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Abstract. We revisit the notion of sentinel introduced by J.-L. Lions [12] considering
the case where the observation of the system and control function of the sentinel have
their supports in two different open sets. This point of view leads to problems of null-
controllability with or without constraints on the control.

This article focuses on the case of parabolic equations although similar developments
can be done for other PDE’s.

The main tool used is an observability inequality of Carleman type which is “adapted”
to the constraints.
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1. Statement of the problem

1.1. Problem formulation. For d € N*, let Q be a bounded open subset of R?
with boundary T of class C2, T > 0, and let @ be an open non empty subset of
Q Set0=Qx(0,7),Z=Tx(0,T), U=w x (0,T). We consider the para-
bolic evolution equation

—q' — Ag+aoqg = h+ky, inQ,
g=0 onZX (1)
q(T)=0 1inQ,

where (-)" is the partial derivative with respect to time ¢, ap € L*(Q), h € L*(Q),
k € L*(U) and y,, denotes the characteristic function of w. It is well known that
problem (1) admits a unique solution ¢ in the following Hilbert space (see for in-
stance [11], [13]):
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Remark 1. System (1) is a backward parabolic problem. It appears under this
form in the sentinels theory of J.-L. Lions as the associated adjoint state (cf. [12],
p. 22; see also Section 4 below).

We use the notation
q=q(x,t;k)

to mean that the solution ¢ of (1) depends on the control k which plays a particu-
lar role. More precisely, we would like to choose k in order to achieve the follow-
ing objective: let 4 be a given function in L*(Q) and

M a real closed vector subspace of L2(U). (2)

Denoting by .#* the orthogonal subspace of .# in L?(U) we look for a control
variable k € L*>(U) with

ke .+ (3)
and such that if ¢ = ¢(x, t; k) is the unique solution of (1), then
q(,0;k) =0 inQ, (4)
and
&l L2(r) = minimum (5)

to mean that k is the control of minimal norm in L?(U).

The role of k is to guarantee the null-controllability property (4) in the pres-
ence of the forcing term /4 and under the restriction (3). The null-controllability
problem (1), (3) and (4) is by now well understood in the case .# = {0}. It has
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been studied by several authors using different methods. We refer to D. Russell
[15], G. Lebeau and L. Robbiano [10], A. Fursikov and O. Imanuvilov [9]. We
also refer to V. Barbu [1], A. Doubova et al. [2], C. Fabre et al. [5], E. Fernan-
dez-Cara [6], E. Fernandez-Cara and S. Guerrero [7], E. Zuazua [16], [18], and
the bibliography in these papers for related controllability problems.

This article seems to be the first one dealing with the case .# # {0}. We study
the case when . is of finite dimension. In this case, some compatibility condi-
tions are required for controllability to hold. We shall return to this matter later
on.

1.2. The main result. In order to state the main result we introduce a suitable
non-negative weight function 6 which will be precisely defined below in Section 2
and consider the space

L3(Q) = {h|he L*(Q),0h e L*(Q)}, (6)

a Hilbert space for the scalar product and norm
(o= | a1l =104,

We assume that
A is finite dimensional (7)
and
(Vke #) (k' —Ak+apk=0in U=k =0in U). (8)
The main result is the following

Theorem 1.1. Assume that (7) and (8) hold. Then for any h € L}(Q) there exists
some control k and some state q such that (1), (3) and (4) hold. Moreover, we can
get a unique pair (kg, §,) with kg of minimal norm in L*(U), i.e. such that (1), (3), (4)
and (5) hold.

The proof of Theorem 1.1 requires several steps which will be carried out in
Section 2.

Remark 2. The assumption (8) has been already introduced by J.-L. Lions in
[12], p- 33. Here is some case where this assumption is satisfied. As an example,
assume that ./ be the vector subspace generated in L?>(U) by M independent
functions m;. Consider the case in which each m; has its support in domains
such as w; x (0,7) with w; cw and w;Nnw; =0 for i #j. Assuming that
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m] — Am; + apm; # 0, then if k € .# and k' — Ak + apk = 0in w x (0, T'), we have
k=01in w x (0, T), and assumption (8) is satisfied.

