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Abstract. In this article we show that the almost-periodic solutions of a large class of non-
autonomous delay di¤erential equations are quasi-periodic. This result is a generalisation
of a theorem proved by Cartwright for ordinary di¤erential equations.

Mathematics Subject Classification (2000). 34K15.

Keywords. Di¤erential equations, amenable solutions, almost-periodic solutions, quasi-
periodic solutions.

1. Introduction

Consider the two di¤erential equations

_xxðtÞ ¼ f
�
xðtÞ

�
ð1:1Þ

and

_xxðtÞ ¼ f
�
t; xðtÞ

�
;

f
�
tþ 2p; xðtÞ

�
¼ f

�
t; xðtÞ

� ð1:2Þ

where f : Rn ! Rn (resp. R� Rn ! Rn) satisfies the conditions for existence and

uniqueness of solutions. M. L. Cartwright [4] proved that the almost-periodic so-

lutions of (1.1) or (1.2) defined on R, when there exist, are quasi-periodic. By an-

other method J. Blot [3] has proved the same result for equation (1.1). J. Mallet-

Paret [6] has extended this result to the delayed di¤erential equations with discrete

delay of the following form

_xxðtÞ ¼ f
�
xðtÞ; xðt� t1Þ; . . . ; xðt� tNÞ

�
ð1:3Þ

where x a Rn, f : RnðNþ1Þ ! Rn is C1 and bounded on RnðNþ1Þ, and tj a �0; 1� are
constants.



By using a method of reduction due to R. Smith, O. Arino and the author [2]

generalized this theorem of Cartwright to a large class of delay di¤erential equa-

tions with continuous delay. They are the equations written in the form

_xxðtÞ ¼ Axt þ BFðCxtÞ ð1:4Þ

where B is a constant matrix of type n� r, A : C ! Rn and C : C ! Rs are

bounded linear mappings, and the function F : CS ! Rr, SHC an open set, is

continuous and satisfies a certain Lipschitz condition. C is the Banach space of

the continuous functions j½�h; 0� ! Rn and h is a positive constant. In this article

we generalize the theorem of Cartwright to nonautonomous di¤erential equations

with continuous delay.

Our consideration will be based on the written equations in the feedback

control form. In the proofs we use the mapping P (Smith’s projection) that

we define in Section 2 and for which we recall some properties proved by R.

Smith [7], [8]. In Section 3 results about almost-periodic functions will be re-

called and some others will be proved. In Section 4 we state and prove our main

result.

2. Summary of Smith’s reduction method

Suppose that 0a h < l and let C be the Banach space of continuous functions

j½�h; 0� ! Rn, with jjj ¼ supjjðyÞj, �ha ya 0. (Here jjðyÞj denotes the eucli-

dean norm of jðyÞ in Rn.)

Consider the delayed functional di¤erential equation

_xxðtÞ ¼ f ðt; xtÞ ð2:1Þ

where xt stands for the function xðtþ yÞ and f : R�S ! Rn is a continuous

function satisfying a Lipschitz condition on the open set SHC, that is,

bk > 0 Et a R Ej1; j2 a S : j f ðt; j1Þ � f ðt; j2Þja kjj1 � j2j: ð2:2Þ

Throughout this paper we consider a class of retarded functional di¤erential

equations expressed in the feedback control form

_xxðtÞ ¼ Axt þ BFðt;CxtÞ ð2:3Þ

where B is a constant n� r matrix, A : C ! Rn and C : C ! Rs are bounded

linear mappings and the function F : R� CS ! Rr is continuous and satisfies

the Lipschitz condition
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jFðt; y1Þ �Fðt; y2ÞjaLðCSÞjy1 � y2j for t a R and y1; y2 a CS ð2:4Þ

(since SHC we have CSHRsÞ.
We suppose moreover that there exists T > 0 such that

Fðtþ T ; yÞ ¼ Fðt; yÞ for all ðt; yÞ a R� CS: ð2:5Þ

Equation (2.3) satisfies (2.2) with k ¼ jAj þ jBjLðCSÞjCj.
The bounded linear mappings A and C can be expressed as (see [7])

Aj ¼
ð0

�h

½daðyÞ�jðyÞ; Cj ¼
ð0

�h

½dgðyÞ�jðyÞ; ð2:6Þ

where aðyÞ and gðyÞ are matrices of types n� n and s� n, respectively, whose ele-

ments are functions of bounded variation on the interval �ha ya 0. For z a C

we then define the functions

aðzÞ ¼
ð0

�h

ezy daðyÞ; cðzÞ ¼
ð0

�h

ezy dgðyÞ: ð2:7Þ

These functions are analytic in C (see [7]) and the equation

det½zI � aðzÞ� ¼ 0 ð2:8Þ

is called the characteristic equation of A. It has only a finite number of roots in the

half-plane Re zb d for each real d (see [5], p. 181).

