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Existence and iteration of positive solution for a
multi-point boundary value problem with a
p-Laplacian operator

De-Xiang Ma and Xue-Gang Chen

(Communicated by Luis Sanchez)

Abstract. In this paper we obtain the existence of a positive solution and establish a corre-
sponding iterative scheme for the following boundary value problem:

(4,() +q(0)f(t,u)y =0, 0<t<1,

m—1

q—1
u(0) = ; yiu(0i), u(l) = ; niu(&:)-

The main tool is the monotone iterative technique. Here the coeflicient ¢(z) may be sin-
gular atr =0, 1.
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1. Introduction

The existence of positive solutions to multi-point second order boundary value
problems (BVPs) has been extensively studied by many authors; see, e.g., [5], [6],
[8], [13], [14]. Also there has been considerable interest in p-Laplacian BVPs [1],
[3], [7], [9], [10], [11], [15], [16]. As it is well known, when dealing with p-Laplacian
BVPs, the main difficulty is that ¢(x) = |x|” >x is nonlinear in x for p #2. In
fact, there are only a few papers in which positive solutions for the m-point
(m > 3) second order BVP with p-Laplacian are obtained. In a recent paper [4],
Bai and Fang studied the following BVP:

{(¢,,(y’))’+a(t)f(z,u) =0, 0<t<lI,
9(0) =0, y(1) = S0 oy (&),
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Here multiple positive solutions for BVP (1) were obtained. The tool used in [4] is
the fixed point index theory.
Here we study the following multi-point second order p-Laplacian BVP:

(4,) +q(Of(t,u)y=0, 0<r<1,
S (s ()
u(0) = ; yu(d;), u(l) = ;1 nu(E;),

where

(i) ¢,(s) = Is]” %5, p > 1
(i) 0, € (0,1),i=1,2,...,9g—1,and & € (0,1),i=1,2,..., m—1;

(iii) 3, €[0,1), i=1,2,....,¢—1, with S 'y, €[0,1) and 5, €[0,1), i=
1,2,...,m—1, with 327"y, € [0,1).

The method of [4] is not applicable to our problem since we cannot change
BVP (2) to an integral equation without a parameter which is critical in [4]. In
this paper, by using the classical monotone iterative technique of Amann [2], we
obtain not only the existence of positive solutions for BVP (2), but also give an
iterative scheme for approximating the solutions. It is worth stating that the first
term of our iterative scheme is a constant function. Therefore, the iterative
scheme is significant and feasible.

In fact, this paper is a continuation to [12] in which the existence of positive
solutions of the following multi-point p-Laplacian BVP

(6,() (1) + q(t) f (t,u(t)) =0, 0<r<1,

n n (3)
u'(0) = Z% o' (&), u(1) = ;ﬂiu(éz%
1= 1=

was obtained. We should point out that, due to the fact that the boundary condi-
tions treated in this paper are different from those considered in [12], the process of
changing the two BVPs into their corresponding equivalent integral equations are
different. Thus the operator T defined according to the integral equation is differ-
ent, and we must define a different cone such that 7: P — P. According to the
properties of the function in P we can only get Ta < a. Therefore only one itera-
tive sequence is obtained in this paper, while we got both Ta < ¢ and b < Th and
so obtained two iterative sequences in [12].

We know easily that when p > 1, ¢,(s) is strictly increasing on (—oo0, +00). So
¢;1 exists. Moreover, ¢;1 = ¢,, where Il, + é =1.

We list the following conditions for convenience.
(Hy) f e C([0,1] x [0,+00),[0,+00));

(Hy) q(f) € L'(0,1) is nonnegative and ¢(¢) is not identically zero on any sub-
interval of (0, 1).
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By (H,), it is clear that ¢(z) satisfies

1
0 <J q(t) dt < 0.
0

2. Preliminaries

We consider the Banach space E = C[0,1] equipped with norm |w| =
maxo<,;<1|w(?)|. In this paper, by a positive solution w of BVP (2) we mean a
function w e C'[0, 1] with w(r) >0, 0 <7< 1, and ¢,(w’) € AC[0, 1], which ful-
fills the equation almost everywhere.

Definition 2.1. A functional 7 € E is said to be concave on [0, 1] provided that
t(tx+ (1= 10)y) > tz(x) + (1 — t)z(y) for all x, y € [0, 1] and ¢ € [0, 1].