Here is the optimality system satisfied by (kg,g,). Set
P = the orthogonal projection operator from L?>(U) onto ./, 9)
and for p € L*(Q) define
Pp = the orthogonal projection of py,,. (10)

Theorem 1.2. The pair (ky, §,) is the optimal solution of problem (1), (3)-(5) if and
only if there is a function p, such that the triplet (ky, Gy, py) is the solution of the
following optimality system:

koe.tt, G,e H*'(Q), pyeV, (11)

—§ — Agy + avgy = h+ koy,, in 0,
@9 =0 on 27 (12)
qa(T) =0 inQ,

4o(0) =0 inQ; (13)
Py — Apy+aopy =0 in Q, (14)
pp=0 onZ,

icf):_(pAOXw_PpAO)' (15)

We proof this theorem in Section 3.

Remark 3. j, belongs to a Hilbert space ¥ which will be define below in Sec-
tion 2.

The paper is organized as follows. Section 2 is devoted to show Theorem 1.1.
The main tool is a constraint-adapted observability inequality given by Lemma 2.1.
In Section 3, we prove Theorem 1.2 using the penalization method. In Section 4,
we give an application of the above results to the sentinels theory of J.-L. Lions.
More precisely, we propose a notion of sentinel which revisits the one introduced
by J.-L. Lions.

2. Null-controllability with constraints on the control

2.1. Preliminaries. It is now well known that the null controllability analysis of
parabolic equations is equivalent to the observability inequality of the associated
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adjoint state which is obtained by appropriate Carleman estimates. The main
contributions in this area are due to O. Yu. Emanuilov, who developed the use
of Carleman estimates in the context of null controllability [4].

In order to state Carleman’s inequality, we introduce now some objects and
notations. Choose first some auxiliary function y € C?(Q) which satisfies the fol-
lowing conditions:

Y(x)>0 VxeQ, Yx)=0 Vxel, |[VYyx)|#0 VxeQ-—o,

Such a function y exists according to A. Fursikov and O. Imanuvilov [9].
For any positive parameter / define then the following weight functions

o) Wl _ i)
1) = =
o(x, 1) T—0 n(x, 1) (T=0
and adopt the following notations
_
L() = a - A7
L=%—A+al, (16)

7" ={peC”(Q)|p=00nk}

where ap € L*(Q). Now the inequality can be formulated as follows. There exist
three constants Ay = Ao(Q,w) > 1, 5o =50(Q,0,T) >1 and C=C(Q,w) >0
such that for any 1 > 4y, any s > sy and any p € 7~ the following inequality holds:

—2sn
J = (I')> + |Ap|?) dx dt +J s22pe2|\Vp|? dx dt
o ¢ 0

+ J s 243 e | p|* dx dt
0

SC(J e‘z“'”|L0|2dxdt+J 32 p3e | p| dx dt). (17)
0 U

The above inequality is referred to as the global Carleman inequality (see [9]
and [5]). As Ly = L — apl, from the previous inequality (17) we deduce another
inequality for the operator L by direct substitution in (17). We conclude the
existence of three constants 1; = 4;(Q,w,a0) > 1, 51 = 51(Q, 0, T,a9) > 1 and
C = C(Q, ) > 0 such that for any 4 > i, any s > 51 and any p € 7~ the follow-
ing holds:
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—2sn
J £ (11> + |Ap|?) dx dt +J s22pe 21\Vp|* dx dt
o 59 0

+ J s 24P p|* dx dt
0
SC(J e‘zs’7|Lp|2dxdt+J s34 gPe™ P p|? dx dt). (18)
0 U

Since ¢ does not vanish, we may set

0= —em SO l = p\/pe"
N 0 '

Then 0 € C?>(Q) and 1/0 is bounded. By substitution in (17) the following in-
equality holds

1 1 1
JQ?dedz < C(JQW|Lp|2dxdz+ JU?|p|2dxdt).

