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A free boundary problem for a torrential flow
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Abstract. A theoretical method based on the hodograph transformation is presented to
solve the problem of an irrotational and steady flow of an inviscid and incompressible fluid,
over a two-dimensional obstacle lying on the bottom of a channel. The suggested method
for the solution of the fully non-linear problem is presented for a super-critical flow (Froude
number Fr > 1). The results obtained are based on those established in [6] and [7].
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Introduction

The study of the propagation of surface waves for an out-flow of fluid in a channel

over an obstacle has been performed by di¤erent authors with di¤erent methods.

The literature on this topic is abundant. We mention in particular Forbes [3], King

and Bloor [5], Dias and Vanden-Broeck [2], as well the bibliography contained

therein.

In this paper we consider the flow of a fluid over an obstacle lying on the bot-

tom of a channel (see Fig. 1). Our aim is to study the perturbation e¤ect of the

obstacle on the free surface when this obstacle is smooth enough; it is described by

a C1 function on R and matches smoothly with the bottom.

We begin to formulate the problem in the ðx; yÞ plane where the domain S oc-

cupied by the fluid is unknown (precisely the free surface of the domain is un-

known).

We assume that the depth at infinity is the same in both directions. The move-

ment is supposed to be bi-dimensional, uniform, irrotational and the fluid is sup-

posed to be incompressible and inviscid, the depth and velocity at infinity being H

and c, respectively. Here c is the uniform velocity of the flow downstream of the

obstacle. A theoretical method is presented for the solution of the fully non-linear

problem for a super-critical flow (torrential flow) which corresponds to Froude



number Fr ¼ cffiffiffiffiffiffiffi
g0H

p > 1, where g0 is the acceleration due to gravity. The fluvial

case ðFr < 1Þ has been studied in [1].

Our results are obtained by considering the fluid equations and boundary con-

ditions in complex potential coordinates fþ ic, where f is the potential fluid and

c is the stream function. Here we apply the hodograph transformation which has

been used in [6] to solve the non-linear wave resistance problem. This transforma-

tion changes the unknown domain S to a fixed domain AH . Then we solve two

equations by defining two operators on the upper and the lower boundaries of AH .

The plan of the paper is as follows. In Section 2 we give the governing equa-

tions of the model, and by the hodograph transformation we reformulate these

equations and define some spaces and operators. In Section 3 we give the linear-

ized problem and we solve it. Section 4 contains the existence and uniqueness

proof of the solution of the non-linear problem by an implicit function theorem

argument.

1. Outline of the problem

We consider an irrotational flow of an ideal and incompressible fluid over a small

obstacle lying on the bottom of a channel.

We denote by o the complex velocity function defined by oðzÞ ¼
uðx; yÞ � ivðx; yÞ, z ¼ xþ iy is a complex variable and ðu; vÞ is the velocity vector

of the fluid. The bottom is described by a C1 function b on R.

We set

bðxÞ ¼ ef ðxÞ if jxj < x�;

0 if jxjbx�;

�

where x� is a positive real number, f is a function of class C1 and e is a small pos-

itive real number. Moreover, the function f satisfies the following relation:

ð x �

�x �

f 0ðxÞ2

ðx� x�Þðxþ x�Þ dx < l: ð1:1Þ

Here f 0 is the derivative of f . We will see the utility of this hypothesis in the third

section. Our problem is to find a function h a C1ðRÞ describing the free surface

and the complex velocity o holomorphic in the domain

S ¼ fðx; yÞ a R2 j bðxÞ < y < HðxÞg:

The functions o and h must satisfy the following boundary conditions:
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1

2

��o�x; hðxÞ���2 þ g0hðxÞ ¼ constant for all x a R; ð1:2Þ

v
�
x; hðxÞ

�
¼ h 0ðxÞu

�
x; hðxÞ

�
for all x a R; ð1:3Þ

v
�
x; bðxÞ

�
¼ b 0ðxÞu

�
x; bðxÞ

�
for all x a R; ð1:4Þ

lim
jzj!l

oðzÞ ¼ c; ð1:5Þ

lim
jxj!l

hðxÞ ¼ H: ð1:6Þ

Equation (1.2) is the Bernoulli condition on the free surface (g0 is the gravity

constant) while equations (1.3), (1.4) indicate that the free surface and the bottom

are streamlines. Equations (1.5) and (1.6) indicate that upstream and downstream

of the obstacle the flow is horizontal with uniform velocity ðc; 0Þ, and the constant

H is the depth of the unperturbed fluid (see Fig. 1).

