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Uniqueness of meromorphic functions sharing two sets
with finite weight
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Abstract. In this paper we consider a problem initially posed by Yi [15]. We prove two
uniqueness theorems on meromorphic functions which improve and extend results of Lahiri
[9] and Fang and Lahiri [1]. We provide an example that shows that a condition in one of
our results is sharp.
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1. Introduction definitions and results

Let /" and g be two non-constant meromorphic functions defined in the open com-
plex plane C. If for some « € Cu {0}, f and g have the same set of a-points with
same multiplicities then we say that f and g share the value « CM (counting
multiplicities). If we do not take the multiplicities into account, f and g are said
to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of Cu{oo} and E;(S)=
U, cs{z: f(2) —a = 0}, where each zero is counted according to its multiplicity.
If we do not count the multiplicity the set E/(S) = (. ({z: f(z) —a =0} is de-
noted by E/(S).

If E/(S) = E,(S) we say that f and g share the set S CM. On the other hand
if E/(S) = E,(S), we say that / and g share the set S IM.

We denote by 7'(r) the maximum of 7'(r, f) and T(r,g). The notation S(r)
denotes any quantity satisfying S(r) = o(7(r)) as r — o, outside a possible ex-
ceptional set of finite linear measure.

We use  to denote any set of infinite linear measure of 0 < r < co.

Gross [2] proved that there exist three finite sets S; (j = 1,2,3) such that any
two entire functions f* and ¢ satisfying E/(S;) = E,(S;) for j=1,2,3 must be
identical.
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In [3] Gross asked the following question: can one find two finite sets
S; (j = 1,2) such that any two non-constant entire functions f and g satisfying
Er(S;) = E,(S;) for j = 1,2 must be identical?

In response to this question Yi [15] proved for meromorphic functions the
following result.

Theorem A ([15]). Let S = {z|z" + az"" + b = 0} where n and m are two posi-
tive integers such that m > 2, n > 2m + 7 with n and m having no common factor,
and a, b are two nonzero constants such that z" 4+ az"™" + b = 0 has no multiple
roots. If f and g are two non-constant meromorphic functions satisfying

E/(S) = Ey(S) and E;({o0}) = E,({0}) then f = g.

In the same paper Yi [15] also asked the following question: what can be said if
m =1 in Theorem A?
In connection with this question Yi [15] proved the following theorem.

Theorem B ([15]). Let S = {z|z" +az"' +b =0} where n (>9) is an integer
and a, b are two nonzero constants such that z" + az"~' +b = 0 has no multiple
roots. If f and g are two non-constant meromorphic functions such that

Ef(S) = Ey(S) and Ef({0}) = E,({o0}), then either f =g or f = ﬂh(hiil and
—a(h"!

1
g= Tl)’ where h is a non-constant meromorphic function.

To provide an answer to the question of Yi and to find under which condition
f =g, Lahiri [5] proved the following result.

Theorem C ([5]). Let S = {z|z" + az"! + b = 0} where n (> 8) is a positive inte-
ger and a, b are two nonzero constants such that z" + az"~' + b = 0 has no multiple
roots. If f and g are two non-constant meromorphic functions having no simple

poles such that E;(S) = E,(S) and Ey({}) = E,({c0}). then [ = g.

Fang and Labhiri [1] improved Theorem C by replacing the range set with a
smaller one and proved the following theorem.

Theorem D ([1]). Let S = {z|z" +az""' + b = 0} where n (> 7) is a positive inte-
ger and a, b are two nonzero constants such that z" + az"~' + b = 0 has no multiple

roots. If [ and g are two non-constant meromorphic functions having no simple
poles such that E;(S) = E,(S) and Ef({0o}) = E;({0}), then f = g.

Let S = {z|z7 —z%—1 =0} and

€Z+€22+"'+€62 71+€z+"'+€52

f:1+ez+,.,+eéz’ g_1+e:+_,,+e6z'
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Obviously we have [ = e*g, Ef(S) = E,(S) and Ef({o0}) = E,({o0}), but [ # g.
So for the validity of Theorem D, f and g must not have any simple pole.

If two meromorphic functions f and g have no simple pole then clearly
©(o0; f) > Land O(c0;g) > §. To state the next theorem we require the follow-
ing definition.

