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Abstract. In this paper we consider a problem initially posed by Yi [15]. We prove two
uniqueness theorems on meromorphic functions which improve and extend results of Lahiri
[9] and Fang and Lahiri [1]. We provide an example that shows that a condition in one of
our results is sharp.
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1. Introduction definitions and results

Let f and g be two non-constant meromorphic functions defined in the open com-

plex plane C. If for some a a CA flg, f and g have the same set of a-points with

same multiplicities then we say that f and g share the value a CM (counting

multiplicities). If we do not take the multiplicities into account, f and g are said

to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of CA flg and Ef ðSÞ ¼
6

a ASfz : f ðzÞ � a ¼ 0g, where each zero is counted according to its multiplicity.

If we do not count the multiplicity the set Ef ðSÞ ¼ 6
a ASfz : f ðzÞ � a ¼ 0g is de-

noted by Ef ðSÞ.
If Ef ðSÞ ¼ EgðSÞ we say that f and g share the set S CM. On the other hand

if Ef ðSÞ ¼ EgðSÞ, we say that f and g share the set S IM.

We denote by TðrÞ the maximum of Tðr; f Þ and Tðr; gÞ. The notation SðrÞ
denotes any quantity satisfying SðrÞ ¼ o

�
TðrÞ

�
as r ! l, outside a possible ex-

ceptional set of finite linear measure.

We use I to denote any set of infinite linear measure of 0 < r < l.

Gross [2] proved that there exist three finite sets Sj ð j ¼ 1; 2; 3Þ such that any

two entire functions f and g satisfying Ef ðSjÞ ¼ EgðSjÞ for j ¼ 1; 2; 3 must be

identical.



In [3] Gross asked the following question: can one find two finite sets

Sj ð j ¼ 1; 2Þ such that any two non-constant entire functions f and g satisfying

Ef ðSjÞ ¼ EgðSjÞ for j ¼ 1; 2 must be identical?

In response to this question Yi [15] proved for meromorphic functions the

following result.

Theorem A ([15]). Let S ¼ fz j zn þ azn�m þ b ¼ 0g where n and m are two posi-

tive integers such that mb 2, nb 2mþ 7 with n and m having no common factor,

and a, b are two nonzero constants such that zn þ azn�m þ b ¼ 0 has no multiple

roots. If f and g are two non-constant meromorphic functions satisfying

Ef ðSÞ ¼ EgðSÞ and Ef ðflgÞ ¼ EgðflgÞ then f C g.

In the same paper Yi [15] also asked the following question: what can be said if

m ¼ 1 in Theorem A?

In connection with this question Yi [15] proved the following theorem.

Theorem B ([15]). Let S ¼ fz j zn þ azn�1 þ b ¼ 0g where n ðb 9Þ is an integer

and a, b are two nonzero constants such that zn þ azn�1 þ b ¼ 0 has no multiple

roots. If f and g are two non-constant meromorphic functions such that

Ef ðSÞ ¼ EgðSÞ and Ef ðflgÞ ¼ EgðflgÞ, then either f C g or f C
�ahðhn�1�1Þ

hn�1 and

gC
�aðhn�1�1Þ

hn�1 , where h is a non-constant meromorphic function.

To provide an answer to the question of Yi and to find under which condition

f C g, Lahiri [5] proved the following result.

Theorem C ([5]). Let S ¼ fz j zn þ azn�1 þ b ¼ 0g where n ðb 8Þ is a positive inte-

ger and a, b are two nonzero constants such that zn þ azn�1 þ b ¼ 0 has no multiple

roots. If f and g are two non-constant meromorphic functions having no simple

poles such that Ef ðSÞ ¼ EgðSÞ and Ef ðflgÞ ¼ EgðflgÞ, then f C g.

Fang and Lahiri [1] improved Theorem C by replacing the range set with a

smaller one and proved the following theorem.

