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Abstract. In this article we show that the almost-periodic solutions of a large class of non-
autonomous delay differential equations are quasi-periodic. This result is a generalisation
of a theorem proved by Cartwright for ordinary differential equations.
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1. Introduction

Consider the two differential equations

x(1) = f(x(2)) (1.1)

and
x(t) - f(t,x(t)),
f(t+2m,x(1)) = f(t,x(1))

where [ : R" — R" (resp. R x R" — R") satisfies the conditions for existence and
uniqueness of solutions. M. L. Cartwright [4] proved that the almost-periodic so-
lutions of (1.1) or (1.2) defined on R, when there exist, are quasi-periodic. By an-
other method J. Blot [3] has proved the same result for equation (1.1). J. Mallet-
Paret [6] has extended this result to the delayed differential equations with discrete
delay of the following form

x(t) = f(x(0),x(t —11),...,x(t — 7)) (1.3)

where x € R”, f : R"™*1) — R" is C! and bounded on R"™*V and t; € 0, 1] are
constants.

(1.2)
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By using a method of reduction due to R. Smith, O. Arino and the author [2]
generalized this theorem of Cartwright to a large class of delay differential equa-
tions with continuous delay. They are the equations written in the form

(1) = Ax, + BD(Cx,) (1.4)

where B is a constant matrix of type nxr, 4:% — R" and C:% — R’ are
bounded linear mappings, and the function ® : C¥ — R’", ¥ < % an open set, is
continuous and satisfies a certain Lipschitz condition. % is the Banach space of
the continuous functions ¢[—h,0] — R” and % is a positive constant. In this article
we generalize the theorem of Cartwright to nonautonomous differential equations
with continuous delay.

Our consideration will be based on the written equations in the feedback
control form. In the proofs we use the mapping IT (Smith’s projection) that
we define in Section 2 and for which we recall some properties proved by R.
Smith [7], [8]. In Section 3 results about almost-periodic functions will be re-
called and some others will be proved. In Section 4 we state and prove our main
result.

2. Summary of Smith’s reduction method

Suppose that 0 </ < oo and let ¥ be the Banach space of continuous functions
p|—h,0] — R", with |p| = sup|p(0)|, —h < 0 < 0. (Here |p(0)| denotes the eucli-
dean norm of ¢(6) in R".)

Consider the delayed functional differential equation

x(t) = f(t,x,) (2.1)

where x;, stands for the function x(#+6) and f: R x & — R" is a continuous
function satisfying a Lipschitz condition on the open set ¥ < %, that is,

3k >0Vt e RVpy, 0y € S 2 |f(t,01) — [(t,02)] < ko) — 9] (2.2)

Throughout this paper we consider a class of retarded functional differential
equations expressed in the feedback control form

(1) = Ax, + BO(1,Cx,) (2.3)

where B is a constant n X r matrix, 4: 4 — R” and C:% — R® are bounded
linear mappings and the function @ : R x C¥ — R" is continuous and satisfies
the Lipschitz condition
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[@(2, 1) — @1, 2)| S A(CF)|y1 — 32|  forteRand yi, 32 € CF (2.4)

(since & = € we have C¥ < R").
We suppose moreover that there exists 7' > 0 such that

O(t+T,y)=d(t,y) forall (f,y) e Rx CY. (2.5)

Equation (2.3) satisfies (2.2) with k = |4| + |B|A(C%)|C|.
The bounded linear mappings A4 and C can be expressed as (see [7])

0 0
Ap= | [ax@lot0). o= [@0)ol0) ex)

—h

where o(0) and y(0) are matrices of types n x n and s X n, respectively, whose ele-
ments are functions of bounded variation on the interval —h <6 < 0. Forze C
we then define the functions

0 0
a(z) = J eVdu(0), c(z) = J e dy(0). (2.7

—h —h
These functions are analytic in C (see [7]) and the equation
det[z] —a(z)] =0 (2.8)

is called the characteristic equation of A. It has only a finite number of roots in the
half-plane Re z > 0 for each real J (see [5], p. 181).
Throughout this paper 4 denotes a positive constant which satisfies the follow-
ing hypothesis:
(H;) Equation (2.8) has no root z with Rez = —4 and has exactly j roots such
that Rez > —/, where j is a positive integer.