As a consequence of the boundedness of 1/0 and 1/¢%s>4*, the following inequal-
ity holds too:

J 12|p|2dxdl£C(J |Lp|2dxdt+J p|* dxdt). (19)
00 0 U

All these results are by now well understood. We refer, for instance, to E.
Fernandez-Cara and E. Zuazua [8].

2.2. Carleman’s inequality adapted to linear constraints. We are now con-
cerned with a new observability inequality needed to address the problem that mo-
tivates this article. Indeed, for the null controllability problem with constraints,
we need another observability inequality with partial measurements. More pre-
cisely, in order to deal with the constraint (3) we have to derive a more precise
observability inequality adapted to the subspace .# in (2). The following lemma
is the key ingredient for our results.

Lemma 2.1. Assume that (7) and (8) hold. Then there exists a positive con-
stant C = C(Q, w) such that for any p € V":

J i2|p2dxdt§C(J |L/)|2dxdt+J |/)—Pp\2dxdt). (20)
00 0 U
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Proof. The proof uses a well known compactness-uniqueness argument. Indeed,
suppose that (20) does not hold. Then

Vne N*3p, et [, Lip,|Pdxdt=1,
{ JﬂQb‘ (21)

Jo \Lp,|>dxdt < ! and |, |p, — Pp,|>dxdr< 1.

The proof consists in showing that (21) yields a contradiction. We proceed in four
steps.
1) We have

1 1 1
J — |Pp,|* dxdt < J —2|pn|2dxdt+J — |pn — Pp,|* dxa.
vl vo vl
Since 1/6° is bounded, it follows from (21) that
1 2
UE|Pp,,| dxdt < C. (22)

Since Pp,, € ./ and ./ is finite dimensional, Pp, (and so p,) is bounded in L?(U).
2) We can extract a subsequence, still denoted (p,),,, such that on the one hand

p, — g weaklyin L*(U), (23)
and on the other hand
pp— Pp, — 0  strongly in L*(U). (24)

Next we deduce from the compactness of P (because .# is of finite dimension) that
there exists o € .# such that

Pp, — o strongly in L*(U). (25)

We deduce from (24) and (25) that p, — g = o strongly in L>(U). Due to the con-
tinuity of P, we have Pp, — Pg strongly in L?(U). Therefore, Pg = gand g € . /4.
3) In fact, we have g = 0. Indeed, from (21), we also have Lp, — 0 strongly
in L>(Q). Thus Lp, — 0 strongly in L>(U). We deduce that Lp, — 0 weakly
in 2'(U) and so Lg = 0. The assumption (8) implies that g = 0 on U. Finally,
p, — 0 strongly in L>(U).
4) Since p, € 7" it follows from the observability inequality (19) that

J i2|pn|2dxdtsc(J |Lpn|2dxdt+J p,|” dx dt).
00 0 U
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Then, from the conclusions in the third step, we deduce that IQ% |pn|2 dxdt — 0
when n — +00. The contradiction occurs because of the first condition in (21),
where IQ# p,|? dxdt = 1. The proof of (20) is complete. O

2.3. Proof of Theorem 1.1. Consider now the following symmetric bilinear
form

a(p,p) = JQ LpLpdxdt + JU(/) — Pp)(p — Pp)dxdt. (26)

Due to Lemma 2.1, this bilinear form is a scalar product on 7". Let V' be the
Hilbert space obtained upon taking the closure of ¥~ under the norm:

p = lplly = Valp:p). (27)

Observe that the norm || - ||, is related to the right-hand side of inequality (20).
Similarly, the left-hand side of (20) leads to the norm

1 12
lollo = (| sslol*avar)'™ (28)
00

The completion of 7~ is the weighted Hilbert space usually denoted by L? 10
The inequality (20) shows that

lplly < Cliplly- (29)

This inequality extends to p € V. This shows that V' is continuously imbedded
in Lf /0"

Let us now consider & € L3(Q) defined in (6). Then, due to (20) and the
Cauchy-Schwarz inequality, we deduce that the linear form defined on V' by

p— J hp dx dt
Q

is continuous. By the Lax—Milgram theorem, for any / € L}(Q), there exits one
and only one solution p, to the variational problem:

PV, YpeV: alpyp) = J hp dx dt. (30)
0

Proposition 2.1. Assume that (7) and (8) hold. Let p, be the unique solution of (30)
and let Pp, be the projection of pyy,,. Set

kg = —(poxw — Ppo) (31)
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and
40 = Lpy. (32)

Then the pair (kg, qp) is such that (1), (3) and (4) hold. Moreover, we have

lpolly < CllOA] 12 g) (33)
Hk()”LZ(U) < C”HhHU(Q)» (34)
1901l 721 () < ClIOll 2 (), (35)

where C is a positive constant depending only on Q, w, ay, T and M .

Proof. Since p, € V it follows that kg = —(pyx,, — Ppy) € L*(U) and gy € L*(Q).
Since Pp, € .4 we have kg = —(pyx,, — Ppy) € 4. By direct substitution in the
formulas (26), (30) and (32) it follows that

J q()LpdxdtJrJ (pngp(,)(prp)dxdt:J hpdxdt forallpe V.
o v 0

Taking into account that Pp € ./, the above identity reduces to

J qoLpdxdt = J hp dx dt — J (pg— Ppy)pdxdt forallpeV,
0 0 U
ie.,

J qoLpdxdt = J hp dx dt —I—J kopdxdt forallpe V. (36)
0 U

0

We show now that ¢y is in fact the weak solution by transposition of a backward
heat problem. More precisely, if ¢ € L?(Q), let p be the solution of

p=0 onZX, (37)

{p’Ap+aop=¢ in Q,
p(0)=0 inQ.

Then p € V and so

J qg¢dxdt:J hpdxdt—i—J kop dx dt. (38)
0 0 U

Therefore gy is the weak solution by transposition of problem (1) with k = ky (see
[13], p. 177). And we know that the solution of this equation is in H>!(Q).
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Therefore gy € C([0, T},Lz(Q)). Then multiplying the first equation of (1) by
p € 7" and integrating by parts over Q, it follows that

—j q9<T>p<T>dx+j 40(0)p(0) dx + j goLp dx di
Q Q 0

= J hp dx dt + J kop dx dt. (39)
0 U
for any p € 7". Since p € ¥~ we deduce from (36) that
J q0(0)p(0)dx =0 forallp e .
Q

Therefore ¢»(0) = 0 in Q. Hence the first statement of Proposition 2.1 is proved.
It remains to prove the estimates (33)—(35). We set p = p, in (30). It follows
from (20) that

2 2
a(pg: po) = llaollz20) + 1koll720)

< 10l 20y llPollg

< Cl|0A]| 2 (gyllpolly- (40)

Then from (27) we obtain (33) and thus (34). Finally, (35) is a consequence of (34)
and classical properties of the heat equation. ]

The adapted observability inequality (20) shows that the choice of the scalar
product on 7" is not unique. Thus there exist infinitely many control functions k&
such that (1), (3) and (4) hold.

Consider the set of control variables k such that (1), (3) and (4) hold. By Prop-
osition 2.1 this set is nonempty and it is clearly convex and closed in L*(U).
Therefore, there exists a unique control variable ky of minimal norm in L*(U).
The proof of Theorem 1.1 is complete.

It remains to compute the optimal solution (ky, Gy). This is done in the forth-
coming Section 3.

3. Optimality system for the optimal solution

3.1. Penalization. The optimal solution (k, §,) can be approximated consider-
ing the penalization method by Lions [11]. Let us now describe now the method.
Let ¢ > 0. Define the functional
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Ty @) = 2 W) + - |4 — Aq + aog — h— Kz, I
K, q) = P L2(U) e q q 0oq XollL2(0)
for any pair (k,q) such that

ket
—q' = Aq+apg € L*(Q),
g=0o0nZX ¢(0)=¢(T)=01in Q.

Consider the minimization problem

minJ,(k,q), (k,q) subject to (42).