Theorem D ([1]). Let S ¼ fz j zn þ azn�1 þ b ¼ 0g where n ðb 7Þ is a positive inte-

ger and a, b are two nonzero constants such that zn þ azn�1 þ b ¼ 0 has no multiple

roots. If f and g are two non-constant meromorphic functions having no simple

poles such that Ef ðSÞ ¼ EgðSÞ and Ef ðflgÞ ¼ EgðflgÞ, then f C g.

Let S ¼ fz j z7 � z6 � 1 ¼ 0g and

f ¼ ez þ e2z þ � � � þ e6z

1þ ez þ � � � þ e6z
; g ¼ 1þ ez þ � � � þ e5z

1þ ez þ � � � þ e6z
:
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Obviously we have f ¼ ezg, Ef ðSÞ ¼ EgðSÞ and Ef ðflgÞ ¼ EgðflgÞ, but f D g.

So for the validity of Theorem D, f and g must not have any simple pole.

If two meromorphic functions f and g have no simple pole then clearly

Yðl; f Þb 1
2 and Yðl; gÞb 1

2 . To state the next theorem we require the follow-

ing definition.

Definition 1.1 ([7], [8]). Let k be a nonnegative integer or infinity. For

a a CA flg we denote by Ekða; f Þ the set of all a-points of f , where an a-point

of multiplicity m is counted m times if ma k and k þ 1 times if m > k. If

Ekða; f Þ ¼ Ekða; gÞ, we say that f , g share the value a with weight k.

We write f , g share ða; kÞ to mean that f , g share the value a with weight k.

Clearly if f , g share ða; kÞ then f , g share ða; pÞ for any integer p, 0a p < k. Also

note that f , g share a value a IM or CM if and only if f , g share ða; 0Þ or ða;lÞ,
respectively.

Definition 1.2 ([7]). Let S be a set of distinct elements of CA flg and k

be a nonnegative integer or l. We denote by Ef ðS; kÞ the set Ef ðSÞ ¼
6

a ASfz j f ðzÞ � a ¼ 0g.
Clearly Ef ðSÞ ¼ Ef ðS;lÞ and Ef ðSÞ ¼ Ef ðS; 0Þ.

Improving Theorem D Lahiri [9] showed the following theorem.

Theorem E ([9]). Let S ¼ fz j zn þ azn�1 þ b ¼ 0g where n ðb 7Þ is an integer,

a and b are two nonzero constants such that zn þ azn�1 þ b ¼ 0 has no

multiple roots. If for two non-constant meromorphic functions f and g,

Yðl; f Þ þYðl; gÞ > 1, Ef ðS; 2Þ ¼ EgðS; 2Þ and Ef ðflg;lÞ ¼ Egðflg;lÞ,
then f C g.

Considering all the above theorems it is natural to ask the following questions.

i) Is it possible to further relax the nature of sharing the set flg in Theorem E

such that the obtained result is a generalization of it?

ii) What happens in Theorems D and E if Yðl; f Þ þYðl; gÞ < 1?

Here we shall concentrate our attention on the above two questions and pro-

vide a‰rmative answers to both of them. The following two theorems are the

main results of this paper.

Theorem 1.1. Let S ¼ fz j zn þ azn�1 þ b ¼ 0g where n ðb 7Þ is an integer and a,

b are are two nonzero constants such that zn þ azn�1 þ b ¼ 0 has no multiple roots.

If for two non-constant meromorphic functions f and g, Yðl; f Þ þYðl; gÞ >
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1þ 29
6nkþ6n�5 , Ef ðS; 2Þ ¼ EgðS; 2Þ and Ef ðflg; kÞ ¼ Egðflg; kÞ with 0a k < l,

then f C g.

Remark 1.1. In Theorem E, since Ef ðflg;lÞ ¼ Egðflg;lÞ, it follows that f ,

g share ðl; kÞ for all large k. Also since Yðl; f Þ þYðl; gÞ > 1, for su‰ciently

large k we can have Yðl; f Þ þYðl; gÞ > 1þ 29
6nkþ6n�5 and hence by Theorem 1.1

we get the conclusion of Theorem E. So Theorem E can be considered a special

case of Theorem 1.1.

