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Triple positive solution to the one-dimensional p-Laplacian
equation with delay

Xuemei Zhang, Meiqiang Feng, and Weigao Ge*
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Abstract. We obtain sufficient conditions for the existence of at least three positive
solutions to the second-order nonlinear delay differential equation with one-dimensional
p-Laplacian

(¢p (x’(t)))/ +w(t)f(t,x(2),x(1 = 1),x'(t)) =0, t€(0,1), 7>0,
x(6)=0, —-1<t<0,

x(1) =0,

where ¢,(s) is the p-Laplacian operator, i.e., ¢,(s) = s|P 7%, p> 1, (415[,)71 =, i —&-é =1L

The arguments are based upon a new fixed point theorem in a cone introduced by Avery
and Peterson.
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1. Introduction

In this paper we study the existence of multiple positive solutions for the second-
order nonlinear delay differential equations with one-dimensional p-Laplacian

(4,(x'())) +w(e)f (. x(t),x(t — 7),x'(t)) =0, te(0,1),7>0,
()=0, —1<t<0, (1.1)
(1) = 0.

X
X

Here ¢,(s) is the p-Laplacian operator, ie., ¢,(s) = |s|"72s, p>1, (gﬁp)*1 =¢,
and 11—7—1-5: I; w(?) is a nonnegative continuous function defined on (0,1) and
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f(t,u,v, 1) is a nonnegative continuous function defined on [0, 1] x [0, +00) X
[0,+) x R.

In recent years many papers deal with the existence of positive solutions of the
second-order delay differential equations; see [1], [4], [7], [9]-[17], [19], [20], [22].
For proving the existence of solutions either fixed point theorems in Banach space
or the nonlinear alternative of Leray—Schauder are used. In particular, we men-
tion some results of Jiang [9], and Wang and Ge [22]. In [9], Jiang considered the
following second-order boundary value problem (BVP) described by delay differ-
ential equations of the form

0, —-1<t<0, (1.2)

where /e C([0,1] x [0,+0),[0,+00)). By using fixed point index theory in a
cone, Jiang established the existence of multiple positive solutions of BVP (1.2).

By applying the Guo—Krasnoselskii fixed point theorem in a cone, Wang and
Ge [22] established the existence of positive solutions to the problem

(¢p(x’(t)))/ +4q(t)f(t,x(t=1)) =0, te(0,1),7>0,
()=0, —1<1<0,
m -0,

=

X

where 4 > 0, ¢,(s) = ISP, p>1,q€ C[0,1] n L'[0, 1] with ¢(¢) > 0 on (0, 1).

However, the literature on the multiplicity of positive solutions of the second-
order nonlinear delay differential equations seems to be rather limited. This ap-
plies also to the case when the nonlinear term is involved in the first-order deriva-
tive explicitly.

This paper aims to fill this gap by improving and generalizing results men-
tioned in the references. We shall prove that BVP (1.1) possesses at least three
positive solutions.

The following hypotheses are adopted throughout this paper:

(Hy) f e C([0,1] x [0,400) x [0,+00) X R, [0,+00));
(Hy) we C[0,1] n L'[0,1] with w(¢) > 0 on (0, 1).

Our main results will depend on an application of a fixed point theorem due to
Avery and Peterson which deals with fixed points of a cone-preserving operator
defined on an ordered Banach space. The emphasis here is that the nonlinear
term is involved explicitly in the first-order derivative.
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2. Preliminaries

In this section we provide some background material from the theory of cones in
Banach spaces, and we then state the triple fixed-point theorem for a cone preserv-
ing operator. The following definitions can be found in the book by Deimling [6]
as well as in the book by Guo and Lakshmikantham [8].

Definition 2.1. Let E be a Banach space over R. A nonempty closed set P < E is
said to be a cone provided that

(i) au+bve Pforallu,ve Pandalla>0,b >0,
(i) u, —u € P implies u = 0.

Every cone P < E induces an ordering on E given by x < y if and only if
y—xeP.

Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Definition 2.3. The map « is said to be a nonnegative continuous concave func-
tional on a cone P of a real Banach space E provided that o : P — [0, o0) is con-
tinuous and

a(tx+ (1 —1)y) > ta(x) + (1 — 0)oa(y)

for all x, ye Pand 0 <t < 1. Similarly, we say the map y is a nonnegative con-
tinuous convex functional on a cone P of a real Banach space E provided that
y: P — [0, 00) is continuous and

y(ex+ (1= 1)y) <op(x)+ (1 —1)p(y)

forallx,ye Pand0 <t < 1.

