
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 65, Fasc. 1, 2008, 33–47 6 European Mathematical Society

An existence result for a new variant of the
nonconvex sweeping process

Messaoud Bounkhel and Tahar Haddad

(Communicated by Luı́s Barreira)

Abstract. In this paper we prove the existence of solutions of the following new variant of
the nonconvex sweeping process with perturbation �AuðtÞ a NCðtÞ

�
_uuðtÞ

�
þ €uuðtÞ þ F

�
t; _uuðtÞ

�
a.e. on ½0;T � ðT > 0Þ.
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1. Introduction

In [17] Moreau introduced and studied the following di¤erential inclusion

� _uuðtÞ a NCðtÞ
�
uðtÞ

�
a:e: on I ; uð0Þ ¼ u0 a Cð0Þ; ð1:1Þ

where I :¼ ½0;T � ðT > 0Þ, C : I ! H is a set-valued mapping defined from I to a

Hilbert space H with closed convex values, and NCðtÞ
�
uðtÞ

�
denotes the outward

normal cone, in the sense of convex analysis, to the set CðtÞ at uðtÞ. The di¤eren-

tial inclusion (1.1) is known as the sweeping process problem. This problem is

equivalent to the following evolution variational inequality: find uðtÞ a CðtÞ a.e.

on I such that

3 _uuðtÞ; v� u4b 0 ð1:2Þ

for all v a CðtÞ. Consequently the sweeping process includes as a special case

(by taking CðtÞ ¼ f ðtÞ þ K) the following evolution variational inequality. Find

uðtÞ a K a.e. on I such that

3 _uuðtÞ; v� u4b3 f ðtÞ; v� u4 ð1:3Þ

for all v a K , with K a closed subset of H, u : I ! H, f a L2ðI ;HÞ.



Several extensions of the sweeping process in diverse ways were obtained; see

for example [11], [12], [13], [14], [15], [16], [18], [20], [21]. In [20], the authors

considered the following variant of the sweeping process: find u : I ! H such

that _uuðtÞ a CðtÞ and
�uðtÞ a NCðtÞ

�
_uuðtÞ

�
: ð1:4Þ

They proved the existence and uniqueness of the solution of (1.4). In [2], the first

author proved the existence and uniqueness of solutions for (1.4) in the nonconvex

case.

In this paper we are interested in a new variant of sweeping process with a per-

turbation,

�AuðtÞ a Nc
CðtÞ

�
_uuðtÞ

�
þ €uuðtÞ þ F

�
t; _uuðtÞ

�
a:e: in I ð1:5Þ

with uð0Þ ¼ u0 a Cð0Þ, _uuð0Þ ¼ v0 a H. Here Nc
CðtÞð�Þ denotes the Clarke normal

cone to CðtÞ and F is a multifunction. Problem (1.5) includes as a special case

the following evolution quasi-variational inequality:

Find u : I ! H; uð0Þ ¼ u0 a Kð0Þ; _uuð0Þ ¼ u1; such that _uuðtÞ a KðtÞ
a.e. on I ; and

3lðtÞ;w� _uuðtÞ4a3€uuðtÞ;w� _uuðtÞ4þ a
�
uðtÞ;w� _uuðtÞ

�
þ jðwÞ � j

�
_uuðtÞ

�
ð1:6Þ

for all w a KðtÞ.

Here að� ; �Þ is a real bilinear, symmetric, bounded, and elliptic form on H�H,

l a H 1;2
�
ð0;TÞ;H

�
, and jð�Þ denotes a non-negative, convex, positively homoge-

nous and Lipschitz continuous functional from H to R. KðtÞHH is a set of

constraints. The variational inequality of type (1.6) is the dynamic analogue

of the Signorini problem (see [10]). Let A be a linear and bounded operator

on H associated with að� ; �Þ, that is, aðu; vÞ ¼ 3Au; v4 for all u; v a H and put

F ðt; �Þ :¼ qjð�Þ � lðtÞ. Also assume that K has convex values. Then the variational

inequality of type (1.6) can be rewritten in the form of (1.5). The main goal of this

paper is to prove an existence result for sweeping processes described by (1.5)

when the set-valued mapping K is not necessarily convex. Here we use ideas and

techniques from nonsmooth analysis. The result is proved by showing that a new

projection algorithm converges to a solution of (1.5).

