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Abstract. We revisit the notion of sentinel introduced by J.-L. Lions [12] considering
the case where the observation of the system and control function of the sentinel have
their supports in two di¤erent open sets. This point of view leads to problems of null-
controllability with or without constraints on the control.

This article focuses on the case of parabolic equations although similar developments
can be done for other PDE’s.

The main tool used is an observability inequality of Carleman type which is ‘‘adapted’’
to the constraints.
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1. Statement of the problem

1.1. Problem formulation. For d a N�, let W be a bounded open subset of Rd

with boundary G of class C2, T > 0, and let o be an open non empty subset of

W. Set Q ¼ W� ð0;TÞ, S ¼ G� ð0;TÞ, U ¼ o� ð0;TÞ. We consider the para-

bolic evolution equation

�q 0 � Dqþ a0q ¼ hþ kwo in Q;

q ¼ 0 on S;

qðTÞ ¼ 0 in W;

8<
: ð1Þ

where ð�Þ0 is the partial derivative with respect to time t, a0 a LlðQÞ, h a L2ðQÞ,
k a L2ðUÞ and wo denotes the characteristic function of o. It is well known that

problem (1) admits a unique solution q in the following Hilbert space (see for in-

stance [11], [13]):



H 2;1ðQÞ ¼ j
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endowed with the natural norm
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:

This space coincides with the space of j’s (with equality of norms of graphs)

such that

j a L2
�
0;T ;H 2ðWÞ

�
;

qj

qt
a L2ðQÞ:

Remark 1. System (1) is a backward parabolic problem. It appears under this

form in the sentinels theory of J.-L. Lions as the associated adjoint state (cf. [12],

p. 22; see also Section 4 below).

We use the notation

q ¼ qðx; t; kÞ

to mean that the solution q of (1) depends on the control k which plays a particu-

lar role. More precisely, we would like to choose k in order to achieve the follow-

ing objective: let h be a given function in L2ðQÞ and

M a real closed vector subspace of L2ðUÞ: ð2Þ

Denoting by M? the orthogonal subspace of M in L2ðUÞ we look for a control

variable k a L2ðUÞ with

k a M? ð3Þ

and such that if q ¼ qðx; t; kÞ is the unique solution of (1), then

qð�; 0; kÞ ¼ 0 in W; ð4Þ

and

kkkL2ðUÞ ¼ minimum ð5Þ

to mean that k is the control of minimal norm in L2ðUÞ.
The role of k is to guarantee the null-controllability property (4) in the pres-

ence of the forcing term h and under the restriction (3). The null-controllability

problem (1), (3) and (4) is by now well understood in the case M ¼ f0g. It has
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been studied by several authors using di¤erent methods. We refer to D. Russell

[15], G. Lebeau and L. Robbiano [10], A. Fursikov and O. Imanuvilov [9]. We

also refer to V. Barbu [1], A. Doubova et al. [2], C. Fabre et al. [5], E. Fernán-

dez-Cara [6], E. Fernández-Cara and S. Guerrero [7], E. Zuazua [16], [18], and

the bibliography in these papers for related controllability problems.

This article seems to be the first one dealing with the case MA f0g. We study

the case when M is of finite dimension. In this case, some compatibility condi-

tions are required for controllability to hold. We shall return to this matter later

on.

1.2. The main result. In order to state the main result we introduce a suitable

non-negative weight function y which will be precisely defined below in Section 2

and consider the space

L2
yðQÞ ¼ fh j h a L2ðQÞ; yh a L2ðQÞg; ð6Þ

a Hilbert space for the scalar product and norm

ðh; lÞy ¼
ð
Q

y2hl dx dt; khky ¼ kyhkL2ðQÞ:

We assume that

M is finite dimensional ð7Þ

and

ðEk a MÞ ðk 0 � Dk þ a0k ¼ 0 in U ) k ¼ 0 in UÞ: ð8Þ

The main result is the following

Theorem 1.1. Assume that (7) and (8) hold. Then for any h a L2
yðQÞ there exists

some control k and some state q such that (1), (3) and (4) hold. Moreover, we can

get a unique pair ðk̂ky; q̂qyÞ with k̂ky of minimal norm in L2ðUÞ, i.e. such that (1), (3), (4)
and (5) hold.

The proof of Theorem 1.1 requires several steps which will be carried out in

Section 2.

Remark 2. The assumption (8) has been already introduced by J.-L. Lions in

[12], p. 33. Here is some case where this assumption is satisfied. As an example,

assume that M be the vector subspace generated in L2ðUÞ by M independent

functions mi. Consider the case in which each mi has its support in domains

such as oi � ð0;TÞ with oi Ho and oi Boj ¼ j for iA j. Assuming that
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m 0
i � Dmi þ a0mi A 0, then if k a M and k 0 � Dk þ a0k ¼ 0 in o� ð0;TÞ, we have

k ¼ 0 in o� ð0;TÞ, and assumption (8) is satisfied.