2. The hodograph transformation

In this section we reformulate the problem by using as new independent variables

the velocity potential j ¼ jðx; yÞ and the stream function c ¼ cðx; yÞ. Let W be

the complex potential

W ¼ jþ ic; W 0ðzÞ ¼ oðzÞ:
Then

u ¼ qj

qx
¼ qc

qy
v ¼ qj

qy
¼ � qc

qx
: ð2:1Þ

The incompressibility of the fluid and the irrotationality of the flow permit us

to write

Figure 1.
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Dj ¼ Dc ¼ 0 ð2:2Þ

in S, where D is the Laplace operator.

The lines j ¼ constant are the equipotential lines, while c ¼ constant are the

streamlines. The region S being simply connected, the potential W is determined

by the complex velocity up to an additive constant. Let us now fix the complex

constant: the real part is fixed by requiring that jð0; yÞ ¼ 0 due to the symmetry

of the horizontal component u of the velocity. The imaginary part is fixed by

requiring that the streamline y ¼ hðxÞ is represented by the equation c ¼ cH.

Then c
�
x; hðxÞ

�
� c

�
x; bðxÞ

�
¼ cH implies that c

�
x; bðxÞ

�
¼ 0.

We recall now that we are looking for a solution which is a small perturba-

tion of the free parallel flow ðy ¼ HÞ. Hence it is reasonable to assume that

uðx; yÞ > 0 in S and therefore oðzÞA 0 in S. Moreover, by the equation (2.1),

the maps x 7! jðx; yÞ and y 7! cðx; yÞ are strictly increasing. It follows that there

is a conformal map, called the hodograph,

z 7! W ðzÞ; ð2:3Þ

which maps the domain S of the physical plane onto a strip AH in the hodograph

plane ðj;cÞ given by

AH ¼ fðj;cÞ a R2 j 0 < c < cHg: ð2:4Þ

We note that W is one-to-one so that the inverse map

W 7! zðW Þ

is well defined on AH and satisfies

dz

dW
¼ 1

oðzÞ ¼ WðoÞ: ð2:5Þ

By writing W ¼ U � iV , the flow is better described in the hodograph plane and

the above relation takes the form

U ¼ qx

qj
¼ qy

qc
; V ¼ qx

qc
¼ � qy

qj
: ð2:6Þ

By noting that

U ¼ u

u2 þ v2
; V ¼ � v

u2 þ v2
ð2:7Þ

we easily verify
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W ! 1

c
for jjj ! l: ð2:8Þ

Then we can write explicitly

xðj;cÞ ¼
ð j

0

Uðs;cÞ ds; yðj;cÞ ¼ 1

c
cþ

ðl
j

Vðs;cÞ ds: ð2:9Þ

Now we formulate the problem with respect to the ðj;cÞ plane; for this, we

describe the bottom and the free surface by defining the following sets:

B ¼ fðj;cÞ jc ¼ 0; j a Rg; ð2:10Þ
F ¼ fðj;cÞ jc ¼ cH; j a Rg: ð2:11Þ

The kinematic free surface condition is already taken into account by requiring

that the free surface is part of the streamline c ¼ cH, while the Bernoulli condi-

tion (1.2) takes the form

1

2
jWj�4 qjWj2

qj
þ g0V ¼ 0 ð2:12Þ

on F .