Let y and 0 be nonnegative continuous convex functionals on P, let « be a
nonnegative continuous concave functional on P, and let i be a nonnegative con-
tinuous functional on P. Then for positive real numbers «, b, ¢, and d, we define
the following convex sets

P(y,d) ={x e P|y(x) <d},
P(y,o,b,d) ={x e P|b <a(x),y(x) < d},
P(y,0,0,b,¢c,d) ={x e P|b <a(x),0(x) <c,y(x)<d},
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and a closed set
R(y.¥,a,d) = {x e Pla<y(x),y(x) <d}.

The following fixed point theorem due to Avery and Peterson is fundamental
in the proofs of our main results.

Themrem 2.1 ([3]). Let P be a cone in a real Banach space E. Let y and 0 be
nonnegative continuous convex functionals on P, let o be a nonnegative continuous
concave functional on P, and let y be a nonnegative continuous functional on P sat-
isfying Y (Ax) < W(x) for 0 < A < 1 such that for some positive numbers M and d,

ax) <Y(x),  [lx] < My(x) (2.1)

Sforall x € P(y,d). Suppose that T : P(y,d) — P(y,d) is completely continuous and
there exist positive numbers a, b, and ¢ with a < b such that

(S1) {x e P(y,0,a,b,¢,d)|a(x) > b} # 0 and o(Tx) > b for x € P(y,0,0,b,c,d);
(S2) a(Tx) > b for x € P(y,o,b,d) with 0(Tx) > ¢;
(S3) 0¢ R(y,¥,a,d) and y(Tx) < a for x € R(y,y,a,d) with y(x) =

Then T has at least three positive solutions xy,x»,x3 € P(y,d) such that
y(x;)<d fori=1,2,3,

b < a(xy),
a<y(xy) witha(xy) <b

and

U(x3) < a.

3. Main results

In this section we impose growth conditions on f which allow us to apply Theo-
rem 2.1 to establish the existence of triple positive solutions of BVP (1.1).
Let E = C'[—7,1] be a Banach space with the maximum norm

|| x| = max { max |x(7)], max |x )N}
te[—1,1 te[—

From the fact (¢, (x'(1)))" = —w(t)f(t,x(t),x(t — 7),x'(£)) <0, we know that
x is concave on [0, 1]. So define a cone P = E by
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P={xeE|x(t)=0,re [~ 1],x() =0, € [-7,0],
x(1) =0, x is concave on [0, 1]}.

For x € P we define

=[]

S

| W (] v rxt.xtr = 1. 0) ar) s

t t

t

w(r)f(r7 x(r), x(r — 1), x'(r)) dr) ds

where 0 < 7 < 1. Clearly, u(#) is continuous and strictly increasing in (0, 1) and
u(0™) <0 < u(17). Thus, u(¢) has unique zero in (0, 1). Let 7o = ¢, (i.e., f; is de-
pendent on x) be the zero of u(¢) in (0,1). Then

JIO ¢p1<JIO w(r) f(r,x(r), x(r — 7),x'(r)) dr) s

0 s
- Jl g, ( JS w(r)f (r,x(r), x(r — 7),x'(r)) dr) ds. (3.1)

For the sake of applying Theorem 2.1, define the nonnegative continuous con-
cave functional o, the nonnegative continuous convex functionals 0y, y;, and the
nonnegative continuous functional i, on the cone P by

o (x) = min  |x(?)],

re(l /k, (k—1)/K]

7 (x) = max X' (1)),
Yi(x) = 01 (x) = max [x(1)],

€1[0,1]

where x € P and k is a natural number with k& > 3.
In our main results we will make use of the following lemmas.

Lemma 3.1. For x € P, there exists a constant M > 0 such that

max |x(¢)] < M max |x'(7)].
tel—1,1] te[—1,1]

Proof. By Lemma 3.1 of [5] we have

<M 3.2
max |x(2)] max Ix" ()] (3.2)

Since x(7) = 0 for 7 € [—7,0], it is clear that
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max |x(7)| < M max |x'(7)]. (3.3)
te[-1,0] te[-1,0]

Now (3.2) and (3.3) yield that

max |x(¢)] < M max |x'(7)]. |
te[-1,1] te[-1,1]

With Lemma 3.1 and the concavity of x, for all x € P, the functionals defined
above satisfy

%Hl(x) < ocl(x) <0 (x),

[[x]l = max{6(x), 1 (x)} < My, (x), (3-4)
o1 (x) < ¥ (x).