2. Notation and preliminaries

Throughout this paper H denotes a real separable Hilbert space. Let S be a closed

subset of H. We denote by dð�;SÞ or
�
dSð�Þ

�
the usual distance function asso-

ciated with S, i.e., dðx;SÞ :¼ infu ASkx� uk. First we need to recall some notation
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and definitions that will be used throughout the paper. Let f : H ! RA fþlg be

a lower semicontinuous (l.s.c) function and let x be any point where f is finite.

We recall that the proximal subdi¤erential qP f ðxÞ is the set of all x a H for which

there exist d; s > 0 such that

3x; x 0 � x4a f ðx 0Þ � f ðxÞ þ skx 0 � xk2

for all x 0 a xþ dB. Here B is the closed unit ball centered at the origin of H. By

convention we set qP f ðxÞ ¼ j if f ðxÞ is not finite. Note that qP f ðxÞ is always

convex but may not be closed (see for instance [8]). Let S be a nonempty closed

subset of H and x be a point in S. We recall (see [8]) that the proximal normal

cone of S at x is defined by NP
S ðxÞ :¼ qPcSðxÞ, where cS denotes the indicator

function of S, i.e., cSðx 0Þ ¼ 0 if x 0 a S and þl otherwise. Note that the proxi-

mal normal cone may be given by

NP
S ðxÞ ¼ fx a H j there exists a > 0 such that x a ProjSðxþ axÞg

where

ProjSðuÞ :¼ fy a S j dðu;SÞ :¼ ku� ykg:

Recall that for a given r a �0;þl� a subset S is uniformly r-prox-regular (see [19])

or equivalently r-proximally smooth (see [8]) if and only if every nonzero prox-

imal normal to S can be realized by an r-ball, that is, for all x a S and all

0A x a NP
S ðxÞ one has

x

kxk ; x� x

� �
a

1

2r
kx� xk2;

for all x a S. We make the convention 1
r
¼ 0 for r ¼ þl. Note that for r ¼ þl

the uniform r-prox-regularity of S is equivalent to the convexity of S. The follow-

ing proposition summarizes some important consequences of the uniform prox-

regularity needed in the sequel. For the proof of these results we refer the reader

to [19].

Proposition 2.1. Let S be a nonempty closed subset in H and let r a �0;þl�. If

the subset S is uniformly r-prox-regular then the following hold:

(i) for all x a H with dðx;SÞ < r, the projection ProjSðxÞ is a singleton;

(ii) the proximal subdi¤erential of dð�;SÞ coincides with all the subdi¤erentials con-

tained in the Clarke subdi¤erential at all points x a H satisfying dðx;SÞ < r.

So in this a case the subdi¤erential qdðx;SÞ :¼ qPdðx;SÞ ¼ qCdðx;SÞ is a

closed convex set in H.
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As a consequence of (ii) we get that for uniformly r-prox-regular sets, the prox-

imal normal cone to S coincides with all the normal cones contained in the Clarke

normal cone at all points x a S, i.e., NP
S ðxÞ ¼ NC

S ðxÞ. In such case we put

NSðxÞ :¼ NP
S ðxÞ ¼ NC

S ðxÞ. Here qCdðx;SÞ and NC
S ðxÞ denote the Clarke subdif-

ferential of dð�;SÞ and the Clarke normal cone to S respectively (see [8]). We give

an important result, due to Bounkhel and Thibault [5], of the closedness of the

proximal subdi¤erential of the distance function to images of set-valued mappings

with prox-regular values (for some applications of this result to economics we

refer to [3]). Before stating the next proposition we recall the definition of Lip-

schitz continuity for set-valued mappings. We say that a set-valued mapping

C : R ! H is Lipschitz continuous with ratio l > 0 provided that

d
�
x;CðtÞ

�
� d

�
x;CðsÞ

�
a ljt� sj for all t; s a R and all x a H: ð2:1Þ

Proposition 2.2. Let r a �0;þl�. Assume that C : I ! H is Lipschitz continuous

set-valued mapping with uniformly r-prox-regular values for some open interval I of