Definition 1.1 ([7], [8]). Let k& be a nonnegative integer or infinity. For
a e Cu{oo} we denote by E(a; f) the set of all a-points of f, where an a-point
of multiplicity m is counted m times if m <k and k+1 times if m > k. If
Ei(a; f) = Ex(a; g), we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 < p < k. Also
note that f, g share a value « IM or CM if and only if f, g share (a,0) or (a, «0),
respectively.

Definition 1.2 ([7]). Let S be a set of distinct elements of Cu{co} and k
be a nonnegative integer or co. We denote by E;(S,k) the set Ef(S)=

Uiestzl f(z) —a =0} -
Clearly E;(S) = Ef(S, ) and E;(S) = E/(S,0).

Improving Theorem D Lahiri [9] showed the following theorem.

Theorem E ([9]). Let S ={z|z"+az""' +b =0} where n(>7) is an integer,
a and b are two nonzero constants such that z"+az"' +b=0 has no
multiple roots. If for two mnon-constant meromorphic functions f and g,
O(w0; f) +0(w;9) > 1, Ef(S,2) =EyS,2) and E;({},0)=E; ({0}, 0),
then f = g.

Considering all the above theorems it is natural to ask the following questions.

i) Is it possible to further relax the nature of sharing the set {oo} in Theorem E
such that the obtained result is a generalization of it?

ii) What happens in Theorems D and E if ®(o0; f) + O(c0;9) < 1?

Here we shall concentrate our attention on the above two questions and pro-
vide affirmative answers to both of them. The following two theorems are the
main results of this paper.

Theorem 1.1. Let S = {z|z" + az""! + b = 0} where n (> 7) is an integer and a,
b are are two nonzero constants such that z" + az"~' + b = 0 has no multiple roots.
If for two non-constant meromorphic functions f and g, ®(o0; f) + O(c0;g) >
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lh—i— 6?&%, Ef(S,2) = Ey(S,2) and Ef({oo}, k) = Ej({o0}, k) with 0 <k < o,
then [ = g.

Remark 1.1. In Theorem E, since Ey({c0}, c0) = E, ({0}, c0), it follows that f,
g share (oo, k) for all large k. Also since ®(w0; f) + O(c0;g) > 1, for sufficiently
large k we can have ©(o0; f) + ©(00;¢g) > 1 + z2— and hence by Theorem 1.1
we get the conclusion of Theorem E. So Theorem E can be considered a special
case of Theorem 1.1.

Theorem 1.2. Let S = {z|z" +az"~' +b = 0} where n (> 8) is an integer and a,
b be are two nonzero constants such that z" + az"~' + b = 0 has no multiple roots.
If for two non-constant meromorphic functions f and g, ®(oo; f) + ©(00;g) > -4,
Ef(S,2) = Ey(S,2) and Ef({0},0) = E;({0},0), then [ = g.

The following example shows that the condition ®(o0; /) + ©(00;g) > -4+ is
sharp in Theorem 1.2.

Example 1.1 (Example 2, [10]). Let f = —all‘_}’;;] and g = —ahll__h;l, where
h= %, o = exp(#) and n (> 3) is an integer.
Then T'(r,f) = (n—1)T(r,h) + O(1) and T(r,g9) = (n — 1)T(r,h) + O(1).
Further we see that 4 # o, a”> and a root of /=1 is not a pole of f and g.
Hence O(w0; f) =0O(w0;g) =;2;. Clearly f and g share (o0;00). Also
E/(S,00) = E,(S, 00) because f"1(f +a)=g"(g+a), but f #g.

Although the standard definitions and notations of the value distribution
theory are available in [4], we explain some terminology which is used in the

paper.

Definition 1.3 ([6]). For a € C U {0 }we denote by N(r,a; f | = 1) the counting
function of simple a-points of f. For a positive integer m we denote by
N(r,a; /| <m) (N(r,a; f| >m)) the counting function of those a-points of f
whose multiplicities are not greater (less) than m, where each a-point is counted
according to its multiplicity.

N(r,a; f'| <m) (N(r,a; /| > m)) is defined similarly, where in counting the
a-points of f* we ignore the multiplicities.

Also N(r,a; f| <m), N(r,a; f | > m), N(r,a; f | < m) and N(r,a; f| > m) are
defined analogously.