Therefore, condition (2.1) of Theorem 2.1 is satisfied.
By (3.1), we define an operator 7' : P — P by

Jo &, (L w(e)f (r, x(r), x(r = 7), X' (r)) dr) ds, 0 <1 <10,
Ix(1) = f,l (/5;1 (f,; w(r) f (r,x(r),x(r —7),x'(r)) dr) ds, ty<t<]I, (3.5)
0, —-7<t<0,

)

where 1) is defined by (3.1). By (3.5), it is well known that BVP (1.1) has a positive
solution x if and only if x € P is a fixed point of 7.

Lemma 3.2. Suppose that (Hy) and (H,) hold. Then TP = P and T : P — P is
completely continuous.

Proof. By (3.5), we have
Tx(t) =0,te[-7,1], Tx(t)=0,te[-7,0], Tx(1)=0 (3.6)
for x € P. Moreover, Tx(ty) is the maximum value of Tx on [0, 1] since

¢, ([ w(r) f (r, x(r), x(r — 1), x'(r) dr) ds > 0, 0 <1< 1,

(Tx)'(1) = —¢;1 (L; w(r) f(r,x(r), x(r — o), x'(r) dr) ds <0, tny<t<1, (3.7)
0, —-1<t<0,

is continuous and nonincreasing in [0,1] and (Tx)'(z) =0. So Tx is concave
on [0, 1], which together with (3.6) shows that T(P) = P and each fixed point of
T is a solution of BVP (1.1). By similar arguments as in [5], one can show that
T : P — P is completely continuous. O
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In addition, for x € P, we can prove the following result:

min  Tx(7) >
re[1/k, (k=1)/K]

In fact, from (3.5) we have

D)t > max Tx(1)r for 0 <1< 1y,
0 te0,1]
Tx(t) 24 1,
M) () —p) > max Tx()(1 —1) forty<t<1,
teo,

which implies that (3.8) holds.
Let

0 = min { Jll//: ¢;1(J

p=g;' (jol w(r) dr).

1/2 1/2

N = max { Jo (/ﬁ;l (Jv w(r) dr) ds, J:/z ¢;1 (,[15/2 w(r) dr) ds}.

We are now ready to apply the Avery—Peterson fixed point theorem to the
operator T to give sufficient conditions for the existence of at least three positive
solutions to BVP (1.1).

Theorem 3.1. Assume that (Hy) and (Hy) hold. Let 0 < a < b < ¢ and suppose
that f satisfies the following conditions:

(A1) f(t,u,0,u) < ¢, (d/p) for (t,u, v, 1) € [0,1] x [0,d/2] x [0,d/2] x [~d, d];
(A2) f(t,u,v,u) > ¢p(kb/5)f0r (t,u,v,u) € [%,1%1] x [b, kb] x [0,kb] x [—d,d];
(A3) f(t,u,v, 1) < ¢y(a/N) for (t,u,v, 1) € [0,1] x [0,a] x [0,kb] x [~d, d].
Then BVP (1.1) has at least three positive solutions xi, x, and x3 such that

max |x/(7)] <d, i=1,2,3,

1e(0,1]

b< [x1(7)], a< max |x(7)]
tel0,

min
te(l/k, (k—1)/k] [0,1]

with

min  |x(7)] < b,
te[1/k, (k—1)/k]
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and

max |x <da.
1e(0,1] | 3( )|

Proof: BVP (1.1) has a solution x = x(¢) if and only if x solves the operator equa-
tion x = Tx. Thus we set out to verify that the operator T satisfies the Avery—
Peterson fixed point theorem, which then implies the existence of three fixed points
of T.
For x € P(y,,d), we have y,(x) = max, (o1 |X'(f)| <d, and, by Lemma 3.1,
max, e 01 |x( )| < Md for 1 €[0,1]. Then condition (A,) implies that f(z,x(7),
x(t—1),x'(1) < ¢,(d/p). On the other hand, x € P implies that Tx € P, so Tx is
concave on [0, 1] and max,co,1] |(7x)'(¢)] = max{[(Tx)"(0)|,|(Tx)'(1)|}. Thus

71 (Tx) = ff[fi"ﬁ [(Tx)' (1)

= max (J w(r r),x(r—1),x'(r)) dr) ds,

< %qﬁp] (L w(r) dr) = %p =d.

Therefore, T : P(y,,d) — P(y,,d).
To check condition (S;) of Theorem 2.1, we choose

2
xo(t) = —4k2b<t—21k> +kb, 0O0<t<lL

It is easy to see that xo € P(y;,61,01,b,kb,d) and o;(xy) > b, and so
{x € P(y,,01,01,b,kb,d)|o;(x) > b} #0.
Hence for t € [1/k, (k — 1)/k], x(t) € P(y,, 01,01, b, kb,d) we have
b<x(t)<kb, |xX'(1)]<d.
Thus, for 7 € [1/k, (k —1)/k], it follows from condition (A,) that
F(06(0), 30 = 7),3'(1)) > g (kb o).