Theorem 1.2. Let S ¼ fz j zn þ azn�1 þ b ¼ 0g where n ðb 8Þ is an integer and a,

b be are two nonzero constants such that zn þ azn�1 þ b ¼ 0 has no multiple roots.

If for two non-constant meromorphic functions f and g, Yðl; f Þ þYðl; gÞ > 4
n�1 ,

Ef ðS; 2Þ ¼ EgðS; 2Þ and Ef ðflg; 0Þ ¼ Egðflg; 0Þ, then f C g.

The following example shows that the condition Yðl; f Þ þYðl; gÞ > 4
n�1 is

sharp in Theorem 1.2.

Example 1.1 (Example 2, [10]). Let f ¼ �a 1�hn�1

1�hn and g ¼ �ah 1�hn�1

1�hn , where

h ¼ a2ðez�1Þ
ez�a

, a ¼ exp 2pi
n

� �
and n ðb 3Þ is an integer.

Then Tðr; f Þ ¼ ðn� 1ÞTðr; hÞ þOð1Þ and Tðr; gÞ ¼ ðn� 1ÞTðr; hÞ þOð1Þ.
Further we see that hA a; a2 and a root of h ¼ 1 is not a pole of f and g.

Hence Yðl; f Þ ¼ Yðl; gÞ ¼ 2
n�1 . Clearly f and g share ðl;lÞ. Also

Ef ðS;lÞ ¼ EgðS;lÞ because f n�1ð f þ aÞC gn�1ðgþ aÞ, but f D g.

Although the standard definitions and notations of the value distribution

theory are available in [4], we explain some terminology which is used in the

paper.

Definition 1.3 ([6]). For a a CA flgwe denote by Nðr; a; f j ¼ 1Þ the counting

function of simple a-points of f . For a positive integer m we denote by

Nðr; a; f jamÞ
�
Nðr; a; f jbmÞ

�
the counting function of those a-points of f

whose multiplicities are not greater (less) than m, where each a-point is counted

according to its multiplicity.

Nðr; a; f jamÞ
�
Nðr; a; f jbmÞ

�
is defined similarly, where in counting the

a-points of f we ignore the multiplicities.

Also Nðr; a; f j < mÞ, Nðr; a; f j > mÞ, Nðr; a; f j < mÞ and Nðr; a; f j > mÞ are
defined analogously.

Definition 1.4 ([8]). We denote by N2ðr; a; f Þ the sum Nðr; a; f Þ þNðr; a; f jb 2Þ.

Definition 1.5. We denote by Nðr; a; f j ¼ kÞ the reduced counting function of

those a-points of f whose multiplicities is exactly k, where kb 2 is an integer.

84 A. Banerjee



Definition 1.6. Let f and g be two non-constant meromorphic functions such

that f and g share ða; 2Þ for a a CA flg. Let z0 be an a-point of f with

multiplicity p and an a-point of g with multiplicity q. We denote by

NLðr; a; f Þ
�
NLðr; a; gÞ

�
the reduced counting function of those a-points of f and

g where p > qb 3 ðq > pb 3Þ. Also we denote by N
ð3
E ðr; a; f Þ the reduced count-

ing function of those a-points of f and g where p ¼ qb 3. Clearly N
ð3
E ðr; a; f Þ ¼

N
ð3
E ðr; a; gÞ.

Definition 1.7 ([7], [8]). Let f , g share a value a IM. We denote by N�ðr; a; f ; gÞ
the reduced counting function of those a-points of f whose multiplicities di¤er

from the multiplicities of the corresponding a-points of g.

Clearly N�ðr; a; f ; gÞCN�ðr; a; g; f Þ and N�ðr; a; f ; gÞ ¼ NLðr; a; f Þþ
NLðr; a; gÞ.

Definition 1.8 ([11]). Let a; b a CA flg. We denote by Nðr; a; f j g ¼ bÞ the

counting function of those a-points of f , counted according to multiplicity, which

are b-points of g.

