Lemma B.5. Consider the meromorphic differentials γ0, γ∞ defined by

γ0 =
dξ

ηξ2
− (K − E)

K

dξ

η
, γ∞ =

κ2ξ2dξ

η
− (K − E)

K

dξ

η
.

Then γ0 is holomorphic in Ω−, γ∞ is holomorphic in Ω+ and we have

d(η/ξ) = γ∞ − γ0 .

Proof: A direct computation shows γ0 and γ∞ are holomorphic respectively

in Ω− and Ω+, as stated. Thus, both d(η/ξ) and γ∞ − γ0 are holomorphic in

Σ \ {0i,∞i | i = 1, 2}, and one easily checks that they have the same principal

part near the points 0i and ∞i. It follows that there is a constant c such that

d(η/ξ) = γ∞ − γ0 + cω. Integrating over the cycle a, we get

c =

∫

a

γ0 − γ∞ .

Hence the result will follow if
∫
a
γ0 =

∫
a
γ∞ = 0.

Since
∫

a

κ2ξ2dξ

η
= 4

∫ 1

0

κ2ξ2dξ

η

= 4

∫ 1

0

dξ√
(1 − ξ2)(1 − κ2ξ2)

− 4

∫ 1

0

1 − κ2ξ2√
(1 − ξ2)(1 − κ2ξ2)

dξ

= 4(K − E)

we have
∫
a
γ∞ = 4(K − E) − (K − E)K−1

∫
a
dξ/η = 0. A similar computation

gives
∫
a
γ0 = 0.

Thus d(η/ξ) decomposes as a sum of a differential, γ∞, holomorphic in Ω+,

and a differential, γ0, holomorphic in Ω−. This fact will be used to construct the

factors d±t . But first we need information about the periods of γ0 and γ∞.

Lemma B.6. The b-period of the differentials γ0 and γ∞ is πi/K.

Proof: Represent Σ as a rectangle P with the sides identified and such that

the singularities of γ∞ lie in the interior of P. Let ϕ : P → C be such that dϕ = ω.

Since
∫
a
ω = 1 and

∫
b
γ∞ = 0, the bilinear relations (see [11]) give

∫

∂P
ϕγ∞ =

∫

b

γ∞ = 2πi
∑

p∈P

Resp (ϕγ∞) .
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Near the points ∞j , j = 1, 2, ζ = ξ−1 is a local parameter and we have

γ∞ = (−1)j κ

ζ2
dζ + O(1)dζ

ϕ = const. +
(−1)j

4κK
ζ + O(ζ2) .

Hence Res∞j
(ϕγ∞) = 1/4K, from which it follows that

∫
b
γ∞ = πi/K.

The computation of
∫
b
γ0 is similar.

Definition B.7. Let U = e/2K. Following [5, Chapter 3] we use the dif-

ferentials γ0, γ∞ to define two functions on Σ as follows:

d+
t (p) = exp

(∫ p

0′
1

teγ∞

)
ϑ1 (A(p) − τ + tU)

ϑ1 (A(p) − τ)

d−t (p) = exp

(
−
∫ p

0′
1

teγ0

)
ϑ1

(
A(p) − 1

2 U
)

ϑ1

(
A(p) − 1−2t

2 U
)

where 0′
1 ∈ Σ \ {01} is a point close to 01, and A(p) denotes the value of the

integral
∫ p

01
ω obtained using the same path of integration as that for computing

the integral in the argument of the exponential function.

It is easy to check that these functions are well defined. Indeed, adding a

cycle homotopic to na+mb to the integration path, g+
t (p) transforms as follows

d+
t (p) 7→ e

0�2πitU+

∫ p

0′
1

teγ∞

1A
e
−2πi

�
1
2m2τ+m(A(p)−τ+tU)

�
ϑ1 (A(p) − τ + tU)

e
−2πi

�
1
2m2τ+m(A(p)−τ)

�
ϑ1 (A(p) − τ)

= d+
t (p) ,

where we have used the equality 2πitU =
∫
b
teγ∞. Similarly one checks that

d−t (p) is independent of the integration path.

Remark B.8. Since K > π/2 we have |(1 − 2t)U/2|, |U/2| < e/4 for t ∈
[0, 1]. Hence the zeros and poles of d−t lie in Ω+. Similarly, it follows that the

zeros and poles of d+
t lie in Ω−. This is the reason for the choice of the radius of

D in Definition B.3.
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Proposition B.9. For t ∈ [0, 1] we have

(a) (d+
t )±1 ∈ H(Ω+);

(b) (d−t )± ∈ H(Ω−);

(c) exp
(µ

λ t
)

= d+
t rtd

−
t where rt is the rational function

rt = kt
ϑ1

(
A(p) − 1−2t

2 U
)
ϑ1 (A(p) − τ)

ϑ1

(
A(p) − 1

2 U
)
ϑ1 (A(p) − τ + tU)

;

where kt is the value of exp(tµ/λ) at the point 0′
1 (see Definition B.7).

(d) rt has one exactly zero and one pole in Ω+ (respectively Ω−).

Proof: (a) It is clear from the definition that d+
t has essential singularities at

∞1,∞2 and is holomorphic on Σ \ {∞1,∞2}, where it has only one zero located

at A−1(τ + tU). Since A−1(τ + tU) ∈ Ω−, (a) follows.

(b) Again, it is easy to see from the definition that d+
t has essentials sin-

gularities at 01,02 and is meromorphic on Σ \ {01,02}, where its divisor is

A−1
(

1−2t
2 U

)
−A−1

(
t
2 U
)
. Since these points lie in Ω+, (b) follows.

(c) Since d
(µ

λ

)
= e(γ∞ − γ0), it follows that
∫ p

0′
1

te(γ∞ − γ0) + t
(µ
λ

)

|p=0′
1

= t
µ

λ
.

Hence exp
(µ

λ t
) (
d+

t d
−
t

)−1
= rt where rt is the rational function given in (c).

(d) This is clear from the expression for rt given in (c).
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vol. 3, Birkhäuser Verlag, Basel, 1981.

[5] Dubrovin, B.A. – Theta-functions and nonlinear equations, Uspekhi Mat. Nauk,
36(2)(218) (1981), 11–80, With an appendix by I.M. Krichever.

[6] Ercolani, N. and Sinha, A. – Monopoles and Baker functions, Comm. Math.
Phys., 125(3) (1989), 385–416.

[7] Gohberg, I.; Manojlovic, N. and Santos, A.F. dos (Eds.) – Factorization
and integrable systems (Faro, 2000), Oper. Theory Adv. Appl., vol. 141, Basel,
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