Here is the optimality system satisfied by ðk̂ky; q̂qyÞ. Set

P ¼ the orthogonal projection operator from L2ðUÞ onto M; ð9Þ

and for r a L2ðQÞ define

Pr ¼ the orthogonal projection of rwo: ð10Þ

Theorem 1.2. The pair ðk̂ky; q̂qyÞ is the optimal solution of problem (1), (3)–(5) if and

only if there is a function r̂ry such that the triplet ðk̂ky; q̂qy; r̂ryÞ is the solution of the

following optimality system:

k̂ky a M?; q̂qy a H 2;1ðQÞ; r̂ry a V ; ð11Þ

�q̂q 0
y � Dq̂qy þ a0q̂qy ¼ hþ k̂kywo in Q;

q̂qy ¼ 0 on S;

q̂qyðTÞ ¼ 0 in W;

8><
>: ð12Þ

q̂qyð0Þ ¼ 0 in W; ð13Þ

r̂r 0
y � Dr̂ry þ a0r̂ry ¼ 0 in Q;

r̂ry ¼ 0 on S;

�
ð14Þ

k̂ky ¼ �ðr̂rywo � Pr̂ryÞ: ð15Þ

We proof this theorem in Section 3.

Remark 3. r̂ry belongs to a Hilbert space V which will be define below in Sec-

tion 2.

The paper is organized as follows. Section 2 is devoted to show Theorem 1.1.

The main tool is a constraint-adapted observability inequality given by Lemma 2.1.

In Section 3, we prove Theorem 1.2 using the penalization method. In Section 4,

we give an application of the above results to the sentinels theory of J.-L. Lions.

More precisely, we propose a notion of sentinel which revisits the one introduced

by J.-L. Lions.

2. Null-controllability with constraints on the control

2.1. Preliminaries. It is now well known that the null controllability analysis of

parabolic equations is equivalent to the observability inequality of the associated
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adjoint state which is obtained by appropriate Carleman estimates. The main

contributions in this area are due to O. Yu. Emanuilov, who developed the use

of Carleman estimates in the context of null controllability [4].

In order to state Carleman’s inequality, we introduce now some objects and

notations. Choose first some auxiliary function c a C2ðWÞ which satisfies the fol-

lowing conditions:

cðxÞ > 0 Ex a W; cðxÞ ¼ 0 Ex a G; j‘cðxÞjA 0 Ex a W� o;

Such a function c exists according to A. Fursikov and O. Imanuvilov [9].

For any positive parameter l define then the following weight functions

jðx; tÞ ¼ elcðxÞ

tðT � tÞ ; hðx; tÞ ¼ e2lkckl � elcðxÞ

tðT � tÞ :

and adopt the following notations

L0 ¼ q
qt
� D;

L ¼ q
qt
� Dþ a0I ;

V ¼ fr a ClðQÞ j r ¼ 0 on Sg

8><
>: ð16Þ

where a0 a LlðQÞ. Now the inequality can be formulated as follows. There exist

three constants l0 ¼ l0ðW;oÞ > 1, s0 ¼ s0ðW;o;TÞ > 1 and C ¼ CðW;oÞ > 0

such that for any lb l0, any sb s0 and any r aV the following inequality holds:

ð
Q

e�2sh

sj
ðjr 0j2 þ jDrj2Þ dx dtþ

ð
Q

sl2je�2shj‘rj2 dx dt

þ
ð
Q

s3l4j3e�2shjrj2 dx dt

aC
� ð

Q

e�2shjL0j2 dx dtþ
ð
U

s3l4j3e�2shjrj2 dx dt
�
: ð17Þ

The above inequality is referred to as the global Carleman inequality (see [9]

and [5]). As L0 ¼ L� a0I , from the previous inequality (17) we deduce another

inequality for the operator L by direct substitution in (17). We conclude the

existence of three constants l1 ¼ l1ðW;o; a0Þ > 1, s1 ¼ s1ðW;o;T ; a0Þ > 1 and

C ¼ CðW;oÞ > 0 such that for any lb l1, any sb s1 and any r aV the follow-

ing holds:
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ð
Q

e�2sh

sj
ðjr 0j2 þ jDrj2Þ dx dtþ

ð
Q

sl2je�2shj‘rj2 dx dt

þ
ð
Q

s3l4j3e�2shjrj2 dx dt

aC
� ð

Q

e�2shjLrj2 dx dtþ
ð
U

s3l4j3e�2shjrj2 dx dt
�
: ð18Þ

Since j does not vanish, we may set

y ¼ esh

j
ffiffiffi
j

p ; so
1

y
¼ j

ffiffiffi
j

p
e�sh:

Then y a C2ðQÞ and 1=y is bounded. By substitution in (17) the following in-

equality holds

ð
Q

1

y2
jrj2 dx dtaC

� ð
Q

1

y2j3s3l4
jLrj2 dx dtþ

ð
U

1

y2
jrj2 dx dt

�
:

As a consequence of the boundedness of 1=y and 1=j3s3l4, the following inequal-

ity holds too:

ð
Q

1

y2
jrj2 dx dtaC

� ð
Q

jLrj2 dx dtþ
ð
U

jrj2 dx dt
�
: ð19Þ

All these results are by now well understood. We refer, for instance, to E.