(42)

(43)

Proposition 3.1. Under the assumptions of Theorem 1.1, the minimization problem

has an optimal solution. There exists (k,,q.) such that

Je(key q.) = min{J,(k, q) | (k,q) subject to (42)}

(44)

Proof. Let (k,,q,) be a minimizing sequence satisfying (42). The sequence

(Je(kn, qn)), is bounded from above

Jo(ku, qn) < C(e).
Then

knll 20y < C(e)s M=y — Adu + dogn = 1 = kx|l 2 < C(2).

There is some subsequence of (k,),,, still denoted by (k,),, such that
kn — k,  weakly in L*(U).
Since a consequence of (42) the (sub)sequence ¢, is bounded,

gnll 2.1 () < C-

There is some subsequence of ¢,, still denoted by ¢, such that
qn — q;  weakly in H>1(Q).
Hence, by weak lower semicontinuity of the functional J,,

liminf J,(k,, g,) = Je(ke, q.)-

(45)

We deduce from the strict convexity of J, that (k. ¢.) is a unique optimal

control.

O
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Now we study the convergence of (k;, q,),.

Proposition 3.2. Let ((k;,q:)), be the sequence of solutions of (44). Then for
e — 0, we have the following limits:

{k,;éicg weakly in L*(U), (46)

q: — Gy weakly in H>'(Q).
Proof. We prove the proposition in three steps:

1) (ky, g,) satisfies (1), (3) and (4). Then from the structure (41) of J,(k,q) we
have of course

k;; < C7
{II 220y (47)

”_qg/ — Ag; + aoqe — h — k&)fw|

g < CVE

where the C’s are various constants independent of &.
2) From (47) and the fact that ¢, satisfies (42) we have that

14ell 72100 < C.

There are a subsequence of (k;,q;), again denoted (k. ¢;), and two functions
ko € L*>(U) and qo € H*'(Q) such that

k, — ko weaklyin L*(U),ko e #*; ¢, —qo weaklyin H>'(Q).  (48)

3) Since the injection from H>!(Q) into L*(Q) is compact, the pair (ko, qo) is
such that

—q4 — Ago + aoqo = h + koy,, in Q,
g0 =0 onZX, (49)
C[O(T) =0 in Q,

and
q0(0) =0 in Q. (50)

From the estimate

Lo o

E ”kCHLz(U) < Jc(km qs)
we get

1 .
5 kol 72y < liminf J, (ks q,).
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Since the pair (kg, g,) satisfies (1), (3) and (4) we obtain that

. 1.
liminf J,(ks, ¢:) < > ko720

Thus
kol L2y < Ilkoll 20
and so
kol 20y = kol 2o)-
Hence ko = ky. Since (49) has a unique solution, it follows that gy = g, O

3.2. Proof of Theorem 1.2.

Proposition 3.3. The assumptions are as in Theorem 1.1. The pair (k.,q.) is the
optimal solution of problem (44) if and only if there is one function p, such that the
triplet (k;, q., p,) satisfies the following so-called optimality system:

—qé —Ag, +aoq, = h + kzzxw +ep, in 0,
4. =0 onZ, (51)
q.(T)=0 inQ,

700)=0 inQ (52)

— A p— 0 1

{pg Py + dop, in Q, (53)
p.=0 onZ,

ke = _(ps)(w - pr‘) (54)

Proof. Express the Euler—Lagrange optimality conditions which characterize
(kes 4:):

d
Ejs(km q: + i¢)|2:0 =0

for all p € C*(Q) such that 9 = 0 on X, ¢(0) = ¢(T) = 0 in Q, and
d
ﬁ*’l:(kc + Ak, q$)|}~:0 =0

for all k e .#~+. After some calculations, we have

1
J, 5 00— 8 g = h ko) ('~ Ao+ anp) dede =0 (59
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for all p € C*(Q) such that p = 0 on X, ¢(0) = 0, ¢(T) = 0 in Q, and
1
J kok dx dt — J - (—q, — Ag. + aoze — h — key,,)k dxdt = 0 (56)
U Q
for all k € .#*. Define the adjoint state