Definition 2.2. Let (E, || - ||) be a real Banach space. A nonempty, closed, convex
set P < E is said to be a cone provided that the following holds:

(i) f ye Pand 2 >0 then Ay € P,
(i) if ye Pand —y € P then y = 0.

We denote
C[0,1] = {w e C[0,1] [ w(t) > 0,7 € [0, 1]},
P ={we C*[0,1]|w(7) is concave [0, 1]}.
It is easy to see that P is a cone in E.

Lemma 2.1. Suppose that y € C'(0,1] with ¢,(y") € AC|0, 1] satisfies

/

—(4,(»)) (=0, 0<t<1,

Then y(t) is concave on [0,1] and y(t) >0, t € [0,1], i.e., y € P.

Proof. By —(¢p(y’))'(t) >0 we get that ¢,(y")(¢) is non-increasing, so y'(¢) is
non-increasing, which means that y(z) is concave on [0, 1]. Without loss of gener-
ality, suppose that y(0) = min{y(0), y(1)}. By the concavity of y(¢), we know
that p(6;) > p(0), i=1,2,...,(¢=1). So p(0) =X yp(0) = 1 7:(0)
and thus y(0) > 0. Therefore y(¢) > y(0) > 0 since y(¢) is concave on [0,1]. [
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Lemma 2.2. Ifu; € E, i = 1,2 satisfy

— (6, (D)) + (4,((1))) =0, 0<r<1,
00 = 5 00, () = 5 an)

q—1
ur(0) = ; yiu2(0:), ua (1) = ; niux (&)

Then uy(t) <u (1),0 <t < 1.

Proof. Suppose not, then there exists ¢ € [0,1] such that (4 —wu)(t') =
min,c;(u; —up)(t) = ¢ < 0.

Step 1. We conclude that there must exist 7, € (0,1) with (u; —u2)(%) =
min,c;(u; —uz) (1) < 0. In fact,

(i) ¢ = 0. If, for each 6; with i = 1,2,..., (¢ — 1), (11 — u2)(0;) > (w1 — u2)(0)
then, when Y277, >0, it follows that (u; —u2)(0) = S0 7, (ur — u2) () =
S i — w2)(0) > (ur — u2)(0), which is a contradiction; if Zq =0, e
7;=0fori=1,2,... (¢ — 1), then we have (u; — u)(0) = >, Py (uy — ua)(6))
0, which is also a contradiction.

Therefore, if ¢/ = 0 there must exist d;, such that (u; — u)(J;,) = (u; — u2)(0).
Let 7o =9;, € (0,1).

(ii) ¢/ =1. If, for each & with i=1,2,...,(m—1), (u —uz)(f ) > (u —u2)(1),
then, when Zlmlln, >0, we have (4 —uw)(1)=>"" 77,(”1 ur) (&) =
S gy — wp)(1) > () — up)(1), which is a contradiction; 1fZ =0, e,
n; =0 for i=1,2,...,(m—1), then (u —up)(1)=>", Yiuy — wn) (&) =0,
which is again a contradiction. Therefore, if ' = 1, there must exist ;, such that
(Ltl — Ltz)(fio) = (ul — uz)(l). Let 1ty = éio S (0, 1).

(iii) ¢ € (0,1). Let o =1 € (0,1).

Then we conclude that there must exist 7 € (0,1) with (u; —u2)(#) =
min,e;(u; — uz)(t) <O0.

Step 2. From Step 1, we get

(uy — u2)' (o) = 0. (4)
Since (¢ (up) — )/ 1) <0and ¢, (ul(to)) é, (Uﬁ(lo)) — 0, we have
¢p(u (I)) ( 2([)) <0, teln, 1], and

¢ (i (1) — ¢, (3(1)) 20, 1€0,1].
So
ul(t) —uy(1) <0, tel, 1], and u)()—ub(t) =0, €0,z



Existence and iteration of positive solution for a multi-point boundary value problem 71
ie.,

(u1 — uz)/(l) <0, te [l(), ”7 and (u1 — uz)/(l) >0, te [O, l()].

