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A free boundary problem for a torrential flow
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Abstract. A theoretical method based on the hodograph transformation is presented to
solve the problem of an irrotational and steady flow of an inviscid and incompressible fluid,
over a two-dimensional obstacle lying on the bottom of a channel. The suggested method
for the solution of the fully non-linear problem is presented for a super-critical flow (Froude
number Fr > 1). The results obtained are based on those established in [6] and [7].
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Introduction

The study of the propagation of surface waves for an out-flow of fluid in a channel
over an obstacle has been performed by different authors with different methods.
The literature on this topic is abundant. We mention in particular Forbes [3], King
and Bloor [5], Dias and Vanden-Broeck [2], as well the bibliography contained
therein.

In this paper we consider the flow of a fluid over an obstacle lying on the bot-
tom of a channel (see Fig. 1). Our aim is to study the perturbation effect of the
obstacle on the free surface when this obstacle is smooth enough; it is described by
a C! function on R and matches smoothly with the bottom.

We begin to formulate the problem in the (x, y) plane where the domain S oc-
cupied by the fluid is unknown (precisely the free surface of the domain is un-
known).

We assume that the depth at infinity is the same in both directions. The move-
ment is supposed to be bi-dimensional, uniform, irrotational and the fluid is sup-
posed to be incompressible and inviscid, the depth and velocity at infinity being H
and ¢, respectively. Here c is the uniform velocity of the flow downstream of the
obstacle. A theoretical method is presented for the solution of the fully non-linear
problem for a super-critical flow (torrential flow) which corresponds to Froude
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number Fr = ﬁ > 1, where gy is the acceleration due to gravity. The fluvial
case (Fr < 1) has been studied in [1].

Our results are obtained by considering the fluid equations and boundary con-
ditions in complex potential coordinates ¢ + iy, where ¢ is the potential fluid and
¥ is the stream function. Here we apply the hodograph transformation which has
been used in [6] to solve the non-linear wave resistance problem. This transforma-
tion changes the unknown domain S to a fixed domain Ay. Then we solve two
equations by defining two operators on the upper and the lower boundaries of 4.

The plan of the paper is as follows. In Section 2 we give the governing equa-
tions of the model, and by the hodograph transformation we reformulate these
equations and define some spaces and operators. In Section 3 we give the linear-
ized problem and we solve it. Section 4 contains the existence and uniqueness
proof of the solution of the non-linear problem by an implicit function theorem
argument.

1. Outline of the problem

We consider an irrotational flow of an ideal and incompressible fluid over a small
obstacle lying on the bottom of a channel.

We denote by  the complex velocity function defined by w(z)=
u(x,y) —iv(x,y), z= x+ iy is a complex variable and (u, v) is the velocity vector
of the fluid. The bottom is described by a C! function b on R.

We set

b(x) = {8f(x) if |x] < x*,

0 if |x| > x*,

where x* is a positive real number, f is a function of class C! and ¢ is a small pos-
itive real number. Moreover, the function f satisfies the following relation:

JX* f'(x)’
e (x = x*)(x 4+ x7)

dx < 0. (L.1)

Here f” is the derivative of /. We will see the utility of this hypothesis in the third
section. Our problem is to find a function 4 € C!'(R) describing the free surface
and the complex velocity w holomorphic in the domain

S={(x,») e R*|b(x) < y < H(x)}.

The functions w and /& must satisfy the following boundary conditions:
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%|w(x, h(x)) |2 + goh(x) = constant  for all x € R, (1.2)
v(x,h(x)) = ' (x)u(x,h(x)) forall x € R, (1.3)
v(x,b(x)) = b'(x)u(x,b(x)) forall x e R, (1.4)

\zl\linoo w(z) =c, (1.5)
‘llim‘h(x) =H. (1.6)

Equation (1.2) is the Bernoulli condition on the free surface (g is the gravity
constant) while equations (1.3), (1.4) indicate that the free surface and the bottom
are streamlines. Equations (1.5) and (1.6) indicate that upstream and downstream
of the obstacle the flow is horizontal with uniform velocity (¢, 0), and the constant
H is the depth of the unperturbed fluid (see Fig. 1).

y
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Figure 1.