Definition 1.4 ([8]). We denote by Ny (r,a; f) the sum N(r,a; f) + N(r,a; f | = 2).

Definition 1.5. We denote by N(r,a; f | = k) the reduced counting function of
those a-points of f whose multiplicities is exactly k, where k > 2 is an integer.
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Definition 1.6. Let /' and ¢g be two non-constant meromorphic functions such
that f and g share (a,2) for ae Cu{oo}. Let zy be an a-point of f with
multiplicity p and an a-point of ¢ with multiplicity ¢g. We denote by
Ni(r,a; f) (NL(r,a;g)) the reduced counting function of those a-points of / and
g where p > ¢ >3 (¢ > p = 3). Also we denote by ZV(;(r, a; f) the redufed count-
in% function of those a-points of f and g where p = ¢ > 3. Clearly ]Vfg (rya; f) =
=03

NE (V, a; g)

Definition 1.7 ([7], [8]). Let f, g share a value « IM. We denote by N.(r,a; f,g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.

o Clearly N*(r,a;f,g)EN*(r,a;g,f) and ]V*(r,a;f,g)zivL(r,a;f)—l-
NL(rva;g)'

Definition 1.8 ([11]). Let a,b € Cu{cc}. We denote by N(r,a; f|g =>b) the
counting function of those a-points of f, counted according to multiplicity, which
are b-points of g.

Definition 1.9 ([11]). Let a,b € Cu{oo}. We denote by N(r,a; f|g # b) the
counting function of those a-points of f, counted according to multiplicity, which
are not h-points of g.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F
and G be non-constant meromorphic functions defined in C. We shall denote by
H and V the following two functions:

F" 2F G" 2G'
H=|m-—)-5-=
(1) (G o)

F'F G G F' G’
V= S [ A - ,
(F—l F) (G—l G) FF-1) GG-1)

Lemma 2.1 ([8], Lemma 1). If F, G share (1,1) and H # 0 then

and

N(r,I;F|=1)<N(r,o0;H)+ S, F) + S(r,G).

Lemma 2.2 ([12)). If N(r,0; f%) | f # 0) denotes the counting function of those
zeros of £ which are not the zeros of f, where a zero of f*) is counted according
to its multiplicity, then

N(r,0; f &) £ #£0) <kN(r,00; f) + N(r,0; f | < k) +kN(r,0; f| = k) + S(r, f).
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Lemma 2.3 ([11], Lemma 4). Let F, G share (1,0), (00,0) and H # 0. Then

N(r,H) <N(r,0;F|>2)+ N(r,0;G| > 2) + N.(r, 0; F, G)
+ N.(r,1;F,G) + No(r,0; F') + No(r,0; G'),

where No(r,0; F') is the reduced counting function of those zeros of F' which are not
the zeros of F(F — 1), and No(r,0; G') is similarly defined.

Lemma 2.4. Let F and G be two non-constant meromorphic functions sharing
(1,2). Then

(i) 2NL(r, 1;F) + 3N (r, 1;G) + 2N O (r, 1, F) + N(r, 1; F | = 2) < N(r, 1; G) —
NL(ra 1; F)s

(i) 2NL(r,1;G) +3NL(r,1;F) + 2N S (r, 1;G) + N(r,1;G| = 2) < N(r, 1, F)
— N(r,1; F).

Proof. We prove (i) only because (ii) can be proved similarly. Let zy be a 1-point
of F of multiplicity p a 1-point of G of multiplicity g. We denote by N;(r), Na(r)
and N3(r) the counting functions of those 1-points of F and G where 3 < ¢ < p,
3<g=pand3 < p < g, respectively, and each point in these counting functions
is counted ¢ — 2 times.

Since F, G share (1,2), we note that

N(r,1;G) = N(r,1:G) = NS (r, 1, F) + Ny(r, 1; F) + N.(r, 1; G)
+

N(r,1; F| =2) + Ni(r) + Na(r) + Ni(r). (2.1)

Also note that

Ni(r) = Np(r,1;F), (2.2)
M) = NE(r 1; F), 23
N3(r) = 2N.(r, 1; G) (2.4)

Using (2.2)—(2.4) in (2.1) we deduce that

N(r,1;G) — N(r,1;G) = 2N, (r, 1; F) + 3N (r, 1; G) + 2N S (r, 1, F)
L N(r1;F| =2).