R. For a given 0 < d < r, the following closedness property of the proximal subdif-

ferential of the distance function holds:

for any t a I , x a CðtÞ þ ðr� dÞB, xn ! x, tn ! t with tn a I ðxn is not neces-

sarily in CðtnÞÞ and xn a qPd
�
xn;CðtnÞ

�
with xn !

w
x, one has x a qPd

�
x;CðtÞ

�
.

Here !w means the weak convergence in H.

Let now B be a bounded set of a normed space E. Then the Kuratowski mea-

sure of noncompacteness of B, aðBÞ, is defined by

aðBÞ ¼ inf
�
d > 0 jB ¼ 6

m

i¼1

Bi for some m and Bi with diamðBiÞa d
�
:

Here diamðAÞ stands for the diameter of A given by diamðAÞ :¼ supx;yaAkx� yk.
In the following lemma we recall (see for instance Proposition 9.1 in [9]) some use-

ful properties for the measure of noncompactness a.

Lemma 1. Let H be an infinite dimensional real Banach space and D1, D2 be two

bounded subsets of H.

(i) aðD1Þ ¼ 0 , D1 is relatively compact;

(ii) aðlD1Þ ¼ jljaðD1Þ for all l a R;

(iii) D1 HD2 ) aðD1Þa aðD2Þ;
(iv) aðD1 þD2Þa aðD1Þ þ aðD2Þ;
(v) if x0 a H and r is a positive real number, then aðx0 þ rBÞ ¼ 2r.
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3. Main result

The following existence theorem establishes our main result in this paper.

Theorem 3.1. Let r a �0;þl�, let H be a separable Hilbert space, and let

C : I ! H ðT > 0Þ be a set-valued mapping with nonempty closed uniformly

r-prox-regular values. Assume that C is Lipschitz continuous with ratio l > 0 and

there exists a convex strongly compact set K such that CðtÞHK for all t a I . Let

F : I �H ! H be a scalarly upper semicontinuous set-valued mapping with non-

empty convex weakly compact values in H. Assume also that F has linear growth,

that is, there exists L > 0 such that Fðt; uÞHLð1þ kukÞB for all ðt; uÞ a I �H,

and that A : H ! H be a linear bounded operator. Then for any u0 a Cð0Þ and

any v0 a H, there exists at least one solution of (1.5).

Proof. Let r > 0 such that CðtÞHK H rB for all t a ½0;T �. Put b ¼ Lð1þ rÞ and
g ¼ rð1þ TÞ. Fix n0b 1 satisfying

ðb þ rkAk þ lÞ T

2n0
a

r

2
: ð3:1Þ

For every nb n0, we put

mn :¼
T

2n
! 0 as n ! l ð3:2Þ

and we consider the following partition of I :

tn; i :¼ imn for 0a ia 2n;

In; iþ1 :¼ �tn; i; tn; iþ1� for 0a ia 2n � 1:

In;0 :¼ ftn;0g:
ð3:3Þ

Algorithm 1. For every nb n0, we choose by induction

• zn;0 ¼ u0 a Cð0Þ, un;0 ¼ u0, and gn;0 a F ðtn;0; zn;0Þ;

• 0a ia 2n � 1: zn; iþ1 ¼ ProjCðtn; iþ1Þðzn; i � mnAun; i � mngn; iÞ;

• un; iþ1 :¼ un; i þ mnzn; iþ1 and gn; iþ1 a Fðtn; iþ1; zn; iþ1Þ.