2. The hodograph transformation

In this section we reformulate the problem by using as new independent variables
the velocity potential ¢ = ¢(x, y) and the stream function y = {/(x, y). Let W be
the complex potential

W=p+iy, W{()=ow().
Then

_dp O O

u_éx_ay ”_ay__ax' 21)

The incompressibility of the fluid and the irrotationality of the flow permit us
to write
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Ap=Ay=0 (2.2)

in S, where A is the Laplace operator.

The lines ¢ = constant are the equipotential lines, while iy = constant are the
streamlines. The region S being simply connected, the potential W is determined
by the complex velocity up to an additive constant. Let us now fix the complex
constant: the real part is fixed by requiring that ¢(0, y) = 0 due to the symmetry
of the horizontal component u of the velocity. The imaginary part is fixed by
requiring that the streamline y = /(x) is represented by the equation y = cH.
Then (x, h(x)) — (x,b(x)) = cH implies that (x, b(x)) = 0.

We recall now that we are looking for a solution which is a small perturba-
tion of the free parallel flow (y = H). Hence it is reasonable to assume that
u(x,y) >0 1in S and therefore w(z) # 0 in S. Moreover, by the equation (2.1),
the maps x — ¢(x, y) and y — Y(x, y) are strictly increasing. It follows that there
is a conformal map, called the hodograph,

z W(z), (2.3)

which maps the domain S of the physical plane onto a strip Ay in the hodograph
plane (¢, V) given by

Ay = {(p,¥) e R?|0 < < cH}. (2.4)

We note that I is one-to-one so that the inverse map

W z(W)
is well defined on Ay and satisfies
dz 1
7 e~ e (2.5)

By writing Q = U — iV, the flow is better described in the hodograph plane and
the above relation takes the form

_Ox 0y v Ox ﬁl

_Ex_9 _x_ D 26
3~ " o= "2 (26)
By noting that
u v
Cu2 402’ Vﬁ_uz—i—vz (2.7)

we easily verify



A free boundary problem for a torrential flow 53

1
Q——  forl|p| — oo. (2.8)
c

Then we can write explicitly
® 1 0
st = | Uewds s =t [ Ve @)
1z

Now we formulate the problem with respect to the (¢,y) plane; for this, we
describe the bottom and the free surface by defining the following sets:

B={(p,¥) |y =0,p € R}, (2.10)
F={(p.¥) |y =cH,peR} (2.11)
The kinematic free surface condition is already taken into account by requiring

that the free surface is part of the streamline = ¢H, while the Bernoulli condi-
tion (1.2) takes the form

_40|Q
| | 40' | 4 g0V =0 (2.12)
on F.
Let us now write the condition on B. The equation (1.4) becomes
Vg ) ‘ :
- = 0" (x(,¥))ly— (2.13)
U((ﬂv l//) Y=0 ( ) /=0
or
V(0.0) _ {ef'(xw, 0)) i lgl < ", o1
Ulp,0) 10 ift o] = 97,

where ¢p* corresponds to the hodograph transformation of x*. Some precisions
about ¢* will be given at the end in Remark 11, before the conclusion.
We also define the beam:

I={(p,¥) [ =0,]p] <o} (2.15)
Now we are able to formulate the problem for the hododraph plane:
| |,46| | on F, (2.16)
V(p,0) + b (x(gp, )) U(p,0) =0 forall g e R, (2.17)
Q(p.¥) H%, lp| — oo, (2.18)

where Q = U — iV is holomorphic in Ay.
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By setting
p=2, a:i*, £ =p+io, (2.19)
® 4
the strip Ay becomes
H
A*_{(p,a)eR20<a<C¢*}. (2.20)

The sets B and F become:
B* ={(p,0)|oc=0,pe R}, (2.21)

F*:{(p,a)|a:;i1,pe[R}. (2.22)

In particular the beam (2.15) maps onto the interval (—1, 1) of the p-axis.

