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1. Introduction
In [17] Moreau introduced and studied the following differential inclusion
—u(1) € Negy (u(r)) ae.on I, u(0) =ug € C(0), (1.1)

where I := [0, 7] (T > 0), C: I — H is a set-valued mapping defined from 7 to a
Hilbert space H with closed convex values, and N¢(, (u(t)) denotes the outward
normal cone, in the sense of convex analysis, to the set C(¢) at u(z). The differen-
tial inclusion (1.1) is known as the sweeping process problem. This problem is
equivalent to the following evolution variational inequality: find u(z) € C(z) a.e.
on [ such that

u(t),v—uy >0 (1.2)

for all v e C(¢). Consequently the sweeping process includes as a special case
(by taking C(7) = f(¢) + K) the following evolution variational inequality. Find
u(t) € K a.e. on I such that

<1;l(l),1)—u>2<f([),l)—u> (13)

for all v € K, with K a closed subset of H, u: I — H, f € L>(I,H).
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Several extensions of the sweeping process in diverse ways were obtained; see
for example [11], [12], [13], [14], [15], [16], [18], [20], [21]. In [20], the authors
considered the following variant of the sweeping process: find u: 7 — H such
that () € C(¢) and

—u(t) € Neg (1)) (1.4)

They proved the existence and uniqueness of the solution of (1.4). In [2], the first
author proved the existence and uniqueness of solutions for (1.4) in the nonconvex
case.

In this paper we are interested in a new variant of sweeping process with a per-
turbation,

—Au(t) € N§ ) (1)) +i(t) + F(t,4(1)) ae. in 1 (1.5)

with u(0) = ug € C(0), #(0) = vy € H. Here Ng(t)(-) denotes the Clarke normal
cone to C(7) and F is a multifunction. Problem (1.5) includes as a special case
the following evolution quasi-variational inequality:

Find u: I — H, u(0) = up € K(0), (0) = uy, such that u(r) € K(¢)
a.e. on /, and

(), w—a(t)y < <Gi(r),w —u(t)y + a(u(t),w —u(t)) + j(w) — j(u(r)) (1.6)
for all w € K(1).

Here a(-,-) is a real bilinear, symmetric, bounded, and elliptic form on H x H,
le H"2((0,T);H), and j(-) denotes a non-negative, convex, positively homoge-
nous and Lipschitz continuous functional from H to R. K(f) = H is a set of
constraints. The variational inequality of type (1.6) is the dynamic analogue
of the Signorini problem (see [10]). Let 4 be a linear and bounded operator
on H associated with a(-,-), that is, a(u,v) = {Au,v) for all u,v € H and put
F(t,-) ;== 9j(-) — I(z). Also assume that K has convex values. Then the variational
inequality of type (1.6) can be rewritten in the form of (1.5). The main goal of this
paper is to prove an existence result for sweeping processes described by (1.5)
when the set-valued mapping K is not necessarily convex. Here we use ideas and
techniques from nonsmooth analysis. The result is proved by showing that a new
projection algorithm converges to a solution of (1.5).

2. Notation and preliminaries

Throughout this paper H denotes a real separable Hilbert space. Let S be a closed
subset of H. We denote by d(-,S) or (ds(-)) the usual distance function asso-
ciated with S, i.e., d(x, S) := inf,c s||x — u||. First we need to recall some notation
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and definitions that will be used throughout the paper. Let f': H — Ru {400} be
a lower semicontinuous (1.s.c) function and let x be any point where f is finite.
We recall that the proximal subdifferential 0° f(x) is the set of all ¢ € H for which
there exist d, > 0 such that

Ex = x) < f(xX) = f(x) +alx’ = x]?

for all x’ € x + 0B. Here B is the closed unit ball centered at the origin of H. By
convention we set 0” f(x) = 0 if f(x) is not finite. Note that ¥ f(x) is always
convex but may not be closed (see for instance [8]). Let S be a nonempty closed
subset of H and x be a point in S. We recall (see [8]) that the proximal normal
cone of S at x is defined by NZ(x) := 0"yg(x), where g denotes the indicator
function of S, i.e., Yg(x’) =0 if x’ € S and + oo otherwise. Note that the proxi-
mal normal cone may be given by

N&(x) = {& e H| there exists o > 0 such that x € Projg(x + &)}
where
Projg(u) := {y € S|d(u,S) := [lu—y|}.