This algorithm is well defined. Indeed, for i ¼ 0, we have by the Lipschitz

property of C

d
�
zn;0 � mnAun;0 � mngn;0;Cðtn;1Þ

�
amnkAun;0k þ mnkgn;0k þ d

�
zn;0;Cðtn;1Þ

�
� d

�
z0;Cðtn;0Þ

�
amnkAk ku0k þ mnkgn;0k þ ljtn;1 � tn;0j:
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Since ku0ka r and as F has linear growth we obtain

kgn;0kaLð1þ ku0kÞaLð1þ rÞ ¼ b

and so

d
�
zn;0 � mnAun;0 � mngn;0;Cðtn;1Þ

�
amnrkAk þ bmn þ lmn

¼ mnðb þ rkAk þ lÞ

a ðrkAk þ b þ lÞ T

2n0
a

r

2
< r:

The prox-regularity of the set Cðtn;1Þ and Proposition 2.1 (i) ensure the existence

and the uniqueness of the projection ProjCðtn; 1Þðzn;0 � mnAun;0 � mngn;0Þ and then

we can take zn;1 ¼ ProjCðtn; 1Þðzn;0 � mnAun;0 � mngn;0Þ, un;1 :¼ un;0 þ mnzn;1 and

gn;1 a Fðtn;1; zn;1Þ.
Assume now that ib 1. By Algorithm 1 we have zn; i a Cðtn; iÞH rB, that is,

kzn; ika r. Thus we get

kun; ika kun; i�1k þ rmn

kun; i�1ka kun; i�2k þ rmn

..

.

kun;1ka ku0k þ rmn:

Adding these inequalities yields ðia 2nÞ

kun; ika ku0k þ irmna rþ rT ¼ g:

Now by Algorithm 1 and by the fact that F has linear growth we obtain that

kgn; ikaLð1þ kzn; ikÞaLð1þ rÞ ¼ b:

Therefore the Lipschitz property of C ensures that

d
�
zn; i � mnAun; i � mngn; i;Cðtn; iþ1Þ

�
amnkAun; ik þ mnkgn; ik þ d

�
zn; i;Cðtn; iþ1Þ

�
� d

�
zn; i;Cðtn; iÞ

�
amnrkAk þ mnb þ ljtn; iþ1 � tn; ij
¼ ðrkAk þ b þ lÞmn

a
ðb þ rkAk þ lÞT

2n0
a

r

2
< r;
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which implies by the prox-regularity of the set Cðtn; iþ1Þ and Proposition 2.1 (i) the

existence and the uniqueness of the projection ProjCðtn; iþ1Þðzn; i � mnAun; i � mngn; iÞ
and hence we can take zn; iþ1 ¼ ProjCðtn; iþ1Þðzn; i � mnAun; i � mngn; iÞ, un; iþ1 :¼
un; i þ mnzn; iþ1 and gn; iþ1 a Fðtn; iþ1; zn; iþ1Þ.

Now we use the sequences ðun; iÞ, ðzn; iÞ and ðgn; iÞ to construct sequences of

mappings un, vn and gn from I to H by defining their restrictions to each interval

In; i as follows:

For t a In;0 set gnðtÞ ¼ gn;0, unðtÞ ¼ u0 and vnðtÞ ¼ v0; for t a In; iþ1

ð0a ia 2n � 1Þ set gnðtÞ ¼ gn; i,

unðtÞ ¼ un; i þ zn; iþ1ðt� tn; iÞ; ð3:4Þ

and

vnðtÞ ¼ zn; i þ ðzn; iþ1 � zn; iÞ
ðt� tn; iÞ

mn

: ð3:5Þ

It is clear by construction that both mappings un and vn are di¤erentiable a.e. on I

with

_uunðtÞ ¼ zn; iþ1 and _vvnðtÞ ¼
zn; iþ1 � zn; i

mn

a:e: on I : ð3:6Þ

By Algorithm 1 we have

zn; iþ1 ¼ ProjCðtn; iþ1Þðzn; i � mnAun; i � mngn; iÞ

and so by the definition of proximal normal cone we get

zn; i � zn; iþ1 � mnAun; i � mngn; i a NP
Cðtn; iþ1Þ

ðzn; iþ1Þ:

By (3.6) we obtain

� _vvnðtÞ � Aun; i � gn; i a NP
Cðtn; iþ1Þ

�
_uunðtÞ

�
a:e: on I :

Now let us define the step functions from I to I by

ynðtÞ ¼ tn; i; t a In; iþ1;

rnðtÞ ¼ tn; iþ1; t a In; iþ1:
ð3:7Þ

Then (3.4) and (3.7) yield that

�Aun
�
ynðtÞ

�
� _vvnðtÞ � gnðtÞ a NP

CðrnðtÞÞ
�
_uunðtÞ

�
a:e: on I :

39An existence result for a new variant of the nonconvex sweeping process



On the other hand we have

kzn; iþ1 � zn; ika kzn; iþ1 � zn; i þ mnAun; i þ mngn; ik þ mnkAun; ik þ mnkgn; ik
a dCðtn; iþ1Þðzn; i � mnAun; i � mngn; iÞ þ mnkAun; ik þ mnkgn; ik

a dCðtn; iþ1Þðzn; iÞ � dCðtn; iÞðzn; iÞ þ 2mnkAk kun; ik þ 2mnkgn; ik

a lmn þ 2mnkAk kun; ik þ 2mnkgn; ik:

So

zn; i � zn; iþ1

mn

����
����a lþ 2kAk kun; ik þ 2kgn; ika lþ 2rkAk þ 2b: ð3:8Þ

Then

zn; i � zn; iþ1

mn

� Aun
�
ynðtÞ

�
� gnðtÞ

����
����a 1

mn

kzn; iþ1 � zn; ik þ kAk kun; ik þ kgn; ik

a lþ 3rkAk þ 3b

and so by Proposition 4.1 in [4] we obtain that

�Aun
�
ynðtÞ

�
� _vvnðtÞ � gnðtÞ a ðlþ 3rkAk þ 3bÞqPdCðrnðtÞÞ

�
_uunðtÞ

�
a:e: on I : ð3:9Þ

As kgnðtÞka b for all t a I , we see that ðgnÞ is a bounded sequence in LlðI ;HÞ.
Then by extracting a subsequence (because LlðI ;HÞ is the dual space of the sep-

arable Banach space L1ðI ;HÞÞ we may suppose without loss of generality that ðgnÞ
weakly-star converges in LlðI ;HÞ to some mapping g.

Observe now that un and vn are Lipschitz continuous on I with ratio b and

lþ 3rkAk þ 3b, respectively. So un is di¤erentiable a.e. on I and

unðtÞ ¼ u0 þ
ð t

0

_uunðsÞ ds:

Since _uunðtÞ a C
�
rnðtÞ

�
a K it follows that

funðtÞ j nb n0gH u0 þ TK :

This implies the relative strong compactness of the set funðtÞ j nb n0g in H for all

t a ½0;T �. On the other hand, since _uunðtÞ a C
�
rnðtÞ

�
, we get k _uunðtÞka r and so

Arzela–Ascoli’s theorem (see for instance Theorem 0.4.4 in [1]) ensures the exis-

tence of a Lipschitz mapping u : I ! H with ratio r such that
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• ðunÞ converges uniformly to u on I , that is, limn!l maxta ½0;T �kunðtÞ � uðtÞk ¼
0;

• ð _uunÞ weakly converges to _uu in L1ðI ;HÞ.