We now observe that, for ¢ = 0, the problem (2.16)—(2.18) admits the constant
solution Q = 1/¢. Then we define the new unknown y = & — iy by subtracting this
solution from Q and dividing by ¢; namely we set

Ulp.0) = (1 +45(p.0)), Vioh) = np,o). (223)

We want to write the non-linear boundary conditions (2.16)—(2.17) as formal
operator equations in the new variables. We first note that the relations (2.9)
take the form

s =] et ds son) =L o re| nara) @20

p

and we can define on (—1, 1) the function

/ (00
Glp) = f (x(0.0)) = /(% | (14 52(6.0)) ds). (225)
0
We now set
B'(1,) = {n+ G()(1 + &)}, <1 (2.26)
2 B 2, 909"
B (y,¢) = {26 %“ + &yl +C3’7} s (2.27)

B(){,S) = (BI(X78)7BZ(X78))' (228)
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Then it is easily verified that the equation
B(y,e) =0 (2.29)

is equivalent to the conditions (2.16)—(2.17). Moreover, the function y must be
holomorphic in 4*, vanishing for |p| — oo and satisfying the linear condition

n(p,0) =0.

3. The linearized problem

We have already remarked that when ¢ = 0 the problem (2.16)—(2.18) admits the
trivial solution Q = 1/¢. Now we assume that Q can be expanded in powers of ¢
and according to (2.23) we set

x(p,0) = x(p,0) + O(e). (3.1)

By inserting this relation into (2.26), (2.27) and by taking the limit ¢ — 0, we
get a problem satisfied by the holomorphic function y = & — i7 in the fixed domain

A*:
%—i—qo*@ﬁzo forazg,pER, (3.2)
op el ¢*
7(p,0) = —f’<¢*§> for |p| < 1, (33)
7(p,0) =0 for |p| > 1, (3.4)
lim j(p,0) =0
lpl— 0

By substituting — ;—Z for % we obtain a boundary value problem for the har-
monic function 7 (the harmonic conjugate & is then determined by the requirement
of vanishing at infinity). Then we have the linear problem:

Find # harmonic in A* such that

—@—kv*ﬁzo fora:ﬂ,pe[& (3.6)
o 7
7(p,0) = —f’<¢*§> for [p| <1, (3.7)
(p,0) =0 for [p| > 1,
lim 7(p,0) =0, (3.9)
lpl—o0

where v* is the constant ¢* %.



56 R. Ait Yahia-Djouadi, D. Hernane-Boukari and D. Teniou

We consider the linear problem

Ap=0 inAd", (3.10)

o _cH
%—vn—O fora—F,peR, (3.11)
n=g fora=0,pelR, (3.12)

/(%) for ol < 1,

where ¢g(p) = {
0 for |p| > 1.

Remark 1. Using [4], we prove that g is in H'/?(R).

3.1. A variational solution for the linear problem. For g ¢ H'/?(R) there exists
a function vy € H'(A*) such that vy = g for ¢ = 0.

A variational form of the problem can now be given in the Sobolev space
H'(A4") endowed with the equivalent norm

||v||2:J |VU|2+J o2, (3.13)
A* F*

Let us put v = vy + v; and consider the subspace H! = H'(4*) of the functions
vanishing on B*. Then the weak form of (3.10)—(3.12) is:
find v; € H/ such that

J Vva—v*J vllv:—J VvoVw—i-v*J vow forallwe H!. (3.14)

We can now state:

Theorem 2. For any given g € H'/*(R) and ¢* > goH (g is the gravity accelera-
tion), there is a unique weak solution in H'(A*) of the problem (3.10)—(3.12). Fur-
thermore, we have the bound

0l 714y < cllgtll sy (3.15)
for some positive constant c.

Proof. We must show that the bilinear form
a(vy,w) = J Vo Vw — v*J v w (3.16)

is continuous and coercive in the space H! and that the linear form
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I(w) = —J VooVw + V*J

VoW (3.17)
F*

*

is continuous in the space H!.
First, we show the following result which will be useful for the coercivity of

a(-,).