Recall that for a given r € |0, 4+ o0] a subset S is uniformly r-prox-regular (see [19])
or equivalently r-proximally smooth (see [8]) if and only if every nonzero prox-
imal normal to S can be realized by an r-ball, that is, for all x € S and all

0 # ¢ e NP(X) one has
¢ _> 1 2
—ox—X) < —|x— x|,
(7 A=

for all x e S. We make the convention } =0 for r = +o0. Note that for r = o0
the uniform r-prox-regularity of S is equivalent to the convexity of S. The follow-
ing proposition summarizes some important consequences of the uniform prox-
regularity needed in the sequel. For the proof of these results we refer the reader
to [19].

Proposition 2.1. Let S be a nonempty closed subset in H and let r € 10, +0]. If
the subset S is uniformly r-prox-reqular then the following hold:
(i) for all x € H with d(x,S) < r, the projection Projg(x) is a singleton;

(1) the proximal subdifferential of d(-,S) coincides with all the subdifferentials con-
tained in the Clarke subdifferential at all points x € H satisfying d(x,S) < r.
So in this a case the subdifferential éd(x,S) := 0"d(x,S) = 0%d(x,S) is a
closed convex set in H.
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As a consequence of (ii) we get that for uniformly r-prox-regular sets, the prox-
imal normal cone to S coincides with all the normal cones contained in the Clarke
normal cone at all points x € S, ie., N(x) = NE(x). In such case we put
Ns(x) :== N&(x) = NE(x). Here 0d(x, S) and N§(x) denote the Clarke subdif-
ferential of d(-, S) and the Clarke normal cone to S respectively (see [8]). We give
an important result, due to Bounkhel and Thibault [5], of the closedness of the
proximal subdifferential of the distance function to images of set-valued mappings
with prox-regular values (for some applications of this result to economics we
refer to [3]). Before stating the next proposition we recall the definition of Lip-
schitz continuity for set-valued mappings. We say that a set-valued mapping
C : R — H is Lipschitz continuous with ratio 4 > 0 provided that

d(x,C(t)) —d(x,C(s)) < Alt—s| forallz,se Randallxe H.  (2.1)

Proposition 2.2. Let r € |0,+0]. Assume that C : I — H is Lipschitz continuous
set-valued mapping with uniformly r-prox-regular values for some open interval I of
R. For a given 0 <6 < r, the following closedness property of the proximal subdif-
ferential of the distance function holds:
forany tel, xe C(f)+ (r—9)B, x, — X, t, — t with t, € I (x, is not neces-
sarily in C(t,)) and &, € Gpd(xn, C(ty)) with &, 2 & one has € € 6Pd(fc, C(1)).
Here = means the weak convergence in H.

Let now B be a bounded set of a normed space £. Then the Kuratowski mea-
sure of noncompacteness of B, «(B), is defined by

o(B) = inf{d > 0| B= () B; for some m and B; with diam(B;) < d}.
=1

1

Here diam(A) stands for the diameter of A given by diam(4) := sup, . 4[[x — ¥|.
In the following lemma we recall (see for instance Proposition 9.1 in [9]) some use-
ful properties for the measure of noncompactness o.

Lemma 1. Let H be an infinite dimensional real Banach space and Dy, D, be two
bounded subsets of H.

(1) a(Dy) = 0 < Dy is relatively compact;

(i) a(ADy) = |Ala(Dy) for all 1 € R;
(iii) Dy € Dy = a(Dy) < a(D»);
(iv) a(Dy + D2) < a(Dy) + a(Da),
)

(v) if xo € H and r is a positive real number, then o(xy + rB) = 2r.
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3. Main result
The following existence theorem establishes our main result in this paper.

Theorem 3.1. Let re]0,+w], let H be a separable Hilbert space, and let
C:I—H (T >0) be a set-valued mapping with nonempty closed uniformly
r-prox-regular values. Assume that C is Lipschitz continuous with ratio 1 > 0 and
there exists a convex strongly compact set K such that C(t) = K for all t € I. Let
F:IxH — H be a scalarly upper semicontinuous set-valued mapping with non-
empty convex weakly compact values in H. Assume also that F has linear growth,
that is, there exists L > 0 such that F(t,u) = L(1 + ||u|))B for all (t,u) e I x H,
and that A :H — H be a linear bounded operator. Then for any uy € C(0) and
any vy € H, there exists at least one solution of (1.5).