Let us now write the condition on B. The equation (1.4) becomes

�Vðj;cÞ
Uðj;cÞ

����
c¼0

¼ b 0�xðj;cÞ�jc¼0 ð2:13Þ

or

�Vðj; 0Þ
Uðj; 0Þ ¼

ef 0�xðj; 0Þ� if jjj < j�;

0 if jjjbj�;

�
ð2:14Þ

where j� corresponds to the hodograph transformation of x�. Some precisions

about j� will be given at the end in Remark 11, before the conclusion.

We also define the beam:

I ¼ fðj;cÞ jc ¼ 0; jjj < j�g: ð2:15Þ

Now we are able to formulate the problem for the hododraph plane:

1

2
jWj�4 qjWj2

qj
þ g0V ¼ 0 on F ; ð2:16Þ

Vðj; 0Þ þ b 0�xðj; 0Þ�Uðj; 0Þ ¼ 0 for all j a R; ð2:17Þ

Wðj;cÞ ! 1

c
; jjj ! l; ð2:18Þ

where W ¼ U � iV is holomorphic in AH .
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By setting

r ¼ j

j� ; s ¼ c

j� ; z ¼ rþ is; ð2:19Þ

the strip AH becomes

A� ¼ ðr; sÞ a R2 j 0 < s <
cH

j�

� �
: ð2:20Þ

The sets B and F become:

B� ¼ fðr; sÞ j s ¼ 0; r a Rg; ð2:21Þ

F � ¼ ðr; sÞ j s ¼ cH

j� ; r a R

� �
: ð2:22Þ

In particular the beam (2.15) maps onto the interval ð�1; 1Þ of the r-axis.
We now observe that, for e ¼ 0, the problem (2.16)–(2.18) admits the constant

solution W ¼ 1=c. Then we define the new unknown w ¼ x� ih by subtracting this

solution from W and dividing by e; namely we set

Uðj;cÞ ¼ 1

c

�
1þ exðr; sÞ

�
; Vðj;cÞ ¼ e

c
hðr; sÞ: ð2:23Þ

We want to write the non-linear boundary conditions (2.16)–(2.17) as formal

operator equations in the new variables. We first note that the relations (2.9)

take the form

xðj;cÞ ¼ j�

c

ð r

0

�
1þ exðs; sÞ

�
ds; yðj;cÞ ¼ j�

c

�
sþ e

ðl
r

hðs; sÞ ds
�

ð2:24Þ

and we can define on ð�1; 1Þ the function

GðrÞ ¼ f 0�xðj; 0Þ� ¼ f 0
	 j�

c

ð r

0

�
1þ exðs; 0Þ

�
ds


: ð2:25Þ

We now set

B1ðw; eÞ ¼ fhþ Gð�Þð1þ exÞgjs¼0; jrj<1; ð2:26Þ

B2ðw; eÞ ¼ j1þ ewj�4

2e

q

qr
j1þ ewj2 þ g0j

�

c3
h

( )����
s¼cH=j�;r AR

; ð2:27Þ

Bðw; eÞ ¼
�
B1ðw; eÞ;B2ðw; eÞ

�
: ð2:28Þ
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Then it is easily verified that the equation

Bðw; eÞ ¼ 0 ð2:29Þ

is equivalent to the conditions (2.16)–(2.17). Moreover, the function w must be

holomorphic in A�, vanishing for jrj ! l and satisfying the linear condition

hðr; 0Þ ¼ 0:

3. The linearized problem

We have already remarked that when e ¼ 0 the problem (2.16)–(2.18) admits the

trivial solution W ¼ 1=c. Now we assume that W can be expanded in powers of e

and according to (2.23) we set

wðr; sÞ ¼ ~wwðr; sÞ þ OðeÞ: ð3:1Þ

By inserting this relation into (2.26), (2.27) and by taking the limit e ! 0, we

get a problem satisfied by the holomorphic function ~ww ¼ ~xx� i~hh in the fixed domain