Fernández-Cara and E. Zuazua [8].

2.2. Carleman’s inequality adapted to linear constraints. We are now con-

cerned with a new observability inequality needed to address the problem that mo-

tivates this article. Indeed, for the null controllability problem with constraints,

we need another observability inequality with partial measurements. More pre-

cisely, in order to deal with the constraint (3) we have to derive a more precise

observability inequality adapted to the subspace M in (2). The following lemma

is the key ingredient for our results.

Lemma 2.1. Assume that (7) and (8) hold. Then there exists a positive con-

stant C ¼ CðW;oÞ such that for any r aV:

ð
Q

1

y2
jrj2 dx dtaC

� ð
Q

jLrj2 dx dtþ
ð
U

jr� Prj2 dx dt
�
: ð20Þ
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Proof. The proof uses a well known compactness-uniqueness argument. Indeed,

suppose that (20) does not hold. Then

En a N �brn aV
Ð
Q

1

y2
jrnj

2
dx dt ¼ 1;Ð

Q
jLrnj

2
dx dta 1

n
and

Ð
U
jrn � Prnj

2
dx dta 1

n
:

(
ð21Þ

The proof consists in showing that (21) yields a contradiction. We proceed in four

steps.

1) We have

ð
U

1

y2
jPrnj

2
dx dta

ð
U

1

y2
jrnj

2
dx dtþ

ð
U

1

y2
jrn � Prnj

2
dx dt:

Since 1=y2 is bounded, it follows from (21) that

ð
U

1

y2
jPrnj

2
dx dtaC: ð22Þ

Since Prn a M and M is finite dimensional, Prn (and so rn) is bounded in L2ðUÞ.
2) We can extract a subsequence, still denoted ðrnÞn, such that on the one hand

rn * g weakly in L2ðUÞ; ð23Þ

and on the other hand

rn � Prn ! 0 strongly in L2ðUÞ: ð24Þ

Next we deduce from the compactness of P (because M is of finite dimension) that

there exists s a M such that

Prn ! s strongly in L2ðUÞ: ð25Þ

We deduce from (24) and (25) that rn ! g ¼ s strongly in L2ðUÞ. Due to the con-

tinuity of P, we have Prn ! Pg strongly in L2ðUÞ. Therefore, Pg ¼ g and g a M.

3) In fact, we have g ¼ 0. Indeed, from (21), we also have Lrn ! 0 strongly

in L2ðQÞ. Thus Lrn ! 0 strongly in L2ðUÞ. We deduce that Lrn * 0 weakly

in D 0ðUÞ and so Lg ¼ 0. The assumption (8) implies that g ¼ 0 on U . Finally,

rn ! 0 strongly in L2ðUÞ.
4) Since rn aV it follows from the observability inequality (19) that

ð
Q

1

y2
jrnj

2
dx dtaC

� ð
Q

jLrnj
2
dx dtþ

ð
U

jrnj
2
dx dt

�
:
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Then, from the conclusions in the third step, we deduce that
Ð
Q

1

y2
jrnj

2
dx dt ! 0

when n ! þl. The contradiction occurs because of the first condition in (21),

where
Ð
Q

1

y2
jrnj

2
dx dt ¼ 1. The proof of (20) is complete. r

2.3. Proof of Theorem 1.1. Consider now the following symmetric bilinear

form

aðr; r̂rÞ ¼
ð
Q

LrLr̂r dx dtþ
ð
U

ðr� PrÞðr̂r� Pr̂rÞ dx dt: ð26Þ

Due to Lemma 2.1, this bilinear form is a scalar product on V. Let V be the

Hilbert space obtained upon taking the closure ofV under the norm:

r 7! krkV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðr; rÞ

p
: ð27Þ

Observe that the norm k � kV is related to the right-hand side of inequality (20).

Similarly, the left-hand side of (20) leads to the norm

krky ¼
� ð

Q

1

y2
jrj2 dx dt

�1=2
: ð28Þ

The completion ofV is the weighted Hilbert space usually denoted by L2
1=y.

The inequality (20) shows that

krkyaCkrkV : ð29Þ

This inequality extends to r a V . This shows that V is continuously imbedded

in L2
1=y.

Let us now consider h a L2
yðQÞ defined in (6). Then, due to (20) and the

Cauchy–Schwarz inequality, we deduce that the linear form defined on V by

r !
ð
Q

hr dx dt

is continuous. By the Lax–Milgram theorem, for any h a L2
yðQÞ, there exits one

and only one solution ry to the variational problem:

ry a V ; Er a V : aðry; rÞ ¼
ð
Q

hr dx dt: ð30Þ

Proposition 2.1. Assume that (7) and (8) hold. Let ry be the unique solution of (30)

and let Pry be the projection of rywo. Set

ky ¼ �ðrywo � PryÞ ð31Þ
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and

qy ¼ Lry: ð32Þ

Then the pair ðky; qyÞ is such that (1), (3) and (4) hold. Moreover, we have

krykV aCkyhkL2ðQÞ; ð33Þ

kkykL2ðUÞaCkyhkL2ðQÞ; ð34Þ

kqykH 2; 1ðQÞaCkyhkL2ðQÞ; ð35Þ

where C is a positive constant depending only on W, o, a0, T and M.