1
P ==~ (=a/ = Ags + aog, = h = viyt,).

Then (55) and (56) become respectively

J p.(—¢" — Ap + app) dx dt = 0 (57)
o

for all p € C*(Q) such that 9 =0 on X, p(0) = ¢(T) = 0 in Q and
J kek dx dt + J pldxdt =0 (58)
% 0

for all k € .#~+. Considering the first part (57), we deduce that
Py — Ap,+aop, =0

in Q. So p, € L*(Q) with Lp, € L>(Q). Then we can define on the one hand p,
on I and on the other hand prove that p, = 0 on X.
Now we consider (58):

J (ks + p,)k dxdi =0
U

for all k e .#*. Hence k,+ p,y, € 4. Since k, € .4+ we have k, + p,x, =
P(kL +pz:%(u) = PPL and so

ks = _(anw - Pps)
Hence the assertion follows. 0
Remark 4. There is no information available concerning p,(0) and p,(T).

We now look for a priori estimates for the approximate adjoint state p,. This
is the essential point.
From (54) and (47) it follows that
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1pe2er = PPl 20y < €. (59)

Now Lp, = 0 yields
lpelly < €. (60)

Therefore there are a subsequence (p,)
that

still denoted by (p,),, and p, € V such

& &’

p, — Py weaklyin V. (61)

Following the lines of the proof of Lemma 2.1, we deduce the weak convergence
p, — Py in L?(U). Thus

Pp, — y, strongly in L*(U)
so that y, € . By (59) and (61) there is some y; € .# with
p. — Pp, — 7, weakly in L*(U)
so that p, = y, + ;. Thus y, = Ppy and
p. — Pp, — py— Pp, weakly in L*(U).

This proves Theorem 1.2.

4. Discriminating sentinels

4.1. Definition. The notion of sentinel was introduced by J.-L. Lions to study
systems of incomplete data [12]. The notion permits us to distinguish and to ana-
lyse two types of incomplete data: the so-called pollution terms at which we look
for information, independently of the other type of incomplete data which is the
missing terms and that we do not want to identify.

Typically, the Lions’sentinel is a functional defined on an open set O where we
consider three functions: the “observation” y.ps corresponding to measurements, a
given “mean” function /g, and a control function w to be determined.

Here we propose a notion of sentinel which revisits the one by Lions.

Let us remind that Lions’ sentinel theory [12] relies on the following three fea-
tures: the state equation y which is governed by a system of PDE, the observation
system and some particular evaluation function: the sentinel itself.

More precisely, we consider in the first step the semilinear parabolic equation
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Y —Ay+f(y)=¢+E inQ
y=0 onkX, (62)
y(0) ="+ inQ.

We are interested in systems with data that are not completely known. In the pres-
ent situation f/ : R — R is a given map, the functions & and y° are known with ¢
in L2(Q) and »° in L%(Q). However, the terms A& and 7° are unknown, but are
such that

||é||L2(Q) <1, ||j10||L2(Q) <1 with 4,7 € R small enough. (63)
In addition to (63), we assume that f* verifies
J(0)=0 (64)
and the non-linearity of f satisfies the following growth condition:
£ (s1) = f(s2) = £'(0)s1 = s2)| < C(Is1 )"~ + [sa] ") s1 = 2], (65)
for all 51,5, € R and some C > 0 and p > 1 such that
p<(d+4)/d. (66)

This growth condition is classical (see for instance [17]). Under this condition, it is
proved in [3], p. 63, that there exists o > 0 such that when

1€+ 2l 2(0) + 17° + 90Nl 120 < @

the problem (62) admits a unique solution in C([0,77],L*(Q)). For the sake of
simplicity, we denote

y(x,64,7) = y(4,7) (67)

the unique solution of (62). Therefore, the map
(4,7) = y(A7)  isin CY(R x R; C([0, T}, L*(Q)). (68)

The general question we want to address is:

given some observation of the state of system, can one
obtain A& without any attempt at computing 7y°? (69)