Throughout this paper l denotes a positive constant which satisfies the follow-

ing hypothesis:

(H1) Equation (2.8) has no root z with Re z ¼ �l and has exactly j roots such

that Re z > �l, where j is a positive integer.

Here roots are counted according to their multiplicity.

The matrix

wðzÞ ¼ cðzÞ½zI � aðzÞ��1
B ð2:9Þ

is called the transfer matrix of (2.3); it is of the type s� r. When (H1) holds, we

define

mðlÞ ¼ sup
o AR

jwð�l� ioÞj: ð2:10Þ

Here jK j denotes the spectral norm of the rectangular matrix K (jK j2 is the largest
eigenvalue of the symmetric matrix K �K where K � is the adjoint matrix of K).
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From the bounded linear mapping A : C ! Rn we derive a linear mapping

P : C ! R j where j is the integer in (H1). If j > 0 then the roots z1; . . . ; zj of

(2.8) in the half-plane Re z > �l give rise to a j-dimensional subspace P of C,

which has a basis f1; f2; . . . ; fj consisting of certain generalized eigenfunctions as-

sociated with these roots (see [5], [7]). The space P has a complementary subspace

Q in C such that C ¼ PaQ, and so each element f in C can be expressed

uniquely as

f ¼ r1f1 þ r2f2 þ � � � þ rjfj þ fq ð2:11Þ

where r1; r2; . . . ; rj are real constants and fq a Q.

Then

Pf ¼ colðr1; r2; . . . ; rjÞ ð2:12Þ

defines a linear mapping P : C ! R j. For n ¼ 1; 2; . . . ; j the numbers rn are given

by

rn ¼ cnð0Þfð0Þ �
ð0

�h

ð y

0

cnðx� yÞ½daðyÞ�fðxÞ dx ð2:13Þ

where aðyÞ is the n� n matrix in (2.6) and the continuous row vectors c1ðyÞ;
c2ðyÞ; . . . ;cjðyÞ are certain generalized eigenfunctions of the formal adjoint of

ð _xxðtÞ ¼ AxtÞ corresponding to the roots z1; . . . ; zj (see [7]). It follows from (2.12)

and (2.13) that there exists a constant k1 such that

jPfja k1jfj for all f a C: ð2:14Þ

Next we discuss some properties of P. We assume that LðCSÞ < mðlÞ�1 and

all symbols k1; k2; . . . denote constants that depend only on A, B, C, l, LðCSÞ.

Definition 1. A solution x of (2.3) is said to be amenable if xt a S for

�l < ta t and
Ð t

�l e2ltjxðtÞj2 dt converges.

In particular xt (also called solution) in S is amenable if it is bounded in

��l; t� because l > 0; thus, every periodic solution xt in S is amenable.

Lemma 1. If x and y are amenable solutions of (2.3) in ��l; t�, then

elsjxðsÞ � yðsÞj ! 0 as s ! �l; ð2:15Þð t

�l
e2ltjxðtÞ � yðtÞj2 dta k2

3e
2ltjPðxt � ytÞj2; ð2:16Þ

k4jxt � ytja jPðxt � ytÞja k2jxt � ytj: ð2:17Þ

In particular (2.16) shows that if Pxt ¼ Pyt then xðtÞ ¼ yðtÞ for �l < ta t.
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For any real t let us denote by At the subset of the points xt taken along all

the solutions of (2.3) that are amenable on ��l; t�. The set At is called the ame-

nable set of (2.3) in S. From the periodicity hypothesis (2.5) it follows that the

solution xðtÞ is an amenable solution of (2.3) over ��l; t� if and only if xðtþ TÞ
is amenable over ��l; tþ T �. It follows that AtþT ¼ At for any real t.

If p; q a At, then p ¼ xt, q ¼ yt for some amenable solutions xt, yt which lie

in S throughout ��l; t�. Hence (2.17) gives

k4jp� qja jPp�Pqja k2jp� qj for p; q a At: ð2:18Þ

The restricted mapping P : At ! PAt is therefore bijective. If its inverse map-

ping is C : PAt ! At, then

ðk2Þ�1jz� xja jCðzÞ �CðxÞja ðk4Þ�1jz� xj for z; x a PA; ð2:19Þ

that is, At is homeomorphic to the set PAt.

If z a PAt then CðzÞ ¼ xt for a unique amenable solution xt which lies in S

throughout ��l; t�. By defining gðzÞ ¼ P _xxt we obtain a function g : PAt ! R j.