This proves the lemma. [

Lemma 2.5. Let F, G share (1,2). Then

_ — | - 1
NL(r71;F) < N(V,O,F)+§N(V,OO,F) —gNo(V,O;F/)—FS(V,F),

W =
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where No(r,0; F') is the counting function of those zeros of F' which are not the
zeros of F(F —1).

Proof. Using Lemma 2.2 we see that

Nr(r,;F) < N(r,1;F| > 4)
< %N(r,O;F’|F: 1)
1 , 1 ,
1 — 1 — 1
< gN(r,O;F) +§N(r,oo;F) —gNo(r,O;F’) + S(r, F).
This proves the lemma. O

Lemma 2.6 ([13], Lemma 2). Let f be a non-constant meromorphic function and
P(f)=ao+arf +af*+ - +a.f", where ay,ai,as...,a, are constants and
ay #0. Then T (r,P(f)) =nT(r, f)+ O(1).

Lemma 2.7 ((14)). If H =0 then T(r,G) = T(r,F) + O(1). Also if H =0 and

lim sup N(r, 0, F) + N(r, o0; F) + N(r,0; G) + N(r, «0; G)

<1,
r—oo,rel T(V7 F)

then F=Gor F-G=1.

Lemma 2.8. Let F :L}f“) G= glklj‘,’f“), where n (>7) is an integer. If

H =0 then f”_l(f+a)g”:1(gJ;a) =b2or f"Nf +a)=g""(g+a).

Proof. Since

N(r,0; F) + N(r,0; F) + N(r,0; G) + N(r, 00; G)
= N(r,0; f) + N(r,0; f + a) + N(r, 0; f) + N(r,0; g)
+ N(r,0;9 +a) + N(r,0; g)
<3T(r,f)+3T(r,g9) + O(1),

using Lemmas 2.6 and 2.7 we get
N(r,0;F) + N(r, 0; F) + N(r,0; G) + N(r,00; G) < 6T (r, /) + S(r, f).  (2.5)

Again by Lemma 2.6,
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T(r,F)=nT(r,f)+S(r, f). (2.6)
So from (2.5) and (2.6) we obtain from Lemma 2.7 that
[N a)g g +a)y=b* or [N +a)=g" (g +a).
This proves the lemma. ]
Lemma 2.9 ([9], Lemma 5). If f, g share (c0,0) then for n (= 2)
N +a)g" g +a) # b2,
where a, b are finite nonzero constants.

Lemma 2.10 ([10], Lemma 9). Let f, g be two non-constant meromorphic func-
tions such that ©(co; f) + O(o0;g) > -4, where n (>4) is an integer. Then

SN f +a) = g" (g + a) implies that f = g, where a is a nonzero finite constant.
Lemma 2.11 ([16], Lemma 7). If F, G share (o0,0) and V =0, then F = G.

Lemma 2.12. Ler F = w, G= ‘qnil_(‘zﬂ) and V #0. If f, g share (c0,k),

where 0 < k < o0, and F, G share (1,2). Then the poles of F and G are zeros of
V and

(nk+n—1)N(r,o0; f|>k+1)
= (nk+n—1)N(r,0;g| >k +1)
< N(r,0; f) + N(r,0; f +a) + N(r,0;g) + N(r,0;g + a)
+Nr(r,1;F)+ N(r,1;G) + S(r, f) + S(r, 9).

Proof. Since f, g share (o0;k), it follows that F, G share (co;nk) and so a pole
of F with multiplicity p (> nk + 1) is a pole of G with multiplicity r (= nk + 1)
and vice versa. We note that F and G have no pole of multiplicity ¢ where
nk < ¢ < nk +n. Now, using the Milloux theorem [4], p. 55, and Lemma 2.6,
we obtain from the definition of V' that

m(r, V) =S, f)+ S(r,g).

Hence

(nk +n— DN(r, 0 f] = k+1)
= (nk+n—1)N(r,0;9| =k +1)

= (nk +n—1)N(r, 0; F | = nk + n)
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IA

(r,0; V)

(r,V)+0(1)

(ryo0; V) +m(r, V) + O(1)

(ryo0; V) + S(r, f) + S(r,9)

N(r,0;F) + N(r,0; G) + N.(r, 1;F,G) + S(r, f) + S(r,9)
N(r,0; 1)+ N(r,0; f +a) + N(r,0;9) + N(r,0;g + a)
+Np(r,1;F)+ Np(r,1;G) + S(r, f) + S(r, 9).