Definition 1.9 ([11]). Let a; b a CA flg. We denote by Nðr; a; f j gA bÞ the

counting function of those a-points of f , counted according to multiplicity, which

are not b-points of g.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F

and G be non-constant meromorphic functions defined in C. We shall denote by

H and V the following two functions:

H ¼ F 00

F 0 �
2F 0

F � 1

� �
� G 00

G 0 �
2G 0

G � 1

� �

and

V ¼ F 0

F � 1
� F 0

F

� �
� G 0

G � 1
� G 0

G

� �
¼ F 0

FðF � 1Þ �
G 0

GðG � 1Þ :

Lemma 2.1 ([8], Lemma 1). If F , G share ð1; 1Þ and HD 0 then

Nðr; 1;F j ¼ 1ÞaNðr;l;HÞ þ Sðr;F Þ þ Sðr;GÞ:

Lemma 2.2 ([12]). If Nðr; 0; f ðkÞ j f A 0Þ denotes the counting function of those

zeros of f ðkÞ which are not the zeros of f , where a zero of f ðkÞ is counted according

to its multiplicity, then

Nðr; 0; f ðkÞ j f A 0Þa kNðr;l; f Þ þNðr; 0; f j < kÞ þ kNðr; 0; f jb kÞ þ Sðr; f Þ:
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Lemma 2.3 ([11], Lemma 4). Let F, G share ð1; 0Þ, ðl; 0Þ and HD 0. Then

Nðr;HÞaNðr; 0;F jb 2Þ þNðr; 0;G jb 2Þ þN�ðr;l;F ;GÞ
þN�ðr; 1;F ;GÞ þN0ðr; 0;F 0Þ þN0ðr; 0;G 0Þ;

where N0ðr; 0;F 0Þ is the reduced counting function of those zeros of F 0 which are not

the zeros of FðF � 1Þ, and N0ðr; 0;G 0Þ is similarly defined.

Lemma 2.4. Let F and G be two non-constant meromorphic functions sharing

ð1; 2Þ. Then

(i) 2NLðr; 1;F Þ þ 3NLðr; 1;GÞ þ 2N
ð3
E ðr; 1;FÞ þNðr; 1;F j ¼ 2ÞaNðr; 1;GÞ�

NLðr; 1;F Þ;
(ii) 2NLðr; 1;GÞ þ 3NLðr; 1;F Þ þ 2N

ð3
E ðr; 1;GÞ þNðr; 1;G j ¼ 2ÞaNðr; 1;FÞ

�Nðr; 1;FÞ.

Proof. We prove (i) only because (ii) can be proved similarly. Let z0 be a 1-point

of F of multiplicity p a 1-point of G of multiplicity q. We denote by N1ðrÞ, N2ðrÞ
and N3ðrÞ the counting functions of those 1-points of F and G where 3a q < p,

3a q ¼ p and 3a p < q, respectively, and each point in these counting functions

is counted q� 2 times.

Since F , G share ð1; 2Þ, we note that

Nðr; 1;GÞ �Nðr; 1;GÞ ¼ N
ð3
E ðr; 1;F Þ þNLðr; 1;FÞ þNLðr; 1;GÞ

þNðr; 1;F j ¼ 2Þ þN1ðrÞ þN2ðrÞ þN3ðrÞ: ð2:1Þ

Also note that

N1ðrÞbNLðr; 1;F Þ; ð2:2Þ

N2ðrÞbN
ð3
E ðr; 1;F Þ; ð2:3Þ

N3ðrÞb 2NLðr; 1;GÞ: ð2:4Þ

Using (2.2)–(2.4) in (2.1) we deduce that

Nðr; 1;GÞ �Nðr; 1;GÞb 2NLðr; 1;FÞ þ 3NLðr; 1;GÞ þ 2N
ð3
E ðr; 1;FÞ

þNðr; 1;F j ¼ 2Þ:
This proves the lemma. r

Lemma 2.5. Let F, G share ð1; 2Þ. Then

NLðr; 1;FÞa
1

3
Nðr; 0;F Þ þ 1

3
Nðr;l;FÞ � 1

3
N0ðr; 0;F 0Þ þ Sðr;F Þ;
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where N0ðr; 0;F 0Þ is the counting function of those zeros of F 0 which are not the

zeros of F ðF � 1Þ.