Here roots are counted according to their multiplicity.
The matrix

#(2) = el - a(z)] ' B (2.9)

is called the fransfer matrix of (2.3); it is of the type s x r. When (H;) holds, we
define

(%) = sup |x(=4 — iw)|. (2.10)

welR

Here |K| denotes the spectral norm of the rectangular matrix K (|K|? is the largest
eigenvalue of the symmetric matrix K*K where K* is the adjoint matrix of K).
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From the bounded linear mapping 4 : ¥ — R" we derive a linear mapping
I1: 4 — R/ where j is the integer in (H;). If j > 0 then the roots (i, ... ;¢ of
(2.8) in the half-plane Rez > —1 give rise to a j-dimensional subspace 2 of ¥,
which has a basis ¢, ¢,, ..., ¢; consisting of certain generalized eigenfunctions as-
sociated with these roots (see [5], [7]). The space Z has a complementary subspace
2 in % such that ¥ = 2 ® 2, and so each element ¢ in ¥ can be expressed
uniquely as

p=nrd+rd+ - +rd+ 4, (2.11)
where ri, 1, ..., r; are real constants and ¢, € 2.
Then
¢ = col(ri,ra,...,1;) (2.12)
defines a linear mapping IT : ¥ — R/. Forv=1,2,...,j the numbers r, are given
by
0 (0
= 00) = | [ (e - 0lan@)p0) e 213)

where o(6) is the n x n matrix in (2.6) and the continuous row vectors v, (6),
Y,(0),...,;(0) are certain generalized eigenfunctions of the formal adjoint of
(%(#) = Ax;) corresponding to the roots {j,...,{; (see [7]). It follows from (2.12)
and (2.13) that there exists a constant k; such that

Ig| < ki|¢| forallge@. (2.14)

Next we discuss some properties of I1. We assume that A(C.%) < u(4)~" and
all symbols ki, ks, ... denote constants that depend only on 4, B, C, 1, A(CY).

Definition 1. A solution x of (2.3) is said to be amenable if x, € & for
—o <t<tand [T e*|x(1)|* dt converges.

In particular x, (also called solution) in . is amenable if it is bounded in
|—c0, 7] because . > 0; thus, every periodic solution x, in & is amenable.

Lemma 1. If x and y are amenable solutions of (2.3) in |—o0, 7|, then

e’ |x(0) — y(0)| = 0  aso — —c0, (2.15)
J e x(1) — y(0)|* dr < k2T (x, — y)], (2.16)
kalx: = yo| < [II(x; — o)| < ka|xe = yel. (2.17)

In particular (2.16) shows that if Tx, = Iy, then x(t) = y(t) for —o0 <t < 1.
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For any real 7 let us denote by .«Z; the subset of the points x, taken along all
the solutions of (2.3) that are amenable on |—o0, 7]. The set .7, is called the ame-
nable set of (2.3) in ¥. From the periodicity hypothesis (2.5) it follows that the
solution x(7) is an amenable solution of (2.3) over |—co, 7] if and only if x(¢ + T)
is amenable over |—oo, 7 + T|. Tt follows that .o/, ;7 = .oZ; for any real 7.

If p,q € o/;, then p = x;, ¢ = y, for some amenable solutions x,, y, which lie
in .% throughout |—o0,7]. Hence (2.17) gives

kalp—q| < Mlp —Tg| < ks|p—¢q| for p,q € . (2.18)

The restricted mapping I1 : .o/, — I1.eZ, is therefore bijective. If its inverse map-
ping is ¥ : [1.e/; — .o/;, then

(k)7 'C =& < [¥() —P(O)] < (k) '[¢— ¢ for(,&elles, (2.19)

that is, .oZ; is homeomorphic to the set I1.eZ,.