Proof. Let p > 0 such that C(7) =« K < pBforall 7 € [0, T]. Putf = L(1 + p) and
y=p(1+T). Fix ny > 1 satisfying

T r
A — < =. 1
(B+plAll+ )5 < 2 (3.1)
For every n > ng, we put
T
yn::§—>0 asn — oo (3.2)

and we consider the following partition of /:

ly,i = l,un for0<i< 2”,
Liivt = |tniytni]  for0<i<2"—1. (3.3)
Lo := {tn.O}-

Algorithm 1. For every n > ng, we choose by induction
® z,0=1tg € C(0), uyo = uo, and g,.0 € F(t,,0,2,0);
e ( <i< 2" —1: Zn,i+l = Projc(t,,v,»ﬂ)(zn,i - /v‘nAun,i - ,ungn,i);
® Up iy = Up,i +,unzn,i+l and In,i+1 € F(tn,i+l»Zn,i+l)'
This algorithm is well defined. Indeed, for i = 0, we have by the Lipschitz
property of C
d(zn,O - ﬂnAun,O — 1yYn,0, C(ln.1)>
< )| At o[l + tt, [l g0l + d (2.0, C(1a,1)) = d (20, C(t,0))
< wull Al uoll + tullgn,oll + Altn 1 — tn,0l-
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Since |[ug]| < p and as F has linear growth we obtain

lgn,0ll < L(1 + [luoll) < L(1 +p) =B
and so

d(zn,o - :unAu'LO — Uy9n,0, C(tn‘l)) < :uanA” + ﬁ:un =+ }*:un
=, (B+pllAl +4)

T r
< (Pl +F+ D) 50 <

§<}’.

The prox-regularity of the set C(z, 1) and Proposition 2.1 (i) ensure the existence
and the uniqueness of the projection Projc(, ,y(zn,0 — #,Atun,0 — t,9n,0) and then
we can take z,; = ProjC(,n_l>(zn70 — Wy Aty 0 — 1, 9n.0), Un1 = Up 0+ U,Zn,1 and

gn,1 € F(tn,lyzn7l)~
Assume now that i > 1. By Algorithm 1 we have z,; € C(t,;) < pB, that is,
|zn,ill < p. Thus we get

letn, il < Nlttm it |l + pa
[[etn, it |l < M, il + prs

1| < luoll + pt-
Adding these inequalities yields (i < 2")
[letn,ill < lluoll + ipp, < p+pT = 7.
Now by Algorithm 1 and by the fact that F has linear growth we obtain that
1gn.ill < L1+ llznill) < L(1 +p) = B.

Therefore the Lipschitz property of C ensures that

d(zn,i — pyAvin ;i — pygn,i, C(tnis1))
< woll v il| + wllgn,il| + d(zn,is C(tni1)) — d(zn,is C(tn,i))
< VAl + B+ Aty i1 — il
= (pll Al + B+ A,

A T
oAl +HT _r_,

< ( =
210 2
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which implies by the prox-regularity of the set C(#, ;+1) and Proposition 2.1 (i) the
existence and the uniqueness of the projection Projc, . )(Zni — ttyAtin,i — t,Gn,i)
and hence we can take z, ;4 = ProjC(,’l_M)(sz — Uy Aty i — HyGn i), Up it =
Un,i T MyZn,it1 and 9n,i+1 € F(tn,Hl; Zn,i+1)-

Now we use the sequences (uy ), (z,;) and (g ;) to construct sequences of
mappings u,, v, and g, from I to H by defining their restrictions to each interval
1, ; as follows:

For telo set gu(t)=gno, un(t)=uo and wv,(t)=wvo; for el
(0 <i<2'-— 1) set gn([) = Yn,i,

Un(t) = Ui + Zn i1 (£ = i), (3.4)

and

Uﬂ(t) =Zni+ (Zn,iJrl - Zn,[)m- (35)

n

It is clear by construction that both mappings u, and v, are differentiable a.e. on /
with