A�:

q~xx

qr
þ j� g0

c3
~hh ¼ 0 for s ¼ cH

j� ; r a R; ð3:2Þ

~hhðr; 0Þ ¼ �f 0 j� r

c

� �
for jrj < 1; ð3:3Þ

~hhðr; 0Þ ¼ 0 for jrjb 1; ð3:4Þ
lim

jrj!l
~wwðr; sÞ ¼ 0: ð3:5Þ

By substituting � q~hh
qs

for q~xx
qr

we obtain a boundary value problem for the har-

monic function ~hh (the harmonic conjugate ~xx is then determined by the requirement

of vanishing at infinity). Then we have the linear problem:

Find ~hh harmonic in A� such that

� q~hh

qs
þ n�~hh ¼ 0 for s ¼ cH

j� ; r a R; ð3:6Þ

~hhðr; 0Þ ¼ �f 0 j� r

c

� �
for jrj < 1; ð3:7Þ

~hhðr; 0Þ ¼ 0 for jrjb 1; ð3:8Þ
lim

jrj!l
~hhðr; sÞ ¼ 0; ð3:9Þ

where n� is the constant j� g0

c3
.
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We consider the linear problem

Dh ¼ 0 in A�; ð3:10Þ
qh

qs
� n�h ¼ 0 for s ¼ cH

j� ; r a R; ð3:11Þ

h ¼ g for s ¼ 0; r a R; ð3:12Þ

where gðrÞ ¼ �f 0 j�r
c

	 

for jrj < 1;

0 for jrjb 1:

(

Remark 1. Using [4], we prove that g is in H 1=2ðRÞ.

3.1. A variational solution for the linear problem. For g a H 1=2ðRÞ there exists
a function v0 a H 1ðA�Þ such that v0 ¼ g for s ¼ 0.

A variational form of the problem can now be given in the Sobolev space

H 1ðA�Þ endowed with the equivalent norm

kvk2 ¼
ð
A�

j‘vj2 þ
ð
F �

jvj2: ð3:13Þ

Let us put v ¼ v0 þ v1 and consider the subspace H 1
� HH 1ðA�Þ of the functions

vanishing on B�. Then the weak form of (3.10)–(3.12) is:

find v1 a H 1
� such that

ð
A�

‘v1‘w� n�
ð
F �

v1w ¼ �
ð
A�

‘v0‘wþ n�
ð
F �

v0w for all w a H 1
� : ð3:14Þ

We can now state:

Theorem 2. For any given g a H 1=2ðRÞ and c2 > g0H (g0 is the gravity accelera-

tion), there is a unique weak solution in H 1ðA�Þ of the problem (3.10)–(3.12). Fur-

thermore, we have the bound

kvkH 1ðA�Þa ckgtkH 1=2ðB�Þ ð3:15Þ

for some positive constant c.

Proof. We must show that the bilinear form

aðv1;wÞ ¼
ð
A�

‘v1‘w� n�
ð
F �

v1w ð3:16Þ

is continuous and coercive in the space H 1
� and that the linear form
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lðwÞ ¼ �
ð
A�

‘v0‘wþ n�
ð
F �

v0w ð3:17Þ

is continuous in the space H 1
� .

First, we show the following result which will be useful for the coercivity of

að� ; �Þ.
For any v1 a H 1

� we write

v1 x;
cH

j�

� �
¼

ð cH=j �

0

qv1

qy
dy: ð3:18Þ

Then ð
R

jv1j2 x;
cH

j�

� �
dx ¼

ð
R

��� ð cH=j�

0

qv1

qy
dy

���2 dx
a

ð
R

	 ð cH=j �

0

���� qv1qy

����
2

dy

ð cH=j �

0

dy


dx

a
cH

j�

ð
R

	 ð cH=j �

0

qv1

qy

����
����
2

dy


dx

a
cH

j�

ð
A�

j‘v1j2: ð3:19Þ

So

aðv1; v1Þ ¼
ð
A�

j‘v1j2 � n�
ð
F �

jv1j2

b

ð
A�

j‘v1j2 �
g0j

�

c3
cH

j�

ð
A�

j‘v1j2

b 1� g0H

c2

� �ð
A�

j‘v1j2

where 1� g0H

c2

	 

is strictly positive because n� <

j�

cH
. Then the bilinear form að� ; �Þ

is coercive on H 1
� .

