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Existence of solutions for degenerated problems in L!
having lower order terms with natural growth

L. Aharouch, E. Azroul and A. Benkirane

(Communicated by Miguel Ramos)

Abstract. We prove the existence of a solution for a strongly nonlinear degenerated prob-
lem associated to the equation

Au+ g(x,u,Vu) = f,

where A is a Leray—Lions operator from the weighted Sobolev space WOl P(Q,w) into its
dual W12 (Q, w*). While g(x, s, ¢) is a nonlinear term having natural growth with respect
to ¢ and no growth with respect to s, it satisfies a sign condition on s, i.e., g(x,s,&) -5 >0
for every s € R. The right-hand side f belongs to L' (Q).
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1. Introduction and Basic assumptions

Let Q be an open bounded subset of RY, N >2. Let p be a real number
with 1 < p< oo and let p’ be its Holder conjugate (i.e., %—l—%: 1). By
w={w;(x)|i=0,..., N} we denote a collection of weight functions on Q. Con-
sider the following nonlinear elliptic degenerated problem

—div(a(x,u, Vu)) + g(x,u,Vu) = f in Q, ()
u=0 ondQ, '

where ¢ : Q x R x RN — R" is a Carathéodory function satisfying the following
assumptions:

(H{) (Growth, monotonicity and degeneracy)

N
JaiCx, 5, )| < () [k() + 07l 7+l lg 1< i];)’
J=1 .
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[a(x,s,&) —a(x,s,n)](E—n) >0 forall & #ne RY, (1.3)

(stC>ocZw, ), (1.4)

for a.e. xin Q, all s € R and all { € RY, where k(x) is a positive function in
L?'(Q), o is some constant strictly positive and where o(x) and ¢ are the so-
called Hardy parameters (cf. hypotheses (Hy) below).

(H,) (Sign condition and growth)
g(x,s,&) is a Carathéodory function satisfying

g(x,8,&) -5 >0, (1.5)

l9(x.5.)| < b(ls]) (el +Zw, )Ied”), (1.6)

where b : Rt — R" is a positive increasing function and ¢(x) is a positive
function in L'(Q).

We will be concerned with some existence result for the solutions of (1.1).

We begin by recalling some previous works on nonlinear elliptic equations.

In the variational case (i.e., / belongs to W12 (Q, w*)) it is well known (see
[2]) that there exists a weak solution u of (1.1) with u € Wol'q(Q, w).

The case where f is a function in L'(Q) is investigated in [3], but under the
following additional assumption on g,

N
lg(x,s,&)| > wa,-|é,-|P for |s| sufficiently large, (1.7)
i=1

and this implies that such a solution belongs to WO1 T(Q,w).
Note that the results of [2] and [3] are given under the following integrability of
the Hardy function o,

o el (Q), 1<g<w. (1.8)

Let us recall this integrability condition that has been used in order to prove the
existence of a solution for the approximate problem, while (1.7) plays a crucial
role in the a priori estimates. More precisely, we have proved that the solutions
u, of the approximate problem are bounded in WO1 T(Q,w).

We are pleased to refer to [13] where the author establishes an existence result
for problem (I1.1) in the non-degenerated case without assuming any coercivity
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condition on the nonlinearity g. Moreover the solution « belongs to WO1 4(Q) for
all ¢ < N1<Vp__ll), which implies that a(x,u, Vu) € L'(Q) so that it is then possible to
find a weak solution of (1.1); see [13].

The aim of this paper is to prove the existence of a solution for (1.1) in
weighted Sobolev spaces without assuming the conditions (1.7) and (1.8). For
this we will approximate f with regular functions f, and the nonlinearity g by

the sequence

g(x> S, é)

w(X,8,8) =n—F—"—">Tim Ul/q .
s = g
We have considered the following approximate problem
u, € Wol’p(Q, w),
J a(x,uy, Vu,)Vodx + J Gn (X, ty, Vuy v dx = J Javdx, (1.9)
Q Q Q

ve WP (Q,w)

and studied the possibility to find a solution of (1.1) as limit of a subsequence (u,),
of solutions to (1.9). We are going to prove the existence of u, by using the tech-
niques of pseudo-monotonicity.

In our framework, the boundedness of u, in a weighted Sobolev space is not
guaranteed because of the non-existence of the imbedding theorems and the viola-
tion of condition (1.7). (But in the non-weighted case it is known that u, is
bounded in WO1 Q) for all ¢ < N](\,p:ll); see [13].) However an a priori estimate
of the sequence (Tk(un))n is always available, and by adapting the same tech-
niques introduced in [4], we can show that u, converges almost everywhere to
some function u in Q. Thus we can prove the strong convergence of Ty (u,).

Note that the existence results for a weak solution of problem (1.1) in weighted
Sobolev space appear in the literature only under slightly stronger conditions. For
completeness we prove in Theorem 3.1 an existence result in the setting of our
hypotheses. Then the solution constructed via approximation methods is not
necessarily in W !(Q;w) and has not necessarily a gradient in the usual sense.
In order to resolve this difficulty we argue as in [4] and seek as solution a new
space 7 (l)”’ (Q;w). This leads to the notion of entropy solution.