Return now to the compactness of the sequence vn. By (3.6) and (3.8) we have

k _vvnðtÞka lþ 2rkAk þ 2b; ð3:10Þ

and it is clear that the sequence fvnðtÞg is equi-Lipschitz with constant

lþ 2rkAk þ 2b. Now we show that the set XðtÞ ¼ fvnðtÞ j nb n0g is relatively

compact in H for every t a ½0;T �. From the definition of ðvnÞ we have

for all t a ½0;T � and all nb n0, vn
�
ynðtÞ

�
a C

�
ynðtÞ

�
HK . Then the set�

vn
�
ynðtÞ

�
j nb n0

�
is relatively compact in H for all t a ½0;T �, and so by Lemma

1 we get

a
��

vn
�
ynðtÞ

�
j nb n0

��
¼ 0:

We have XðtÞ ¼ fvnðtÞ j nb n0g ¼
�
vnðtÞ � vn

�
ynðtÞ

�
þ vn

�
ynðtÞ

�
j nb n0

�
for all

t a ½0;T �. Then by Lemma 1 we obtain that

a
�
XðtÞ

�
a a

��
vnðtÞ � vn

�
ynðtÞ

�
j nb n0

��
þ a

��
vn
�
ynðtÞ

�
j nb n0

��

a a
�n ð ynðtÞ

t

_vvnðsÞ ds j nb n0

o	
þ 0

a a



B 0;

T

2n
ðlþ 2rkAk þ 2bÞ


 ��

¼ 2ðlþ 2rkAk þ 2bÞ T
2n

! 0 as n ! l:

Hence by Lemma 1 the set XðtÞ is relatively strongly compact in H for all t a I .

Then all the assumptions of the Arzela–Ascoli theorem are satisfied and hence

there exists a Lipschitz mapping v : I ! H with ratio lþ 2rkAk þ 2b such that

• ðvnÞ converges uniformly to v on I , that is, limn!l maxta ½0;T �kvnðtÞ � vðtÞk
¼ 0;

• ð _vvnÞ weakly converges to _vv in L1ðI ;HÞ.

Consequently, we get

k _uunðtÞ � vðtÞka k _uunðtÞ � vnðtÞk þ kvnðtÞ � vðtÞk
a

��vn�rnðtÞ�� vnðtÞ
��þ kvnðtÞ � vðtÞk

amn þ kvnðtÞ � vðtÞk
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and so

max
t A I

k _uunðtÞ � vðtÞkamn þmax
t A I

kvnðtÞ � vðtÞk ! 0 as n ! l:

Thus, the sequence _uun converges to v uniformly on I and _uuðtÞ ¼ vðtÞ and €uuðtÞ ¼ _vvðtÞ
a.e. on I . We proceed now to prove that

�AuðtÞ � gðtÞ � €uuðtÞ a Nc
CðtÞ

�
_uuðtÞ

�
for almost all t a I :

Applying Castaing techniques (see for instance [6]), the uniform convergence of un
to u, the weak convergence of _vvn to _vv in L1ðI ;HÞ, the weak star convergence of gn
to g in LlðI ;HÞ, and Mazur’s lemma entail

�AuðtÞ � gðtÞ � €uuðtÞ a 7
n

co
�
�Auk

�
ykðtÞ

�
� gkðtÞ � _vvkðtÞ j kb n

�
:

for almost all t a I . Here co denotes the closed convex hull.

Fix any such t a I and consider any x a H. The last relation above yields

3x;�AuðtÞ � gðtÞ � €uuðtÞ4a inf
n

sup
kbn

�
x;�Auk

�
ykðtÞ

�
� gkðtÞ � _vvkðtÞ


:

According to (3.8) we obtain that

3x;�AuðtÞ � gðtÞ � €uuðtÞ4a lim sup
n

s
�
ðlþ 3rkAk þ 3bÞqPdCðrnðtÞÞ

�
_uunðtÞ

�
; x
�

as
�
ðlþ 3rkAk þ 3bÞqPdCðtÞ

�
_uuðtÞ

�
; x
�
;

where the last inequality follows from the upper semicontinuity property of the

proximal subdi¤erential given in Proposition 2.2 and because of rnðtÞ ! t and
_uunðtÞ ! vðtÞ ¼ _uuðtÞ strongly. Since the set qPdCðtÞ