By definition of o; and P, we have by (3.8)
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n(Tx) = min (700> max Tx() = (T9)(0)

= %J:) ¢;1 ( J:O w(r) f(r,x(r), x(r — 7),x'(r)) dr) ds

= llcjtl ¢;1 ( Jj w(r)f(r,x(r), x(r — 7),x'(r)) dr) ds

> % min { J;/z (/5;1 (Ll/z w(r) f (r, x(r), x(r — 7),x'(r)) dr) ds,
Jll/z ¢;1 (J:/z w(r) f (r, x(r), x(r — 7),x'(r)) dr) ds}

> % min { Ll//: 9, (Ll/z w(r) f (r, x(r), x(r — 7),x'(r)) dr) ds,
Ji:l)/k ;1 (J:/z W(;f)f(r7 x(r), x(r — r),x’(r)) dr) ds}

i,

i.e., o1 (Tx) > b for all x € P(y,01,01,b,kb,d).
This shows that condition (S;) of Theorem 2.1 is satisfied.
Moreover, by (3.4), we have

1 1
o (Tx) > E@](Tx) > Ekb =b. (3.9)

for all x € P(y,,01,b,d) with 0;(Tx) > kb. Thus condition (S;) of Theorem 2.1 is
satisfied.

Finally, we show that condition (S3) of Theorem 2.1 holds as well. Clearly,
0¢ R(y;,¥,a,d) since Y,(0) =0 <a. Suppose that x € R(y,¥,a,d) with
W, (x) = a. Then, by condition (A3), we obtain that

h(Tx) = max [(T)(0)] = (T)(1)

= j 4" ( j () f (7, x(0), x(r = 2), (7)) ) d

0 s
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1/2

max{JO qﬁ;l(J

N

Jl ¢;1(r W) f (7, x(0), x(r = 2), (7)) ) i}

1/2 1/2

% max{ E/z 4! ( J‘l/z w(r)) ds, Jll/z g, ( J’:/Z w(r )dr) ds}

S

<a. (3.10)

1/2

IA

w(r) f(r,x(r), x(r — 7),x'(r)) dr) ds,

IA

Hence, from (3.10), we have

V(1) = max |Tx(1)] < a.

So condition (S;) of Theorem 2.1 is satisfied.
Since (3.4) holds for x € P, all conditions of Theorem 2.1 are satisfied. There-
fore BVP (1.1) has at least three positive solutions xj, x, and x3 such that

max |x/(f)] <d, i=1,2,3,

re[0, 1]
b<te[1/k k- l/k]{| xi(0)l}, a<t?[3)§]|x2([)|
with
ze[l/;{fl(i,?,l)/k] |x2(2)| < b,
and
Z?[S"} |x3(1)| < a.
The proof is complete. ]

To illustrate how our main results can be used in practice we present an
example.

Example 3.1. Consider the boundary value problem

{(|x’|x) + f(t,x(0),x(t = 7),x'(1)) =0, 0<r<]1,
x(0) =0, r € [~7,0] (3.11)
x(1) =0,

where
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T -+ 2306u'0 + 13000 + (30000)3’ u<4,
¢+ 2306(5 — u)u'® + iy + (sok0) s d<u<5
Z+2306(u—5u + s + (o)’ S<u<6,
T - +2306-6'0 + 13000 T (30000) ) uz=6

f(tﬂuﬂv7ﬂ) =

Choose a = 1/2, b =1, k =4, d = 30000. We note that 6 =5, p =1, N:%.
Consequently, f(¢,u,v ,u) satisfies

St v,00) < by (N) 45

for0<r<1,0<u<1/2,0<v<4, —30000 < u < 30000,

f(tu,o, 1) > ¢y <45b) = 2304

forl/4<t<3/4,1<u<4,0<v<4 -30000 < u < 30000, and

St u,v, 1) < ¢y <§> =9x 108

for0<¢<1,0<u<15000,0 < v < 15000 and —30000 < x < 30000.
Then all conditions of Theorem 3.1 are satisfied. Thus, problem (3.11) has at
least three positive solutions xj, x; and x3 such that

max |x!(7)| < 30000, i=1,2,3,

te|0,

I
1 = !
< omin @l 5 < max o ()

with

min |x(f)] < 1,
te(1/4,3/4]

and

1
t —.
max 3 (2)] <3
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