Our main result (Theorem 3.1) can be viewed as a continuation of the analo-
gous result in [3] in the sense of a non-coercive perturbation term and free Hardy
weight.

The present paper is organized as follows. In Section 2 we begin with some
preliminaries results. In Section 3 we present and prove our main existence result.

To conclude this section, let us mention that if we take w = 1 in our present
work, we obtain an existence result for problem (1.1) in the non-weighted case as
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in [13]. The approach is different from that in [13] and allows for some more gen-
eral coercivity of type (3.1). However, when w = 1, we do not know how to ex-
tend our approach in the case where the weaker coercivity (1.4) is assumed instead
of the stronger one (3.1); see Remarks 3.3, 3.4, 4.1 and 4.2 below.

2. Preliminaries

Let Q be a bounded open subset of RY (N > 2). Let p be a real number such that
l < p<ooandletw={wi(x);i=1,...,N} be a vector of weight functions, i.e.,
every component w;(x) is a measurable function which is strictly positive almost
everywhere in Q. Further, we suppose in all our considerations that

wi e L} (Q) (2.1)
and
w VP e Ll (@) for0<i<N. (2.2)
We define the weighted space with weight y in Q as
L7(Q,y) = {u(x),up'" € L*(Q)}

endowed with the norm

||u||w = (JQ |u(x)|"y(x) dx)””_

We denote by W!7(Q,w) the weighted Sobolev space of all real-valued functions
u e LP(Q,wy) such that the derivatives in the sense of distributions satisfy

u e LP(Q,w;) foralli=1,...,N.
6x,~

Then W'P(Q, w) is a Banach space with respect to the norm

N P
ou 1/p
— 1 S
il e = (JQ ()" wo dx+Z:JQ o | ) (2.3)
WO1 P(Q,w) is defined as the closure of C°(Q) with respect to the norm (2.3).
Note that C° () is dense in W,”(Q,w) and (Wy"(Q,w), | - |I; ,.,) is a reflexive
Banach space.
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We recall that the dual of the weighted Sobolev spaces W P(Q,w) is equiva-
lent to W17 (Q,w*), where w* = {w} = w1 -’ hLi=1,. N For more details
the reader is referred to [9].

Now we introduce the truncature operator. For a given constant k > 0 we de-
fine the cut function 7} : R — R by

s if |s] < k,

Ti(s) = {ksign(s) if |s| > . (24)

For a function u = u(x), x € Q, we define the truncated function Tyu = T} (u)
pointwise: for every x € Q the value of (Tju) at x is just Ty (u(x)). We now intro-
duce the functional space that will need in our work:

TP (Q,w) = {u: Q — R measurable | Ty (u) € W, "(Q,w) for all k > 0}.

The following lemma is a generalization of [4], Lemma 2.1, to weighted Sobolev
spaces (its proof is a slight modification of the original proof [4]).

Lemma 2.1. For every ue 7 (Q w), there exists a unique measurable function
v:Q — RY such that

VTi(u) = vyqp<iy almost everywhere in Q for every k > 0.

We will define the gradient of u as the function v and denote it by v = Vu.

Lemma 2.2. Let 4 € R and let u and v be two measurable functions which are finite
almost everywhere and which belong to 7 Ol’p (Q,w). Then

V(u+ v) = Vu+ AVv a.e. in Q,

where Vu, Vv and V(u+ Av) are the gradients of u, v and u+ Av introduced in
Lemma 2.1.

The proof is similar to the proof of [7], Lemma 2.12, in the non-weighted case.

Definition 2.1. Let Y be a reflexive Banach space. A bounded operator B from Y
to its dual Y™ is called pseudo-monotone if for any sequence u, € Y with u, — u
weakly in Y and limsup,_,, ., {Bu,,u, —uy <0, we have

liminf {Bu,,u, — vy > {Bu,u—v)y forallve Y.

n—-+oo

Now we state the following assumption.



100 L. Aharouch, E. Azroul and A. Benkirane
(Hy) The expression

P 1/p

[lue]| :( -i JQ ‘g—; wi(x) dx) (2.5)

1

is a norm on WOI”' (Q) equivalent to the norm (2.3).
There exists a weight function o strictly positive a.e. in Q and a parame-
ter ¢, 1 < g < oo, such that the Hardy inequality

u

» 1/p
| M) dx) (2.6)

(L | o(x) dx)l/q < c(iL

i=1

holds for every u € Wol”’ (Q,w) with a constant C > 0 independent of u.
Moreover, the imbedding

W, (Q,w) — LY(Q, ) (2.7)
determined by the inequality (2.6) is compact.

Note that (WO1 7(Q,w), ||u]]) is a uniformly convex (and thus reflexive) Banach
space.

Remark 2.1. Assume that wy(x) =1 and, in addition, the integrability con-

dition holds: there exists v € }%, oo{m [ﬁ, oo[ such that w;¥ e L'(Q) for all

i=1,...,N (which is stronger than (2.2)). Then

N P

= (3], | o

1
wi(x) dx) !
i=1

is a norm defined on Wol”’ (Q,w). It is equivalent to (2.3). Moreover,
W, (Q,w) — LY(Q)

for all 1 <¢g < pj if pp<N(v+1) and for all ¢ >1 if pv > N(v+ 1), where
pL= vi—vl and p; = N]\E’;l = % is the Sobolev conjugate of p; (see [9]). Thus

hypothesis (Hy) is satisfied for o = 1.