Proof. Using Lemma 2.2 we see that

NLðr; 1;FÞaNðr; 1;F jb 4Þ

a
1

3
Nðr; 0;F 0 jF ¼ 1Þ

a
1

3
Nðr; 0;F 0 jF A 0Þ � 1

3
N0ðr; 0;F 0Þ

a
1

3
Nðr; 0;F Þ þ 1

3
Nðr;l;FÞ � 1

3
N0ðr; 0;F 0Þ þ Sðr;F Þ:

This proves the lemma. r

Lemma 2.6 ([13], Lemma 2). Let f be a non-constant meromorphic function and

Pð f Þ ¼ a0 þ a1 f þ a2 f
2 þ � � � þ an f

n, where a0; a1; a2 . . . ; an are constants and

anA 0. Then T
�
r;Pð f Þ

�
¼ nTðr; f Þ þOð1Þ.

Lemma 2.7 ([14]). If HC 0 then Tðr;GÞ ¼ Tðr;F Þ þOð1Þ. Also if HC 0 and

lim sup
r!l; r A I

Nðr; 0;F Þ þNðr;l;FÞ þNðr; 0;GÞ þNðr;l;GÞ
Tðr;FÞ < 1;

then F CG or F � GC 1.

Lemma 2.8. Let F ¼ f n�1ð fþaÞ
�b

, G ¼ gn�1ðgþaÞ
�b

, where n ðb 7Þ is an integer. If

HC 0 then f n�1ð f þ aÞgn�1ðgþ aÞC b2 or f n�1ð f þ aÞC gn�1ðgþ aÞ.

Proof. Since

Nðr; 0;F Þ þNðr;l;FÞ þNðr; 0;GÞ þNðr;l;GÞ
¼ Nðr; 0; f Þ þNðr; 0; f þ aÞ þNðr;l; f Þ þNðr; 0; gÞ

þNðr; 0; gþ aÞ þNðr;l; gÞ
a 3Tðr; f Þ þ 3Tðr; gÞ þOð1Þ;

using Lemmas 2.6 and 2.7 we get

Nðr; 0;FÞ þNðr;l;F Þ þNðr; 0;GÞ þNðr;l;GÞa 6Tðr; f Þ þ Sðr; f Þ: ð2:5Þ

Again by Lemma 2.6,
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Tðr;F Þ ¼ nTðr; f Þ þ Sðr; f Þ: ð2:6Þ

So from (2.5) and (2.6) we obtain from Lemma 2.7 that

f n�1ð f þ aÞgn�1ðgþ aÞC b2 or f n�1ð f þ aÞC gn�1ðgþ aÞ:

This proves the lemma. r

Lemma 2.9 ([9], Lemma 5). If f , g share ðl; 0Þ then for n ðb 2Þ

f n�1ð f þ aÞgn�1ðgþ aÞD b2;

where a, b are finite nonzero constants.

Lemma 2.10 ([10], Lemma 9). Let f , g be two non-constant meromorphic func-

tions such that Yðl; f Þ þYðl; gÞ > 4
n�1 , where n ðb 4Þ is an integer. Then

f n�1ð f þ aÞC gn�1ðgþ aÞ implies that f C g, where a is a nonzero finite constant.

Lemma 2.11 ([16], Lemma 7). If F , G share ðl; 0Þ and V C 0, then F CG.