Proof. Since ry a V it follows that ky ¼ �ðrywo � PryÞ a L2ðUÞ and qy a L2ðQÞ.
Since Pry a M we have ky ¼ �ðrywo � PryÞ a M?. By direct substitution in the

formulas (26), (30) and (32) it follows that

ð
Q

qyLr dx dtþ
ð
U

ðry � PryÞðr� PrÞ dx dt ¼
ð
Q

hr dx dt for all r a V :

Taking into account that Pr a M, the above identity reduces to

ð
Q

qyLr dx dt ¼
ð
Q

hr dx dt�
ð
U

ðry � PryÞr dx dt for all r a V ;

i.e., ð
Q

qyLr dx dt ¼
ð
Q

hr dx dtþ
ð
U

kyr dx dt for all r a V : ð36Þ

We show now that qy is in fact the weak solution by transposition of a backward

heat problem. More precisely, if f a L2ðQÞ, let p be the solution of

p 0 � Dpþ a0p ¼ f in Q;

p ¼ 0 on S;

pð0Þ ¼ 0 in W:

8<
: ð37Þ

Then p a V and so

ð
Q

qyf dx dt ¼
ð
Q

hp dx dtþ
ð
U

kyp dx dt: ð38Þ

Therefore qy is the weak solution by transposition of problem (1) with k ¼ ky (see

[13], p. 177). And we know that the solution of this equation is in H 2;1ðQÞ.
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Therefore qy a C
�
½0;T �;L2ðWÞ

�
. Then multiplying the first equation of (1) by

r aV and integrating by parts over Q, it follows that

�
ð
W

qyðTÞrðTÞ dxþ
ð
W

qyð0Þrð0Þ dxþ
ð
Q

qyLr dx dt

¼
ð
Q

hr dx dtþ
ð
U

kyr dx dt: ð39Þ

for any r aV. Since r aV we deduce from (36) that

ð
W

qyð0Þrð0Þ dx ¼ 0 for all r aV:

Therefore qyð0Þ ¼ 0 in W. Hence the first statement of Proposition 2.1 is proved.

It remains to prove the estimates (33)–(35). We set r ¼ ry in (30). It follows

from (20) that

aðry; ryÞ ¼ kqyk2L2ðQÞ þ kkyk2L2ðUÞ

a kyhkL2ðQÞkryky
aCkyhkL2ðQÞkrykV : ð40Þ

Then from (27) we obtain (33) and thus (34). Finally, (35) is a consequence of (34)

and classical properties of the heat equation. r

The adapted observability inequality (20) shows that the choice of the scalar

product onV is not unique. Thus there exist infinitely many control functions k

such that (1), (3) and (4) hold.

Consider the set of control variables k such that (1), (3) and (4) hold. By Prop-

osition 2.1 this set is nonempty and it is clearly convex and closed in L2ðUÞ.
Therefore, there exists a unique control variable k̂ky of minimal norm in L2ðUÞ.
The proof of Theorem 1.1 is complete.

It remains to compute the optimal solution ðk̂ky; q̂qyÞ. This is done in the forth-

coming Section 3.

3. Optimality system for the optimal solution

3.1. Penalization. The optimal solution ðk̂ky; q̂qyÞ can be approximated consider-

ing the penalization method by Lions [11]. Let us now describe now the method.

Let e > 0. Define the functional
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Jeðk; qÞ ¼
1

2
kkk2L2ðUÞ þ

1

2e
k�q 0 � Dqþ a0q� h� kwok

2
L2ðQÞ ð41Þ

for any pair ðk; qÞ such that

k a M?;

�q 0 � Dqþ a0q a L2ðQÞ;
q ¼ 0 on S; qð0Þ ¼ qðTÞ ¼ 0 in W:

8<
: ð42Þ

Consider the minimization problem

min Jeðk; qÞ; ðk; qÞ subject to ð42Þ: ð43Þ

Proposition 3.1. Under the assumptions of Theorem 1.1, the minimization problem

has an optimal solution. There exists ðke; qeÞ such that

Jeðke; qeÞ ¼ minfJeðk; qÞ j ðk; qÞ subject to ð42Þg ð44Þ

Proof. Let ðkn; qnÞ be a minimizing sequence satisfying (42). The sequence�
Jeðkn; qnÞ

�
n
is bounded from above

Jeðkn; qnÞaCðeÞ:

Then

kknkL2ðUÞaCðeÞ; k�q 0
n � Dqn þ a0qn � h� knwokL2ðQÞaCðeÞ: ð45Þ

There is some subsequence of ðknÞn, still denoted by ðknÞn, such that

kn * ke weakly in L2ðUÞ:

Since a consequence of (42) the (sub)sequence qn is bounded,

kqnkH 2; 1ðQÞaC:

There is some subsequence of qn, still denoted by qn, such that

qn * qe weakly in H 2;1ðQÞ:

Hence, by weak lower semicontinuity of the functional Je,

lim inf Jeðkn; qnÞb Jeðke; qeÞ:

We deduce from the strict convexity of Je that ðke; qeÞ is a unique optimal

control. r
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Now we study the convergence of ðke; qeÞe.