Remark 2.2. We use the special weight functions w and ¢ expressed in terms of
the distance to the boundary dQ. Denote d(x) = dist(x, Q) and set

w(x) =d*(x), o(x)=d"(x).
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In this case the Hardy inequality reads

(JQ u|7d* (x) dx)l/q < C(JQ \Vul?d*(x) dx)l/p.

(i) For1 < p<g< o,

N N L, N N
A<p—1, —-Z41>0, E-Zi2_Ti1so. (2.8)
g p a9 p q P
(ii)) For1 <g < p < o,
A1
i<p—1, E_Z.-__"ii1so (2.9)
g p q p

The conditions (2.8) or (2.9) are sufficient for the compact imbedding (2.7) to hold;
see, e.g., [8], Example 1, [9], Example 1.5, p. 34, and [16], Theorems 19.17 and
19.22.

Now we give the following technical lemmas which are needed later.

Lemma 2.3 (cf. 3, 15]). Let g € L"(Q,y) and let g, € L"(Q,7), with ||gullq , < ¢,
1 <r<oo. Ifg.(x) — g(x) a.e inQ, then g, — g weakly in L"(Q, y).

Lemma 2.4 (cf. [3], [L1]). Assume that (Hy) holds. Let F : R — R be uniformly
Lipschitzian, with F(0) = 0. Letu € Wy’ (Q,w). Then F(u) € Wy’ (Q,w). More-
over, if the set D of discontinuity points of F' is finite, then

OFou) F’(u)% ae.in{x e Q|u(x) ¢ D},
0x; 0 a.e.in{x e Q|u(x) e D}.
From the previous lemma we deduce the following.

Lemma 2.5. Assume that (Hy) holds. Let u e WOI""(Q,W) and let Ty (u) be the
usual truncation, k € R*. Then Ty (u) € W, (Q,w). Moreover,

Ty () — u strongly in Wy " (Q,w).

3. Main results

First we define a variant of assumption (H}).
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(Hy) This is the same as condition (H;), with (1.4) is replaced by: there exist
v € Wy P(Q,w) 0 L*(Q) and ¢ € L'(Q) such that

a(x,s,&)(& = Vi) = a»_ wi(x)|&]" — (). (3.1)
i=1

The main result of the paper is the following existence theorem.

Theorem 3.1. Assume that (Hy)—(H>) hold and let f € L'(Q). Then there exists
at least one solution of the following problem:

we 737(Qw),  glx,u,Vu) e L'(Q),

J a(x,u, Vu)VTi(u —v) dx + J g(x,u, Vu) Ty (u — v) dx (3.2)
Q Q

< J fTi(u—v)ydx  forall ve W, (Q,w) n L*(Q) and all k > 0.
)

Remark 3.1. Theorem 3.1 has not yet been proved for classical Sobolev spaces;
see, however, [13] for the case where vy = 0.

The following lemma plays an important role in the proof of our main result.

Lemma 3.1 (cf. [3], [15]). Assume that (H) and (Hy) hold, and let (u,), be a se-
quence in W, (Q,w) such that w, — u weakly in Wy"" (Q,w) and

J [a(x,uy, Vuy,) — a(x, u,, Vu)]V(u, — u) dx — 0.
Q

Then

uy —uin Wy (Q,w).
3.1. Study of approximate problem. Put

g(x,s,¢)

[+ L0, ") (33)

gn(x,s,&) =

with 6,(x) = nT},(c9(x)).
Note that g, (x, s, &) satisfies the following conditions:

gn(X,5,8)s 20, gn(x,5,9) < g(x, 5,9 and |ga(x,s,8) <n.

We define an operator G, : W, 7 (Q,w) — W17 (Q,w*) by
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{Guu, vy = JQ gn(x,u, Vu)vdx
and
{Au, vy = JQ a(x,u, Vu)Vu dx.
Due to the Holder inequality we have

| JQ gn(x,u, Vu)vdx| < (JQ |gn(x, u, Vu)|q/a“1//q dx) V' ( JQ v|a dx) Va

< n(J gdl1g=414 dx) 1/!1’”1]”%6
Q
< G| (3.4)

for all u e W,”(Q,w) and all v e W, 7 (Q, w).
The last inequality follows from (2.5) and (2.6).

Proposition 3.1. The operator B, = A+ G, defined from WO1 P(Q,w) into
WP (Q, w*) is pseudo-monotone. Moreover, B, is coercive in the following sense:

(Byuv,v — 1)
[l

3.1.1. Proof of Proposition 3.1. From Holder’s inequality and the growth con-
ditions (1.2), we can show that 4 is bounded, and by using (3.4), we have that B, is
bounded. The coercivity follows from (1.4), (1.5) and (3.4). It remains to show
that B, is pseudo-monotone.