Lemma 2.12. Let F ¼ f n�1ð fþaÞ
�b

, G ¼ gn�1ðgþaÞ
�b

and V D 0. If f , g share ðl; kÞ,
where 0a k < l, and F , G share ð1; 2Þ. Then the poles of F and G are zeros of

V and

ðnk þ n� 1ÞNðr;l; f jb k þ 1Þ
¼ ðnk þ n� 1ÞNðr;l; g jb k þ 1Þ
aNðr; 0; f Þ þNðr; 0; f þ aÞ þNðr; 0; gÞ þNðr; 0; gþ aÞ

þNLðr; 1;FÞ þNLðr; 1;GÞ þ Sðr; f Þ þ Sðr; gÞ:

Proof. Since f , g share ðl; kÞ, it follows that F , G share ðl; nkÞ and so a pole

of F with multiplicity p ðb nk þ 1Þ is a pole of G with multiplicity r ðb nk þ 1Þ
and vice versa. We note that F and G have no pole of multiplicity q where

nk < q < nk þ n. Now, using the Milloux theorem [4], p. 55, and Lemma 2.6,

we obtain from the definition of V that

mðr;VÞ ¼ Sðr; f Þ þ Sðr; gÞ:

Hence

ðnk þ n� 1ÞNðr;l; f jb k þ 1Þ
¼ ðnk þ n� 1ÞNðr;l; g jb k þ 1Þ
¼ ðnk þ n� 1ÞNðr;l;F jb nk þ nÞ
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aNðr; 0;VÞ
aTðr;VÞ þOð1Þ
aNðr;l;VÞ þmðr;VÞ þOð1Þ
aNðr;l;VÞ þ Sðr; f Þ þ Sðr; gÞ
aNðr; 0;F Þ þNðr; 0;GÞ þN�ðr; 1;F ;GÞ þ Sðr; f Þ þ Sðr; gÞ
aNðr; 0; f Þ þNðr; 0; f þ aÞ þNðr; 0; gÞ þNðr; 0; gþ aÞ

þNLðr; 1;F Þ þNLðr; 1;GÞ þ Sðr; f Þ þ Sðr; gÞ:

This proves the lemma. r

Lemma 2.13. Let F, G share ð1; 2Þ, ðl; kÞ where 0a k < l and HD 0. Then

i) Tðr;FÞaN2ðr; 0;FÞ þN2ðr; 0;GÞ þNðr;l;F Þ þNðr;l;GÞ þ
N�ðr;l;F ;GÞ �mðr; 1;GÞ �N

ð3
E ðr; 1;F Þ �NLðr; 1;GÞ þ Sðr;FÞ þ Sðr;GÞ;

ii) Tðr;GÞaN2ðr; 0;F Þ þN2ðr; 0;GÞ þNðr;l;FÞ þNðr;l;GÞ þ
N�ðr;l;F ;GÞ �mðr; 1;FÞ �N

ð3
E ðr; 1;GÞ �NLðr; 1;FÞ þ Sðr;F Þ þ Sðr;GÞ.

Proof. We prove only i) since the proof of ii) is similar.

By the second fundamental theorem we obtain

Tðr;FÞaNðr; 0;FÞ þNðr;l;F Þ þNðr; 1;F Þ �N0ðr; 0;F 0Þ þ Sðr;FÞ ð2:7Þ
and

Tðr;GÞaNðr; 0;GÞ þNðr;l;GÞ þNðr; 1;GÞ �N0ðr; 0;G 0Þ þ Sðr;GÞ ð2:8Þ

Adding (2.7) and (2.8) we get

Tðr;F Þ þ Tðr;GÞaNðr; 0;FÞ þNðr;l;F Þ þNðr; 0;GÞ þNðr;l;GÞ
þNðr; 1;FÞ þNðr; 1;GÞ �N0ðr; 0;F 0Þ �N0ðr; 0;G 0Þ
þ Sðr;FÞ þ Sðr;GÞ: ð2:9Þ