Now we prove the continuity of að� ; �Þ and lð�Þ. For w in H 1
� we have:

jaðv1;wÞj ¼
�� ð

A�
‘v1‘w� n�

ð
F �

v1w
��

a k‘v1kL2ðA�Þk‘wkL2ðA�Þ þ n�kv1kL2ðF �ÞkwkL2ðF �Þ

a kv1kH 1
�
kwkH 1

�
þ an�kv1kH 1

�
kwkH 1

�

a ð1þ an�Þkv1kH 1
�
kwkH 1

�
:
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where the constant a comes from the continuity of the trace operator from H 1ðA�Þ
to H 1=2ðF �Þ.

The same arguments give the continuity of the linear form lð�Þ and by putting

w ¼ v1 in (3.14) we easily obtain (3.15). r

We now investigate the regularity and the decay at infinity of the above

solution.

Proposition 3. Let v be the solution of (3.10)–(3.12). Then for every R > 1 we have

sup
jrjbR;0asacH=j �

el1jrjjvðr; sÞj < l; ð3:20Þ

where l1 is the first positive solution of

tan l
cH

j�

� �
¼ l

n�
: ð3:21Þ

Proof. Let us consider the restriction of v to the domain ðR;þlÞ � 0; cH
j�

	 

.

Clearly v is harmonic and square integrable in this domain and satisfies the con-

ditions (3.11)–(3.12) on the upper and lower bound respectively. Then by

separation of variables we obtain

v ¼
X
nb1

cne
�lnr sinðlnsÞ

where l1 < l2 < � � � < ln < � � � are the positive solutions of equation (3.21) and

the coe‰cients cn are uniquely determined by the values of the function vðR; �Þ.
Thus vPCe�l1r for large positive values of r, uniformly with respect to s.

Clearly, the same conclusion holds for large negative values of r. Hence the

bound (3.20) follows. r

Now we give a result which will be useful for the next section. We consider the

following boundary value problem:

Dh ¼ 0 in A�; ð3:22Þ
qh

qs
� n�h ¼ l for r a R; s ¼ cH

j� ; ð3:23Þ

hðr; 0Þ ¼ k for r a R: ð3:24Þ

Proposition 4. Assume that k a H 3=2ðRÞ and l a H 1=2ðRÞ. Then there exists a

unique solution h a H 2ðA�Þ of the problem (3.22)–(3.24).
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Proof. By the same arguments as in Theorem 2 there exists a solution h a H 1ðA�Þ
of (3.22)–(3.24).

Moreover, the condition

qh

qs
¼ �s�hþ l

with l and h in H 1=2ðRÞ and k a H 3=2ðRÞ implies that h a H 2ðA�Þ. r

Corollary 5. Assume that for some r0 > 1 there exists m > l� > 0 with

l� ¼ j�l1
c

and l1 is the first positive solution of the equation (3.21) such that

supjrjbr0
emjrjjlðrÞj < l. Then there is a unique holomorphic function

w ¼ x� ih

which belongs to H 2ðA�Þ and satisfies the boundary conditions (3.23)–(3.24). The

following bounds hold:

sup
A�

el
�jrjjwðr; sÞj < l; ð3:25Þ

sup
jrjbr0

el
�jrj

���� qxqr ðr; 0Þ
���� < l: ð3:26Þ

Proof. We note that the solution of the problem (3.22)–(3.24) can be written in

the form ~hh ¼ h0 þ h1, where h1ðr; 0Þ ¼ 0, h0, h1 are harmonic in A� satisfying the

boundary conditions:

qh0
qs

� n�h0 ¼ 0 for s ¼ cH

j� ; r a R; ð3:27Þ

h0 ¼ k � h1 for s ¼ 0; r a R; ð3:28Þ
qh1
qs

� n�h1 ¼ l for s ¼ cH

j� ; r a R: ð3:29Þ

We observe that if h1 is known, the problem for h0 is similar to problem

(3.10)–(3.12). By Proposition 3 the bounds (3.25), (3.26) hold for the harmonic

function w0 ¼ x0 � ih0 (where x0 is the harmonic conjugate of h0 vanishing at

infinity). Thus we are reduced to prove the bounds for the function h1 satisfying