Proposition 3.2. Let ððke; qeÞÞe be the sequence of solutions of (44). Then for

e ! 0, we have the following limits:

ke * k̂ky weakly in L2ðUÞ;
qe * q̂qy weakly in H 2;1ðQÞ:

(
ð46Þ

Proof. We prove the proposition in three steps:

1) ðk̂ky; q̂qyÞ satisfies (1), (3) and (4). Then from the structure (41) of Jeðk; qÞ we
have of course

kkekL2ðUÞaC;

k�q 0
e � Dqe þ a0qe � h� kewokL2ðQÞaC

ffiffi
e

p
;

(
ð47Þ

where the C’s are various constants independent of e.

2) From (47) and the fact that qe satisfies (42) we have that

kqekH 2; 1ðQÞaC:

There are a subsequence of ðke; qeÞ, again denoted ðke; qeÞ, and two functions

k0 a L2ðUÞ and q0 a H 2;1ðQÞ such that

ke * k0 weakly in L2ðUÞ; k0 a K?; qe * q0 weakly in H 2;1ðQÞ: ð48Þ

3) Since the injection from H 2;1ðQÞ into L2ðQÞ is compact, the pair ðk0; q0Þ is
such that

�q 0
0 � Dq0 þ a0q0 ¼ hþ k0wo in Q;

q0 ¼ 0 on S;

q0ðTÞ ¼ 0 in W;

8<
: ð49Þ

and

q0ð0Þ ¼ 0 in W: ð50Þ

From the estimate

1

2
kkek2L2ðUÞa Jeðke; qeÞ

we get

1

2
kk0k2L2ðUÞa lim inf Jeðke; qeÞ:
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Since the pair ðk̂ky; q̂qyÞ satisfies (1), (3) and (4) we obtain that

lim inf Jeðke; qeÞa
1

2
kk̂kyk2L2ðUÞ:

Thus

kk0kL2ðUÞa kk̂kykL2ðUÞ

and so

kk0kL2ðUÞ ¼ kk̂kykL2ðUÞ:

Hence k0 ¼ k̂ky. Since (49) has a unique solution, it follows that q0 ¼ q̂qy. r

3.2. Proof of Theorem 1.2.

Proposition 3.3. The assumptions are as in Theorem 1.1. The pair ðke; qeÞ is the

optimal solution of problem (44) if and only if there is one function re such that the

triplet ðke; qe; reÞ satisfies the following so-called optimality system:

�q 0
e � Dqe þ a0qe ¼ hþ kewo þ ere in Q;

qe ¼ 0 on S;

qeðTÞ ¼ 0 in W;

8<
: ð51Þ

qeð0Þ ¼ 0 in W ð52Þ

re � Dre þ a0re ¼ 0 in Q;

re ¼ 0 on S;

�
ð53Þ

ke ¼ �ðrewo � PreÞ: ð54Þ

Proof. Express the Euler–Lagrange optimality conditions which characterize

ðke; qeÞ:
d

dl
Jeðke; qe þ ljÞjl¼0 ¼ 0

for all j a ClðQÞ such that j ¼ 0 on S, jð0Þ ¼ jðTÞ ¼ 0 in W, and

d

dl
Jeðke þ lk; qeÞjl¼0 ¼ 0

for all k a M?. After some calculations, we have

ð
Q

1

e
ð�q 0

e � Dqe þ a0qe � h� kewoÞð�j 0 � Djþ a0jÞ dx dt ¼ 0 ð55Þ
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for all j a ClðQÞ such that j ¼ 0 on S, jð0Þ ¼ 0, jðTÞ ¼ 0 in W, and

ð
U

kek dx dt�
ð
Q

1

e
ð�q 0

e � Dqe þ a0ze � h� kewoÞk dx dt ¼ 0 ð56Þ

for all k a M?. Define the adjoint state

re ¼ � 1

e
ð�q 0

e � Dqe þ a0qe � h� vewoÞ:

Then (55) and (56) become respectively

ð
Q

reð�j 0 � Djþ a0jÞ dx dt ¼ 0 ð57Þ

for all j a ClðQÞ such that j ¼ 0 on S, jð0Þ ¼ jðTÞ ¼ 0 in W and

ð
U

kek dx dtþ
ð
Q

rek dx dt ¼ 0 ð58Þ

for all k a M?. Considering the first part (57), we deduce that

r 0
e � Dre þ a0re ¼ 0

in Q. So re a L2ðQÞ with Lre a L2ðQÞ. Then we can define on the one hand re
on G and on the other hand prove that re ¼ 0 on S.