Let (), € W, "(Q,w) be a sequence such that u, — u weakly in W, (Q, w)
and

— 4o i || = 4o, ve WP(Q,w).

lim sup {Bju, uy — uy < 0. (3.5)

k—+o0

Let v e W, 7(Q,w). We will show that

liminf <B,uy, uy — vy > {Byu,u — v).
k—+o0

Since (ux), 1is a bounded sequence in /WOI’” (Q,w), we deduce that
(a(x, u, Vuy)), is bounded in ], L”'(Q,w! ). Then there exists a function
he 1Y, L7 (Q,w/ ™) such that
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N
a(x, ue, Vur) — h weakly in J]L7(Q, wi=".
i=1

Similarly, it is easy to see that (g,(x,u, Vux)), is bounded in L7 (Q,¢'~¢"). So
there exists a function p, € L7 (Q, ') such that

gu(X, g, Vi) — p, weakly in L9'(Q, o'~7").

It is clear that

lim inf < B,uy, u; — vy = iminf {Auy, > — J hVv dx + J p,(u—v)dx
k——+0 k—+o0 Q O

= lim infj a(x, ug, Vug ) Vuy dx
Q

k—+o00

— JQ hVvdx + JQ pu(u—v)dx. (3.6)

On the other hand, by condition (1.3) we have
J (a(x, e, Vug) — a(x, u, Vu)) (Vug — V) dx > 0,
Q

which implies that

J a(x, ux, Vug ) Vuy dx > —J
Q

a(x, ug, Vu)Vu dx + J a(x, u, Vug)Vu dx
Q

o)
+ J a(x, ux, Vu)Vuy dx.
Q

Hence

lil?linfj a(x, uy, Vug )Vuy dx > J hVu dx. (3.7)
— 00 Q Q

Combining (3.6) and (3.7) we get
lim inf (Bug, ux — vy > {h+ p,,u — v). (3.8)
k—+o0

Now, since v is arbitrary and klim {Guup, u — uy = 0, we have by using (3.5) and
(3.8) o
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lim J a(x, ug, Vur)V(ug — u) dx = 0.
k—+o0 [e)

Consequently, we get

klim J (a(x, ux, Vug) — a(x,ug, V) ) V(ug — u) dx = 0.
——400 Q

In view of Lemma 3.1, we have that Vi — Vu a.e. in Q, which by (3.8) yields that

liminf <B,uy, ux — vy > {Byu,u — v).

k—+o00
This completes the proof of the proposition.

Remark 3.2. The approximation (3.3) appears necessary to prove the bounded-
ness of (gn(x7 Uje, Vuk))k in Lq/(Q, O'liq/).

Remark 3.3. In the case where o satisfies the integrability condition ¢'~¢
Ll (Q), it suffices to approximate the term g(x,s,¢) by some function involving
Xa,- Here Q, is a sequence of compact subsets converging to the bounded open
set Q and yq is a characteristic function, i.e., g,(x,s,¢) = % Q,-

Let us consider the approximate problem:

u, € WOI”’(Q, w),

3.9
{Auy,, v) +J Gn (X, tty, Viy )vdx < J fovdx  forallv e WOI”’(Q,W), (3.9)
) Q

where £, is a regular function such that f, strongly converges to f in L'(Q).
Applying Proposition 3.1, the problem (3.9) has a solution by the classical re-
sult of [15] (cf. Theorem 8.2 Chapter 2 of [15]).

4. Some principal propositions

Proposition 4.1. Assume that (Hy)—(H,) hold true and let w, be a solution of the
approximate problem (3.9). Then for all k > 0, there exists a constant c¢(k) (which
does not depend on n) such that

6Tk(un)

i < c(k).
o, w; < c(k)

L

i=1
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4.1.1. Proof of Proposition 4.1. Let k>0 and let ¢, (s) =se”, where
b(k)
It is well known that

1
0r(8) = ——= @ (s)] = 3 for all s € R. (4.1)
Taking ¢ (Ti(u, — vo)) as test function in (3.9), where / = k + ||g|| ., we obtain
J a(x, uy, Vin )V T (uy, — 00)9p (T1(uy — v0)) dx
)
+ J G (2, 14, Vit )y (T (1 — v9) ) dx < J S0 (T1(uy — v9)) dx.
) )
Since g, (X, un, Vit )i (Ti(ty — v0)) = 0 for {x € Q||uy(x)| > k} it follows that
J a(x, wy, Vin )V (1, — v0) @y (T1(uy — v0)) dx
{Jun—vol <1}
< J{ - |gn (x, Uy, V)| ‘(pk(T/(un - vo))|dx+J Fu0 (T1(uy — vo)) dx.
uy| <k Q

By using (1.6) and (3.1), we have

N
o wi(x)
J{un—voél} ;

< b(lk) | (el +Zw,

+ J () (T1(un — vo)) dx + J S0 (T1(uy — vo)) dx.
o Q

ou, |¥

o o (Ti(un — vo)) dx

6Tk

) |0k (T (uy — v9)) | dx

Since {x € Q||u,(x)| <k} = {xeQ||u, —vo| <1}, ¢,6eL'(Q) and f, is
bounded in L'(Q), it follows that
6Tk(u,,) 4

JQ XN: w;i(x) o,

< P[5 o] i)

where Cj is a positive constant depending on k. This implies that

91 (Ti(un — v9)) dx

1 ® (T;(un — Uo))’dx + Cy,
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Jgi‘vi(x)‘ﬂgi)@

1

{(p,’{(T/(un - UO)) - @ |(0k(Tl(un - Uo))| dx < Cy.