(3.29) (and for the harmonic conjugate x1). Let us define H � ¼ cH
j� . By elementary

calculations, h1 has the representation

h1ðr; sÞ ¼
1

2p

ð
R

eipr
_

KsðpÞ
_

lðpÞ dp; ð3:30Þ
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where

_

KsðpÞ ¼
sinhðpsÞ

p coshðpH �Þ � n� sinhðpH �Þ :

and
_

lðpÞ is the Fourier transform of l. We point out that the function
_

Ks is not

singular since the equation n� tanhðpH �Þ ¼ p has only the real solution p ¼ 0 for

n�H � < 1. We further note that the integral (3.30) is convergent also for s ¼ cH
j � .

In fact,
_

l belongs to L2ðRÞ and we easily verify that
_

Ks belongs to L2ðRÞ.
By the convolution theorem we have

h1ðr; sÞ ¼
ð
R

Ksðr� r 0Þlðr 0Þ dr 0 ð3:31Þ

where

KsðrÞ ¼
1

2p

ð
R

eipr
sinhðpsÞ

p coshðpH �Þ � n� sinhðpH �Þ dp: ð3:32Þ

Note that the function p 7! sinhðpsÞ
p coshðpH �Þ�n� sinhðpH �Þ has countable poles which are all

pure imaginary.

For jrj > 0, we can evaluate (3.32) by the residual formula and find that

KsðrÞ ¼
Xl
n¼1

cnðsÞe�l�
n jrj ð3:33Þ

where

cnðsÞ ¼
sinðl�

nsÞ
ð1� n�H �Þ cosðl�

nH
�Þ � l�

nH
� sinðl�

nH
�Þ

and l�
n are the positive solutions of the equation

tanðlH �Þ ¼ l

n�
:

For large values of n we have l�
nH

�Qðn� 1=2Þp and so

cnð0ÞP� 1

np

and from (3.33) we get the estimate

jKsðrÞja ce�l �
1 jrj ð3:34Þ

for jrj > 0 with c independent of s.
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We can now prove the bounds (3.25), (3.26) for the holomorphic function

w1 ¼ x1 � ih1. Put I0 ¼ ð�r0; r0Þ, Ir; d ¼ ðr� d; rþ dÞ. Then, by the representa-

tion (3.31), the estimate (3.34) and the decaying property of l, we obtain for

jrj > r0 þ d,

jh1ðr; sÞja
ð
Ir; d

jKsðr� r 0Þj jlðr 0Þj dr 0 þ
ð
I0

jKsðr� r 0Þj jlðr 0Þj dr 0

þ
ð
R=fIr; dAI0g

jKsðr� r 0Þj jlðr 0Þj dr 0

aC
�
ðkKskL2 þ klkLpÞe�l�

1 jrj þ
ð
R=fIr; dAI0g

e�l �
1 ðjr�r 0jþjr 0j dr 0�

aCe�l�
1 jrj ð3:35Þ

with C independent of s.

By (3.31), (3.32) we see that the same bound holds for every derivative of h1 if

sbs0 > 0. The limit at infinity of (3.35) extends this bound to s ¼ 0 for jrjb r0.