In this context we refer to A¢ as pollution term, which we are trying to identify,
and the term 7y° as the missing one we do not want to identify.
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To make things more specific, we consider in the second step the observation
process. The observation is the knowledge, along some time period, of some func-
tion yons Which is defined on the strip O x (0, T') over some nonempty open subset
O < Q called observatory. The function y,ps is assumed to be of the form

M
Yobs = Mg + § ,Bimiv (70)

i=1
where the functions myg,my,...,my are given measurements of y in

L*(0 x (0,T)), but the real coefficients §; are unknown. We assume that f3; are
small. We refer to the terms f,m; as the interference terms. We can assume with-
out loss of generality that

the functions m; are linearly independent on O x (0, 7). (71)

Finally, we introduce now the notion of sentinel. Let hy be a given function on
O x (0, T) such that

T

hy >0, J

J hodxdt = 1. (72)
0Jo

Moreover let @ be an open and non empty subset of Q. For any control function
we L?(w x (0,T)), set

T

S(/l,r)zj

0

Jo hoy(2, 1) dxdt + LTL wy(4,7) dx dt. (73)

The role of the function w appears in the following definition. We say that S de-
fines a discriminating sentinel (for the system (62), (70) and (72)) if there exists w
such that the functional S satisfies the following conditions:

(i) S is stationary at first order with respect to the missing terms z3°, that is,

‘Z—f (0,0) =0 for all °. (74)

(i) S is stationary with respect to the interference terms f;m;, that is,

T T
J J homia’xdt+J J wm; dxdt = 0, I<i< M. (75)
0Jo 0Jo

(iii) The set w is of minimal norm in L*(w x (0, T')) among control functions
in L?(w x (0, T)) which satisfy the above conditions, that is,

Wl 20 (0,7)) = minimum. (76)
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Remark 5. At this point some comments are in order.

1. According to (76) the function S, if it exists, is unique. We refer to S as the
sentinel.

2. If the functions m;, 1 <i < M, are null functions, the sentinel S is defined
only by (74) and (76). If m; # 0, the sentinel S is defined by (74), (75) and (76)
and it is called a discriminating sentinel.

3. Lions’ original sentinel S corresponds to the case w = O. Here, if we choose
w = —hy, then (74) and (75) hold true, so that problem (74)—(76) admits a unique
solution. Of course this solution may have an interest only if w # —hyg. Now if
w # O and if the support supp(#) of & does not lie in w, we cannot have
w = —hy except for w = —hy = 0. Therefore, the previous definition introduces a
generalization of Lions’s discriminating sentinel to the case where the observation
and the control have their supports in two different open subsets.

4. The support supp(n1;) of functions m; is assumed to be included in O. Sup-
pose that w N O = §; then J"Owa wm; dx dt = 0. Therefore, it suffices to choose A
such that /4 is orthogonal to each m; and then (795) is readily satisfied. Therefore,
for all & we can neglect the part of w which is out of O. So, without loss of gen-
erality, it may be assumed that

w < 0. (77)

4.2. Equivalence to the null-controllability. Here it will be shown that the exis-
tence of such a control function w satisfying (74) and (75) is equivalent to the null-
controllability property for a system with constrained control. First, we denote by
¥ the solution of problem (62) for 1 = 0, 7 = 0 and we assume that ¥ can be com-
puted in practice. Next, we consider the function y, defined by

d
Ve = %J’(ﬂw T)|,1:0,r:0- (78)
The function y, is the solution of the linearized problem

y;_Ayf‘i'f/(J_})yr:O in Q,
Y= 0 on 27 (79)
y:(0) = )70 in Q,

where f’(¥) denotes the derivative of /" on 3. Due to (65), problem (79) admits a
unique solution y;.
We now consider the stationary condition (74). It holds if and only if

T T
J J ho - dxdl—b—J J wy.dxdt =0  for all ° with ||j10||L2(Q) <1. (80)
0Jo 0 Jo
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In order to transform the equation (80), we introduce now the classical adjoint
state. More precisely, consider the solution ¢ = ¢(x;, ) of the linear problem

—4' = Aq+ /' ()g = hoxo + wr, 00,
g=0 onZX, (81)
q(T)=0 inQ,

where y, and y, are the characteristic functions for the open sets O and w,
respectively. As for the problem (79), problem (81) admits a unique solution
q € H*'(Q). The so-called adjoint state ¢ depends on the unknown w and its use-
fulness comes from the following observation.