) = Inmitl 7 i oo on 1 (3.6)

un(t) = zpi1 and  0,(¢
Hn

By Algorithm 1 we have
Znirl = PrOjc(t,,M)(Zn,i — W, Aty i — W, Gn, i)
and so by the definition of proximal normal cone we get
Zn,i = Znyit1 — M AUni — yGn,i € NC}Z,”_M) (Zn,it1)-
By (3.6) we obtain

_bn([) - Aun,i - gn,i € NLP

(tp, i1)

(i14(2)) a.e. on I.
Now let us define the step functions from 7 to I by

On(t) = tui, 1€ L, 57)
pn(t) = In i+, re 1n,i+1-

Then (3.4) and (3.7) yield that

—Auy (0,(1)) = 0a(1) = gu(t) € N&(,, (1) (ta(1)) ae. on L.
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On the other hand we have

NZmi1 = Znill < Nzt = Zni + oy At i + puGn,ill + ol At i || + 26,1, i
< dci, 1) (Zni = g Atn i — oy Gni) + 1|l At i|| + 12,1, i
<dc(y, ;1) (Zni) = dc, ) (Zni) + 20| A i, ill + 204,14l
< Aty + 240, || AN et ] + 28], i)

So

Zn,i — Zn, i+l

< 24 2[ Al e il + 2l gn.ill < 2+ 2p[l 4] + 28 (3.8)

n

Then

Zni — Zn, i+l 1
L Z gy (0,0) = 00| < - anien = 2l + Ll ]+
n n

<+ 3p|Al| + 38
and so by Proposition 4.1 in [4] we obtain that
—Auty (0,(1)) = 64(2) — gu() € (2 + 3p|Al| + 3B)0 dc(y, (1) (1in(2)) 2. on 1. (3.9)

As ||gu(2)|| < p for all t € I, we see that (g,) is a bounded sequence in L™ (7, H).
Then by extracting a subsequence (because L™ (I, H) is the dual space of the sep-
arable Banach space L' (I, H)) we may suppose without loss of generality that (g,)
weakly-star converges in L* (I, H) to some mapping ¢.

Observe now that u,, and v, are Lipschitz continuous on / with ratio f and
2+ 3p||A]| + 3B, respectively. So u, is differentiable a.e. on I and

t

uy(t) = uo + Jo U (s) ds.

Since 1, (1) € C(p,(t)) € K it follows that
{Ltn(l) |Vl > I’l()} cuy+ TK.

This implies the relative strong compactness of the set {u,(z)|n > no} in H for all
1€[0,T]. On the other hand, since 1,(t) € C(p,(1)), we get ||i,(¢)|| < p and so
Arzela—Ascoli’s theorem (see for instance Theorem 0.4.4 in [1]) ensures the exis-
tence of a Lipschitz mapping u : I — H with ratio p such that
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® (u,) converges uniformly to u on I, that is, lim, ... max;cjo,7]||u. () — u(?)|| =
0;

e (11,) weakly converges to # in L'(1,H).
Return now to the compactness of the sequence v,. By (3.6) and (3.8) we have
[oa (O] < 2+ 2p(|4]| + 28, (3.10)

and it is clear that the sequence {v,(r)} is equi-Lipschitz with constant
A+ 2pllA|| +2B. Now we show that the set X (¢) = {v,(¢) |n = no} is relatively
compact in H for every e [0,7]. From the definition of (v,) we have
for all te0,T] and all n > n, Un(ﬁ,,( )) € C(0,(1)) = K. Then the set
{04(04(1)) |n = no} is relatively compact in H for all 7 € [0, T], and so by Lemma
1 we get

%({on(0n(1)) [ = no}) =

We have X (1) = {va(1)|n > no} = {va(t) — va(0u(t)) + va(0u(2)) [n = 1o} for all
t € [0, T]. Then by Lemma | we obtain that

(X (1) < a({vat) = va(0a(D) In = n0}) + 2({ta (0a(0)) [n = 10})

on

oc({Jt ds|n>n0})+0

” 3(027; A+2p||A||+2/3>>>

IA

IA

IA

=2(A+2p||4|| + 2,6’)— —0 asn— .