If { € I1.eZ, then W({) = x, for a unique amenable solution x, which lies in .%
throughout |—co, 7]. By defining g(¢) = Ix, we obtain a function g : IT.oZ, — R/,
Since Ilx, is the derivative of Ilx,;, the function Ilx; is a solution of the j-
dimensional equation

LS (220)

for every amenable solution x, of (2.3).
The function ¢({) satisfies a Lipschitz condition on I1.«; (see [8]):

9(0) —9(O) < ks|C = <] forall (& e T1.e/;. (2.21)
Also we have the following lemma (see [§], p. 221).
Lemma 2. If # = R" and u : # — R satisfies
lu(x) —u(y)| <klx—y| forallx,ye % (2.22)

then there exists i : R" — R which satisfies (2.22) for all x, y in R and ja(b) = u(b)
for all b in A.

Now put ¢g({) = (gl(C),gz(C),...,gj(C)). Then the functions gi,¢s,...,9;
satisfy the Lipschitz condition (2.21) in Il.Z;, and Lemma 2 gives functions
d1:92; - - -, g; which satisfy the same Lipschitz condition throughout R/ and coin-
cide with g1, ¢»,...,g; on ILZ;. If we put
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9(0) = (91(0), 920, -+, g;(0)) (2.23)

then the differential equation

¢

=40 (2.24)

is an extension of (2.20), and g({) is Lipschitz on the whole space R’. It follows
that if x is an amenable solution of (2.3) in |— o0, 7], then Ilx; is the only solution
of (2.20) such that {(z) = I1x,. That is,

L) =TIx,  x =W¥((1)) (2.25)

provides a one-to-one correspondence between the amenable solutions x of (2.3)
and the solutions { of (2.20) in I1.e7;.

3. Back to the almost-periodic and quasi-periodic functions

Let X be a Banach space. For x € X we denote by |x| the norm of x. Let R be the
set of real numbers and f a function defined on R and with values in X. We write
Rf ={x=f(1)|t e R}.

A set E — R is said to be relatively dense if there exists a number / > 0 (in-
clusion length) such that every interval [a,a + /], a € R, contains at least one point
of E.

A continuous function f : R — X is said to be almost-periodic if to every ¢ > 0
there corresponds a relatively dense set {c}, such that

sup|f(t+0)—f(t)|<e forallo e {a},. (3.1)
R

Each element ¢ € {g}, is called an ¢-almost-period of f. Thus to the set {c}, there
corresponds an inclusion length /.
Let us now indicate some properties of almost-periodic functions (see [1], [2]).
The set of almost-periodic functions is closed with respect to the topology of
uniform convergence.

Theorem 1. Let X and Y be two Banach spaces, [ : R — X an almost-periodic
function and g : X — Y a continuous function on #x. Then go f is an almost-
periodic function.
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Proof (see [1]). First observe that g o f is continuous. Moreover, ¢ is uniformly
continuous on the compact set Zf = G. Hence

Ve >0, 30, > 0, Vx',x" € G,||x" — X'|| <J. = |lg(x") —g(x)|| <e.

Now let g be a J.-almost-period of f. Then || f(z+ o) — f(¢)]| < I, for all ¢
and consequently (setting x” = f(t+ o), x' = f(1))

lg(/(t+a) —g(f()]| <&
Thus o is an g-almost-period for g o f. O
Observe that the function ae™
that any trigonometric polynomial

is periodic for all @ € X and f € R. It follows

P(t) = ae™, aeX, peR, (3.2)
k=1

is almost-periodic and hence any function f* which is the limit, with respect to the
uniform convergence on R, of a trigonometric polynomial sequence is almost-
periodic.