By condition (3.29) and the assumption on l we obtain the same estimate for
qh1
qs

; the same bound holds for the function
qx1
qr

(we have used the Cauchy–Riemann

relations). So (3.26) holds. Furthermore we have

jx1ðr; sÞj ¼
��� ð r

�l

qx1
qt

ðt; sÞ dt
��� ¼ ��� ð r

�l

qh1
qs

ðt; sÞ dt
���aCe�l�

1 jrj ð3:36Þ

for r < �r0 and

jx1ðr; sÞj ¼
��� ðþl

r

qx1
qt

ðt; sÞ dt
��� ¼ ��� ðþl

r

qh1
qs

ðt; sÞ dt
���aCe�l�

1 jrj ð3:37Þ

for r > r0. It follows that x1 satisfies the bound (3.35). Thus (3.25) is proved. r

Remark 6. By recalling the relation xr ¼ �hs, which holds in A�, we can re-

phrase the boundary condition (3.23) in the form

xr þ n�h ¼ �l: ð3:38Þ

4. The solution of the non-linear problem

To solve the non-linear problem, we define some Banach spaces in order to apply

the implicit function theorem to the equation Bðw; eÞ ¼ 0 where B is defined by

(2.28). Here we use the results given in Corollary 5.
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Take r0 > 1 and denote by Q0 HA� the closed region 0; cH
�

j �

h i
� Rnð�r0; r0Þ.

Let us define the following set:

X ¼
�
w ¼ x� ih holomorphic in A�; w a H 2ðA�Þ; hð�; 0Þ ¼ 0;

jrj > 1; sup
A�

el
�jrjjwðr; sÞj < l

�
where l� is the first positive root of

l

n
¼ tan l

cH

j�

� �
:

Then X is a Banach space of continuous functions vanishing at infinity

equipped with the norm

kwk ¼ kwkH 2ðA�Þ þ sup
A�

el
�jrjjwðr; sÞj:

We now define Y0 and Y by

Y0 ¼
�
l a H 1=2ðRÞ

�� sup
jrj�r0

el
�jrjjlðrÞj < l

�
Y ¼ H 3=2ð�1; 1Þ � Y0

ð4:1Þ

In the following theorem for the proof that the operator B is continuously dif-

ferentiable we need a definition.

Definition 7. We call the Nemitski operator associated to a function f the appli-

cation defined by u 7! f � u.

Theorem 8. Let f be a C2 function defined in an interval JI � j�

c
;
j �

c

h i
and suppose

that the Nemitski operator associated to f 00 is continuous from H 3=2ð�1; 1Þ to

H 3=2ð�1; 1Þ. Then there exists e0 > 0 and a bounded open set U HX containing

the solution �ww of the problem

qx

qs
þ s�h ¼ 0 for s ¼ cH

j� r a R; ð4:2Þ

hðr; 0Þ ¼ �f 0 j� r

c

� �
for jrj < 1; ð4:3Þ

hðr; 0Þ ¼ 0 for jrjb 1; ð4:4Þ
lim

jrj!l
~wwðr; sÞ ¼ 0 ð4:5Þ

62 R. Ait Yahia-Djouadi, D. Hernane-Boukari and D. Teniou



such that the operator

B : U � ½0; e0� ! Y

defined by (2.28) is continuously di¤erentiable.

Proof. By recalling the expression (2.26) of B1, we may choose e0 and U such

that if ðw; eÞ a U � ½0; e0Þ, then the relation
j �

c

Ð r

0 ½1þ exðt; 0Þ� dt a J holds for every

r a ½�1; 1�. Then, by our assumptions on f 00 and the continuity of the product

between functions of H 2ð�1; 1Þ, the derivative (G-di¤erential) of B1 at w� ¼
x� � ih� in the direction w ¼ x� ih exists and is equal to

dGB
1ðw�; eÞw ¼ hðr; 0Þ � ef 0

	 j�

c

ð r

0

½1þ ex�ðt; 0Þ� dt


xðr; 0Þ

� e
j�

c
f 00

	 j�

c

ð r

0

½1þ ex�ðt; 0Þ� dt


½1þ ex�ðr; 0Þ�

ð r

0

x ð4:6Þ

with r a ð�1; 1Þ. Furthermore, the right-hand side term of (4.6) defines a bounded

linear operator

dGB
1ðw�; eÞ : X ! H 2ð�1; 1Þ ð4:7Þ

and one can easily check that the map

ðw�; eÞ 7! dGB
1ðw�; eÞ ð4:8Þ

is continuous. Then B1 is Fréchet di¤erentiable with continuous derivative in

U � ½0; e0Þ. The di¤erentiability of B1 with respect to � is readily verified.