S 0Ty (un) "
JQ Z wl-(x)‘ — | dx<2Ce. (4.2)

1

Remark 4.1. In the case where the Hardy parameters satisfy the condition (1.8)
with 1 < ¢ <p+ p’, the previous estimate can be proved easily by using the
Holder inequality.

Indeed, using T (u,) as test function in (3.9), we have by (1.5)

Jga(x, Tie(tn), VTic(un)) Vi (1) dx < Ck
and by (3.1)
ol | Ty (un)||” < La(x, Tye(un), VTi(uy)) Voo dx + Cy (k).

From Holder’s inequality, the growth condition (1.2) and 1 < ¢ < p + p’ we de-
duce that

1Tk (un) || < Ca(k).

Proposition 4.2. Assume that (Hy)—(H>) are sattisfied, and let u, be a solution to
the approximate problem (3.9). Then there exists a measurable function u such that
(for a subsequence still denote by u,)

1) u, — u almost every where in Q,
2) Ti(uy) — Ti(u) weakly in Wy'(Q) for all k > 0.

4.1.2. Proof of Proposition 4.2. Let ko> |jvgl|, and k > ko. Taking
v = Ty(u, — vo) as a test function in (3.9), we get

J a(x, uy, Vu,)VTi(u, — vo) dx + J Gn (X, tty, Vi) Ty (1, — vo) dx
Q Q

< J I Ti(uy — o) dx. (4.3)
Q

Since g, (x, ty, Vi) Ty (uy, — v9) = 0 for {x € Q| |u,(x)| > ko}, (4.3) implies that
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J a(x, uy, Vi) VT (uy, — vo) dx < kj |Gn (>, tn, Vi) | dx + kaHLl(Q)’
Q {[un| <ko}

which gives by using (1.6)

J a(x, uy, Vi) VT (uy, — vo) dx
Q

c(x)dx + J i wi(x)

Q=]

&Tko (un) 4

< kb(ko) ” o

Q

dx} LKC. (44)
Combining (4.2) and (4.4), we have

Jga(x, typ, Vit )V T (1, — v9) dx < k[Cy, + C].
Due to (1.3) we obtain

N
Uy

&xi

P
wi(x) dx < kCy,

Lun—msk} pa

where C; is independent of k. Since £ is arbitrary, we have

N ouy |? N u, |7
J wi(x) | o dxsj wi(x)| =—| dx < kG,
= 0x; {y—vol <k+woll.} =7 0xi
hence
N
oT, ?
J Zw,-(x)‘# dx < kC. (4.5)
Qi i

Now we follow the lines of the proof of [4] to show that u, converges to some
function u in measure (and therefore we can always assume that the convergence
is almost everywhere after passing to a suitable subsequence). To prove this, we
show that u, is a Cauchy sequence in measure.

Let k£ > 0 be large enough. Then

kmeas({|u,| > k} N Bg) = J | Ty (uy)| dx < JB | Ty (up)| dx

{|un|>k}nBr

< | T (1) [P wo dx I/p wi " dx)
o 0

Br
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N

ps

i=1

aTk(un)

Xi

P 1/
w;(x) dx) !

< C]kl/p.
Thus

C

meas({|u,| > k} N Bg) < Ay

(4.6)

We have, for every 4 > 0,

meas({|u, — u,| > A}) < meas({|u,| > k}) + meas({|un| > k})
+meas({| Tk (un) — Tic(tm)| > 2})
< meas({|u,| > k} 0 Bg) + meas({|u,| > k} N Bg)
+ 2meas({|x| > R})
+ meas({|Tx(un) — T (um)| > 2}). (4.7)

Since T (u,) is bounded in WO1 P(Q,w), there exists some vy € WO1 7(Q,w) such
that

Ty (1) — v weakly in W, (Q,w),

(4.8)
Ti(u,) — vy strongly in LY(Q, o) and a.e. in Q.

Consequently, we can assume that Ty (u,) is a Cauchy sequence in measure in Q.
Let ¢ > 0. Then, by (4.6), (4.7) and the fact that meas({x € Q||x| > R} tends
to 0 as R — +oo, there exists some k() > 0 such that

meas({|u, — un| > 2}) <&  forall n,m > ng(k(e),2).

This proves that (u,), is a Cauchy sequence in measure converging almost every-
where to some measurable function u, which together with (4.8) implies that

Ty () — Ty () weakly in W7 (Q,w)

4.9
Ti(uy) — Ti(u) strongly in L9(Q,¢) and a.e. in Q. *9)

Proposition 4.3. Assume that (Hy)—(H>) hold true and let u, be a solution of the
approximate problem (3.9). Then, for all k > 0,

1) Ti(un) — Ti(u) strongly in WyP(Q,w),
2) Vu, — Vu a.e. in Q.
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4.1.3. Proof of Proposition 4.3. Many ideas of this proof are inspired of [12]
and [14].