Hence by Lemma 1 the set X (¢) is relatively strongly compact in H for all z € 1.
Then all the assumptions of the Arzela—Ascoli theorem are satisfied and hence
there exists a Lipschitz mapping v : I — H with ratio A + 2p||4]|| + 2§ such that

® (v,) converges uniformly to v on /, that is, lim, .., max,c(o,7]||v.(2) — v(2)|

e (i,) weakly converges to ¢ in L' (1, H).
Consequently, we get
[t (2) = v(D)|| < |ltin (2) — va ()| + [[0a(2) — 0(2)]]

< [Jon(pa(®)) = en(0)[| + llon(t) = w0
<ty + [[oa(1) = 0(1)|
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and so

max e, (1) — v(0)]| < p,, + max loa(2) —v(2)|| = 0 asn— oo.
te te
Thus, the sequence u, converges to v uniformly on I and #(¢) = v(¢) and ii(¢) = ()
a.e. on /. We proceed now to prove that
—Au(r) — g(1) —i(t) € N (a(r))  for almost all 7 € 1.

Applying Castaing techniques (see for instance [6]), the uniform convergence of u,
to u, the weak convergence of #, to v in L'(Z, H), the weak star convergence of g,
to g in L*(I,H), and Mazur’s lemma entail

—Au(t) — g(1) —ii(1) € () O —Au (0 (1)) — gi(1) — 0k () | k = n}.

n

for almost all € I. Here co denotes the closed convex hull.
Fix any such ¢ € I and consider any ¢ € H. The last relation above yields

(&, —Au(t) — g(1) —ii(1)y < inf sup(&, —Au (0(2)) — gic (1) — ik (2))-

m k>n

According to (3.8) we obtain that
(& —Au(t) — g(1) — (1) < tim sup o((+ 3p||A]l +38)8"dc(y, ) (ia(1)) . €)
< o ((A+3pllAl| + 38)0 deq (i(1)) . ),

where the last inequality follows from the upper semicontinuity property of the
proximal subdifferential given in Proposition 2.2 and because of p,(f) — ¢ and
i, (1) — v(t) = (1) strongly. Since the set o dey (a(r)) is closed convex (see
Proposition 2.1) and #(t) € C(z), we obtain that

—Au(t) — g(t) — i) € (2+3p||A|| +3p)0 deqy (i(1)) = NE ) (a(0))
and so

—Au(t) € N£, (i(0)) + (1) + g ().

Now, as g,(t) € F(0,(1),va(t)) and by the upper semicontinuity of F and the con-
vexity and the weak compactness of its values, we conclude (see Theorem V-14, [7])
that g(7) € F(t,4(t)). Thus we get

—Au(t) € Ny (a(2)) +ii(r) + F(1,0(r)) ~ forae. rel.

This completes the proof of the theorem. O
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As a direct consequence of our main theorem we obtain an existence result for
the dynamic analogue of the Signorini problem given in (1.6).

Corollary 1. Assume that K : I x H is Lipschitz continuous with ratio ). > 0 and
convex values such that K(t) = A" for all t € I for some convex strongly compact
set A < H. Assume that

o [ is uniformly bounded, that is, there exists L, > 0 such that ||[(t)|| < L, for all
tel;

e jis convex and Lipschitz continuous on pB with ratio Ly > 0 (where p is a pos-
itive number satisfying A" < pB).

Then, for every vy € K(0) and any vy € H, there exists at least one solution of
(1.6).

Proof. Since K has convex values, the variational inequality of type (1.6) can be
rewritten in the form of (1.5) as follows:

—Au(t) € Niy (u(1)) + (1) + F(t,u(r)) a.e. on I,

with u(0) = vy € K(0), #(0) = v; and F(¢,x) := dj(x) — I(2).
As j is Lipschitz continuous with ratio L; on pB, it follows that Jj(x) = LB
for all x € K(z). Hence we obtain

1E( ) < 17l + 11O < Ly + Lo = L.