First, multiply both members of the differential equation in (81) by y,, and in-
tegrate by parts over Q:

T T
J J hoyfdxdt—I—J J wyfdxdt:J q(0)7°dx  for all ° with ||y°||Lz(Q) <1
0Jo 0Jw Q

Thus condition (74) (or (80)) holds if and only if
q(0)=0 inQ. (82)

Then consider the constraints (75). Let .# be the vector subspace generated in
L*(w % (0,7T)) by the M independent functions m;y,,. There is a unique ko € .#
such that

T T
J J hom,-dxdt—i-J J kom;dxdt =0, 1<i< M. (83)
0Jo 0 Jow

In other words, condition (75) holds if and only if
w—ko=ke. " (84)

The above considerations show that finding the control w such that the func-
tional S satisfies (74) and (75) is equivalent to finding the control k such that the
pair (k, q) satisfies the following system:

ke, qeH>(0), (85)
_q/ - Aq + f/()_}>q = hOXO + kOXw + k){w in 0,
g=0 onZX (86)
q(T)=0 inQ,

g(0)=0 inQ. (87)
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We see that (85)—(87) is exactly the problem (1), (3) and (4) when ay = f’(¥) and
h=hoyo+koy,. So we can apply the results obtained in the previous sections.
Indeed, observe first that .# is finite dimensional. Now assume that (8) holds
and 1 = hoyo + koy,, in L}(Q). We assume also that (77) holds. Therefore, let
(pgs ko, qy) be defined as in Theorem 1.2. Then ky = —(pyx,, — Ppy), and the sen-
tinel is defined by

T

T
So(2,7) :J J hoy(2,7) dde—J
0Jo 0

| ko=~ o) 320 axar. 59)
4.3. Detection of pollution. Let us now return to problem (69) to show how the
sentinel defined above permits to detect the pollution A£. Let 7 be again the solu-
tion of the problem (62) for 2 =0, 7 = 0. We assume that j can be computed in
practice. Then, knowing ky,

T T
$,(0,0) = L JO hoFdxd + JO J (ko + o) 7 e i (89)

is known. Because of (65) we have

oS

Sp(2,7) ~ $5(0,0) + A 5 (0,0) for A and 7 small. (90)

If yobs 18 known, it follows from (70) and (75) that

T T

So(4,7) = J

J homo dx dt + J
0Jo

J (ko + ko)mo dx dt. (91)
0 Jow

Thus

T T

oS
za(o,o%j

J /’lo(ﬁ’lo — )_/) dxdt—i—J
0Jo

Oj (ko + ko) (mo — 7)dxdt. — (92)

Now

Q T T
@(0,0):‘[ J hoygdxdlﬁ-J

J (ko + ko) y, dx dr (93)
0 Jow

where y; is given by
Vo= Ay + f(P)yi=¢ inQ,

y,=0 onZX, (94)
y,(00)=0 1in Q.



A revision of J.-L. Lions’ notion of sentinels 21

Let ¢y be the solution of (86). Multiplying (86) by y, it follows that

T T
J%‘ff:J J hoy;vdxdt—l—J J (ko + ko) y, dx dt dx dt. (95)
0 0oJo 0 Jw

Therefore (92) becomes

T

j (ko + ko) (mo — ) dx di. (96)

T T
J J qgﬂvfdxdtzj J ho(mo—f)dxdt—kj
0 0Jo 0

0

This equation allows to evaluate the left-hand side of (96) and is thus an available
information concerning A&.

Remark 6. Of course, we can study and apply other notions developed by J.-L.
Lions in [12] (for instance, the notion of furtivity) to the sentinel defined in (88).
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