Now we consider (58):

ð
U

ðke þ reÞk dx dt ¼ 0

for all k a M?. Hence ke þ rewo a M. Since ke a M? we have ke þ rewo ¼
Pðke þ rewoÞ ¼ Pre and so

ke ¼ �ðrewo � PreÞ:

Hence the assertion follows. r

Remark 4. There is no information available concerning reð0Þ and reðTÞ.

We now look for a priori estimates for the approximate adjoint state re. This

is the essential point.

From (54) and (47) it follows that
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krewo � PrekL2ðUÞaC: ð59Þ

Now Lre ¼ 0 yields

krekV aC: ð60Þ

Therefore there are a subsequence ðreÞe, still denoted by ðreÞe, and r̂ry a V such

that

re * r̂ry weakly in V : ð61Þ

Following the lines of the proof of Lemma 2.1, we deduce the weak convergence

re * r̂ry in L2ðUÞ. Thus

Pre ! w0 strongly in L2ðUÞ

so that w0 a K. By (59) and (61) there is some w1 a M with

re � Pre * w1 weakly in L2ðUÞ

so that r̂ry ¼ w0 þ w1. Thus w0 ¼ Pr̂ry and

re � Pre * r̂ry � Pr̂ry weakly in L2ðUÞ:

This proves Theorem 1.2.

4. Discriminating sentinels

4.1. Definition. The notion of sentinel was introduced by J.-L. Lions to study

systems of incomplete data [12]. The notion permits us to distinguish and to ana-

lyse two types of incomplete data: the so-called pollution terms at which we look

for information, independently of the other type of incomplete data which is the

missing terms and that we do not want to identify.

Typically, the Lions’sentinel is a functional defined on an open set O where we

consider three functions: the ‘‘observation’’ yobs corresponding to measurements, a

given ‘‘mean’’ function h0, and a control function w to be determined.

Here we propose a notion of sentinel which revisits the one by Lions.

Let us remind that Lions’ sentinel theory [12] relies on the following three fea-

tures: the state equation y which is governed by a system of PDE, the observation

system and some particular evaluation function: the sentinel itself.

More precisely, we consider in the first step the semilinear parabolic equation
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y 0 � Dyþ f ðyÞ ¼ xþ lx̂x in Q;

y ¼ 0 on S;

yð0Þ ¼ y0 þ tŷy0 in W:

8><
>: ð62Þ

We are interested in systems with data that are not completely known. In the pres-

ent situation f : R ! R is a given map, the functions x and y0 are known with x

in L2ðQÞ and y0 in L2ðWÞ. However, the terms lx̂x and tŷy0 are unknown, but are

such that

kx̂xkL2ðQÞa 1; k ŷy0kL2ðWÞa 1 with l; t a R small enough: ð63Þ

In addition to (63), we assume that f verifies

f ð0Þ ¼ 0 ð64Þ

and the non-linearity of f satisfies the following growth condition:

j f ðs1Þ � f ðs2Þ � f 0ð0Þðs1 � s2ÞjaCðjs1jp�1 þ js2jp�1Þjs1 � s2j; ð65Þ

for all s1; s2 a R and some C > 0 and p > 1 such that

p � ðd þ 4Þ=d: ð66Þ

This growth condition is classical (see for instance [17]). Under this condition, it is

proved in [3], p. 63, that there exists a > 0 such that when

kxþ lx̂xkL2ðQÞ þ ky0 þ tŷy0kL2ðWÞa a

the problem (62) admits a unique solution in C
�
½0;T �;L2ðWÞ

�
. For the sake of

simplicity, we denote

yðx; t; l; tÞ ¼ yðl; tÞ ð67Þ

the unique solution of (62). Therefore, the map

ðl; tÞ 7! yðl; tÞ is in C1
�
R� R;C

�
½0;T �;L2ðWÞ

�
: ð68Þ

The general question we want to address is:

given some observation of the state of system; can one

obtain lx̂x without any attempt at computing ty0? ð69Þ

In this context we refer to lx̂x as pollution term, which we are trying to identify,

and the term ty0 as the missing one we do not want to identify.

16 O. Nakoulima



To make things more specific, we consider in the second step the observation

process. The observation is the knowledge, along some time period, of some func-

tion yobs which is defined on the strip O� ð0;TÞ over some nonempty open subset

OHW called observatory. The function yobs is assumed to be of the form

yobs ¼ m0 þ
XM
i¼1

bimi; ð70Þ

where the functions m0;m1; . . . ;mM are given measurements of y in

L2
�
O� ð0;TÞ

�
, but the real coe‰cients bi are unknown. We assume that bi are

small. We refer to the terms bimi as the interference terms. We can assume with-

out loss of generality that

the functions mi are linearly independent on O� ð0;TÞ: ð71Þ

Finally, we introduce now the notion of sentinel. Let h0 be a given function on

O� ð0;TÞ such that

h0b 0;

