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Abstract: In general terms, we show that the regularity results proved in [2] (see

also [7]) for strong solutions to the linear stationary Stokes system under slip type bound-

ary conditions allow to extend to these boundary conditions many of the well known re-

sults for solutions to the nonlinear evolution Navier–Stokes equations under the classical

non-slip boundary condition.

1 – Introduction and aim of this paper

In the sequel Ω is a bounded,connected, open set in R
3, locally situated on

one side of its boundary Γ, a manifold of class C2,1 (Lipschitz continuous second

derivatives). We denote by n the unit outward normal to Γ. We setQT = ]0, T ]×Ω

and ΣT = ]0, T ]×Γ.

In the sequel we consider the Stokes evolution equations

(1.1)



















∂u

∂t
− ∆u+ ∇p = f(t, x) ,

∇ · u = 0 in QT ,

u(0, x) = u0(x) in Ω ,
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as well as the Navier–Stokes evolution equations (3.1), under the slip boundary

condition

(1.2)

{

(u · n)|Γ = 0 ,

β uτ + τ(u)|Γ = 0 in ΣT .

For some references on this type of boundary conditions see, for instance, [2].

Our main purpose is to apply some of the regularity results proved in reference

[2] for stationary solutions under slip boundary conditions to the study of the

corresponding evolution problems. See Theorems 3.2 and 3.3 below.

These notes are organized as follows. In section 2 we introduce the main

notation and present some results for stationary solutions proved in reference [2].

In section 3 we apply these results to the study of the Navier–Stokes evolution

problem (3.1). The proofs are straightforward.

2 – Some known results

In reference [2] we study the problem

(2.1)







−ν∆u− µ∇(∇·u) + ∇p = f(x) ,

λ p+ ∇· u = g(x) in Ω ,

under the non homogeneous slip boundary conditions

(2.2)

{

(u · n)|Γ = a(x) ,

β uτ + τ(u)|Γ = b(x) ,

where ν > 0 and β ≥ 0 are given constants, and a(x) and b(x) are, respectively,

a given scalar field and a given tangential vector field on Γ. We denote by

uτ = u− (u · n)n the tangential component of u. For the definition of τ(u)

see below. Let

T = −p I + ν(∇u+ ∇uT )

be the stress tensor, and set t = T · n. Hence,

(2.3) Tik = −δik p+ ν

(

∂ui

∂xk
+
∂uk

∂xi

)

,

and

(2.4) ti =
3

∑

k=1

Tik nk .
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We define the linear operator τ as

(2.5) τ(u) = t− (t · n)n .

Hence

(2.6) τi(u) = ν

3
∑

k=1

(

∂ui

∂xk
+
∂uk

∂xi

)

nk − 2 ν

[

3
∑

k,l=1

∂ul

∂xk
nk nl

]

ni .

Note that τ(u) is tangential to the boundary and independent of the pressure p.

The existence of weak and strong solutions to problem (2.1), (2.2) was first

proved by Solonnikov and Scadilov in the classical paper [7], in the case β = λ =

µ = 0 and g = 0. These authors also proved the existence of the strong solution

under the additional hypothesis a = 0, b = 0.

In [1] we consider the problem (2.1), (2.2), with β = 0, in the half-space R
n,

for arbitrary n. In reference [2] we consider the stationary problem in the above

open set Ω, and prove that this problem admits a strong solution (u, p) ∈ H
2×H1

provided that ν > 0, λ ≥ 0, β ≥ 0 and

(2.7)























f ∈ L
2(Ω) ,

g ∈ H
1(Ω) ,

a ∈ H3/2(Γ) ,

b ∈ H
1/2(Γ) .

If λ = 0 we must assume the following (necessary) compatibility condition

(2.8)

∫

Ω

g dx =

∫

Γ

a dΓ .

Moreover, when β = 0 and Ω is axial symmetric, compatibility conditions between

f and b occur. See [7] and [2]. However, this situation does not affect the regu-

larity of the solutions. For convenience, we assume here that β > 0 and also that

λ = µ = 0. Moreover, we consider the homogeneous boundary value problem.

Without loosing generality, we set ν = 1.

Hence we start by considering the homogeneous problem

(2.9)



























−∆u+ ∇p = f(x) ,

∇·u = 0 in Ω ;

(u ·n)|Γ = 0 ,

β uτ + τ(u)|Γ = 0 ,

where β > 0.
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From the general estimates proved in reference [2] it follows that the (unique)

solution (u, p) to problem (2.9) satisfies the estimate

(2.10) ‖u‖2
2 + ‖p‖2

1 ≤ c ‖f‖2 ,

where c is a positive constant.