For any v; € H! we write

. cH/p*
v (x, ﬂ) = J %dy. (3.18)

Then

61)1

Y
cH/p*
A s

cH/v™| 5
(R

oy
< CHJ Vo . (3.19)

2 cH/p*
dyJ dy) dx
0

2
dy) dx

So

where (l — @) is strictly positive because v* < % Then the bilinear form a(-, )
C c
is coercive on H.
Now we prove the continuity of a(-,-) and /(). For win H we have:

la(vy, w)| = }J Vo, Vw — V*J viw|
A+ F*

< |IVorll L2044

VM}HLZ(A*) + V*||Ul|

L2(F*) WHLZ(F*)
< llorllgp Wl gy + o™ loall g [l g

< (L+av) ol [l -
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where the constant « comes from the continuity of the trace operator from H'(4*)
to H'/2(F~).

The same arguments give the continuity of the linear form /(-) and by putting
w = v; in (3.14) we easily obtain (3.15). O

We now investigate the regularity and the decay at infinity of the above
solution.

Proposition 3. Let v be the solution of (3.10)—(3.12). Then for every R > 1 we have

sup eﬂ.l\ﬂuv(p, o) < oo, (3.20)
‘plZR‘rOSG'S(?H/(p*

where 11 is the first positive solution of

tan(iip—?) _—— (3.21)

v*

Proof. Let us consider the restriction of v to the domain (R,+o0) X (O,fp’f).
Clearly v is harmonic and square integrable in this domain and satisfies the con-
ditions (3.11)—(3.12) on the upper and lower bound respectively. Then by

separation of variables we obtain

V= Z cpe” " sin(,0)

n>1

where A) <, < --- </, < --- are the positive solutions of equation (3.21) and
the coeflicients ¢, are uniquely determined by the values of the function v(R,-).
Thus v ~ Ce " for large positive values of p, uniformly with respect to .
Clearly, the same conclusion holds for large negative values of p. Hence the
bound (3.20) follows. O

Now we give a result which will be useful for the next section. We consider the
following boundary value problem:

Ap=0 in A", (3.22)

H
2—2—\1*17:1 forpe[R{,azc*, (3.23)
n(p,0) =k forpeR. (3.24)

Proposition 4. Assume that k € H**(R) and [ € H'/*(R). Then there exists a
unique solution n € H?>(A*) of the problem (3.22)—(3.24).
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Proof. By the same arguments as in Theorem 2 there exists a solution # € H'(A4*)

of (3.22)-(3.24).
Moreover, the condition

on
= —g* l
Jo ot
with / and » in H'/?(R) and k € H*?(R) implies that 7 € H>(A*). O

Corollary 5. Assume that for some py,>1 there exists u> A" >0 with
=2 and A1 is the first positive solution of the equation (3.21) such that

sup‘/,‘zk() e!Pl|I(p)| < oo. Then there is a unique holomorphic function
x=<—in

which belongs to H?>(A*) and satisfies the boundary conditions (3.23)—(3.24). The
following bounds hold:

sup e Vlly(p, )| < o0, (3.25)
A*
sup e’ V! %(pﬂ)’ < 0. (3.26)
lp1=po P

Proof. We note that the solution of the problem (3.22)—(3.24) can be written in
the form 7 = #, + n,, where n,(p,0) = 0, n,, 1, are harmonic in 4* satisfying the
boundary conditions:

o . _CcH

%—V No = fora—?,peﬂ%, (327)
ngo=k—mn  fora=0,peR, (3.28)

a”l * o N cH

%—vnl—l fora—?,peﬂ%. (3.29)

We observe that if 7; is known, the problem for #, is similar to problem
(3.10)—(3.12). By Proposition 3 the bounds (3.25), (3.26) hold for the harmonic
function y, = &, — in, (where &, is the harmonic conjugate of 7, vanishing at
infinity). Thus we are reduced to prove the bounds for the function #; satisfying
(3.29) (and for the harmonic conjugate &;). Let us define H* = %‘I‘ By elementary
calculations, 7, has the representation

0p.0) = 5| PKDID) (330)
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where

sinh(po)