ðT

0

ð
O

h0 dx dt ¼ 1: ð72Þ

Moreover let o be an open and non empty subset of W. For any control function

w a L2
�
o� ð0;TÞ

�
, set

Sðl; tÞ ¼
ðT

0

ð
O

h0yðl; tÞ dx dtþ
ðT

0

ð
o

wyðl; tÞ dx dt: ð73Þ

The role of the function w appears in the following definition. We say that S de-

fines a discriminating sentinel (for the system (62), (70) and (72)) if there exists w

such that the functional S satisfies the following conditions:

(i) S is stationary at first order with respect to the missing terms tŷy0, that is,

qS

qt
ð0; 0Þ ¼ 0 for all ŷy0: ð74Þ

(ii) S is stationary with respect to the interference terms bimi, that is,ðT

0

ð
O

h0mi dx dtþ
ðT

0

ð
o

wmi dx dt ¼ 0; 1a iaM: ð75Þ

(iii) The set w is of minimal norm in L2
�
o� ð0;TÞ

�
among control functions

in L2
�
o� ð0;TÞ

�
which satisfy the above conditions, that is,

kwkL2ðo�ð0;TÞÞ ¼ minimum: ð76Þ
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Remark 5. At this point some comments are in order.

1. According to (76) the function S, if it exists, is unique. We refer to S as the

sentinel.

2. If the functions mi, 1a iaM, are null functions, the sentinel S is defined

only by (74) and (76). If mi A 0, the sentinel S is defined by (74), (75) and (76)

and it is called a discriminating sentinel.

3. Lions’ original sentinel S corresponds to the case o ¼ O. Here, if we choose

w ¼ �h0, then (74) and (75) hold true, so that problem (74)–(76) admits a unique

solution. Of course this solution may have an interest only if wA�h0. Now if

oAO and if the support suppðhÞ of h does not lie in o, we cannot have

w ¼ �h0 except for w ¼ �h0 ¼ 0. Therefore, the previous definition introduces a

generalization of Lions’s discriminating sentinel to the case where the observation

and the control have their supports in two di¤erent open subsets.

4. The support suppðmiÞ of functions mi is assumed to be included in O. Sup-

pose that oBO ¼ j; then
Ð T

0

Ð
o
wmi dx dt ¼ 0. Therefore, it su‰ces to choose h0

such that h0 is orthogonal to each mi and then (75) is readily satisfied. Therefore,

for all o we can neglect the part of o which is out of O. So, without loss of gen-

erality, it may be assumed that

oHO: ð77Þ

4.2. Equivalence to the null-controllability. Here it will be shown that the exis-

tence of such a control function w satisfying (74) and (75) is equivalent to the null-

controllability property for a system with constrained control. First, we denote by

y the solution of problem (62) for l ¼ 0, t ¼ 0 and we assume that y can be com-

puted in practice. Next, we consider the function yt defined by

yt ¼
d

dt
yðl; tÞjl¼0; t¼0: ð78Þ

The function yt is the solution of the linearized problem

y 0
t � Dyt þ f 0ðyÞyt ¼ 0 in Q;

yt ¼ 0 on S;

ytð0Þ ¼ ŷy0 in W;

8<
: ð79Þ

where f 0ðyÞ denotes the derivative of f on y. Due to (65), problem (79) admits a

unique solution yt.

We now consider the stationary condition (74). It holds if and only if

ðT

0

ð
O

h0yt dx dtþ
ðT

0

ð
o

wyt dx dt ¼ 0 for all ŷy0 with k ŷy0kL2ðWÞa 1: ð80Þ
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In order to transform the equation (80), we introduce now the classical adjoint

state. More precisely, consider the solution q ¼ qðx; tÞ of the linear problem

�q 0 � Dqþ f 0ðyÞq ¼ h0wO þ wwo in Q;

q ¼ 0 on S;

qðTÞ ¼ 0 in W;

8<
: ð81Þ

where wO and wo are the characteristic functions for the open sets O and o,

respectively. As for the problem (79), problem (81) admits a unique solution

q a H 2;1ðQÞ. The so-called adjoint state q depends on the unknown w and its use-

fulness comes from the following observation.

First, multiply both members of the di¤erential equation in (81) by yt, and in-

tegrate by parts over Q:

ðT

0

ð
O

h0yt dx dtþ
ðT

0

ð
o

wyt dx dt ¼
ð
W

qð0Þ ŷy0 dx for all ŷy0 with k ŷy0kL2ðWÞa 1:

Thus condition (74) (or (80)) holds if and only if

qð0Þ ¼ 0 in W: ð82Þ

Then consider the constraints (75). Let M be the vector subspace generated in

L2
�
o� ð0;TÞ

�
by the M independent functions miwo. There is a unique k0 a M

such that ðT

0

ð
O

h0mi dx dtþ
ðT

0

ð
o

k0mi dx dt ¼ 0; 1a iaM: ð83Þ

In other words, condition (75) holds if and only if

w� k0 ¼ k a M?: ð84Þ

The above considerations show that finding the control w such that the func-

tional S satisfies (74) and (75) is equivalent to finding the control k such that the

pair ðk; qÞ satisfies the following system:

k a M?; q a H 2;1ðQÞ; ð85Þ

�q 0 � Dqþ f 0ðyÞq ¼ h0wO þ k0wo þ kwo in Q;

q ¼ 0 on S;

qðTÞ ¼ 0 in W;

8<
: ð86Þ

qð0Þ ¼ 0 in W: ð87Þ
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We see that (85)–(87) is exactly the problem (1), (3) and (4) when a0 ¼ f 0ðyÞ and
h ¼ h0wO þ k0wo. So we can apply the results obtained in the previous sections.