Thus, (1) — uz)(ty) = max,c;(u; — uz) (). Therefore, (1) — uz)(1) = ¢ < 0.
So we have ¢ = (u1 — 12)(0) = S0 yi(ur — w)(0;) = o4 yie > ¢, which is a
contradiction. Thus the lemma is proved. |

For any x € C"[0, 1] suppose that u is a solution of the following BVP:

(6,(u") (1) +q(0)f (1,x(1)) =0, 0<r<1,
m—1

q—1
u(0) = ; yiu(di), u(l) = ; nu(S;).
Then
") = ¢! [ $)f (s, x(s)) ds
W (0) = 4" (A= | a0 (5300 ).

u(t) = By + J; 4, (AX - J

0

S

() f (r,x(r)) dr) ds,

where A, B, satisfy the boundary conditions, i.e.,

N

Sl [ (0|

i 0

B. q(r) f(r,x(r)) dr) ds} ,

o |
0

¢;1 (Ax — JOS q(r)f(r, x(r)) dr) ds

S

m—1 & K
Zni[Bx'i‘J ¢;I(AX_J
i=1 0

0

g f (r,x(r) dr) ds}

Thus

q—1 N
Zl 7; fgi ¢;1 (Ax — fg q(r)f(r, x(r)) dr) ds
u(t) ==

where A, satisfies



72 D.-X. Ma and X.-G. Chen

Sl (4= a0 (x(0) ) s

1
+ L ¢, (4. — € q(1)f (z,x()) dr) ds

ot Sl = [ (x(0) a0 i

+ Jj ¢, (AX - J(: q(v) f(z,x(1)) dr) ds. ()

Lemma 2.3. For any x € C"|0, 1] there exists a unique A, € (—o0,+00) satisfying

(5).

Proof. For any x € C*[0, 1] define H,(c) : R — R as follows.

Z%J"o ¢, (e = Jga(@)f (v, x(x)) d) ds

H,(c) = -1
1- i
; y

+ J; ¢;1 (c — J; q(r)f(‘c, x(r)) dr) ds

q—1
m—1 Z%szo » (C_qu f(z,x(v)) dr) ds

+ Jéi ¢;1 (c — J; q(f)f(r,x(r)) df) ds.

Since 0 < S/ ', < 1, we rewrite H,(c) as follows.

m—1
1 - Z n; q—1 o; B s
H,(c o Z ) ;V’J , (c - Jo q(v) f (7, x(7)) dr) ds
m—1 1 s

+ (1= n) L 4, (c - JO q(0)f (x, x(2)) dr) ds

i=1
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m—1 1

+ ; 7 J 4, (c - E q(x).f (7, x(x)) df) ds. (6)

Gi

Obviously the function H,(c¢) is strictly increasing on (—oo,+o0) and
H.(0) <0< H, (fol q(7)f(z,x(1)) dr). Therefore there exists a unique constant
ce [0, [y q(1)f (z,x(7)) dr] satisfying H,(c) = 0, which means that there exists a
unique constant 4, € [0, fol q(v) f (z,x(7)) dr| satisfying (5). O

Remark 2.1. From the proof of Lemma 2.3, we know that for any x € C*[0, 1],

A€ [0, f()l q(v) f (z,x(7)) dx].

Forany x € C7[0, 1], let A, be the unique constant satisfying (5) corresponding
to x. Then we have the following lemma.

Lemma 2.4. A, : C"[0,1] — R is continuous in X.

Proof. The proof of this lemma is similar to the proof of Lemma 2.3 of [12]; we
therefore omit it. |

For any x € C"[0, 1], let A, be the unique constant from (5) corresponding to
x. Let us define 7' : C*[0,1] — CJ0, 1] as follows.

g1 ‘
0 by (A= [ a0 (r,x()) i) ds
(Tx)(0) =

- j;lyi
+ J; ¢, (Ax - J: q(r)f (r,x(r)) dr) ds.

By Lemma 2.3, we know that Tx is well defined. It is clear that a fixed point x of
T in P is equal to a positive solution of BVP (2). About 7', we have the following
result.

Lemma 2.5. T : P — P is completely continuous, i.e., T is continuous and com-
pact.