Let k>0. Since (Ti(u,)), is bounded in W,”(Q,w), the sequence
(a(x, Ti(un), VTi(uy))), is bounded in Y, L7 (Q,w! p) by (1.2). So, up to a

subsequence still denoted by Un, a (x T, k(un) VT, k(u,,)) converges weakly to some
function /. € T[Y, L?'(Q,w! ™) such that

N
a(x, Ti(un), VTi(un)) — Iy weakly in T L7 (@, w! 7). (4.10)
i=1
Fix k>0, and let w,, = T (u,, —vo — Th(up — vo) + Ti(uy) — Tk(u)) and

wi = Tor(u— vo — Th(u — vo)) with h > 2k.
Define the following function

Unh = Q(Wn,n)- (4.11)

By taking v, ; as test functions in (3.9), we get

<A<un>,¢k<wn,h>>+j gn<x,un,Vunm(wn,h)dxsj FupeOvan) dx. (4.12)
Q Q
It follows that

J a(x, Up, Vun)vwn,hgollc(wn,h) dx + J In (X, Uy, Vun)(pk(wn,h) dx
Q Q

< | fioitni)ax (4.13)
Q

For any fixed value of /4, denote by ¢} (n),&7(n),... sequences of real numbers
which converge to zero as n tends to infinity. By the almost everywhere conver-
gence of u we have

(W) — @ (wp) weakly™ in L (Q) as n — +o0. (4.14)

Therefore,

J Jan0r Wy ) dx — J fo(wy)dx asn — +o0. (4.15)
Q Q

On the set {x € Q, |u,(x)| > k} we have g(x,uy, Vu,)@,(Wn ) = 0. So by (4.13)
and (4.15),
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J a(x, uy,, Vu,,)anyh(/),’c(wn’h) dx + J Gn (X, ty, Vidy) @ (Wy ) dx
Q {|un| <k}
< J For(wn) dx + ¢} (n). (4.16)
Q

Splitting the first integral on the left-hand side of (4.16) where |u,| < k and
|un| > k, we can write

J a(x, ty, Vi) Vwy 4 @p (W, ) dx
Q
= J a(x, un, Vit ) Vwy 50 (Wy i) dx
{fun| <k}
+ J a(x, un, Vit ) Vwy 101 (Wa, 1) dx. (4.17)
{lun>k}

The first term of the right-hand side of the last inequality can be written as

J a(x, uy, Vi) Vwy 50 (Wy 1) dx

{lun| <k}

> La(x, Ti(up), VTk(u,,))[VTk(u,,) — VT ()] oy (wan) dx

gok (2k) J Z‘a, x, Ti(un), )‘

{lun >k} 3=

ﬁTk(u)

e L2 (4.18)

Recall that for i=1,...,N, ‘a,(x TA un )‘X{|un|>k} converges to
0Ty (u)

‘ (x, T (1), 0) |1ty strongly in LP'(Q,w!™). Moreover, since 7| €
L2(Q,wy), 1t follows that
N
0Ty (
—‘Pllc(Zk)J Z’a, (x Ty (uy), ‘ ‘ e (u dx = 3,3(11).
{lun >k} =1
For the second term of the right-hand side of (4.17) we can write
J a(x, uy, Vi) Vwy 50 (Wy i) dx
{lun| >k}
= J a(x, ty, Vi)V (tn — vo — Ti(un — v0)) @y (Wn, 1) dx
{|un| >k, [w, | <2k}
- J a(x, ty, Vi)V Tie (1)) gy (W 1) dx, (4.19)
Llotn| >k, wa, 5| <2k}
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which implies that

J a(x, uy, Vi) Vwy 50 (Wy i) dx
{lun|>k}

= J a(x, uy, Vun)V (uy — v0) @y (Wn, 1) dx
{lun| >k, Wy, n| <2k, |ty —vo|>h}

- J a(x, un, Vi)V T (u) @y (W, n) dx. (4.20)
{|u,,\>k, ‘wn.hl Szk}

Since {x € Q| |w,, 5(x)| <2k} = {x € Q| |uy(x)| < Sk + h}, in view of (3.1) we ob-
tain that

J a(x, un, Vi) Vwy 50 (Wy ) dx
{lun| >k}

N
0T (u
> —so,i(zk)j > i (x, Tsicon(un), VTsien(un)) | ‘% dx
{lua >k} 527 Xi
o (2K) J 5(x) dx. (421)
{|up—vo|>h}

Since (a;(x, Tsen(tn), VT skn(un))), is bounded in L' (Q, w! Y fori=1,...,N,
the first term on the right-hand side of (4.21) tends to zero for every / fixed.
On the other hand, since § € L!(Q) it is easy to see that

—¢,.(2k) J o(x) dx = —¢,(2k) J O(x)dx +ep(n). (4.22)

{|un—vo|>h} {lu=vo|>h}

Combining (4.18)—(4.22), we deduce that

J a(x, up, Vi) Vwy 591 (Wy 1) dx
Q
= J a(-xv Tk(”n), VTk(”n)) [VTk(un) - VTk(u)](ollc(Wmh) dx
Q