Let us introduce some notation. We denote by c, c, c1, c2, etc., positive con-

stants that depend, at most, on Ω and on β. The same symbol c may denote

different constants, even in the same equation.

Given a scalar function p we set

(2.11) p = p − |Ω|−1

∫

Ω

p dx .

The symbol ‖ . ‖ denotes the canonical norm in L2(Ω). The symbol L2
#(Ω) denotes

the subspace of L2(Ω) consisting of functions with mean value equal to zero.

We denote by Hk(Ω), k a positive integer, the usual Sobolev space of order k, by

H1
0 (Ω) the closure in H1(Ω) of C∞

0 (Ω) and by H−1(Ω) the strong dual of H1
0 (Ω).

The canonical norms in this spaces are denoted by ‖ . ‖k. We denote by H1
#(Ω)

the subspace of H1(Ω) consisting of functions with mean value equal to zero.

In notation concerning duality pairings and norms, we will not distinguish

between scalar and vector fields. Very often we also omit from the notation the

symbols indicating the domains Ω or Γ, provided that the meaning remains clear.

If X is a Banach space we denote by X ′ its (strong) dual space. The symbol

〈 . , . 〉 denotes a generic duality pairing. In particular it may denote the scalar

product in L2.

We set

L
2 = [L2(Ω)]3 , H

s = [Hs(Ω)]3 , H
s(Γ) = [Hs(Γ)]3 .

Moreover, we denote by V the set of the C∞
0 (Ω) divergence free vector fields in

Ω and by H its closure in the L
2 norm. It is worth noting that

H =
{

v ∈ L
2 : ∇· v = 0 and (v · n)|Γ = 0

}

.

Set

G =
{

∇p : p ∈H1
#(Ω)

}

.

It is well known that

L
2 = H ⊕G ,
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and that H and G are orthogonal to each other. We denote by P the orthogonal

projection of L
2 onto H. Moreover, we define

H
1
τ =

{

v ∈ H
1 : (v · n)|Γ = 0

}

and

(2.12) V =
{

v ∈ H
1
τ (Ω): ∇· v = 0

}

.

Note that ‖∇v‖ is a norm in H
1
τ , equivalent to the canonical H

1-norm ‖v‖1.

Remark. Concerning the notation used in reference [2], and by taking into

account that here Z = {0}, one has H
1
z = H

1.

By identifying H with its dual space H ′, one has the following typical situa-

tion:

(2.13) V →֒ H = H ′ →֒ V ′ ,

with dense embeddings. In particular, if f ∈ H and v ∈ V , one has

〈f, v〉V ′×V = (f, v) .

Hence, in the sequel, we use only the symbol 〈 , 〉.

The next result is well known. For a simple and complete proof see, for

instance, the section 8 in reference [2]. Recall that p is defined by (2.11).

Proposition 2.1. Let p be a scalar field in L2. There is a constant c such

that

(2.14) ‖p‖ ≤ c ‖∇p‖−1 .

In [2], equation (2.3), we define the bilinear form

(2.15) B(u, φ) :=

∫

Ω

[

1

2
(∇u+ ∇uT ) · (∇φ+ ∇φT ) − (∇· u)(∇· φ)

]

dx .

By integrations by parts one easily shows that ([2], equation (2.5))

(2.16) B(u, φ) = −

∫

Ω

∆u · φ dx +

∫

Γ

τ(u) · φ dΓ ,

for each φ ∈ H
1
τ (Ω).
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In the particular case under consideration, the definition of weak solution

given in reference [2] reads:

Definition. We say that a pair (u, p) is a weak solution to problem (2.9) if

it belongs to H
1
τ×L

2
#, and if

(2.17) B(u, φ) − 〈p,∇· φ〉 + β 〈u, φ〉Γ + 〈∇· u, ψ〉 = 〈f, φ〉 ,

for each (φ, ψ) ∈ H
1
τ×L

2
#.

Remarks.

a) Since here λ = 0, the pressure p is defined up to a constant. Hence we

may consider p = p and take test-functions ψ in L2
#.

b) In [2] the given function f is taken in the space (H1
τ )

′. Here we may

assume that f ∈ V ′ since V is a closed subspace of H
1
τ .

The following result is a corollary of Theorem 1.2 in reference [2].

Proposition 2.2. To each f ∈ V ′ it corresponds a (unique) weak solution

(u, p) ∈ H
1
τ×L

2
# of problem (2.9), i.e., a solution to problem (2.17). Moreover

(2.18) ‖u‖2
1 + ‖p‖2 ≤ c ‖f‖2

V ′ ,

where c is a positive constant.