�
_uuðtÞ

�
is closed convex (see

Proposition 2.1) and _uuðtÞ a CðtÞ, we obtain that

�AuðtÞ � gðtÞ � €uuðtÞ a ðlþ 3rkAk þ 3bÞqPdCðtÞ
�
_uuðtÞ

�
HNP

CðtÞ
�
_uuðtÞ

�
and so

�AuðtÞ a NP
CðtÞ

�
_uuðtÞ

�
þ €uuðtÞ þ gðtÞ:

Now, as gnðtÞ a F
�
ynðtÞ; vnðtÞ

�
and by the upper semicontinuity of F and the con-

vexity and the weak compactness of its values, we conclude (see Theorem V-14, [7])

that gðtÞ a F
�
t; _uuðtÞ

�
. Thus we get

�AuðtÞ a NP
CðtÞ

�
_uuðtÞ

�
þ €uuðtÞ þ F

�
t; _uuðtÞ

�
for a:e: t a I :

This completes the proof of the theorem. r
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As a direct consequence of our main theorem we obtain an existence result for

the dynamic analogue of the Signorini problem given in (1.6).

Corollary 1. Assume that K : I �H is Lipschitz continuous with ratio l > 0 and

convex values such that KðtÞHK for all t a I for some convex strongly compact

set KHH. Assume that

• l is uniformly bounded, that is, there exists L2 > 0 such that klðtÞkaL2 for all

t a I;

• j is convex and Lipschitz continuous on rB with ratio L1 > 0 (where r is a pos-

itive number satisfying KH rB).

Then, for every v0 a Kð0Þ and any v1 a H, there exists at least one solution of

(1.6).

Proof. Since K has convex values, the variational inequality of type (1.6) can be

rewritten in the form of (1.5) as follows:

�AuðtÞ a NKðtÞ
�
_uuðtÞ

�
þ €uuðtÞ þ F

�
t; _uuðtÞ

�
a:e: on I ;

with uð0Þ ¼ v0 a Kð0Þ, _uuð0Þ ¼ v1 and Fðt; xÞ :¼ qjðxÞ � lðtÞ.
As j is Lipschitz continuous with ratio L1 on rB, it follows that qjðxÞHL1B

for all x a KðtÞ. Hence we obtain

kF ðt; xÞka kqjðxÞk þ klðtÞkaL1 þ L2 ¼ L:

On the other hand it is well known that the subdi¤erential of Lipschitz convex

functions is convex weakly compact and scalarly upper semicontinuous. Also we

have by hypothesis that l is continuous. Then F is scalarly upper semicontinuous

set-valued mapping with convex weakly compact values. Thus all the assumptions

of Theorem 3.1 are satisfied and so the proof is complete. r

4. Solution sets

Throughout this section, let r a �0;þl�, let F : I �H ! H be a set-valued map-

ping and let C : I ! H ðT > 0Þ be a Lipschitz set-valued mapping with ratio

l > 0 taking nonempty closed uniformly r-prox-regular values in H. Let v0 a H,

u0 a Cð0Þ. We denote by SF ðu0; v0Þ the set of all couples ðu; vÞ of Lipschitz map-

pings u; v : I ! H such that
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uð0Þ ¼ u0 a Cð0Þ; vð0Þ ¼ v0;

uðtÞ ¼ uð0Þ þ
ð t

0

vðsÞ ds;

vðtÞ a CðtÞ for all t a ½0;T �;
�AuðtÞ a Nc

CðtÞ
�
vðtÞ

�
þ _vvðtÞ þ F

�
t; vðtÞ

�
a:e: in I :

ð4:1Þ

In this section we are interested in the strong compactness of the graph of the

set-valued mapping SF defined from a strong compact set KHH�H to

CðI ;H�HÞ.

Proposition 4.1. Assume that the hypotheses of Theorem 3.1 are satisfied. Then

the graph of the set-valued mapping SF is strongly compact in K� CðI ;H�HÞ.