Since P _xxt is the derivative of Pxt, the function Pxt is a solution of the j-

dimensional equation

dz

dt
¼ gðzÞ ð2:20Þ

for every amenable solution xt of (2.3).

The function gðzÞ satisfies a Lipschitz condition on PAt (see [8]):

jgðzÞ � gðxÞja k8jz� xj for all z; x a PAt: ð2:21Þ

Also we have the following lemma (see [8], p. 221).

Lemma 2. If BHRn and m : B ! R satisfies

jmðxÞ � mðyÞja kjx� yj for all x; y a B ð2:22Þ

then there exists m̂m : Rn ! R which satisfies (2.22) for all x, y in Rn and m̂mðbÞ ¼ mðbÞ
for all b in B.

Now put gðzÞ ¼
�
g1ðzÞ; g2ðzÞ; . . . ; gjðzÞ

�
. Then the functions g1; g2; . . . ; gj

satisfy the Lipschitz condition (2.21) in PAt and Lemma 2 gives functions

ĝg1; ĝg2; . . . ; ĝgj which satisfy the same Lipschitz condition throughout R j and coin-

cide with g1; g2; . . . ; gj on PAt. If we put
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ĝgðzÞ ¼
�
ĝg1ðzÞ; ĝg2ðzÞ; . . . ; ĝgjðzÞ

�
ð2:23Þ

then the di¤erential equation

dz

dt
¼ ĝgðzÞ ð2:24Þ

is an extension of (2.20), and ĝgðzÞ is Lipschitz on the whole space R j. It follows

that if x is an amenable solution of (2.3) in ��l; t�, then Pxt is the only solution z

of (2.20) such that zðtÞ ¼ Pxt. That is,

zðtÞ ¼ Pxt; xt ¼ C
�
zðtÞ

�
ð2:25Þ

provides a one-to-one correspondence between the amenable solutions x of (2.3)

and the solutions z of (2.20) in PAt.

3. Back to the almost-periodic and quasi-periodic functions

Let X be a Banach space. For x a X we denote by jxj the norm of x. Let R be the

set of real numbers and f a function defined on R and with values in X . We write

Rf :¼ fx ¼ f ðtÞ j t a Rg.
A set EHR is said to be relatively dense if there exists a number l > 0 (in-

clusion length) such that every interval ½a; aþ l �, a a R, contains at least one point

of E.

A continuous function f : R ! X is said to be almost-periodic if to every e > 0

there corresponds a relatively dense set fsge such that

sup
R

j f ðtþ sÞ � f ðtÞja e for all s a fsge: ð3:1Þ

Each element s a fsge is called an e-almost-period of f . Thus to the set fsge there
corresponds an inclusion length le.

Let us now indicate some properties of almost-periodic functions (see [1], [2]).

The set of almost-periodic functions is closed with respect to the topology of

uniform convergence.

Theorem 1. Let X and Y be two Banach spaces, f : R ! X an almost-periodic

function and g : X ! Y a continuous function on Rx. Then g � f is an almost-

periodic function.

28 A. Berboucha



Proof (see [1]). First observe that g � f is continuous. Moreover, g is uniformly

continuous on the compact set Rf ¼ G. Hence

Ee > 0; bde > 0; Ex 0; x 00 a G; kx 00 � x 0ka de ) kgðx 00Þ � gðx 0Þka e:

Now let s be a de-almost-period of f . Then k f ðtþ sÞ � f ðtÞka de for all t

and consequently (setting x 00 ¼ f ðtþ sÞ, x 0 ¼ f ðtÞ)
��g� f ðtþ sÞ

�
� g

�
f ðtÞ

���a e:

Thus s is an e-almost-period for g � f . r

Observe that the function aeibt is periodic for all a a X and b a R. It follows

that any trigonometric polynomial

PðtÞ ¼
Xn

k¼1

ake
ibkt; ak a X ; bk a R; ð3:2Þ

is almost-periodic and hence any function f which is the limit, with respect to the

uniform convergence on R, of a trigonometric polynomial sequence is almost-

periodic.