Clearly (2.17) and (2.20) below are equivalent formulations of problem (2.9).

In fact define the bilinear form

(2.19) a(u, φ) :=
1

2

∫

Ω

(∇u+ ∇uT ) · (∇φ+ ∇φT ) dx + β 〈u, φ〉Γ .

By setting in equation (2.17) φ = 0 and ψ = ∇· u, it easily follows that u ∈ V .

Hence, the solution u of (2.17) belongs to V and satisfies

(2.20) a(u, φ) = 〈f, φ〉 , ∀φ ∈ V .

On the other hand the solution to this last problem is unique since from Lemma 2.3

in reference [2] it follows that (coerciveness)

(2.21) a(v, v) ≥ c ‖v‖2
1 , ∀ v ∈ V .

Consequently, one has the following result.
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Proposition 2.3. A pair (u, p) is a weak solution to problem (2.9), in the

sense of definition (2.17), if and only if u belongs to V and satisfies (2.20). In this

last case p = p is determined, in the distributional sense, by the first equation

(2.9). Moreover, (2.18) holds.

Note that the “abstract” formulation (2.20) and the functional framework

(2.13) are, formally, typical formulations used to study Stokes and Navier–Stokes

equations under the nonslip boundary condition u = 0 on Γ. In this last case one

replaces a(u, v) by

a0(u, v) =
1

2

∫

Ω

∇u · ∇φ dx

and V by

V0 =
{

u ∈ H1
0 (Ω): ∇· u = 0

}

.

Following a well known way we define the linear operator A : V → V ′ by the

equation

〈Au, v〉 = a(u, v) , ∀u, v ∈ V .

The coerciveness of the bilinear continuous form a shows that A is an homeomor-

phism from V onto V ′, hence A−1 ∈ L
(

V ′, V
)

.

Next we consider the restriction of the operator A as an unbounded operator

in H, i.e., with domain

D(A) =
{

v ∈ V : Av ∈ H
}

.

Moreover we set

(2.22) D =

{

u ∈ H2(Ω): ∇u = 0, (u · n)|Γ = 0 and β uτ + τ(u)|Γ = 0

}

.

The Theorem 1.2 in reference [2] shows that D(A) = D. Moreover, if f ∈ L
2, the

weak solution (u, p) belongs to D×H
1
# and satisfies the estimate (2.10). In other

words, the problem (2.9) admits a (unique) solution (u, p) ∈ H
2×H

1
#, and (2.10)

holds.

More precisely,

Proposition 2.4. To each f ∈ H it corresponds a (unique) u ∈ D such

that (2.9) holds for some p ∈ H
1
#. This p is unique, and (2.10) holds. Moreover,

u is the (unique) solution to problem (2.20). If f ∈ V ′, the solution u of (2.10)

belongs to D if and only if f ∈H.
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3 – The evolution problem

Define

b(u, v, w) =

∫

Ω

(u · ∇)v · w dx .

It readily follows that the crucial property

b(u, v, w) = −b(u,w, v) , for each u ∈ V

and for each pair v, w ∈ H
1(Ω), still holds if V is given by (2.12). In particular,

b(u, v, v) = 0 if u ∈ V .

The “abstract” definition of weak solution to the evolution Navier–Stokes

equations

(3.1)



















∂u

∂t
− ∆u+ (u ·∇)u+ ∇p = f(t, x) ,

∇· u = 0 in QT ,

u(0, x) = u0(x) in Ω ,

with the boundary conditions (1.2) can be stated as follows. Let f ∈ L2(0, T ;V ′).

The vector field u is a weak solution if u(t) ∈ V for almost all t ∈ (0, T ), if

u(0) = u0 and if

(3.2)
d

dt

(

u(t), v
)

+ a
(

u(t), v
)

+ b
(

u(t), u(t), v
)

= 〈f(t), v〉 ,

for all v ∈ V . As immediately seen, this corresponds to the formal definition used

on dealing with the classical non-slip boundary condition u = 0 on Γ, in which

a and V are replaced by a0 and V0 respectively. Since the fundamental abstract

properties of the bilinear forms and of the functional spaces used in both cases

coincide, most of the main results for the non-slip boundary condition can be

easily extended to slip boundary conditions by following exactly the same proofs.

Let us illustrate this claim by considering just a couple of possible situations.

In the following we consider strong solutions. We assume that f ∈ H and

that (u, p) is the solution referred in Proposition 2.4.