— (p,Q(Zk)J 3(x) dx + € (n). (4.23)

{|u—vo|>n}

This implies that
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J a(x, un, Vit ) Vwy 10 (Wy ) dx
Q

= JQ [a(x, Tye(un), VTk(un)) - a(x, Ty (un), VTk(u))}
| VTk(un) — VTi(ut)]pp (W i) dx

+ L} a(x, Ti(t), V(1)) IV Ti (1) = Vi) w3 1) dx
— ¢, (2k) J 3(x) dx + ¢} (n). (4.24)
{|lu—vo|>h}

We claim that

[ o Tl VT30 9T 0) = VTl ) = ). (429
Indeed, since {x € Q| un(x)| <k} < {x € Q| |un — vo| < h} we have
|, o i), VT0) VT ) = VTl )
_ La(x, Te(tn), VT ()Y T (ttn) o (T (i) — Ti(w)) dix
- JQ (%, Tic (), V(1)) VT ()L (9. 1) . (4.26)

By the continuity of the Nemytskii operator (see [9]), we have foralli=1,..., N,
ai (%, Tk (), VTk () 9" (Ti () — Tic(u)) — ai(x, Ti(u), VT (u)) 9’ (0)
and

ai(x, Tic(un), VTi (1)) — ai(x, T(u), VT (1))

strongly in LP'(Q,wil*”/), while e L AT) - eakly in LP(Q,w;), and

6x,- 8x,~
a(g'f—x(f'))go’(w,,,h) — ’?(gf%x(f'))(p’(O) strongly in L?(Q, w;). Hence it follows that

nll’nolc JQ a(xa Tic (un), VTk(u))VTk(un)(oll((Tk(un) - Tk(u)) dx
_ JQ a(x, T (), VT (1)) VT () (0) dx (4.27)

and
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lim JQ a(x, T(un), VTi()) VT (1) @y (Wn,n) dx

n—oo

:La@ﬂﬂ@ﬂﬂﬁMVﬂwmﬂnﬂ. (4.28)

Combining (4.27) and (4.28) we obtain (4.25), which proves the claim. From (4.24)
and (4.25) it follows that

La<x, tn, Vit) VT (1) — VT ()]’ (i 1) dix

> JQ [a(x, Ti(un), VTi(un)) — a(x, Ti(un), VTi(u))]
VT (tn) — VTi()]@’ (Wn.n) dx

—ﬁ@mj 3(x)dx + ep(n). (4.29)

{Ju—vo|>h}

We now turn to the second term of the left-hand side of (4.16). Using (1.6) we
have

[ e Vo) a
{lun| <k}

< b(k) JQ (c(x) + i Wi

i=1

aTk(un) 4
| )l dx

PO lotmn)

o Jo

< b(k) jﬂ ()| pe ()| dx +

b(k)

+ O‘Lz a(x, Tr(un), VI (un) )V Tic(un) | 0y (W) | dx

)

» La(x, Tye(un), Vi (1)) Voo gy (wn,n)| dx.

Invoking (4.10) and (4.14) we get

|j (2%t Vit (1) x|
{|up| <k}

= b(ock)JQ a (X, Tic(t4n), VT () V T (thn) |9y (W) | dx

400 | clpetmlar+ "2 [ 0olpim)]ax
b(k)

- TJ hVvo g (wi)| dx + €] (n). (4.30)
Q
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The first term of the right-hand side can be written in the form

@JQ la(x, Te(un), VT (un)) — a(x, Tic(uy), VT ()]

' [VTk(u") - VTk(u)]|(pk(Wng)| dx
+ @L a(x, Ti(un), VI (1)) [V Tic(un) — VT (10)] |04 (Wi, i) | dx

b(k)

o

+ La(x, Ty (un), Vi (1) ) VTi ()| 0 (Wi, 1) | dx. (4.31)

From Lebesgue’s theorem we conclude that

VT (u)log (wnn)| — VTic() |y (T (1 — vo — Th(u = v0)))| = 0
strongly in Hl}i L L7(Q,w;). By (4.10) this implies that the third term of (4.31)
tends to 0 as n — co. By the same argument as in (4.25), the second term of

(4.31) tends to 0 as n — oo.
From (4.30) and (4.31) we obtain

’ J{|un| . Gn (X, tty, Vity) @3 (Wy 1) dx|
< Lz [a(x, Ty (uy), VTk(un)) - a(x, Ty (uy), VTk(u))}
VT () — VT ()]l @i (Wn,n)| dx

M otloctmlax

T b(k) jgc<x>|wk<w;1>|dx+
—@J thvo\gok(wh)Mx—i—eg(n). (4.32)
% Jo

Combining (4.16), (4.29) and (4.32), we obtain

JQ [a(x, Ti(un), VTi(un)) — a(x, Ti(un), VTi(u))]