Proof. For any x € P, from the definition of 7x we know that (7x) e C'[0, 1],
¢,((Tx)") € AC[0,1] and

~(4,(T0)") () = () f (1, x(1)) =0, O<r<1,
q-1 m—1

(Tx)(0) = > 7i(Tx)(9:), (Tx)(1) = >_ n,(Tx)(&)-

i=1 i=1
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By Lemma 2.1, Tx is concave on [0, 1] and (7x)(¢) >0, t € I, i.e., Tx € P. Thus
TP < P. Similar to Lemma 2.4 of [12], we can prove that T is completely contin-
uous. ]

Lemma 2.6 ([1]). Forany 0 <o < %, u € P has the following properties:
(@) u(t) = ||lult(1 —¢) for all t € [0, 1].
(b) u(t) = *||ul| for all t € [5,1 — ).

3. Existence and iteration of positive solution of BVP (2)

By Remark 2.1, we know that 4, e [O,I(; q(v)f(z,x(1)) dz]. Suppose that

A« = |7 q(z)f (1,x(1)) dr, where o € [0,1] is a parameter corresponding to x.

Then

2y ! (7 a0 (o) ar) s

- e +fo NI a0 f (r,x(r)) dr) ds,
0 ErE ™)
Tx)(t) = g-1 . 7

2o fy ! ([ a1 () ) o

+ 03 0y U7 400 (rox(r)) ) s

1*§:7i
+L (f q(r)f (r,x(r)) dr)ds, ox<t<]I.

It is easily verified that || 7x|| = (Tx)(oy) for any x € P.
Forany 0 <6 <1, define

([ ([ epi-a

S X

By (H,), we know that y(¢z) > 0 is continuous on [9, | —J]. Denote

q—1
(I_Z%) 2

i=1
A= B=—-—" .
>0, o 5 ®

q—1 q—1
(1- ; i+ ; V,~5i)¢;l(fol q(s) ds) re5,1-0]

Theorem 3.1. Assume that (Hy) and (Hy) hold. If there exists a constant
o€ (0, %) and two positive numbers a, b with b < a such that
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(Hs) f(t,x):1 x[0,a] — [0,+00) is non-decreasing in x;
(Ha) sup,po 11 f(t,a) < (ad)’™",inf e 15 f(1,0°b) > (bB)"~".

Then BVP (2) has at least one solution w* € P with

b<|w'|<a and lir_P Wy = liI_El T"wy =w"  where wy(t) = a, t € [0, 1].
n—-+oo n—+0oo

Proof. We denote Plb,a] ={we P|b<|w|| <a}. In what follows, we first
prove that TP[b,a] = P[b,al.

Let w € P[b,a]. Then 0 < w(t) <maxcjo,w(?) = [[w|]| <a. By Lemma 2.6,
min, (s 1) W(t) > 5?||w|| = 6%b. So, by the assumption (Hy),

0<f(t,w(0) < f(,a) < sup f(t,a) < (ad)’™", 1€]0,1], 9)
te(0,1]
f(tw(t) = f(t,0%b) > [i(snlf_o_] f(1,0°h) = (BB, 1e[5,1-0]. (10)

Therefore, for w € P[b, a], on the one hand, by (10) we have, when a,, € [3, 1 — 9],
2| Tw| = 2(Tw)(ow)

g1 -
;wmﬁﬂ?WVMWﬂwﬂ

q—1

L=>"

i=1

+ J” ¢;1 (r q(r)f(r, w(r)) dr) ds

0 K

gwﬁ@ﬂ?wvmwwM“

q—1

L=>"»

i=1

+ J; 5! (J 41 (rw(r)) dr) ds + J

S

—+

1

\

¢;1(J‘

Ty

q(r)f(r, w(r)) dr) ds

Ty
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(Jj q(r)f (r,w(r)) dr) ds+J ! <J:,q(r)f( w(r)) dr) ds
<Ja o

) q(r)f(r w(r )) dr) ds + J . ¢1 1 (J q(r)f(r w(r)) dr) ds

cal [ ([ sy [ ([

Doy f(;i ¢;1 ([T q(r) f(r,w(r))dr)ds o
— =l ' + J; ¢;1 ( Js q(r)f (r,w(r)) dr) ds

> Ll_é (15;1 ( q(r)f (r,w(r)) dr) ds

s
= bBy(0) = b;

and when g, € [l — 9, 1],
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= (Tw)(0) + Jl_(s ¢;1 (er q(r)f(r, w(r)) dr) ds

0 K

[, o (] s eonen a)

0

Y

= [Tt ([ s vy ar)as
— bBy(1 — &) > b.
On the other hand, by (9), we have
1 Tw] = (7))

q-1 X
Xy 4" (17 ) ) i) ds

q—1

L=

i=1

q—1 .
; 7 fg" ¢;1 (f()l q(r)f (r,x(r)) dr) ds
=

q-1
1 - Zlyi

q—1 .
> 7 0o b, (Jo a(r) dr) ds
< (ad)=!