Since −∆u = f ⊕∇(−p) one has

f = P (−∆u) , ∇p = −(I−P ) (−∆u) .

From (2.20) it follows that

Au = −P ∆u , ∀u ∈ D .

Clearly, the domain D of A is dense in H.
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Proposition 2.4 shows that the linear operator A is an homeomorphism from

D onto H. In particular

(3.3) c1 ‖Au‖ ≤ ‖u‖2 ≤ c2 ‖Au‖ , ∀u ∈ D .

We recall that a linear operator A : D → H is said monotone if (Av, v) ≥ 0 for

each v ∈ D. It is said maximal monotone if, moreover, the image of I+A is the

whole H. See [3], chapter VII. From (2.21) it follows that A is monotone. Recall

that ‖v‖ ≤ c ‖v‖1. Since the immage of A is the whole H, it readily follows that

A is maximal monotone. On the other hand, by restriction of equation (2.16) to

D×D, it follows that B(u, v) = (Au, v). Hence A is symmetric. These two last

properties imply that A is necessarily selfadjoint. See [3], Proposition VII.6.

Hence, one has the following result (see [3] Section VII.2, and references):

Theorem 3.1. The operator A is m.m. and self-adjoint in H. In particular,

A is the generator of an analytical semigroup of contractions inH. The semigroup

is also compact.

The compactness follows from the analyticity together to the compactness of

the embedding D →֒ H.

Moreover, there is a positive real λ0 such that

‖e−tA u0‖ ≤ e−λ0 t ‖u0‖ , ∀u0 ∈ H .

From the above facts many interesting applications follow. Let us consider a sim-

ple and typical one (which shows how the pressure can be explicitly reintroduced

into the problem).

Let u0 ∈ D and f ∈ C1
(

[0, T ];H
)

. It is well known (see [3] Theorems VII.7

and VII.10) that there is a unique solution u ∈ C
(

[0, T ]; D
)

∩ C1
(

[0, T ];H
)

of

the problem

(3.4)











du

dt
+Au = f(t) , in H ,

u(0) = u0 .

Equation (3.4) means that

(3.5)







































∂u

∂t
− P ∆u = f(t) ,

∇· u = 0 in QT ;

(u · n)|Γ = 0 ,

β uτ + τ(u) = 0 in ΣT ;

u(0, x) = u0(x) in Ω .
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Hence, for each t ∈ [0, T ], one has −P ∆u(t) = f(t) − ∂tu. Since

−∆u(t) = −P ∆u(t) ⊕ (I−P ) (−∆u(t)) ,

it readily follows that there is a (unique) p(t)∈H1
#(Ω) such that the first equation

(1.1) holds. Since ∇p = (I−P ) (∆u(t)), it follows that the H1 norm of p(t) is

bounded in terms of the H2 norm of u. The boundary conditions follow from the

fact that u(t) ∈ D, for each t. Hence the following result holds.

Theorem 3.2. Let u0 ∈ D and f ∈ C1
(

[0, T ];L2
)

. Then, there is a (unique)

solution (u, p) of problem (3.5). Moreover, u ∈ C
(

[0, T ]; H2
)

∩C1
(

[0, T ];L2
)

and

p ∈ C
(

[0, T ];H1
#

)

.

It is now clear that we can easily apply to the slip boundary condition a large

part of the classical proofs established for strong solutions (for instance, via the

variational method as well as via the analytic semigroups theory) to solutions to

non-slip boundary conditions. See [3], Chapter X.

Concerning the formal parallelism between the two problems, one may add

the interpolation result
[

D, H
]

1/2
= V ,

and, in particular, the embedding

L2(0, T ; D) ∩W 1,2(0, T ;H) ⊂ C(0, T ;V ) .

The great part of the proofs that apply for strong solutions to the non slip bound-

ary condition, via the variational method, apply as well to our slip boundary

condition. See, for instance, [4], [5], [6], [8]. We just replace V0, a0(u, v) and

A0 := −P ∆u with domain

D(A0) :=
{

v ∈ V0 : A0 v ∈ H
}

= H
2 ∩ V0

by the new counterparts V , a(u, v) and A. For instance, one may show in this

way that

Theorem 3.3. Let f ∈ L2(0,+∞;L2(Ω)) and u0 ∈ V . Then there is a pos-

itive T such that the problem (3.1) with the boundary conditions (1.2), has a

unique solution (u, p) where

u ∈ L2(0, T ; H
2) ∩W 1,2(0, T ; L2)
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and

p ∈ L2(0, T ;H1
#) .

Moreover, if the norms of the data are sufficiently small, the above strong solution

is global in time.
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