Proof. Let ððun
0; v

n
0 ÞÞn a K and ððun; vnÞÞn a CðI ;H�HÞ with ðun; vnÞ a

SF ððun
0; v

n
0 ÞÞ. First, by the compactness of the set K, we may assume without loss

of generality that ððun
0; v

n
0 ÞÞn uniformly converges to some ðu0; v0Þ a K. Now, ac-

cording to the proof of Theorem 3.1, the sequence ððun; vnÞÞn is equi-Lipschitz,

and _uunðtÞa r and _vvnðtÞa lþ 2rkAk þ 2b a.e. on I . We also have the inclu-

sion
��

unðtÞ; vnðtÞ
�
j t a ½0;T �

�
H ðrþ TKÞ � K and so the set

��
unðtÞ; vnðtÞ

�
j

t a ½0;T �
�
is relatively strongly compact in H�H. Therefore, Arzelà–Ascoli’s

theorem gives the relative strong compactness of the sequence ððun; vnÞÞn in

CðI ;H�HÞ and so we may assume without loss of generality that ððun; vnÞÞn
uniformly converges to some ðu; vÞ a CðI ;H�HÞ. By showing that ðu; vÞ a
SF ðu0; v0Þ the proof of the proposition will be complete. To do that, observe first

that the closedness of CðtÞ and the uniform convergence of both sequences

ððun
0; v

n
0 ÞÞn and ððun; vnÞÞn imply that

�
uð0Þ; vð0Þ

�
¼ ðu0; v0Þ and that vðtÞ a CðtÞ

for all t a ½0;T �. On the other hand one has

uðtÞ ¼ lim
n

unðtÞ ¼ u0 þ lim
n

ð t

0

vnðsÞ ds ¼ u0 þ
ð t

0

vðsÞ ds:

for all t a ½0;T �. Now we have to show that

�AuðtÞ a Nc
CðtÞ

�
vðtÞ

�
þ _vvðtÞ þ F

�
t; vðtÞ

�
a:e: on I :

Since ðun; vnÞ a SF ðun
0; v

n
0 Þ we have for every n,

�AunðtÞ a Nc
CðtÞ

�
vnðtÞ

�
þ _vvnðtÞ þ F

�
t; vnðtÞ

�
a:e: on I : ð4:2Þ

Then there exists a measurable selection gn, for every n, such that
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gnðtÞ a F
�
t; vnðtÞ

�
and �AunðtÞ � gnðtÞ a Nc

CðtÞ
�
vnðtÞ

�
ð4:3Þ

for a.e. t a ½0;T �. By Theorem 3.1 and (3.8) one has

k _vvnðtÞka lþ 2kAkðrþ rTÞa lþ 2kAkðrþ 2rTÞ ð4:4Þ

for n su‰ciently large and

kAunðtÞka kAkðrþ rTÞa kAkðrþ 2rTÞ: ð4:5Þ

Since vnðtÞ a CðtÞH rB and F has linear growth we obtain

kgnðtÞkaLð1þ kvnðtÞkÞaLð1þ rÞ:

Therefore, we suppose without loss of generality that _vvn ! _vv and gn ! g weakly

star in LlðI ;HÞ. Since F ðt; �Þ is scalarly upper semicontinuous with convex

weakly compact values, then we get easily (see for instance Theorem V-14 in [7])

that gðtÞ a F
�
t; vðtÞ

�
a.e. t a ½0;T �. Now by (4.4), (4.5), (4.2) and Theorem 4.1 in

[4], we have for d :¼ lþ 3kAkðrþ 2rTÞ þ b,

�AunðtÞ � _vvnðtÞ � gnðtÞ a dqPdCðtÞ
�
vnðtÞ

�
a:e: on I :

Then by using Mazur’s lemma and Propositions 3.1–4.1 in [5], it is easy to con-

clude that

�AuðtÞ � _vvðtÞ � gðtÞ a dqPdCðtÞ
�
vðtÞ

�
HNP

CðtÞ
�
vðtÞ

�

for a.e. t a I . Thus we obtain that

�AuðtÞ a NCðtÞ
�
vðtÞ

�
þ _vvðtÞ þ F

�
t; vðtÞ

�

for a.e. t a ½0;T �, which completes the proof of the proposition. r
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