Let us now consider the operator B2 given by (2.27) and take e0 small enough

such that j1þ ewj > 0 for every w a U . Then by a straightforward calculation we

can write

B2ðw; eÞ ¼ j1þ ewj�4

���� qxqrþ e
qx

qr
xþ qh

qr
h

� �����þ n�h

� �����
r AR;s¼cH=j�

: ð4:9Þ

By the above expression, by the continuity of the application f ; g 7! f � g from

H 3=2ðRÞ �H 1=2ðRÞ into H 1=2ðRÞ, and by Corollary 4, we find that B2 is a well-

defined continuous operator from X into Y0. Moreover the G-derivative at w� is

given by

dGB
2ðw�; eÞw ¼ qx

qr
þ n�hþ OðeÞ; ð4:10Þ

where OðeÞ represents a function depending on w, w� and their derivatives whose

norm for e ! 0 (and w, w� in a bounded set of X ) is OðeÞ. Hence, we obtain as
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before that dGB
2ðw�; eÞ : X!!Y0 is a bounded linear operator and that the map

ðw�; eÞ 7! dGB
2ðw�; eÞ is continuous in U � ½0; e0Þ. Finally, again from (4.9) we

easily infer the di¤erentiability of B2 with respect to e. r

By denoting with B 0 ¼ B 0ðw�; eÞ the Fréchet di¤erential of B with respect to w,

we get from (4.6) and (4.10)

B 0ðw�; 0Þw ¼ ðhjrj<1;s¼0; fxr þ n�hgr AR;s¼cH=j � Þ: ð4:11Þ

By Proposition 4, Corollary 5 and Remark 6 we obtain the following result.

Corollary 9. For every w a U the operator B 0ðw; 0Þ is invertible.

Now, by applying the implicit function theorem, we arrive at the main result.

Theorem 10. Under the assumptions of Theorem 8 on f there exists e0 > 0 such

that for every e a ½0; e0Þ, the equation Bðw; eÞ ¼ 0 has a unique solution we a U.

Moreover, the map e 7! we is continuously di¤erentiable.

Remark 11. Here we verify that j� is uniquely determined from x�. Indeed, from

(2.24) it follows that

x� ¼ j�

c

ð1

0

�
1þ exðs; 0Þ

�
ds: ð4:12Þ

Put

Iðe; j�Þ ¼ x� � j�

c

ð1

0

�
1þ exðs; 0Þ

�
ds: ð4:13Þ

Then

Ið0; cx�Þ ¼ 0 ð4:14Þ

and

qI

qj� ðe; j
�Þ ¼ � 1

c

ð1

0

�
1þ exðs; 0Þ

�
ds� j�

c

ð1

0

e
qx

qj� ðs; 0Þ ds: ð4:15Þ

Hence

qI

qj� ð0; cx
�Þ ¼ � 1

c
A 0: ð4:16Þ
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From the implicit function theorem, we deduce that there exists a neighborhood

V of zero such that for all e in V , there exists a unique solution j� satisfying

Iðe; j�Þ ¼ 0.

Summary. In this paper we presented a result of existence and uniqueness for the

non-linear free surface problem concerning a torrential flow over an obstacle. For

this we have used the hodograph transformation to solve, by the implicit function

theorem, an equation defined in the upper and lower bound in the hodograph

plane. We point out that the free surface profile hðxÞ has disappeared among the

unknowns and it will be recovered by the inverse image of the level line c ¼ cH.
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