This proves the lemma. ]

I/\I/\I/\I/\
22%2

IA

Lemma 2.13. Let F, G share (1,2), (00,k) where 0 < k < oo and H #0. Then
i) T(r,F) < N2(r,0; F) + N»(r,0; G) + N(r, c0; F) + N(r, 00; G) +
N.(r,o0;F,G) —m(r,1;G) — NS (r,1;F) = N.(r, 1; G) + S(r, F) + S(r, G);
ii) T(r, G) < Ny(r,0; F) + No(r,0; G) + N(r, c0; F) + N(r, 00; G) +
No(r, 905 F, G) — m(r, 1;F) = NS (r, 1;G) = Np.(r, 1; F) + S(r, F) + S(r, G).
Proof. We prove only 1) since the proof of ii) is similar.
By the second fundamental theorem we obtain
T(r,F) < N(r,0;F) + N(r,c0; F) + N(r,1;F) — No(r,0; F') + S(r, F) (2.7)
and
T(r,G) < N(r,0;G) + N(r,0; G) + N(r,1; G) — No(r,0; G') + S(r,G) (2.8)
Adding (2.7) and (2.8) we get

T(r,F)+T(r,G) <N(r,0;F)+ N(r,c0; F) + N(r,0; G) + N(r, c0; G)

+N(r, L F) + N(r,1; G) — No(r,0; F') — No(r, 0; G)

+S(r, F)+ S(r,G). (2.9)
Since

N 1;F)+ N(r,1;G) < N(r,1;F| =1)+ N(r, 1; F | _2)+NE(V I, F)
+N(r,LF) + N (r,1;G) + N(r, 1; G),
using Lemmas 2.1 and 2.3, in view of Definition 1.7 we obtain that
N(r,1;F)+ N(r,1;G)
<N(r,0;F|>2)+N(r,0;G| >2) + N.(r,0; F, G)
+2Np(r,1;F) +2N.(r,1;G) + N(r,1; F| = 2) + N(r, 1; G).
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Now substituting the value of N(r, 1; G) from Lemma 2.4 we obtain

N(r,1;F)+ N(r,1;G)

< N(r0;F|>2)+N(r,0;G| > 2) + N.(r,0; F, G)
+ 2N (r,1;F) + 2Ny (r,1;G) + N(r, 1, F | = 2)
+T(r,G) —m(r,1;G) + O(1) = N(r,1; F| =2)
— NJ(r, 1;F) = 2N,(r, 1;F) = 3N, (r, 1, G)
+ No(r,0; F') + No(r,0; G') + S(r, F) + S(r, G)

<N, 0;F|>2)+N(r,0,G| >2) + N.(r,0; F,G)
+ T(r,G) = m(r, 1;G) — Ni(r, 1;G) — Ny (r, 1; F)
+ No(r,0; F") + No(r,0; G') + S(r, F) + S(r, G). (2.10)

In view of Definition 1.4 the lemma now follows from (2.9) and (2.10). O

3. Proofs of the theorems

Proof of Theorem 1.1. Let F:w and G:g”ili(f”)_ Since E/(S,2) =

E,(S,2) and E ({wo}, k) = Ej({c0},k) it follows that F, G share (1,2) and
(c0,nk). So N.(r,00;F,G) < N(r,o0;F|>nk+n)=N(r,o0;f|>k+1). If
possible, suppose that H # 0. Then F' # G. So from Lemma 2.11 we get ' # 0.
Hence from Lemmas 2.5, 2.6, 2.12 and 2.13 we obtain for ¢ (> 0)

nT(r, f) < Na(r,0; F) + N»(r,0; G) + N(r, c0; F) + N(r, o0; G)
+ N(r,o00; F| > nk +n)— Np(r,1;G) + S(r, F) + S(r, G)
< 2N(r,0; f) + Na(r,0; £ +a) + 2N (r,0;9) + Na(r,0;g + a)
+ N(r,00; 1) + N(r,00;9) + N(r,o0; f | = k+ 1)
—Ni(r,1;G) + S(r, f) + S(r,9)
<3T(r,f) +3T(r,9) + N(r,00;f) + N(r, 20:9)