If a function f : R — X is almost-periodic, then for each ¢ > 0 there exists a
trigonometric polynomial

Py(1) = bre (3.3)
k=1
such that
sup 1/ (t) = P(0)]| <e. (3.4)

Any almost-periodic function x = f(¢) possesses a mean value

T
M(x) = M(f(1)) = lim _J, £(1) de. (3.5)

The almost-periodic function defined from R to the Banach space X can be repre-
sented by summable families of exponential complex with Fourier—Bohr vectorial
coeflicients

a(B, f(t) = M(f()e ") e X (3.6)

where f € R and f : R — X is almost-periodic. We write

@)~ a(B, f(1)e™. (3.7)

peR
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The Parseval equality holds:

2
M(f0)1) =D _la(B. /)" (3.8)

PeR
For an almost- pCI'IOdIC function x = f(¢) defined on R with values in a Banach
space X, we put I'(x) := {f e R|a(B, (1)) #0}. The Parseval equality which

ensures the summablhty of the family (|a(p, f(1 )] ) implies that I'(x) is at
most countable. We call

Mod(x {ZkvﬁhzeNkEZﬁ e(x )}

v=1

the frequencies module of x; it is the Z-module (or the abelian group) generated
by I'(x). When Mod(x) is a free module of a finite type, we say that x is quasi-
periodic.

Proposition 1 ([2]). If g is an almost-periodic function defined on R with values in
R and f € €°(%x;R™), then f o g is an almost-periodic function defined on R with
values in R™ and Mod(f o ¢g) = Mod(g).

Proposition 2. If g is an almost-periodic function defined from R to R" and
fe ‘60(%, X) where X is a Banach space of any dimension, then f og is an
almost-periodic function defined from R to X and Mod(f o g) = Mod(g).

Proof. The function f o g is an almost-periodic function defined from R to X (see
Theorem 1).

It remains to show that Mod(f o g) = Mod(g). Let L be any element of
X* (where X* designates the dual of X). By replacing f with Lo f in Propo-
sition 1, we obtain that Lo f og is an almost-periodic numerical function and
Mod(L o f o g) = Mod(g),

T T
%JT(L o fog)(t)e #dt = L(%‘[T(f o g)(t)e P dl). (3.9)
Passing to the limit we get
a(Lo fog,p)=L(a(fog,p) (3.10)
and
a(Lo fog,f)=0 forallLe X" < a(fog,p)=0. (3.11)

If € Mod(f og) then =", kifi where k; € Z and f; e T'(f o g).
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If p;el(fog), then a(fog,p;) #0 and there exists L;e X* with
Li(a(fog,p;))#0 and so ;e (L;o f og). Consequently ;€ Mod(L;o f og)
< Mod(g). It follows that f;e Mod(g) for all i=1,2,...n and so
B =>"",kif; € Mod(g), hence

Mod(f o g) = Mod(g). (3.12)

O

4. The main result

In this section we will show, under rather general hypotheses, that the almost-
periodic solutions of certain retarded functional differential equations are quasi-
periodic.

Theorem 2. Suppose that for the equation (2.3) there exists a real . > 0 and an in-
teger j > 0 such that (H,) and (2.4) are satisfied with A(CS) < u(7)~". Then every
almost-periodic solution of (2.3), defined on R, is quasi-periodic.

Proof. The hypotheses imposed on equation (2.3) ensure that there exists a bijec-
tive mapping between the amenable solutions of (2.3) over |—o0, 7] and the solu-
tions of the ordinary differential equation (2.20) which satisfy (2.25). Let x be
an almost-periodic solution of (2.3), defined on R. Then x is bounded and is
consequently amenable over |—oo, 7] for any real 7. The function { defined by
{(t) = Ilx, for each ¢ € R is a solution of the equation (2.20), defined on R. Since
IT: .o/ — [l.e/; is continuous, it follows that (see Proposition 1) Ilx, is almost-
periodic and so quasi-periodic since it is the solution of a finite dimensional ordi-
nary differential equation (see [4]). The inverse mapping ¥ of IT defined from
1.7, = R/ to ./, is continuous and associates the almost-periodic solution x of
(2.3) to a quasi-periodic solution { of (2.20). Also (see Proposition 2) this solu-
tion satisfies the relation x, = (Wo()(¢) for each re R, and is such that
Mod(x) = Mod({). Since { is quasi-periodic, it admits a module of finite type,
and it follows that x admits also a module of finite type, so x is quasi-periodic. []
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