VT () — VT (u)] (@/L(Wn,h) - @ Iwk(wn,h)l> dx
<500 | clpetmlav+ 22 [ ool m)]dx

_ @ L N vol oy (wi)| dx + JQ F(X)pOwp) dx + €] (n).  (4.33)
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Then from (4.1) we have
JQ [a(x, Tie(un), VTi(un)) — a(x, Ti(un), VIi())] [V Tic(tn) — VT ()] dx
<200) | etlpsmn)l v+ 225 | 52)1gp o) s
Q Q
— 2MJ e Vuoloy (wp)| dx + 2J S () (wy) dx + e}lo(n). (4.34)
* Jo Q
Hence, passing to the limit over n, we get

lifqris;jpj la(x, Ty (un), VT (un)) — a(x, Ti(un), VTi(u))]
(VT (un) — VT (u)] dx
<2bh(k J c(x)| o (wn) dx—i-Zb(ak)J O(x)| gy (wy)| dx
Q Q
k

&J thvo|g0k(wh)|dx+2J S (X))o (wy) dx. (4.35)

Now, since A(x), 6(x), f(x) and h;Voy belong to L!'(Q), by Lebesgue’s dominated
convergence theorem, all the terms on the right-hand side of the last inequality
tend to 0 as i — +oco. Consequently,

lim Lz [a(x, Ti(un), VTi(un)) — a(x, Ti(un), V()| [V T (un) — VTi ()] dx = 0.

Furthermore, due to Lemma 3.1, we get
Ty (u,) — Ty (u) strongly in Wy (Q,w)  forall k > 0. (4.36)
For k > 0 large enough, we have

meas({|Vu, — Vu| > 1}) < meas({|u,| > k}) + meas({|u| > k})
+ meas({|VTx(uy) — VT (u)] > A})  (4.37)

for every 4 > 0. Since Ty (u,) converges strongly in WO1 P(Q,w), we can assume
that VT (u,) converges to VT (u) in measure in Q.

Let ¢>0. As in (4.7) there exists some ngy(k,4,&) >0 such that
meas({|Vu, — Vu| > 4}) < ¢ for all n,m > no(k,A,¢). We then have for a subse-
quence

Vu, — Vu a.e. in Q, (4.38)
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which yields

a(x, uy, Vu,) — a(x,u,Vu) a.e. in Q,
] (4.39)
gn(x, uy, Vu,) — g(x,u, Vu) a.e. in Q.

Remark 4.2. The introduction of vy in the used test function allows us to get rid

of the first term on the right-hand side of (4.20) (by using (3.1)), which does not
converge to 0 when n and 4 converge to +oo.

5. Proof of Theorem 3.1

Step 1. Equi-integrability of the nonlinearities.
We need to prove that

Gn(X, 4y, Vu,) — g(x,u, Vu) strongly in L'(Q). (5.1)
In particular, it is enough to prove that of g,(x, u,, Vu,) is the equi-integrable. To

this end we take T} (u,, — vy — Tp(u, — vo)) (with / large enough) as test function
in (3.9) and obtain

19 (%, thr, Vi)l < j (il +0(x)) dx.

J{u,,vo>h+l} {luy—vo|>h}

Let & > 0. Then there exists 4(¢) > 1 such that

J lg(x, up, Vuy)| dx < ¢/2. (5.2)
{lun—vo|>h(e)}

For any measurable subset £ < Q, we have

J |gn(x7 Uy, V“n)' dx
E

p

IA

0T h(e)+ o), (tn)
(3x,-

JEb(h(g) +feoll..) () + S

i=1

) dx
+] 9.ty Vi) . (5.3)
{fun—vo|>h(e)}

In view of (4.36) there exists 7(¢) > 0 such that
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JEb(h(g) +woll.) (elx) + iw,

i=1

e +||von (un) |

l

) dx <e/2  (54)

for all E such that meas(E) < 7(e).
Finally, combining (5.2), (5.3) and (5.4), one easily has

J |gn(x, 1, Vuy)| dx < ¢ for all E such that meas(E) < #(e),
E

which implies (5.1).
Step 2. Passing to the limit.
Let v € Ky n L*(Q). Take Ty (u, — v) as test function in (3.9). Then
J a(x, uy, Vu,) VT (u, — v) dx + J gn(x, tty, V) Ty (1, — v) dx
Q Q
< J JuTr(u, — v) dx. (5.5)
Q
This implies that
J a(x, uy, Vi)V (u, — vo) dx
{Jun—v| <k}
+ Ll <k} a(x, Tk+“uHx (u,,), VTkJrHvH:E (u,,))V(vo — U) dx
u,—v| <

+ J Gn(x, tty, V) Ty (1, — v) dx < J JuTi(uy, — v) dx. (5.6)
Q Q

By Fatou’s Lemma and the fact that
a(x, Ty o, (n), Vo), (un)) — a(x, Ty, (), Vg o, ()

weakly in [T, L”'(Q,w} 7") one easily sees that
J a(x,u, Vu)V(u — vo) dx
{Ju—v| <k}
+ J a(x, Tk+|\v||% (u), VT]H‘H“\M (u))V(Uo — l)) dx
{[u—v| <k}
+ J g(x,u, Vu)Tie(u — v) dx < J S Ti(u—v)dx. (5.7)
Q Q

Hence
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J a(x,u, Vu)VTi(u—v)dx + J g(x,u, Vu) Ty (u — v) dx
Q Q

< J STi(u—v)dx. (5.8)
Q

This proves Theorem 3.1.
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