If a function f : R ! X is almost-periodic, then for each e > 0 there exists a

trigonometric polynomial

PeðtÞ ¼
Xn

k¼1

bke
ibkt ð3:3Þ

such that

sup
R

k f ðtÞ � PeðtÞka e: ð3:4Þ

Any almost-periodic function x ¼ f ðtÞ possesses a mean value

MðxÞ ¼ M
�
f ðtÞ

�
¼ lim

T!l

1

2T

ðT

�T

f ðtÞ dt: ð3:5Þ

The almost-periodic function defined from R to the Banach space X can be repre-

sented by summable families of exponential complex with Fourier–Bohr vectorial

coe‰cients

a
�
b; f ðtÞ

�
:¼ M

�
f ðtÞe�ibt

�
a X ð3:6Þ

where b a R and f : R ! X is almost-periodic. We write

f ðtÞP
X
b AR

a
�
b; f ðtÞ

�
eibt: ð3:7Þ
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The Parseval equality holds:

M
�
j f ðtÞj2

�
¼

X
b AR

��a�b; f ðtÞ���2: ð3:8Þ

For an almost-periodic function x ¼ f ðtÞ defined on R with values in a Banach

space X , we put GðxÞ :¼
�
b a R j a

�
b; f ðtÞ

�
A 0

�
. The Parseval equality which

ensures the summability of the family
���a�b; f ðtÞ���2�

b AR
implies that GðxÞ is at

most countable. We call

ModðxÞ :¼
nXn

n¼1

knbn j n a N; kn a Z; bn a GðxÞ
o

the frequencies module of x; it is the Z-module (or the abelian group) generated

by GðxÞ. When ModðxÞ is a free module of a finite type, we say that x is quasi-

periodic.

Proposition 1 ([2]). If g is an almost-periodic function defined on R with values in

Rd and f a C0ðRx;RmÞ, then f � g is an almost-periodic function defined on R with

values in Rm and Modð f � gÞHModðgÞ.

Proposition 2. If g is an almost-periodic function defined from R to Rn and

f a C0ðRx;XÞ where X is a Banach space of any dimension, then f � g is an

almost-periodic function defined from R to X and Modð f � gÞHModðgÞ.

Proof. The function f � g is an almost-periodic function defined from R to X (see

Theorem 1).

It remains to show that Modð f � gÞHModðgÞ. Let L be any element of

X � (where X � designates the dual of X ). By replacing f with L � f in Propo-

sition 1, we obtain that L � f � g is an almost-periodic numerical function and

ModðL � f � gÞHModðgÞ,

1

2T

ðT

�T

ðL � f � gÞðtÞe�ibt dt ¼ L
� 1

2T

ðT

�T

ð f � gÞðtÞe�ibt dt
�
: ð3:9Þ

Passing to the limit we get

aðL � f � g; bÞ ¼ L
�
að f � g; bÞ

�
ð3:10Þ

and

aðL � f � g; bÞ ¼ 0 for all L a X � , að f � g; bÞ ¼ 0: ð3:11Þ

If b a Modð f � gÞ then b ¼
Pn

i¼1 kibi where ki a Z and bi a Gð f � gÞ.
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If bi a Gð f � gÞ, then að f � g; biÞA 0 and there exists Lj a X � with

Lj

�
að f � g; biÞ

�
A0 and so bi a GðLj � f � gÞ. Consequently bi aModðLj � f � gÞ

HModðgÞ. It follows that bi a ModðgÞ for all i ¼ 1; 2; . . . n and so

b ¼
Pn

i¼1 kibi a ModðgÞ, hence

Modð f � gÞHModðgÞ: ð3:12Þ

r

4. The main result

In this section we will show, under rather general hypotheses, that the almost-

periodic solutions of certain retarded functional di¤erential equations are quasi-

periodic.

Theorem 2. Suppose that for the equation (2.3) there exists a real l > 0 and an in-

teger j > 0 such that (H1) and (2.4) are satisfied with LðCSÞ < mðlÞ�1
. Then every

almost-periodic solution of (2.3), defined on R, is quasi-periodic.

Proof. The hypotheses imposed on equation (2.3) ensure that there exists a bijec-

tive mapping between the amenable solutions of (2.3) over ��l; t� and the solu-

tions of the ordinary di¤erential equation (2.20) which satisfy (2.25). Let x be

an almost-periodic solution of (2.3), defined on R. Then x is bounded and is

consequently amenable over ��l; t� for any real t. The function z defined by

zðtÞ ¼ Pxt for each t a R is a solution of the equation (2.20), defined on R. Since

P : A ! PAt is continuous, it follows that (see Proposition 1) Pxt is almost-

periodic and so quasi-periodic since it is the solution of a finite dimensional ordi-

nary di¤erential equation (see [4]). The inverse mapping C of P defined from

PAt HR j to At is continuous and associates the almost-periodic solution x of

(2.3) to a quasi-periodic solution z of (2.20). Also (see Proposition 2) this solu-

tion satisfies the relation xt ¼ ðC � zÞðtÞ for each t a R, and is such that

ModðxÞHModðzÞ. Since z is quasi-periodic, it admits a module of finite type,

and it follows that x admits also a module of finite type, so x is quasi-periodic.r
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