+m[ﬁ(r,0;f)+N(r,0;f+a)+ﬁ(rvo;g)

+ N(r,0;9+a) + Np(r,1;F) + N (r, 1; G)]
—NL(F,I;G)—FS(F,f)—i-S(I’,g)
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2 n 2
nk+n—1 3(nk+n—-1)

+ [34_?1/(—%%] T(r.g)+ {IJ“m}

(1- f)+e)T(r, [l+ﬁ}

(1-0( +&)T(r,g) + S(r, f) + S(r,g)

nk+n+4 6nk+6n->5
S{ nk+n—1_6(nk+n—1){®(Oo;f)+®(oo3g)_23}}T(7)

+S(r, )+ S(r,g). (3.1)

s{3+ ]T(V,f)

Similarly we obtain

1T < |74 T R 0 f) + O(e0i0) — 20 O

+S(r, f)+ S(r,9). (3.2)

Combining (3.1) and (3.2) we obtain

[ nk+n+4 6nk+4+6n-5
n—"7T-—

1 Gk 1) (@00 )  O(e0ig) —28}} () < S().

(3.3)

Since ¢ > 0 (3.3) leads to a contradiction. Hence H = 0 and the theorem follows
from Lemmas 2.8, 2.9 and Lemma 2.10. This completes the proof of the theorem.

O

Proof of Theorem 1.2. Let F and G be defined as in Theorem 1.1. Then F, G
share (1,2) and (0,0). So N.(r,00;F,G) < N(r,0; F) = N(r, 0; G).
If possible, suppose H = 0. We obtain from Lemmas 2.6 and 2.13
T(r,F)+ T(r,G) < 2Ny(r,0; F) + 2Ny(r,0; G) + 3N(r, c0; F)
+3N(r,00;G) — Np(r,1;F) = N.(r,1; G)
+S(r, F)+ S(r,G).
Hence

nT(r,[) +nT(r,g) <AN(r,0; ) + 2N (r,0; f +a) + 3N(r, o0; )
+4N(r,0;9) +2N>(r,0;g + a) + 3N(r, 0; 9)
_NL(rvlaF) —]VL(r,l,G)—i—S(r,f)—i—S(r,g)
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<6T(r,f)+6T(r,g)+3N(r,c0; )+ 3N(r, 0;9)
_NL(}’:LF)_NL(V7laG)+S(r7f)+S(rag) (34)

Since H #£ 0, F # G. So from Lemma 2.11 we get V' # 0 Hence using Lemma
2.12 for k = 0 we get from (3.4)

nT(V,f) +I”IT(V, g) < 6T(}’7f) +6T(r’ g) +%{N(V70,f) +N(770;f+a)}
—i—%{]v(r,o;g)+N(r,0;g+a)}+%ﬁL(nl;F)
+%NL(V,1;G) —~ Ny (r,1;F) = Nr(r,1;G)
+S(r, /) +S(r,g)
12 12

+ S(r, )+ S(r,9).

Thus

12 12
(=625 ) 700+ (n= 6 2 ) T < 501+ S0,
which is a contradiction for any integer n (> 8). Hence H = 0 and so the theorem
follows from Lemmas 2.8, 2.9 and 2.10. O

Acknowledgement. The author is thankful to the referee for his/her valuable
comments and suggestions towards the improvement of the paper.

References

[1] M.-L. Fang and I. Lahiri, Unique range set for certain meromorphic functions. Indian
J. Math. 45 (2003), 141-150. Zbl 1048.30014 MR 2035902

[2] F. Gross, On the distribution of values of meromorphic functions. Trans. Amer. Math.
Soc. 131 (1968), 199-214; addendum ibid. 136 (1969), 547. Zbl 0157.12903
Zbl 0175.07704 MR 0220938

[3] F. Gross, Factorization of meromorphic functions and some open problems. In Com-
plex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), Lecture Notes in
Math. 599, Springer-Verlag, Berlin 1977, 51-67. Zbl 0357.30007 MR 0450529