K,(p) = - :
(p) pcosh(pH*) — v*sinh(pH*)

and [(p) is the Fourier transform of /. We point out that the function K, is not
singular since the equation v* tanh(pH*) = p has only the real solution p = 0 for

v*H* < 1. We further note that the integral (3.30) is convergent also for ¢ = fp—H
In fact, / belongs to L>(R) and we easily verify that K, belongs to L*(R).
By the convolution theorem we have
nr.0) = | Kelp =10 dp’ (331)
where
; sinh(po)
K;(p)==—| e? , dp. 3.32
(r) ZHJRE pcosh(pH*) — v*sinh(pH*) 7 (3:32)

sinh( po)

Note that the function p — S cosh(pH ) v+ sah(pH”

pure imaginary.
For |p| > 0, we can evaluate (3.32) by the residual formula and find that

) has countable poles which are all

K,(p) = Z n(a)e P! (3.33)
n=1

where
sin(4,0)
cn(o-) = * * . ok
(I —v*H*)cos(A,H*) — 4, H*sin(4,H*)

and 7, are the positive solutions of the equation

tan(AH™") = é

For large values of n we have A, H* ~ (n — 1/2)m and so

1
n 0) ~——
n(0) ~ =
and from (3.33) we get the estimate
K, (p)| < ceHiV (3.34)

for |p| > 0 with ¢ independent of o.
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We can now prove the bounds (3.25), (3.26) for the holomorphic function
=& —in. Put Iy = (—py,py), 1,5 = (p—0,p+0). Then, by the representa-
tion (3.31), the estimate (3.34) and the decaying property of /, we obtain for
lp| > po +9,

i (p.0)] < j IK,(p— o) 10" dp’ +j Ko(p — o)) [1(0")] dp’

I.s 1o

+ j Kolp — o)\ 1(0") dp’
R/{Ip dUIU}

< UKl + e + | e P gy
R/{1, s}

< Ce il (3.35)

with C independent of .
By (3.31), (3.32) we see that the same bound holds for every derivative of #; if
o > gp > 0. The limit at infinity of (3.35) extends this bound to o = 0 for |p| > p,.
By condition (3.29) and the assumptlon on / we obtain the same estimate for
'7‘ ; the same bound holds for the function & o L (we have used the Cauchy—Riemann
relatlons) So (3.26) holds. Furthermore we have

|§1(p,a)|=”;a§; dz(_H "71@ a)dt‘<Ce il (3.36)

for p < —p, and

|fl(p,a)|:”:wa§; dz’—” ”l(za)dz’<Ce Al (3.37)

for p > p,y. It follows that &, satisfies the bound (3.35). Thus (3.25) is proved. [

Remark 6. By recalling the relation ¢, = —#,, which holds in 4%, we can re-
phrase the boundary condition (3.23) in the form

& +Hvin=—L (3.38)

4. The solution of the non-linear problem

To solve the non-linear problem, we define some Banach spaces in order to apply
the implicit function theorem to the equation B(y,&) = 0 where B is defined by
(2.28). Here we use the results given in Corollary 5.
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Take p, > 1 and denote by Qy = A* the closed region [0, ‘5} X R\ (=pg; po)-
Let us define the following set:

X = {y = &~ in holomorphic in 4%, y € H*(A4"), n(-,0) =0,

Ipl > 1, sup e Mix(p,o)| < 0}

where A" is the first positive root of

A
— =tan </1 CH> .
v Q>

Then X is a Banach space of continuous functions vanishing at infinity
equipped with the norm

Il = Wy + sup e Mix(p, o).

We now define Yj and Y by

Yo={le Hl/z(R)} sup e Pi(p)] < o}
lpl=po (4.1)
Y = H¥*(—1,1) x ¥,

In the following theorem for the proof that the operator B is continuously dif-
ferentiable we need a definition.

Definition 7. We call the Nemitski operator associated to a function f the appli-
cation defined by u — f ou.
Theorem 8. Let f'be a C? function defined in an interval J > [— A ‘”—*} and suppose

c?c
that the Nemitski operator associated to f" is continuous from H3?(—1,1) to
H3?(=1,1). Then there exists & > 0 and a bounded open set U = X containing
the solution ¥ of the problem

%—l—a*iyzo fbra:ﬁpe R, (4.2)
do p*
n(p,0) = —f’<¢*§> for |p| <1, (4.3)
n(p,0) =0 Jor |p| =1,
lim 7(p,0) =0

p|— 0
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such that the operator

B:Ux|[0,6] = Y
defined by (2.28) is continuously differentiable.