= + (ad) JO 4! (L q(r) dr) ds
i=1
ISP Ser
— Vit 2. V0
= (ad) —=— 4 @%Eﬂm@
1 - Vi
=1

=a.
Altogether, we get b <|Tw||<a for we Plb,al, which means that
TPlb,a] = Plb,dl.
Let wo(t) =a, t € [0,1], then wy € P[b,a]. Let wy = Twy, then w; € P[b,al.
We denote
Wit = Tw, =T " wy,  n=1,2,.... (11)
Since TP[b,a] = P[b,a], we have w, € Plb,a], n=0,1,2,.... By Lemma 2.5, T is

compact, so {w,},—,; has a convergent subsequence {w,, },—, and there exists
w* € P[b,a] such that w,, — w*.



78 D.-X. Ma and X.-G. Chen
Now, since w € P[b, a], we have
0 < wi(t) < |wi]] < a=wo(2).
By the definition of w; and w,, we have

(8,00])) +a(O)f(t,w0) =0, 0<t<1
= m-l (12)
wi(0) = ; w1 (0;), wi(1) = ; nwi (&),

(¢,w)) +q(O)f(t,w) =0, 0<r<1

q—1 m—1 (13)
wa(0) = ; yiwa (i), wa(1) = ; nwa(&;)-

Combining (12), (13), the fact that f(¢,x) : I x [0,a] — [0,+00) is nondecreasing
in x, and w; < wy, we obtain that

—(¢p(w{(t)))/ + (¢p(w§(1)))/ >0, 0<r<l,
) = 5@, m(1) = 3 man)

wy(0) = q_ill ywa(0;), wa(1l) = Z nwa(&).

By Lemma 2.2, we know that wy(7) < wy(1), 0 <1< 1.

By induction, it follows that w, () < w,(1),0<r<1,n=0,1,2,.... Hence
we see that w, — w*. Letting n — oo in (11), we obtain that Tw* = w* since T is
continuous. Because ||w*|| > b > 0 and w* is a nonnegative concave function on
[0, 1], we conclude that w*(¢) > 0, ¢ € (0,1). Therefore, w* is a positive solution of
BVP (2). O

Corollary 3.1. Assume that (H,) and (H,) hold. If there exists a constant 6 € (0,})
such that

(1) f(t,x): I x[0,4+00) — [0,400) is non-decreasing in x;

- . p—1 . . :
(2) limy_ginf,c51-) flfil” > (%) andlim;_ . inf,¢; flf}ff) < AP~ (in particular,

JAGY)

-1

lim; o inf, ¢ 51— = 40 and lim;_, |, inf, ¢ ,% = 0), where A, B are de-

fined by (8).

Then there exist two constants a >0 and b >0 such that BVP (2) has at
least one positive solution w* € P with b < ||w*|| <a and lim,_. ., T"wy = w*,
where wy(t) = a, t € [0, 1].
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Proof. Condition (Hy) of Theorem 3.1 can be obtained by condition (2’). Then
the proof is obvious and we omit it. O

Example 3.1. Consider the existence of solutions for
('] 725u) (1) + u'*(0) + n[u /4 (1) + 1] =0, 1€ (0,1), (14)

subject to the boundary conditions

u(O)z%u(%), u(l)z%u(%). (15)

To solve BVP (14)—(15), we will use Theorem 3.1. Here p=1% and
f(t,u) = u'* +In(u!/* +1). Choose s =1. Then it is easy to compute that

1 3
y(x)—zx —x7+ =X 11

4 15 2—lx+£ X € L3
16 16 5127 ’

and so min, /4,374 (X) = 3755 Therefore we have

and we may choose two positive numbers « and b such that

1 35
b—(4> <Cl:312.

Condition (Hy4) of Theorem 3.1 is satisfied.
By the results of Theorem 3.1, we obtain not only the existence but also an
iterative method for a positive solution of BVP (14)—(15).
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