Since

Nðr; 1;FÞ þNðr; 1;GÞaNðr; 1;F j ¼ 1Þ þNðr; 1;F j ¼ 2Þ þN
ð3
E ðr; 1;F Þ

þNLðr; 1;F Þ þNLðr; 1;GÞ þNðr; 1;GÞ;

using Lemmas 2.1 and 2.3, in view of Definition 1.7 we obtain that

Nðr; 1;FÞ þNðr; 1;GÞ
aNðr; 0;F jb 2Þ þNðr; 0;G jb 2Þ þN�ðr;l;F ;GÞ

þ 2NLðr; 1;F Þ þ 2NLðr; 1;GÞ þNðr; 1;F j ¼ 2Þ þNðr; 1;GÞ:
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Now substituting the value of Nðr; 1;GÞ from Lemma 2.4 we obtain

Nðr; 1;F Þ þNðr; 1;GÞ

aNðr; 0;F jb 2Þ þNðr; 0;G jb 2Þ þN�ðr;l;F ;GÞ

þ 2NLðr; 1;FÞ þ 2NLðr; 1;GÞ þNðr; 1;F j ¼ 2Þ

þ Tðr;GÞ �mðr; 1;GÞ þOð1Þ �Nðr; 1;F j ¼ 2Þ

�N
ð3
E ðr; 1;F Þ � 2NLðr; 1;FÞ � 3NLðr; 1;GÞ

þN0ðr; 0;F 0Þ þN0ðr; 0;G 0Þ þ Sðr;F Þ þ Sðr;GÞ

aNðr; 0;F jb 2Þ þNðr; 0;G jb 2Þ þN�ðr;l;F ;GÞ

þ Tðr;GÞ �mðr; 1;GÞ �NLðr; 1;GÞ �N
ð3
E ðr; 1;FÞ

þN0ðr; 0;F 0Þ þN0ðr; 0;G 0Þ þ Sðr;F Þ þ Sðr;GÞ: ð2:10Þ

In view of Definition 1.4 the lemma now follows from (2.9) and (2.10). r

3. Proofs of the theorems

Proof of Theorem 1.1. Let F ¼ f n�1ð fþaÞ
�b

and G ¼ gn�1ðgþaÞ
�b

. Since Ef ðS; 2Þ ¼
EgðS; 2Þ and Ef ðflg; kÞ ¼ Egðflg; kÞ it follows that F , G share ð1; 2Þ and

ðl; nkÞ. So N�ðr;l;F ;GÞaNðr;l;F jb nk þ nÞ ¼ Nðr;l; f jb k þ 1Þ. If

possible, suppose that HD 0. Then F DG. So from Lemma 2.11 we get V D 0.

Hence from Lemmas 2.5, 2.6, 2.12 and 2.13 we obtain for e ð> 0Þ

nTðr; f ÞaN2ðr; 0;FÞ þN2ðr; 0;GÞ þNðr;l;F Þ þNðr;l;GÞ

þNðr;l;F jb nk þ nÞ �NLðr; 1;GÞ þ Sðr;F Þ þ Sðr;GÞ

a 2Nðr; 0; f Þ þN2ðr; 0; f þ aÞ þ 2Nðr; 0; gÞ þN2ðr; 0; gþ aÞ

þNðr;l; f Þ þNðr;l; gÞ þNðr;l; f jb k þ 1Þ

�NLðr; 1;GÞ þ Sðr; f Þ þ Sðr; gÞ

a 3Tðr; f Þ þ 3Tðr; gÞ þNðr;l; f Þ þNðr;l; gÞ

þ 1

nk þ n� 1
½Nðr; 0; f Þ þNðr; 0; f þ aÞ þNðr; 0; gÞ

þNðr; 0; gþ aÞ þNLðr; 1;FÞ þNLðr; 1;GÞ�

�NLðr; 1;GÞ þ Sðr; f Þ þ Sðr; gÞ
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a 3þ 2