Proof. By recalling the expression (2.26) of B!, we may choose & and U such
that if (y,¢) € U x [0,¢&), then the relation —f + ¢&(2,0)] dt € J holds for every

€ [-1,1]. Then, by our assumptions on f” and the contlnulty of the product
between functions of H?(—1,1), the derivative (G-differential) of B' at y* =
E* —in* in the direction y = & — in exists and is equal to

P

deB' (1", )x = n(p, )—fff( J

0

(1 462" (1,0)] dr) (. 0)

4

—e"’{f”(%jou Fe O]+ e (p0)) [ € (46)

0
with p € (—1,1). Furthermore, the right-hand side term of (4.6) defines a bounded
linear operator

dgB'(1*,e) : X — H*(—1,1) (4.7)

and one can easily check that the map

(1" ¢) = dcB' (1", ¢) (4.8)

is continuous. Then B! is Fréchet differentiable with continuous derivative in
U x [0,&). The differentiability of B! with respect to e is readily verified.

Let us now consider the operator B> given by (2.27) and take &y small enough
such that |1 4+ g¢| > 0 for every y € U. Then by a straightforward calculation we

can write
—é (aéf + = ) ‘ + v*n}
ap op

By the above expression, by the continuity of the application f,g — f - g from
H3(R) x H'(R) into H'/?(R), and by Corollary 4, we find that B> is a well-
defined continuous operator from X into Y. Moreover the G-derivative at y* is
given by

B*(y,¢) = {|1 + ey (4.9)

peR,o=cH/p*

0
dGBZ(X*,E))(—a—i-FV*H-F@(ﬁ), (4.10)

where ((e) represents a function depending on y, y* and their derivatives whose
norm for ¢ — 0 (and y, y* in a bounded set of X) is ¢(¢). Hence, we obtain as
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before that dgB*(y*,¢) : X— Yy is a bounded linear operator and that the map
(x*,&) — dgB*(x*,¢) is continuous in U x [0,&). Finally, again from (4.9) we

easily infer the differentiability of B> with respect to &. O

By denoting with B’ = B’(y*,¢) the Fréchet differential of B with respect to y,
we get from (4.6) and (4.10)

B'(7",0)x = (Mpj<1,0-00 1Ep + VN per ometjp)- (4.11)
By Proposition 4, Corollary 5 and Remark 6 we obtain the following result.
Corollary 9. For every y € U the operator B'(y,0) is invertible.
Now, by applying the implicit function theorem, we arrive at the main result.
Theorem 10. Under the assumptions of Theorem 8 on [ there exists gy > 0 such
that for every ¢ € [0,¢), the equation B(y,e) =0 has a unique solution y° e U.

Moreover, the map ¢ — y* is continuously differentiable.
D X y

Remark 11. Here we verify that ¢* is uniquely determined from x*. Indeed, from
(2.24) it follows that

%l
x* :%J (1 + £(5,0)) ds. (4.12)
0
Put
(ﬂ* 1
3(e, ) = x" — ?J (1+ &&(s,0)) ds. (4.13)
0
Then
3(0,ex7) =0 (4.14)
and
03 1! o* (1 o
)= —— - 0) ds. 4.15
o) = =7 () as - ooy @a13)
Hence
03 1
D 0.ex) = —— =0, 4.1
e (0, ¢ex™) . #0 (4.16)
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From the implicit function theorem, we deduce that there exists a neighborhood
V' of zero such that for all ¢ in V/, there exists a unique solution ¢* satisfying

3(e,p*) = 0.

Summary. In this paper we presented a result of existence and uniqueness for the
non-linear free surface problem concerning a torrential flow over an obstacle. For
this we have used the hodograph transformation to solve, by the implicit function
theorem, an equation defined in the upper and lower bound in the hodograph
plane. We point out that the free surface profile /(x) has disappeared among the
unknowns and it will be recovered by the inverse image of the level line y = cH.
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