On the other hand it is well known that the subdifferential of Lipschitz convex
functions is convex weakly compact and scalarly upper semicontinuous. Also we
have by hypothesis that / is continuous. Then F is scalarly upper semicontinuous
set-valued mapping with convex weakly compact values. Thus all the assumptions
of Theorem 3.1 are satisfied and so the proof is complete. O

4. Solution sets

Throughout this section, let r € |0,4o0], let F: I x H — H be a set-valued map-
ping and let C: I — H (7 > 0) be a Lipschitz set-valued mapping with ratio
A > 0 taking nonempty closed uniformly r-prox-regular values in H. Let vy € H,
up € C(0). We denote by Sr(u,vo) the set of all couples (u,v) of Lipschitz map-
pings u, v : I — H such that
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u(0) =ug € C(0), v(0) = vy,

u(t) = u(0) + JO v(s) ds, (4.1)

v(t) e C(¢) forallze|0,T],
—Au(t) € N, (v() +0(t) + F(t,0(1)) a.e. in 1.

In this section we are interested in the strong compactness of the graph of the
set-valued mapping Sr defined from a strong compact set % < H x H to
C(I,H x H).

Proposition 4.1. Assume that the hypotheses of Theorem 3.1 are satisfied. Then
the graph of the set-valued mapping Sr is strongly compact in # x C(I,H x H).

Proof. Let ((ug,vy)), € # and ((u",v")), e CU,HxH) with (u",v") €
Sr((ug,vy)). First, by the compactness of the set ', we may assume without loss
of generality that ((ug,v{)), uniformly converges to some (ug,v9) € #. Now, ac-
cording to the proof of Theorem 3.1, the sequence ((u",v")), is equi-Lipschitz,
and #"(1) < p and 9"(¢) < 1+ 2p||4]| +2p a.e. on I. We also have the inclu-
sion {(u"(1),v"(1))|1€[0,T]} = (p+ TK) x K and so the set {(u"(¢),v"(1))|
t€[0,T]} is relatively strongly compact in H x H. Therefore, Arzela—Ascoli’s
theorem gives the relative strong compactness of the sequence ((u”",v")), in
C(I,H x H) and so we may assume without loss of generality that ((u",v")),
uniformly converges to some (u,v) € C(I,H x H). By showing that (u,v) €
Sr(ug, vo) the proof of the proposition will be complete. To do that, observe first
that the closedness of C(f) and the uniform convergence of both sequences
((ug,vf)), and ((u",v")), imply that (u(0),v(0)) = (uo,vo) and that v(r) € C(7)
for all 7 € [0, T]. On the other hand one has

t t

v"(s) ds = up + J v(s) ds.

u(t) =lim u"(t) = uo + limj
n n 0

0

for all € [0, 7]. Now we have to show that
—Au(t) € N& ) (v(1)) + (1) + F(2,0(1)) ae. on 1.
Since (u",v") € Sp(uf,v)) we have for every n,
—Au" (1) € N§, (v"(2)) + 0" (1) + F(2,0"(1)) ae. on 1. (4.2)

Then there exists a measurable selection g”, for every n, such that
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g"(1) e F(t,v"(1)) and —Au"(t)—g"(1) € Né (v"(1)) (4.3)
fora.e. t € [0, T]. By Theorem 3.1 and (3.8) one has
16" (O} < 2+ 2[14]|(p + pT) < 2+ 2||4]|(p + 2pT) (4.4)
for n sufficiently large and
[Au" ()| < ([ 4ll(p + pT) < [|4[|(p + 2pT). (4.5)
Since v"(t) € C(t) < pB and F has linear growth we obtain
lg" (D < L1+ [[o"(0)]]) < L(1 + p).

Therefore, we suppose without loss of generality that 9" — ¢ and ¢g” — g weakly
star in L™ (I,H). Since F(z,-) is scalarly upper semicontinuous with convex
weakly compact values, then we get easily (see for instance Theorem V-14 in [7])
that g(1) € F(t,v(1)) a.e. t € [0, T]. Now by (4.4), (4.5), (4.2) and Theorem 4.1 in
[4], we have for 0 := A+ 3||4||(p + 2pT) + p,

—Au" (1) — 9"(t) — g" () € 60 dc,y (v"(¢)) ae. on I.

Then by using Mazur’s lemma and Propositions 3.1-4.1 in [5], it is easy to con-
clude that

—Au(t) —o(t) — g(1) € 56Pdc(,) (v(r)) = Né’(,) (v(1))
for a.e. t € I. Thus we obtain that
—Au(t) € Ney (v(1)) + o(1) + F(t,v(1))
for a.e. 7 € [0, T], which completes the proof of the proposition. O
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