[4] W. K. Hayman, Meromorphic functions. Oxford Mathematical Monographs, Claren-
don Press, Oxford 1964. Zbl 0115.06203 MR 0164038


http://www.emis.de/MATH-item?1048.30014
http://www.ams.org/mathscinet-getitem?mr=2035902
http://www.emis.de/MATH-item?0157.12903
http://www.emis.de/MATH-item?0175.07704
http://www.ams.org/mathscinet-getitem?mr=0220938
http://www.emis.de/MATH-item?0357.30007
http://www.ams.org/mathscinet-getitem?mr=0450529
http://www.emis.de/MATH-item?0115.06203
http://www.ams.org/mathscinet-getitem?mr=0164038

Uniqueness of meromorphic functions sharing two sets with finite weight 93

[5] 1. Lahiri, The range set of meromorphic derivatives. Northeast. Math. J. 14 (1998),
353-360. Zbl 0934.30027 MR 1685269

[6] 1. Lahiri, Value distribution of certain differential polynomials. Internat. J. Math.
Math. Sci. 28 (2001), 83-91. Zbl 0999.30023 MR 1885054

[7] 1. Lahiri, Weighted sharing and uniqueness of meromorphic functions. Nagoya Math.
J. 161 (2001), 193-206. Zbl 0981.30023 MR 1820218

[8] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions. Complex
Variables Theory Appl. 46 (2001), 241-253. Zbl 1025.30027 MR 1869738

[9] L. Lahiri, On a question of Hong Xun Yi. Arch. Math. (Brno) 38 (2002), 119-128.
Zbl 1087.30028 MR 1909593

[10] L. Lahiri and A. Banerjee, Uniqueness of meromorphic functions with deficient poles.
Kyungpook Math. J. 44 (2004), 575-584. Zbl 1070.30015 MR 2108462

[11] 1. Lahiri and A. Banerjee, Weighted sharing of two sets. Kyungpook Math. J. 46
(2006), 79-87. Zbl 1103.30017 MR 2214802

[12] 1. Lahiri and S. Dewan, Value distribution of the product of a meromorphic function
and its derivative. Kodai Math. J. 26 (2003), 95-100. Zbl 1077.30025 MR 1966685

[13] C. C. Yang, On deficiencies of differential polynomials. II. Math. Z. 125 (1972),
107-112. Zbl 0217.38402 MR 0294642

[14] H.-X. Yi, Meromorphic functions that share one or two values. Complex Variables
Theory Appl. 28 (1995), 1-11. Zbl 0841.30027 MR 1700258

[15] H.-X. Yi, Unicity theorems for meromorphic or entire functions. II. Bull. Austral.
Math. Soc. 52 (1995), 215-224. Zbl 0844.30022 MR 1348480

[16] H.-X. Yi, Meromorphic functions that share three sets. Kodai Math. J. 20
(1997), 22-32. Zbl 0882.30019 MR 1443362

Received May 6, 2006

Abhijit Banerjee, Department of Mathematics, Kalyani Government Engineering College,
West Bengal 741235, India

Email: abanerjee_kal@yahoo.co.in; abanerjee_kal@rediffmail.com


http://www.emis.de/MATH-item?0934.30027
http://www.ams.org/mathscinet-getitem?mr=1685269
http://www.emis.de/MATH-item?0999.30023
http://www.ams.org/mathscinet-getitem?mr=1885054
http://www.emis.de/MATH-item?0981.30023
http://www.ams.org/mathscinet-getitem?mr=1820218
http://www.emis.de/MATH-item?1025.30027
http://www.ams.org/mathscinet-getitem?mr=1869738
http://www.emis.de/MATH-item?1087.30028
http://www.ams.org/mathscinet-getitem?mr=1909593
http://www.emis.de/MATH-item?1070.30015
http://www.ams.org/mathscinet-getitem?mr=2108462
http://www.emis.de/MATH-item?1103.30017
http://www.ams.org/mathscinet-getitem?mr=2214802
http://www.emis.de/MATH-item?1077.30025
http://www.ams.org/mathscinet-getitem?mr=1966685
http://www.emis.de/MATH-item?0217.38402
http://www.ams.org/mathscinet-getitem?mr=0294642
http://www.emis.de/MATH-item?0841.30027
http://www.ams.org/mathscinet-getitem?mr=1700258
http://www.emis.de/MATH-item?0844.30022
http://www.ams.org/mathscinet-getitem?mr=1348480
http://www.emis.de/MATH-item?0882.30019
http://www.ams.org/mathscinet-getitem?mr=1443362