nk þ n� 1
þ 2

3ðnk þ n� 1Þ

� �
Tðr; f Þ

þ 3þ 2

nk þ n� 1

� �
Tðr; gÞ þ 1þ 1

6ðnk þ n� 1Þ

� �

�
�
1�Yðl; f Þ þ e

�
Tðr; f Þ þ 1þ 1

6ðnk þ n� 1Þ

� �

�
�
1�Yðl; gÞ þ e

�
Tðr; gÞ þ Sðr; f Þ þ Sðr; gÞ

a 7þ nk þ nþ 4

nk þ n� 1
� 6nk þ 6n� 5

6ðnk þ n� 1Þ fYðl; f Þ þYðl; gÞ � 2eg
� �

TðrÞ

þ Sðr; f Þ þ Sðr; gÞ: ð3:1Þ

Similarly we obtain

nTðr; gÞa 7þ nk þ nþ 4

nk þ n� 1
� 6nk þ 6n� 5

6ðnk þ n� 1Þ fYðl; f Þ þYðl; gÞ � 2eg
� �

TðrÞ

þ Sðr; f Þ þ Sðr; gÞ: ð3:2Þ

Combining (3.1) and (3.2) we obtain

n� 7� nk þ nþ 4

nk þ n� 1
þ 6nk þ 6n� 5

6ðnk þ n� 1Þ fYðl; f Þ þYðl; gÞ � 2eg
� �

TðrÞaSðrÞ:
ð3:3Þ

Since e > 0 (3.3) leads to a contradiction. Hence HC 0 and the theorem follows

from Lemmas 2.8, 2.9 and Lemma 2.10. This completes the proof of the theorem.

r

Proof of Theorem 1.2. Let F and G be defined as in Theorem 1.1. Then F , G

share ð1; 2Þ and ðl; 0Þ. So N�ðr;l;F ;GÞaNðr;l;F Þ ¼ Nðr;l;GÞ.
If possible, suppose HC 0. We obtain from Lemmas 2.6 and 2.13

Tðr;FÞ þ Tðr;GÞa 2N2ðr; 0;FÞ þ 2N2ðr; 0;GÞ þ 3Nðr;l;FÞ
þ 3Nðr;l;GÞ �NLðr; 1;F Þ �NLðr; 1;GÞ
þ Sðr;FÞ þ Sðr;GÞ:

Hence

nTðr; f Þ þ nTðr; gÞa 4Nðr; 0; f Þ þ 2N2ðr; 0; f þ aÞ þ 3Nðr;l; f Þ
þ 4Nðr; 0; gÞ þ 2N2ðr; 0; gþ aÞ þ 3Nðr;l; gÞ
�NLðr; 1;F Þ �NLðr; 1;GÞ þ Sðr; f Þ þ Sðr; gÞ
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a 6Tðr; f Þ þ 6Tðr; gÞ þ 3Nðr;l; f Þ þ 3Nðr;l; gÞ
�NLðr; 1;F Þ �NLðr; 1;GÞ þ Sðr; f Þ þ Sðr; gÞ: ð3:4Þ

Since HD 0, F DG. So from Lemma 2.11 we get V D 0 Hence using Lemma

2.12 for k ¼ 0 we get from (3.4)

nTðr; f Þ þ nTðr; gÞa 6Tðr; f Þ þ 6Tðr; gÞ þ 6

n� 1
fNðr; 0; f Þ þNðr; 0; f þ aÞg

þ 6

n� 1
fNðr; 0; gÞ þNðr; 0; gþ aÞg þ 6

n� 1
NLðr; 1;F Þ

þ 6

n� 1
NLðr; 1;GÞ �NLðr; 1;FÞ �NLðr; 1;GÞ

þ Sðr; f Þ þ Sðr; gÞ

a 6þ 12

n� 1

� �
Tðr; f Þ þ 6þ 12

n� 1

� �
Tðr; gÞ

þ Sðr; f Þ þ Sðr; gÞ:

Thus

n� 6� 12

n� 1

� �
Tðr; f Þ þ n� 6� 12

n� 1

� �
Tðr; gÞaSðr; f Þ þ Sðr; gÞ;

which is a contradiction for any integer n ðb 8Þ. Hence HC 0 and so the theorem

follows from Lemmas 2.8, 2.9 and 2.10. r
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