Indeed, observe first that M is finite dimensional. Now assume that (8) holds

and h ¼ h0wO þ k0wo in L2
yðQÞ. We assume also that (77) holds. Therefore, let

ðr̂ry; k̂ky; q̂qyÞ be defined as in Theorem 1.2. Then k̂ky ¼ �ðr̂rywo � Pr̂ryÞ, and the sen-

tinel is defined by

ŜSyðl; tÞ ¼
ðT

0

ð
O

h0yðl; tÞ dx dtþ
ðT

0

ð
o

�
k0 � ðr̂ry � Pr̂ryÞ

�
yðl; tÞ dx dt: ð88Þ

4.3. Detection of pollution. Let us now return to problem (69) to show how the

sentinel defined above permits to detect the pollution lx̂x. Let y be again the solu-

tion of the problem (62) for l ¼ 0, t ¼ 0. We assume that y can be computed in

practice. Then, knowing k̂ky,

ŜSyð0; 0Þ ¼
ðT

0

ð
O

h0y dx dtþ
ðT

0

ð
o

ðk0 þ k̂kyÞy dx dt ð89Þ

is known. Because of (65) we have

ŜSyðl; tÞQ ŜSyð0; 0Þ þ l
qŜS

ql
ð0; 0Þ for l and t small: ð90Þ

If yobs is known, it follows from (70) and (75) that

ŜSyðl; tÞ ¼
ðT

0

ð
O

h0m0 dx dtþ
ðT

0

ð
o

ðk0 þ k̂kyÞm0 dx dt: ð91Þ

Thus

l
qŜS

ql
ð0; 0ÞQ

ðT

0

ð
O

h0ðm0 � yÞ dx dtþ
ðT

0

ð
o

ðk0 þ k̂kyÞðm0 � yÞ dx dt: ð92Þ

Now

qŜSy

ql
ð0; 0Þ ¼

ðT

0

ð
O

h0yl dx dtþ
ðT

0

ð
o

ðk0 þ k̂kyÞyl dx dt ð93Þ

where yl is given by

y 0
l � Dyl þ f 0ðyÞyl ¼ x̂x in Q;

yl ¼ 0 on S;

ylð0Þ ¼ 0 in W:

8><
>: ð94Þ
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Let qy be the solution of (86). Multiplying (86) by yl it follows thatð
0

qyx̂x ¼
ðT

0

ð
O

h0yl dx dtþ
ðT

0

ð
o

ðk0 þ k̂kyÞyl dx dt dx dt: ð95Þ

Therefore (92) becomesðT

0

ð
O

qylx̂x dx dtQ

ðT

0

ð
O

h0ðm0 � yÞ dx dtþ
ðT

0

ð
o

ðk0 þ k̂kyÞðm0 �yÞ dx dt: ð96Þ

This equation allows to evaluate the left-hand side of (96) and is thus an available

information concerning lx̂x.

Remark 6. Of course, we can study and apply other notions developed by J.-L.

Lions in [12] (for instance, the notion of furtivity) to the sentinel defined in (88).
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Informatique, 97159 Pointe-à-Pitre, Guadeloupe, France

E-mail: onakouli@univ-ag.fr

22 O. Nakoulima

http://www.emis.de/MATH-item?0819.35071
http://www.ams.org/mathscinet-getitem?mr=1312710
http://www.emis.de/MATH-item?0179.41801
http://www.ams.org/mathscinet-getitem?mr=0244606
http://www.emis.de/MATH-item?0759.93043
http://www.ams.org/mathscinet-getitem?mr=1159093
http://www.emis.de/MATH-item?0165.10801
http://www.ams.org/mathscinet-getitem?mr=0247243
http://www.ams.org/mathscinet-getitem?mr=0247244
http://www.emis.de/MATH-item?1060.93015
http://www.ams.org/mathscinet-getitem?mr=2092753
http://www.emis.de/MATH-item?0274.35041
http://www.ams.org/mathscinet-getitem?mr=0341256
http://www.emis.de/MATH-item?0731.93011
http://www.ams.org/mathscinet-getitem?mr=1131832
http://www.emis.de/MATH-item?0872.93014
http://www.ams.org/mathscinet-getitem?mr=1441986
http://www.emis.de/MATH-item?1005.35019
http://www.ams.org/mathscinet-getitem?mr=1897693

